IEEE @
130 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023 Signal o7 e enTandn \

IEEE) X
\Ssénsors Coundil Processing & measurement

Drone Navigation and Target Interception Using
Deep Reinforcement Learning: A Cascade
Reward Approach

Ali A. Darwish

and Arie Nakhmani ®, Senior Member, IEEE

Abstraci—This article proposes an architecture for drone navigation and target interception, utilizing a self-supervised,
model-free deep reinforcement learning approach. Unlike the traditional methods relying on complex controllers, our
approach uses deep reinforcement learning with cascade rewards, enabling a single drone to navigate obstacles and in-
tercept targets using only a forward-facing depth—-RGB camera. This research has significant implications for robotics, as
it demonstrates how complex tasks can be tackled using deep reinforcement learning. Our work encompasses three key
contributions. First, we tackle the challenge of partial observability when employing nonlinear function approximators for
learning stochastic policies. Second, we optimize the task of maximizing the overall expected reward. Finally, we develop
a software library for training drones to track and intercept targets. Through our experiments, we demonstrated that our
approach, incorporating cascade reward, outperforms state-of-the-art deep Q-network algorithms in terms of learning
policies. By leveraging our methodology, drones can successfully navigate complex indoor and outdoor environments
and effectively intercept targets based on visual cues.

Index Terms—Cascading reward function, drone tracking, dueling double deep Q-network (DQN), interception,

reinforcement learning (RL).

[. INTRODUCTION

RONE navigation and interception pose considerable
D challenges due to their inherent complexity. Traditional
navigation methods rely on various components, including
a drone model, environmental representation, independent
control systems, object recognition, occupancy maps, and
intricate controllers [1], [2], [3], [4], [5], [6]. However,
fine-tuning these elements in real-world scenarios is arduous
and often necessitates labeled data and custom engineering
from developers. The development of drone tracking and
interception systems holds significant practical implications,
such as enhancing airport security, enabling effective airspace
patrolling, and safeguarding public and personal privacy.

Our proposed approach utilizes reinforcement learning (RL)
to optimize all subsystems, aiming to maximize the overall
system performance in these applications by representing the
problem as a framework for an artificial solver known as an
agent. The drone agent within RL learns representations of
the environment, including target drones, obstacles, gates, and
tracks, and translates this understanding into commands for

Manuscript received 14 July 2023; revised 23 October 2023; accepted
14 November 2023. Date of publication 20 November 2023; date of
current version 12 December 2023. This work was supported by NVIDIA
Corporation. (Corresponding author: Arie Nakhmani.)

Ali A. Darwish was with the Department of Electrical and Computer
Engineering, University of Alabama at Birmingham, Birmingham, AL
35294 USA, and also with the University of Alabama in Huntsville,
Huntsville, AL 35899 USA. He is now with Athenium Analytics, Wash-
ington, DC 20001 USA. (e-mail: alex.darwish@athenium.com).

Arie Nakhmani is with the Department of Electrical and Computer
Engineering, University of Alabama at Birmingham, Birmingham, AL
35294 USA (e-mail: anry@uab.edu).

Digital Object Identifier 10.1109/JISPIN.2023.3334690

continuous control. This adaptability allows our approach to
be implemented in various environments, both indoors and
outdoors.

RL, as a subfield of artificial intelligence (AI), holds
significant promise for robotics as it emulates the learning and
evolutionary processes observed in intelligent life. Unlike ap-
proaches relying on predetermined and preprogrammed instruc-
tions, RL enables machine intelligence to increase by not being
constrained by such limitations. The RL agent interacts with the
environment to acquire meaningful representations and corre-
sponding actions, lacking prior knowledge of the environment.
It learns solely through observations, rewards, and punishments.

Actions, observations, and rewards, collectively referred
to as experiences, are stored in a table, providing the agent
with a basis for learning and generalizing a value function.
These experiences are then optimized through cumulative
rewards. This learning paradigm, which utilizes rewards and
punishments through unsupervised trial-and-error interactions,
characterizes RL.

In our case, the drone has six actions: up, down, right turn,
left turn, forward, and backward, enabling it to navigate freely
within its space. Observations capture the drone’s senses, such
as RGB-D images, distance information, and geolocation data.
Rewards represent the unit of reward or punishment received by
the agent after each action in the environment.

RL allows us to witness the evolution of Al in practical
applications. For instance, OpenAl’s robotic arm evolved us-
ing RL to recognize colors and letters and manipulate objects
[1]. Such capabilities were once considered science fiction but
have become a reality in less than a decade. Although RL
principles and algorithms have existed for several decades, the
field is still in its early stages but steadily expanding. Only

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0006-8503-2803
https://orcid.org/0000-0002-0987-4834
mailto:alex.darwish@athenium.com
mailto:anry@uab.edu

DARWISH AND NAKHMANI: DRONE NAVIGATION AND TARGET INTERCEPTION USING DEEP RL 131

recently RL applications have gained public attention due to
advancements in computational power, particularly with the
availability of advanced GPUs originally driven by demand from
gamers and cryptocurrency miners. These GPUs have made
training deep reinforcement learning (DRL) models computa-
tionally feasible. In DRL, neural networks approximate and
solve the value function, as raw tables and queues become
unscalable for optimizers, while neural networks effectively
learn from large datasets. DRL shares similarities with RL in
terms of how the agent learns through exploration but differs in
how the value function is calculated.

Humans, animals, and certain insects demonstrate a remark-
able ability to generalize from past experiences by deriving
multidimensional representations of the real world from high-
dimensional sensory inputs [7]. This high level of metalearning
can be achieved through a combination of RL and hierarchi-
cal processing, allowing acquired knowledge to be efficiently
applied to new situations [8]. Replicating this natural learning
approach using sequential programming is complex and chal-
lenging. Learning from past experiences and generalizing poses
difficulties due to the plasticity-stability dilemma, a concept
widely recognized in the field [9]. In the realm of robotics’
applications, the traditional approach of developing and tuning
models does not scale well in real-life scenarios [10]. How-
ever, recent advancements in RL and deep learning (DL) have
made it possible to mimic biological learning processes [11].
For instance, Mnih et al. [12] successfully trained an agent to
play games by using raw pixels as input and training a deep
QO-network (DQN), demonstrating the capability of RL and DL
to generalize across a collection of video games. RL has also
been applied to solve more complex tasks, such as teaching a
robot how to walk [13].

Our approach draws inspiration from the OpenAl Gym game
suite [14], [15], specifically Super Mario, Sonic, and Space In-
vaders. By drawing insights from these games, we aim to develop
a drone tracking and interception system that can exhibit similar
learning and adaptation capabilities. Our goal is to leverage RL
algorithms and apply them to real-world scenarios, allowing the
drone agent to learn representations of the environment, make
informed decisions, and optimize its performance in tracking
and intercepting targets.

The present work introduces a novel approach for drone
navigation and target interception in complex environments.
A mathematical framework is derived, and an architecture is
defined to realize these techniques. Specifically, a model-free
architecture is developed for drone interception in a 3-D en-
vironment where the states are partially observable. Further
details regarding partial observability are provided in the par-
tially observable RL section. The approach combines DRL with
a cascading reward function to train a drone to intercept an
airborne target. In addition, the drone is trained through RL on
depth and RGB images, using a dueling dual DQN as a nonlinear
function approximator and leveraging a long short-term memory
(LSTM) neural network to address the suboptimality problem
[16].

In this article, the architecture is also tested with a drone con-
troller that is not explicitly programmed to fly and detect other

unmanned aerial vehicles (drones), as the model of the drone and
its environment are not described in the simulation. The drone
agent learns to use high-level actions from a discretized action
space consisting of six actions. It also learns representations
of the environment, such as obstacles, gates, and tracks, and
translates them into commands for continuous control [17].
Compared with the explicit decomposition of similar tasks in
the traditional programming, which requires example-based su-
pervised learning, path planning, control, and occupancy grids,
the proposed approach optimizes all subsystems to maximize the
overall system performance. To address the challenges of sparse
and delayed rewards, limited state representations, and complex
tasks, the objective function is optimized using reward shaping.
The cascading reward function, a tiered reward approach, is
employed to achieve better learning performance compared with
a fixed reward function. We provide three key contributions:
1) tackling partial observability challenges with nonlinear
function approximators for learning stochastic policies;
2) optimizing the task of maximizing the overall expected
reward;
3) developing a software library for training drones to track
and intercept targets.

The library called TrackGym is made publicly available on
GitHub [18].

The rest of this article is organized as follows. Sec-
tion II discusses current approaches in object tracking, while
Section III presents the proposed approach by defining the
problem, presenting the system architecture, and detailing the
agent—environment unsupervised learning. The cascading re-
ward function and its mathematical framework are explained,
and the TrackGym is introduced as a testing environment for
the approach. In Section IV, the results are discussed. Finally,
Section V concludes this article.

[I. PREVIOUS WORK
A. Drone Tracking

Conventional vision-based object tracking in drones consists
of the supervised extraction of features from the target using
either computer vision techniques [19], [20], [21], [22], [23],
[24], [25] or deep learning [6], [17], [22], [26], [27], [28]. These
features are passed to the system for creating an occupancy
grid or rich representation of the environment. In the computer
vision approach, two representation schemes determine if the
target object is described as generative or discriminative [29].
Regardless of the approach, the tracked object is first located
using the computer vision system, and the target’s coordinates
are passed to the control system responsible for moving the
drone.

Recent systems that use vision techniques were demonstrated
by a variety of researchers. Qu et al. [19] presented an algorithm
for intercepting moving targets with wheeled mobile robots in
dynamic environments. The algorithm predicts target positions,
generates an interception trajectory with path and speed sepa-
ration, and utilizes Hybrid Ax search and gradient descent for
path planning. It introduces an spatio-temporal (ST) graph for
speed planning, represented by piecewise Bézier curves. Fu et al.

132 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023

[2] used global feature matching and the iterative Lucas—Kanade
optical flow for local feature tracking of moving objects. A local
geometric filter handled outlier feature correspondences based
on forward-backward pairwise dissimilarity measures. As the
output, the local geometric features were represented as a binary
classification problem for outlier feature detection. The system
successfully tested the real-time tracking of moving objects at
a speed of 20 frames/s in the Unreal engine simulator. Another
onboard computer vision system enabled for RGB and a depth
camera was proposed by Mueller et al. [3] for the long-term
tracking of moving objects. Support vector machines (SVM) and
structured output tracking with kernels were used for the object
identification subsystem. The authors achieved good results in
tracking fast-moving and occluded objects.

Zhu et al. [4] proposed a human-in-the-loop visual tracking
method for drones with human corrections integrated into the
system to compensate for drifts in tracking caused by occlusion
and lighting conditions. In this approach, the tracking-learning-
detection (TLD) algorithm was used for real-time object track-
ing. TLD is a widely used algorithm in drone-tracking tasks [30],
[31],[32], [33], [34] and achieves very good results in short-term
object tracking [30]. However, TLD includes several limitations
when implemented in real-world applications, particularly with
long-term tracking [34]. Optical flow misalignments limit the ef-
fectiveness of TLD due to light conditions and orientation shifts,
so the authors proposed a human-in-the-loop approach to com-
pensate. They also used the Kalman filter for movement predic-
tion and proposed an adaptive strategy based on clustering algo-
rithms for correcting bounding box shifts. Pestana et al. [5] pro-
posed using TLD for real-time visual servoing and tracking. This
system performed well in real-world testing, even with deformed
shapes and occluded objects. Our research also tested this ap-
proach and attained similar results to those reported, but our sys-
tem failed to track fast-moving and distant objects. Also, the per-
formance severely degraded during a long-term tracking course.

Chakrabarty et al. [6] proposed and simulated a search and
track system for small drones and used the histogram of oriented
gradients’ features and linear SVM for object classification.
They reported good tracking performance using only a few
scenarios. The authors successfully presented a complete system
built using the robot operating system formulated with a finite
state machine. De Smedt et al. [35] proposed a system for
pedestrian tracking using aggregated channel features as well
as a particle filter. This technique enabled the authors to test a
light system by limiting the area of interest with geometrical
constraints, such as the height of a pedestrian. While the au-
thors reported improved results of the tracker compared with a
conventional particle filter, the system was limited by requiring
preprogrammed object properties, such as height, pose, and
drone-tracking angle. Opromolla et al. [30] presented a tem-
plate matching and morphological filtering approach for visual
drone tracking to solve the limitations of trackers susceptible
to visual issues, such as illumination variation, target scale, and
background variation. Another advantage of this approach is
the enabling of detection at varying distances. The system was
intended to supplement the global navigation satellite system in
challenging environments and areas with low signal coverage.

The results showed that it is possible to reduce the probability of
false alarms and missed detections using the template matching
approach with pixel-level normalized cross correlation.

Although the idea of using DRL is not new in the field
of robotics, not until recently could we implement and test
the technique because of computing power and implementable
algorithms. The testing of these algorithms was limited because
an agent—environment interaction is required. To the best of our
knowledge, DRL has not been used for drone object tracking
and interception. However, there have been attempts to use RL
to track objects visually in [29] and [36]. Few research attempts
exist using DRL for drone navigation, obstacle avoidance, and
landing. Fan et al. [37] proposed a multiagent interception
approach for scenarios where the network topology can change
due to communication restrictions or attacks. To overcome
this challenge, the authors introduced a multiagent-level fusion
actor—critic approach with a direction-assisted actor, dimen-
sional pyramid fusion critic, and an experience adviser function.
Additionally, they proposed a reward factor to balance individual
and shared rewards.

Polvara et al. [38] proposed an autonomous landing system
for quadrotor drones via DRL, where drones learn how to land
on a designated pad from images acquired by a down-looking
camera. The authors used this type of camera in a classification
subsystem for landmark detection, while another subsystem han-
dled vertical descent. Each subsystem had a specialized DQN,
and they were all connected with adouble DQN to reduce overes-
timation problems during interaction with the environment. The
authors tested their approach in several simulated environments
and reported performance that surpassed the tracking algorithm
and human pilots. They also noted that the trained network
could generalize to real environments despite being trained in
the Gazebo simulation.

Deng et al. [22] tested a missile terminal guidance approach
using the deep deterministic policy gradient (DDPG) algorithm
for intercepting maneuvering targets with infrared decoys. The
method involves creating a virtual target, improving the DDPG
algorithm for better training efficiency, and designing a heuristic
reward function. Monte Carlo tests confirm the effectiveness
and robustness of this approach, showcasing its performance
compared with the traditional methods.

Tran et al. [39] proposed a dataset aggregation approach
for obstacle avoidance and control for small drones in a clus-
tered environment. The drone achieved good performance and
traveled into areas not accessible to a human pilot. However,
the authors’ approach was based on transfer learning and not
entirely DRL-based. In transfer learning, a human operator (or
a trained machine) navigates the drone and stores the learned
features and control data. These stored weight files initialize the
network for the DRL agent to provide a head start over pure
learning from exploration. The authors extracted features from
the images using a set of 7x7 sliding windows and calculated
the eigenvalues for each neighborhood pixel value. They used
the Radon transform for computing line integrals to project
2-D images onto 1-D lines. While this approach performed
well as reported by the authors, it is unclear if it generalizes
well to other environments and tasks or if it is practical to use

DARWISH AND NAKHMANI: DRONE NAVIGATION AND TARGET INTERCEPTION USING DEEP RL 133

human operators to train and apply corrections for each task. We
propose a different solution for tracking and interception as we
consider localization and control simultaneously, and our goal is
to propose, develop, and test a general RL approach for solving
multiple problems in drone navigation.

B. Partially Observable RL

Learning how to play ATARI games using DRL has seen
considerable success [14]. The 2-D environments are ideal for
training agents because states of the game within the ATARI set-
ting are fully observable by agents that have access to the entire
environment images. Many challenging problems that require
decision making were once considered virtually impossible to
solve, until recent successful approaches with DRL, such as in
the game of Go [40] and Poker [41]. Scaling DRL methods from
ATARI-style environments to 3-D is difficult. On the one hand,
an agent sees a first-person view of the environment, making the
returned states partially observable. On the other hand, rewards
in a higher dimensional environment can be sparse. A partially
observable state from the perspective of an agent is when the
world can be partially seen, with many of the events and goals
being hidden. Lample and Chaplot [42] addressed these issues
by augmenting an RL algorithm to infer high-level information
from the environment. They trained a game-based agent in the
video game Doom to fight enemies and collect rewards. The
authors trained two networks, one for navigation and a second
for fighting, and then cotrained a DQN with game features.
This approach is interesting and potentially applicable to our
drone-tracking problem. However, an agent’s movement in the
Doom environment is bound to the x and y axes, so this is
limited compared with a natural environment in which drones
can operate [43].

Kersandt [44] proposed using a DQN-based algorithm for
training an agent on navigation tasks with depth 2-D images
within a photorealistic 3-D environment. The author used Ope-
nAl, Airsim simulator, and Unreal for creating an environment
and high-level interactions with the agent. Our approach for the
environment is inspired by Kersandt, but we suggest that solving
real-life tasks in a partially observable environment is limited
because they trained a drone on how to navigate only in the
x and y dimensions. While this method simplifies the learning
by eliminating the third z-dimension, it cannot work with drone
interception tasks because the tracking drone must move within
a 3-D space freely.

Ill. PROPOSED APPROACH

In this section, we focus on defining the problem of track-
ing and outlining our technical solution, which leverages RL
techniques. In the subsequent sections, we will delve deeper
into the technical details of our proposed approach, including
the mathematical framework, the system architecture, and the
agent—environment interactions.

A. Architecture

Fig. 1 illustrates the proposed architecture for our drone track-
ing and interception system, adapted from the AirSim/Unreal

4)

control signal

sensor readings

Software Unreal Engine
in the loop
* Physicsengine

* Environment model
* Renderingengine

»| + Datacollection

* Sensor models

* API

estimated state

desired state

state
commands

J

data (sensors and perception)

TrackGym Libraries
(TF, Keras, OpenAl gym, OpenAl baseline, Custom code)

Fig. 1. Proposed system architecture.

system [45]. It consists of two main modules: AirSim and
Unreal Engine for simulation, and OpenAl Gym for training
and control.

In the proposed architecture, we utilize the AirSim libraries
to interact with the Unreal API, and this is enabling us to create
a realistic simulation environment. The software-in-the-loop
feature within AirSim allows us to simulate the flight controller,
incorporating sensor data, such as accelerometer and gyroscope
readings, to estimate actuator control signals. The Unreal engine
serves as the game engine, providing photorealism features
and open-source game environments. It generates realistic con-
ditions within the simulated environment, including lighting
effects and wind dynamics. We can import predefined vehicle
models and customize the environment as needed. The authors
of the AirSim library provide a comparison of two simulation
scenarios that were tested in the real world with the Px4 con-
troller [45]. This demonstration showcases the accuracy of the
simulation versus the real controllers. The sensor data obtained
from these real-world tests closely match the data generated in
the simulated environment.

Within the architecture, the flight controller of AirSim trans-
lates the states of the drone, which consist of RGB-D images
and position information, into signals that drive the actuators of
the simulated drone. These states, along with the target drone’s
motion and interaction definition, are passed to the TrackGym
libraries. TrackGym incorporates various libraries used to train
the neural network with RGB-D and position inputs and outputs
the commands for controlling the agent within the environment.
It integrates with OpenAl Gym through its API, allowing for
training and control of the drone agent using RL.

The high-level actions determined within the OpenAl Gym
framework are translated into control signals representing move-
ments such as up, down, yaw right, yaw left, forward, and
backward. These control signals are then processed by the flight
controller to estimate the actual roll, pitch, and yaw of the
drone using data from the gyroscope and accelerometer. The

134 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023

(a) (b)

Fig. 2. Unreal environment that was used for training. The left image
(a) shows the simple environment used to train the network to identify
the target, and the right image (b) illustrates the complex, partially
observable environment.

flight controller generates motor signals that drive the propellers,
resulting in thrust, torques, and other forces calculated by the
physics engine in Unreal. The simulator in Unreal computes
the kinematic state of the drone based on the inputs received
from the flight controller, considering factors, such as drag,
friction, gravity, and motor behavior. Overall, this architecture
provides a comprehensive framework for simulating and training
the drone agent for tracking and interception tasks. It integrates
the necessary components, including simulation, control, and
training libraries, to create an effective learning environment for
the agent.

B. Environment

Fig. 2 illustrates the simulated environment within the Unreal
engine that was used for training the drone-tracking agent. In
addition to the landscape, the environment has a tracking drone
with a forward-facing depth camera installed and a target drone.
For training purposes, two different environments were utilized.
The first environment is a simple one, designed to teach the agent
the representations of the target using a convolutional neural
network (CNN) function approximator. This environment allows
the agent to learn the visual features and characteristics of the
target drone.

The second environment is more complex than the first one,
which is used for transfer learning. Here, the knowledge gained
from the first environment in Fig. 2(a) is transferred to learn
how to avoid obstacles effectively in the environment, as shown
in Fig. 2(b). Transfer learning is a technique where knowledge
acquired from one task is applied to another related task, improv-
ing learning efficiency and performance. Moreover, the transfer
learning approach allows the agent to be trained and tested in
both indoor and outdoor environments. The skills and repre-
sentations learned in the first environment can be effectively
transferred and applied in different settings, enabling the agent
to generalize its knowledge and adapt to various scenarios.

The training approach and details of the agent’s learning
process in both environments are explained in Section IV of
this article. This section provides a comprehensive overview of
the training methodologies, including the use of CNN for target
representations and transfer learning for obstacle avoidance,
enabling the agent to acquire the necessary skills for successful
drone tracking and interception.

We used the OpenAl gym environment [46] for defining the
agent drone in the AirSim simulation and providing an abstrac-
tion layer for the environment. We also defined the interaction
between the agent, the environment, and the reward function
with the five methods of step, reset, render, action, and reward.
At each time step, the step method returns an observation, a
reward, the status of the episode, and logging information.

To enable agent—environment interactions through OpenAI’s
abstraction, we developed two classes in the TrackGym called
myTrackGymClient and TrackGym. The first class implements
the methods related to AirGym, e.g., obtain an image, takeoff,
and move. In the latter class, the OpenAl gym methods are
implemented with calls to the myTrackGymClient method. The
published GitHub repository further describes all classes and
methods available in TrackGym [18].

C. Reward Shaping

Crafting a reward function that effectively establishes a goal-
reward relationship presents a significant challenge. In RL,
agents receive rewards or penalties for their actions without
explicit instructions, necessitating their ability to determine
whether their actions were rewarded. This structure, known as
the credit assignment system [47], enables agents to learn how
to reach the target through actions that may be delayed or not
related to the goal. Rewarding an agent in an environment with
numerous variables poses another obstacle. For instance, when a
target is occluded, the agent may need to execute maneuvers that
do not align with optimal Q-values to reach the goal. Similarly,
achieving the goal may require the agent to maintain specific
conditions, such as being on the same z-plane and within a certain
angle of attack. Introducing multiple objectives further compli-
cates the reward function. Ideally, the reward function should be
continuous, differentiable, and capable of accommodating the
various scenarios agents may encounter in dynamic, real-world
environments. Since RL agents primarily accomplish tasks for
which they are rewarded, designing the reward function becomes
crucial in ensuring the agent’s desired behavior.

To guide the learning process effectively, three types of
termination conditions are defined for each training episode:
time-limit, positive, and negative terminations. These conditions
determine when to reset the environment, terminating undesired
exploration and focusing on critical states for the given task.
Time-limit terminations occur when the agent becomes stuck
or when the simulation fails. Positive terminations arise when
the agent accomplishes the task and receives the maximum
possible reward, prompting a restart of the environment to
initiate learning of a new policy. Negative terminations occur
when the agent fails, such as colliding with an obstacle or
reaching a geographic limit. Under these conditions, the agent
receives the maximum negative reward, and the training process
is restarted. Negative terminations play a crucial role in collision
avoidance during the training of a drone to track and intercept
the target. They facilitate the learning of Q-values associated
with actions that lead to collisions. Negative terminations are
also utilized to restrict undesired exploration far from the target
by employing geographic coordinates. When the agent reaches

DARWISH AND NAKHMANI: DRONE NAVIGATION AND TARGET INTERCEPTION USING DEEP RL 135

these predefined coordinates, it incurs a penalty, prompting a
restart of the training process.

Positive rewards may yield counter-intuitive results, as re-
warding the drone for proximity to the target might lead itto fly in
circles to accumulate maximum rewards rather than intercepting
the target to obtain a smaller, one-time reward. Increasing the
positive termination reward could potentially address this issue,
but it may also diminish the drone’s inclination to reach the
target promptly. Negative rewards prove useful in incentivizing
the agent to complete the training episode quickly by reaching
the goal target. In this scenario, the agent aims to be rewarded
for reaching the goal while minimizing penalties associated with
negative distances from the target and excessive time steps taken
to achieve the goal.

1) Cascade Reward: We design the reward function to in-
corporate temporal and spatial considerations, aiming to guide
the agent’s behavior systematically during the process of ap-
proaching and intercepting the target. The objective is to estab-
lish an ordered approach strategy that the agent can follow.

To successfully intercept the target, the agent is incentivized
to prioritize quick and efficient movement on the same z-plane as
the target or is already oriented toward it. This emphasis on speed
encourages the agent to expedite its approach toward the target
when favorable conditions are present. However, it is important
to acknowledge that the agent may encounter various obstacles
along its path to the target. Therefore, the reward function also
incorporates the ability of the agent to adapt its heading and
altitude and to navigate around these obstacles. By allowing the
agent to modify its trajectory, the reward function enables the
agent to effectively address obstacles and continue progressing
toward the target.

By structuring the reward function in this manner, we create a
framework that motivates the agent to follow a specific order
in approaching and intercepting the target. It considers both
the temporal aspect of prompt action and the spatial aspect of
maneuvering to overcome obstacles, thus providing a compre-
hensive approach to guide the agent’s behavior in the pursuit of
successful target interception. Equation (1) represents the reward
function for this stage as

_ df |
e e (max(dt,O.l)) M

where d; is the distance to target at time step ¢, r; is the reward
after time step ¢, and ¢ is a parameter used in shaping the reward
function. We empirically find that assigning ¢ = 0.4 shapes the
curve toward the goal of directing the agent to minimize the
negative penalties and reach the target quickly. When the agent
approaches the target from a distant position with a full view,
orienting the head toward the target becomes important. We want
the agent to maintain the target within its line of sight from this
point until interception, so we introduce an additional heading
reward. The threshold for entering this stage varies depending on
the target. In the Unreal simulation, we determined a threshold
ata distance of 10 NED. The NED is the coordinate system used
by the AirSim and represents +X as North, +Y as East, and +Z
as Down. A higher reward value is provided for smaller heading

(st 1 t—1,St T(s¢, ag, s,
— _)/\ (st, ar t+1)
w: observation

r: reward

a: action

H: history

“,;
2K

"%

~‘Hz+r

thﬂf—wCJ Ht }

Fig. 3. POMDP state transition. The black lines depict the dynamics,
and the blue lines depict the information in the history H; used by the
agent (adapted from [49]).

angles h between the agent and the target according to

1
@+ (Gmey) @

When the tracking drone is within a predefined distance from
the target, for example, d = 6 NED, and before intercepting the
target, we want the z-coordinate of the agent to be positioned
on the same z-plane as the target, so these coordinates are
incorporated into the following equation:

1 1
re=1-(df) + <max(ht,0.1)¢) * (max(zt,O.l)w)'
3)

D. Learning

Within the environment where we train the drone agent, the
decision dynamics are also determined by a Markov decision
process (MDP), but the agent does not directly observe the states.
The agent only receives observations that appear unrelated to
future states. The partially observable Markov decision process
(POMDP) can be used to model these types of decision processes
that include uncertainty [48].

The POMDP is a seven-tuple discrete-time stochastic process
given as (S, 4, T,R, ©Q,0,v). Similar to the MDP, § is the
state space {1, ..., Ns}, Aistheaction space {1, ..., N4}, T:
S x A x S — [0, 1]is the transition probability between states,
R:S x A xS — Risthereward function where R is a contin-
uous reward in Ry, € R, « is the discount factor used with
Bellman’s equation in the range [0, 1), and O: S x Q@ — [0, 1]
is the conditional observation probability set, where 2 is the
set of observations {1, ..., Nq}. Fig. 3 illustrates the POMDP
where at a state s; the agent receives an observation w from the
set of observations €2 with a probability O(s; , s,) for each
time step t. Here, w; € 2 is equal to s; when the environment
is Markovian.

The probability of transitioning to time step ¢ + 1 for the state
si11 € Sis given by the state transition function T'(sg, a¢, St+1)s
and the reward it receives is R(s;, at, s¢+1) € R. The agent’s
actions in a state do not directly link to previous or future
states in a partially observable environment. Instead, a history
of the previous observations is used to better estimate the state

136 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023

St+1| 141 ag

Environment

Fig. 4. Environment interaction framework in the RL model.

dynamics of T [49]. The history of observations up to time ¢ is
denoted by H; € Hy; = Q x (A xR x Q)" and all observed
history is denoted by H = |J;, H:. To avoid suboptimality in
the partially observable environment, other methods achieve a
stochastic policy, such as policy gradient [49]. For example,
Mnih et al. [12] used CNNs on the POMDP domain with a large
set of states, actions, and rewards to solve the problem of playing
ATARI with RL.

The agent receives the state s; from the environment at
each step ¢ and performs an action a;, from an action space
A. For each a;, there is a reward r; representing the reward
function R(s;,a;). Fig. 4 illustrates the general principle of
agent—environment interaction. The state transition model at
time step ¢ + 1 becomes T'(S¢41|$¢, a;). During training, we
maximize the agent’s reward using Bellman’s equation for a
discounted cumulative reward of

R = Z(’Yk(rwwk)) “
k=0

where 7 is the discount factor within [0, 1]. The closer the factor
is to 0, the more it prioritizes instant rewards, and the closer to
1, the more it prioritizes future discounts. This deep Q-learning
approach [50] is known as an off-policy, where the optimal
policy value is learned independently of the agent’s actions. The
policy ; is a direct map from each state s to the best action a
corresponding to the state 7 (s) = a such that

m(als) = P(Ar= a| S = s). %)

As described in Section III-E, we use CNN for the Q-function
value approximation. The Q(s, a) can be decomposed into the
sum of V (s), representing the value of being in a state, and the
advantage A(s,a) of taking action in this state. Hence

Q (s,a) = A(s,a)+V (s). (6)

We use a dueling DQN [50] that separates the estimator
of the state value V(s) and the advantage A(s,a), and uses
aggregation to obtain an estimated ()(s,a). Because dueling
DQN produces more accurate Q-value estimates compared with
DQN and double DQN [50], it is useful for training a drone
to intercept other drones by learning which states are valuable
without having to learn the effect of the selected actions. This
approach is achievable by subtracting the average advantage of

all actions possible in the state as calculated in the following
equation:

Q (5,0:01,60,60) = v (560,60

+ <A (s,a;9<1>,9<2>) - I%l\ YA (s,a’;9<1>,9<2>)> %)
a’cA

where parametrized Q-value function Q(s, a;6) is introduced
with the parameter 6 that defines the Q-value. 6 is a parameter
used to parametrize the network. In the second part of (7), we
could subtract maxge 4 A(s, a’; 01, 0) from the advantage
instead of taking the mean, but the max value decreases the
stability of the optimization [50]. Using the mean, the advantages
only need to change as fast as the mean changes instead of
compensating for changes that optimize the action’s advantage
[50].

The experiences are collected in a preliminary phase and
stored in a d-queue memory [12], and then are randomly sam-
pled regardless of the relevance of the experience to the task.
The intrinsic structure of the tracking problem requires that
we change the sampling distribution and prioritize experiences
that are closely related to successful drone interception actions.
Therefore, we propose using the prioritized experience replay
(PER) [51] to sample experiences that are important for the
training but occur less frequently. In PER, the criterion for which
the importance of each transition is measured is the amount of
DRL the agent learns from a transition. The magnitude of the
temporal difference, i.e., a one-step look-ahead error §, estimates
the goodness of the transition p; = |d;| + £, where ¢ is a small
constant to guarantee that no experience has zero probability.
The probability of prioritizing states leads to tracking and hitting
a target

&
b;
(®)
>, P
where p; > 0 is the priority of the transition ¢, and £ determines
the prioritization for introducing randomness into the experience
selection such that £ = 0 is uniform sampling, and { = 1
selects the highest priority experience. The term) p pf, includes
all priority values in the replay buffer.
Changing the experience replay distribution with the PER
introduces a bias that affects the convergence of the estimation,
so the importance of sampling balances this effect [51] with

G

where p is the replay buffer size, w; is the importance sampling
for transition 7, and o is a hyperparameter to control how much
importance sampling is used and annealed through the training
within (0, 1].

Pu) =

E. Function Approximator

We propose a CNN with LSTM for the @ predictions and
values for V, as shown in Fig. 5. The network input is a sequence
of four 90x256 grayscale depth and RGB images normalized
to map the range of pixel values of 0-255 and processed with a

DARWISH AND NAKHMANI: DRONE NAVIGATION AND TARGET INTERCEPTION USING DEEP RL 137

Input: 4x(90x256x3)

value

A\

6 outputs \V4

/\ add -

\/ - Dy

Input: Velocity 6dense >
Input: Distance (C’j <\ ;\
Input: Geofence I~ LSTM 512 € »> E)-

)

Input: 4(90x256x1) 0 s = ”
3 action outputs

conv 32@(8x8) conv B4@(4x4) conv 64@(3x3)

Fig. 5.
values.

CNN with LSTM and multiple inputs used for learning the Q-

scaling function to reduce the resolution and returns the action
probabilities with the action value V. We provided four frames
as an input to each branch to capture the motion of the target
drone and eventually teach the RL agent to predict the future
state of the target with the help of the LSTM. By adding an
LSTM to the architecture, we can improve the agent’s ability
to track moving objects. The RGB frames give the network the
ability to extract texture information from the states. Building
around our previous experiences with image classification and
segmentation, we believe this network can better identify the
background from the target using the encoded colors in the
pixels.

The velocity of the agent and its distance to the target were
incorporated to help learn its relative motion to the target. A
vector of the geofence coordinates was also added to keep the
agent within a region of interest and to shorten the exploration
and training times. The geofence box range values included
—100 in the z-direction and —200 to 200 in the x and y directions.
When the agent crosses the geofence, it is punished with —100
points, and the simulation is restarted. By passing the geofence
coordinates into the network, we create an association between
the region of exploration and the states. The action space consists
of six discrete commands of {(up), (down), (yaw right 30°/s),
(yaw left 30°/s), (forward), (backward)}.

[V. TRAINING AND RESULTS

Training RL agents in realistic physics’ simulations poses
a significant challenge due to the time-consuming nature of
the process. Unlike the OpenAl game suite, which allows for
accelerated training, the physics engine employed in Unreal
cannot be accelerated. To mitigate this issue and ensure the
algorithms’ correctness, we initially tested the RL agents using
the ATARI breakout agent, a well-established benchmark, prior
to incorporating them into the realistic environments. Then, we
developed two distinct environments. The first environment, as
shown in Fig. 2(a), aimed to train the agent in recognizing the
target. It consisted of a simplified setting comprising an obstacle
and a target drone. This environment provided a controlled and
straightforward setup for the agent to learn the task of target
recognition. Subsequently, we leveraged the concept of transfer

100 +{— basic evn.
— complex env.
50 -
0 .
v
=)
g -50
L%
[=
-100 -
-150 1
—200 -
0 1000 2000 3000 4000 5000
Episodes
Fig. 6. Comparison between the earned rewards in the basic and

advanced environments.

learning to enhance the agent’s capabilities by training it to both
avoid obstacles and locate the target simultaneously. The second
environment, as depicted in Fig. 2(b), aimed to replicate real-life
scenarios with photorealistic objects. This environment provided
a more complex and challenging setting, resembling real-world
conditions that the agent would encounter.

By incorporating these two environments into our training
pipeline, we were able to progressively train the RL agent to first
recognize the target and then transfer that knowledge to navigate
through complex environments while avoiding obstacles. This
approach allowed us to bridge the gap between simple and
realistic scenarios, facilitating the agent’s learning process and
enabling it to acquire the necessary skills for successful target
interception in more challenging and realistic environments.

For each environment, the training consisted of episodes in
which the cumulative reward was calculated until the episode
was terminated either by a total reward of +100 or —300. We
had 5500 episodic steps that took approximately two weeks to
train for each algorithm and environment on an Nvidia TitanXp
GPU. The target drone was programmed to move to different
locations as the episodes progressed. After the agent was trained
in the simple environment in Fig. 2(a), the saved weights were
transferred to the agent before the training was restarted in
Fig. 2(b).

Fig. 6 shows the smoothed cumulative reward achieved per
episode for ¢ time steps for the basic environment in Fig. 2(a) and
the complex environment in Fig. 2(b). The plotted line represents
anincrease in the accumulated rewards with the progress through
the training episodes. Notable dips exist in the plot caused by
moving the target within the environment. Overall, the trend
line increased and broke the 80-point reward between episodes
5200 and 5500, which indicates that the performance of the
interception could be improved if more data were provided to
the network. At the beginning of training, we positioned the
target closer to the agent, and, as training progressed, the target
was moved farther away. The maneuvers required to intercept
the target evolved and became more purpose driven instead of
exploratory, as represented by the agent circling the target to
adjust its controls before approaching for interception. Fig. 6

138 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023

dueling_double_ours
dueling_ours

double_ours
double_dueling no_cascade
double_no_cascade
dueling_no_cascade
DQN_CNN_no_cascade

|11

-50

Rewards

-150

-200

=250

T T
0 1000 2000

Fig. 7.

also depicts a comparison between the learning behavior of the
agent in the complex and basic environments. The agent’s per-
formance was notably stable but experienced too many crashes
during early training, which is an expected behavior because the
agent has not encountered these types of obstacles in the new
environment, even though the learning was transferred directly
from the basic environment.

The agent appears to have rebuilt its neural network graph,
which is attributed to the new features existing in the complex
environment and many unrecognized obstacles. The agent ini-
tially crashed into many barriers after being penalized by the
simulator for flying away from the target. Eventually, the agent
learned to avoid these obstacles to find its way to the target, as
evident in the episodic rewards, as seen in Fig. 6. We tested three
DQN algorithms of double dueling, double, and dueling, all in
a complex environment. The first test was performed with the
CNN-LSTM network with input consisting of the RGB images,
velocity, geofence, and distance to target as well as the depth
images but without using the cascade reward.

The rewards applied during this training are shown in
Fig. 7, depicted as the double_dueling_no_cascade, duel-
ing_no_cascade, and dueling_no_cascade curves. In the second
test, we also used the CNN-LSTM network with a similar input
as the first test and used the cascade reward function. The
rewards applied during this training are shown in Fig. 7 as the
dueling_double_ours, dueling_ours, and double_ours curves. In
the third test, we trained the agent using the DQN network using
the CNN, as shown in Fig. 8, with depth images only to represent
the states as input and without using the cascade reward. These
rewards are depicted in Fig. 7 as the DQN_CNN_no_cascade
curve.

During the third training, the agent failed to achieve its goal
of intercepting the target using the DQN algorithm and the CNN
network without LSTM. This result indicates that the agent

T 1- —

3000 4000 5000

Episodes

Agent learning behavior using different algorithms in a complex environment.

512 dense
value

A\
6 outputs
/\ | add \</

N, =4 3
§ 0
©)
O 6 action outputs

Fig. 8. CNN used for learning the Q-values from the depth images.

requires more than depth representations of the environment
to recognize the target in the complex environment. The low
cumulative reward values achieved also suggest that obstacle
avoidance requires a richer representation of the environment.
The performance of the agent improved when the CNN-LSTM
was incorporated because the states provided richer representa-
tions. The CNN-LSTM with the cascading reward function out-
performed the other methods with the agent improving its skills
to navigate the environment and intercept the target successfully.
All variations of the DQN during this training performed well
with the double dueling DQN algorithm, performing slightly
better than the double or dueling DQN.

Table I presents the testing results of our approach in com-
parison with other models saved at different episode counts,
namely 3500, 4000, and 4500 episodes. The term “succ %”
denotes the success rate, while “Interception steps” signifies the
average number of steps required for a successful interception,
excluding episodes where interception attempts failed from the
calculation. As depicted in Table I, during the training phase,
the Double_Ours, Double_Dueling, and Double_ DQN_CNN
models exhibit limited competence in the interception task. In
contrast, our dueling double and dueling models achieve the
success rates of 15% and 11% after 3500 episodes, with 72 and

DARWISH AND NAKHMANI: DRONE NAVIGATION AND TARGET INTERCEPTION USING DEEP RL 139

TABLE |
COMPARISONS OF DIFFERENT METHODS ON THE SUCCESS RATE,
INTERCEPTED STEPS, AND REWARD

Episode | Method Succ% | Interc. | Reward
Steps

3500 Dueling_Double_ | 15 72 0
ours 1 | 89 -9
Dueling_Ours 0 i —150
Double_Ours 0) _162
Double_Dueling 0) _148
Double 0 i —191
DQN_CNN

4000 Dueling_Double_ | 43 51 23
Ours 41 56 22
Dueling_Ours 7 37 _o1
Double_Ours 3 96 _124
Double_Dueling 0 i _129
Double 1 127 | —129
DQN_CNN

4500 Dueling_Double_ | 63 32 44
ours 68 37 53
Dueling_Ours 12 81 —7
Double_Ours 4 112 ~120
Double_Dueling 3 93 _131
Double 3 87 —131
DQN_CNN

nonlinear and adaptable function approximators, holds promis-
ing prospects for practical control implementation in real-life
applications. However, we encountered challenges in these en-
deavors, primarily due to the potential occlusion of the small
target drone by the background and the high dimensionality of
the observations. Moreover, the training time required for ef-
fective tracking, particularly in real physics’ simulations, added
another layer of complexity. Therefore, enhancing the learning
speed will be a pivotal factor in achieving success with the RL
approach in these advanced tasks.

Our future research directions involve expanding the ca-
pabilities of the agent in the context of drone navigation to
tackle more complex tasks, such as identifying, tracking, and
intercepting fast-moving targets. Recently developed algorithms
for multitarget tracking and trajectory prediction based on deep
learning [23], [24] could also improve the interception if blended
into our framework. In addition, we aim to extend the current
single-agent environment to a multiagent learning setup, as
this has the potential to expedite the learning process through
enhanced interaction and cooperation between multiple agents.

ACKNOWLEDGMENT

The authors would like to thank Nvidia Corporation for their
generous donation of the TitanXp GPU that we used for training
the agent.

REFERENCES

[11 A. W.M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan,
and M. Shah, “Visual tracking: An experimental survey,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 36, no. 7, pp. 1442—1468, Jul. 2014.

[2] C. Fu, R. Duan, D. Kircali, and E. Kayacan, “Onboard robust visual
tracking for UAVs using a reliable global-local object model,” Sensors,
vol. 16, no. 9, 2016, Art. no. 1406, doi: 10.3390/s16091406.

[3] M. Mueller, G. Sharma, N. Smith, and B. Ghanem, ‘Persistent aerial
tracking system for UAVSs,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2016, pp. 1562—1569, doi: 10.1109/ir0s.2016.7759253.

[4] Y. Zhu, C. Wang, Y. Niu, and L. Wu, “hTLD: A human-in-the-loop target
detection and tracking method for UAV,” in Proc. IEEE/CSAA Guid.,

89 steps required for interception, respectively. The performance
of all algorithms improves as training progresses. However,
our proposed methods consistently maintain a higher success
rate in interception and require fewer steps to achieve it, as
demonstrated in the table.

V. CONCLUSION

We introduced a novel approach for addressing the challenges
of object tracking and interception in partially observable indoor
and outdoor environments. Our approach leverages the power of
DRL in conjunction with cascading reward functions. Further-
more, we have developed and published a platform dedicated to
RL-based tracking research, providing a means to train agents
in photorealistic simulations with the aim of transferring the
learning to real-world scenarios. Our findings demonstrate the
successful application of RL-based control for drone navigation
and the importance of feature extraction techniques, environ-
mental modeling, and reward-shaping strategies. Achieving ro-
bust and stable control necessitates a delicate tradeoff between
performance and stability. DRL, by virtue of its employment of

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

Navig. Control Conf., 2018, pp. 1-6.

J. Pestana, J. L. Sanchez-Lopez, P. Campoy, and S. Saripalli, “Vision
based GPS-denied object tracking and following for unmanned aerial
vehicles,” in Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot., 2013,
pp. 1-6, doi: 10.1109/ss11.2013.6719359.

A. Chakrabarty, R. A. Morris, X. Bouyssounouse, and R. Hunt, “An
integrated system for autonomous search and track with a small un-
manned aerial vehicle,” AIAA Inf. Syst.-AIAA Infotech Aerosp., 2017,
doi: 10.2514/6.2017-0671.

J.-F. Gariépy et al., “Social learning in humans and other animals,” Front.
Neurosci., vol. 8, 2014, Art. no. 58, doi: 10.3389/fnins.2014.00058.

T. Serre, L. Wolf, and T. Poggio, “Object recognition with features inspired
by visual cortex,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., 2005, vol. 2, pp. 994-1000, doi: 10.1109/CVPR.2005.254.

M. Mermillod, A. Bugaiska, and P. Bonin, “The stability-plasticity
dilemma: Investigating the continuum from catastrophic forgetting to
age-limited learning effects,” Front. Psychol., vol. 4, 2013, Art. no. 504.
J. Kober, J. Andrew Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1238-1274,
2013.

H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double Q-learning,” in Proc. 13th AAAI Conf. Artif. Intell., 2016, vol. 2,
pp. 2094-2100.

V. Mnihetal., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015, doi: 10.1038/nature14236.
T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine, “Learning
to walk via deep reinforcement learning,” 2019, arXiv:1812.11103.

https://dx.doi.org/10.3390/s16091406
https://dx.doi.org/10.1109/iros.2016.7759253
https://dx.doi.org/10.1109/ssrr.2013.6719359
https://dx.doi.org/10.2514/6.2017-0671
https://dx.doi.org/10.3389/fnins.2014.00058
https://dx.doi.org/10.1109/CVPR.2005.254
https://dx.doi.org/10.1038/nature14236

140

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023

V. Mnih et al., “Playing ATARI with deep reinforcement learning,” 2013,
arXiv:1312.5602.

M. Andrychowicz et al., “Learning dexterous in-hand manipulation,” Int.
J. Robot. Res., vol. 39, no. 1, pp. 3-20, 2020.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, pp. 1735-1780, 1997, doi: 10.1162/neco.1997.9.8.1735.
T. Lillicrap et al., “Continuous control with deep reinforcement learning,”
2015, arXiv:1509.02971.

2023. [Online]. Available: https://github.com/AloshkaD/DroneTracking
C. Qu, J. He, J. Li, C. Fang, and Y. Mo, “Moving target interception
considering dynamic environment,” in Proc. IEEE Amer. Control Conf.,
2022, pp. 1194-1199, doi: 10.23919/ACC53348.2022.9867177.

A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A sur-
vey,” ACM Comput. Surv., vol. 38, no. 4, 2006, Art. no. 13-es,
doi: 10.1145/1177352.1177355.

S. Lankton, J. Malcolm, A. Nakhmani, and A. Tannenbaum, “Tracking
through changes in scale,” in Proc. IEEE 15th Int. Conf. Image Process.,
2008, pp. 241-244, doi: 10.1109/I1CIP.2008.4711736.

T. Deng, H. Huang, Y. Fang, J. Yan, and H. Cheng, “Reinforcement
learning-based missile terminal guidance of maneuvering targets with de-
coys,” Chin. J. Aeronaut., to be published, doi: 10.1016/j.cja.2023.05.028.
A. Nakhmani and A. Tannenbaum, “Particle filtering using mul-
tiple cross-correlations for tracking occluded objects in cluttered
scenes,” in Proc. IEEE 47th Conf. Decis. Control, 2008, pp. 652—-657,
doi: 10.1109/CDC.2008.4738656.

A. Nakhmani and A. Tannenbaum, “Scale-invariant visual tracking by par-
ticle filtering,” SPIE Image Signal Process. Remote Sens. XIV, vol. 7109,
pp. 183-190, 2008.

A. Nakhmani and A. Tannenbaum, “Particle filtering with region-based
matching for tracking of partially occluded and scaled targets,” SIAM J.
Imag. Sci., vol. 4, no. 1, pp. 220-242, 2011.

P. G. Kandhare, A. Nakhmani, and N. M. Sirakov, “Trajectory
type prediction and multi-target tracking,” in Proc. IEEE Southeast-
Con, Huntsville, AL, USA, 2019, pp. 1-6, doi: 10.1109/Southeast-
Con42311.2019.9020381.

P. G. Kandhare, A. Nakhmani, and N. M. Sirakov, “Deep learning for
location prediction on noisy trajectories,” Pattern Anal. Appl., vol. 26,
pp. 107-122, 2023, doi: 10.1007/s10044-022-01095-y.

A. Darwish and A. Nakhmani, “Internal covariate shift reduction in
encoder-decoder convolutional neural networks,” in Proc. SouthEast
Conf., 2017, pp. 179-182, doi: 10.1145/3077286.3077320.

S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Y. Choi, “Action-driven vi-
sual object tracking with deep reinforcement learning,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 6, pp.2239-2252, Jun. 2018,
doi: 10.1109/tnnls.2018.2801826.

R. Opromolla, G. Fasano, and D. Accardo, “A vision-based approach to
UAV detection and tracking in cooperative applications,” Sensors, vol. 18,
no. 10, 2018, Art. no. 3391, doi: 10.3390/s18103391.

G. Wenhua, J. Nianping, and L. Zhenxing, “TLD target tracking algorithm
based on particle filter,” Electron. Technol., vol. 51, pp. 188-195, 2015.
W. Hailong, W. Guangyu, and L. Jianxun, “An improved tracking-
learning-detection method,” in Proc. IEEE 34th Chin. Control Conf.,2015,
pp. 3858-3863, doi: 10.1109/chicc.2015.7260234.

B. Nemade and V. A. Bharadi, “Adaptive automatic tracking, learning and
detection of any real time object in the video stream,” in Proc. IEEE 5th
Int. Conf. - Confluence Next Gener. Inf. Technol. Summit (Confluence),
2014, pp. 569-575, doi: 10.1109/confluence.2014.6949039.

Z. Xin, Q. Qiumeng, Y. Yongqiang, and W. Congqing, “Improved TLD
visual target tracking algorithm,” J. Image Graph., vol. 18, pp. 1115-1123,
2013.

F. De Smedt, D. Hulens, and T. Goedeme, “On-board real-time tracking of
pedestrians on a UAV,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, 2015, pp. 1-8, doi: 10.1109/cvprw.2015.7301359.

D. Zhang, H. Maei, X. Wang, and Y. Wang, “Deep reinforcement learning
for visual object tracking in videos,” 2017, arXiv:1701.08936.

D. Fan, H. Shen, and L. Dong, “Switching-aware multi-agent deep
reinforcement learning for target interception,” Appl. Intell., vol. 53,
pp. 7876-7891, 2023, doi: 10.1007/s10489-022-03821-9.

R. Polvara et al., “Autonomous quadrotor landing using deep reinforce-
ment learning,” 2017, arXiv:1709.03339.

L. D. Tran et al., “Reinforcement learning with autonomous small un-
manned aerial vehicles in cluttered environments—After all these years
among humans, you still haven’t learned to smile,” in Proc. 15th AIAA
Aviation Technol., Integr., Oper. Conf., 2015, doi: 10.2514/6.2015-2899.

[40]
[41]
[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

D. Silver et al., “Mastering the game of Go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.

M. Moravcik et al., “DeepStack: Expert-level artificial intelligence in
heads-up no-limit poker,” Science, vol. 356, no. 6337, pp. 508-513, 2017.
G.Lample and D. S. Chaplot, “Playing FPS games with deep reinforcement
learning,” in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 2140-2146.
M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski,
“ViZDoom: A doom-based Al research platform for visual reinforcement
learning,” in Proc. IEEE Conf. Comput. Intell. Games, 2016, pp. 1-8,
doi: 10.1109/cig.2016.7860433.

K. Kersandt, “Deep reinforcement learning as control method for au-
tonomous UAVs,” M.S. thesis, Aerospace Sci. Technol., Universitat
Politecnica de Catalunya, Barcelona, Spain, 2018.

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
Service Robotics. Cham, Switzerland: Springer, 2017, pp. 621-635,
doi: 10.1007/978-3-319-67361-5_40.

G. Brockman et al., “OpenAl gym,” 2016, arXiv:1606.01540.

B. J. Lansdell, P. R. Prakash, and K. P. Kording, “Learning to solve the
credit assignment problem,” 2019, arXiv:1906.00889.

R. Bellman, “A Markovian decision process,” J. Math. Mech., vol. 6,
pp. 679-684, 1957.

F.-L. Vincent, H. Peter, I. Riashat, G. B. Marc, and P. Joelle, “An introduc-
tion to deep reinforcement learning,” Foundations Trends Mach. Learn.,
vol. 11, no. %, pp. 219-354, 2018, doi: 10.1561/2200000071.

Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de
Freitas, “Dueling network architectures for deep reinforcement learning,”
in Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 1995-2003.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2016, arXiv:1511.05952.

Ali A. Darwish received the B.S. and M.S. de-
grees in software engineering from the National
Polytechnic University of Armenia, Yerevan, Ar-
menia, in 2006, the M.S. degree in computer en-
gineering from the American University of Shar-
jah, Sharjah, UAE, in 2013, the M.S. degree
in electrical engineering from the University of
Alabama in Huntsville, Huntsville, AL, USA, in
2015, and the Ph.D. degree in computer engi-
neering from the University of Alabama at Birm-
ingham, Birmingham, AL, USA, and the Univer-

sity of Alabama in Huntsville, Huntsville, AL, USA, in 2020.

He currently serves as a Senior Al Engineer with Athenium Analytics,
Dover, NH, USA. In his accomplished career, he has secured several
patents, all related to the field of Al and ML.

Arie Nakhmani (Senior Member, IEEE) re-
ceived the B.S., M.S., and Ph.D. degrees in
electrical engineering from Technion — Israel
Institute of Technology, Haifa, Israel, in 2004,
2007, and 2011, respectively.

He completed the postdoctoral training with
Georgia Tech, Atlanta, GA, USA, and Boston
University, Boston, MA, USA. He is currently an
Associate Professor of electrical and computer
engineering with the University of Alabama at
Birmingham, Birmingham, AL, USA. He has au-

thored or coauthored more than 100 peer-reviewed publications and a
textoook Modern Control: State-Space Analysis and Design Methods
(McGraw Hill, 2020). His research interests include visual tracking,
biomedical signal analysis, and machine learning.

Dr. Nakhmani is an Associate Scientist with the Comprehensive Can-
cer Center.

https://dx.doi.org/10.1162/neco.1997.9.8.1735
https://github.com/AloshkaD/DroneTracking
https://dx.doi.org/10.23919/ACC53348.2022.9867177
https://dx.doi.org/10.1145/1177352.1177355
https://dx.doi.org/10.1109/ICIP.2008.4711736
https://dx.doi.org/10.1016/j.cja.2023.05.028
https://dx.doi.org/10.1109/CDC.2008.4738656
https://dx.doi.org/10.1109/SoutheastCon42311.2019.9020381
https://dx.doi.org/10.1109/SoutheastCon42311.2019.9020381
https://dx.doi.org/10.1007/s10044-022-01095-y
https://dx.doi.org/10.1145/3077286.3077320
https://dx.doi.org/10.1109/tnnls.2018.2801826
https://dx.doi.org/10.3390/s18103391
https://dx.doi.org/10.1109/chicc.2015.7260234
https://dx.doi.org/10.1109/confluence.2014.6949039
https://dx.doi.org/10.1109/cvprw.2015.7301359
https://dx.doi.org/10.1007/s10489-022-03821-9
https://dx.doi.org/10.2514/6.2015-2899
https://dx.doi.org/10.1109/cig.2016.7860433
https://dx.doi.org/10.1007/978-3-319-67361-5_40
https://dx.doi.org/10.1561/2200000071

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

