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Toward Low-Cost Passive Motion Tracking With
One Pair of Commodity Wi-Fi Devices

Wei Guo , Graduate Student Member, IEEE, and Lei Jing , Member, IEEE

Abstract—With the popularity of Wi-Fi devices and the development of the Internet of Things (IoT), Wi-Fi-based passive
motion tracking has attracted significant attention. Most existing works utilize the Angle of Arrival (AoA), Time of Flight
(ToF), and Doppler Frequency Shift (DFS) of the Channel State Information (CSI) to track human motions. However, they
usually require multiple pairs of Wi-Fi devices and extensive data training to achieve accurate results, which is unrealistic
in practical applications. In this article, we propose Wi-Fi Motion Tracking (WiMT), a low-cost passive motion tracking
system based on a single pair of commodity Wi-Fi devices. WiMT calculates the Doppler velocity and phase difference
using the CSI obtained from the transmitter with one antenna and the receiver with three antennas. The Zero Velocity
Identification and Calibration (ZVIC) algorithm is proposed to remove the random noise of Doppler velocity when the
target is stationary. We take the Doppler velocity as the measurement and employ a particle filter to estimate the motion
trajectory. A particle weight update method based on phase difference information is developed to eliminate particles
with low confidence. Experimental results in real indoor environment show that WiMT achieves great performance with a
motion tracking median error of 7.28 cm and a nonmoving recognition accuracy of 92.6%.

Index Terms—CSI ratio, channel state information, Doppler velocity, particle filter, passive tracking, phase difference,
Wi-Fi sensing.

I. INTRODUCTION

INDOOR motion tracking plays a crucial role in many intel-
ligent applications, such as smart home, elderly care, indoor

navigation, etc. Although satellite positioning technology has
achieved high accuracy, satellite signals cannot be received
indoors, unlike the outdoor environment. Therefore, the issue of
how to implement indoor positioning has attracted the interest
of researchers.

Recently, tracking solutions based on various kinds of de-
vices have been proposed. Vision-based approaches [1], [2] can
achieve high accuracy, but the high cost, limited viewing angle,
and privacy issues have limited their popularity. Acoustic-based
solutions [3] do not have the above disadvantages, but the
coverage area is too small. Inertial measurement unit (IMU)-
based methods [4] are not disturbed by the external environment
and are easy to carry, but the tracking error accumulates over
time, thus they need to be integrated with other sensors to
achieve promising performance. Due to the ubiquity of radio
frequency (RF) devices in daily life, RF-based solutions such
as RF identification (RFID) [5], [6], ultra-wideband (UWB) [7],
[8], Bluetooth [9], [10], and Wi-Fi [11], [12], [13], [14], [15],
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[16], [17], [18] have attracted growing attention. In addition,
Wi-Fi-based methods are more attractive due to their low cost
and ubiquity.

Wi-Fi-based motion tracking can be divided into two cat-
egories: device-based [11], [12] and device-free [13], [14].
Device-based methods require the user to carry the device, which
is impractical for applications, such as elderly care and intrusion
detection. In contrast, device-free motion tracking offers more
user-friendly experience, requiring only passive cooperation
from users without the need to carry any devices. It utilizes the
received signal strength indicator (RSSI) [19], [20], [21] and
CSI of Wi-Fi signals to locate and track the target. Compared to
RSSI, CSI is a fine-grained measurement that can achieve higher
estimation accuracy. The existing CSI-based motion tracking
solutions are classified into three categories: the Time of Flight
(ToF) based [22], [23], the Angle of Arrival (AoA) based [11],
[13], [24], and the DFS based [14], [24], [25], [26], [27]. In
reality, CSI is polluted by ambient noise and hardware devices,
and accurate ToF and AoA require large-scale antenna arrays
to obtain, which is not feasible in commercial Wi-Fi. To over-
come the influence of noise, Ding et al. [28] have presented a
3-D indoor localization and tracking system that exploits deep
learning method to train offline CSI data collected from various
positions and motions. While this method is limited to certain
scenes and predefined motions, CSI data has to be collected
and trained again when the room is changed or motions are
added. IndoTrack [13] and Widar [14] employ DFS to estimate
the location of target based on a model-based algorithm without
training samples, but they require multiple Wi-Fi devices, which
limits their application in practical scenarios. Widar2.0 [25]
first proposed a motion tracking method with single Wi-Fi link,
which employs multidimensional parameters including AoA,
ToF, DFS, and the attenuation. With a pair of transceivers, there
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is no redundancy in the system to ensure robust tracking across
the entire motion trajectory [27], especially when the target is
moving along the tangent direction of the Fresnel zone, as the
DFS cannot be accurately captured. WiTraj [27] proposed a
robust motion tracking system that uses three pairs of Wi-Fi
devices and calculates the Doppler velocity using the CSI quo-
tient model [29], [30] on two adjacent antennas at each receiver.
The number of transceivers and specific placement ensure robust
performance.

From the comparison of the above studies, it is obvious that
the balance between the number of devices, the robustness of
the system, and the algorithm complexity is quite crucial. More
accurate parameter information of the moving target can be
obtained by using more Wi-Fi links. In practical applications,
only one Wi-Fi link is usually available indoors. Therefore,
it is vital to utilize a limited number of devices to obtain
fine-grained parameters for passive tracking. In this article,
we propose WiMT, a low-cost indoor passive motion tracking
system based on a single pair of commodity Wi-Fi devices. The
system overview is shown in Fig. 2. WiMT utilizes DFS and
the phase difference of two adjacent antennas at the receiver to
track the target’s motion trajectory. The key insight is that the
target’s motions not only introduce the change in the path length
of the reflected signals, but also change the phase difference
between the antennas. WiMT employs DFS and phase difference
information to calculate the Doppler velocity, and then combines
the Doppler velocity and phase difference to estimate the moving
trajectory based on a particle filter. However, there are three
challenges that need to be solved.

First, it is hard to obtain DFS over a single Wi-Fi link when the
target is moving along the tangent direction of the Fresnel zone.
To the best of our knowledge, the DFS is caused by the change
of the path length of the reflected signals, but the movement
in the tangent direction cannot change the path length, and the
DFS is zero even though the target is moving. Unlike WiTraj [27]
which ensures that there are at least two receivers that get a good
estimate of the DFS at any time.

Second, WiMT employs the DFS acquisition method [27] to
obtain Doppler velocity. Theoretically, the antennas of a receiver
share the same RF chain and clock, the amplitude noise and
random phase shifts are almost identical for each antenna, so
the CSI quotient cancels out both the amplitude noise and the
phase noise [27]. However, the noise on two adjacent antennas
at the same receiver is not identical, and the CSI quotient still
contains noise, especially if the target is stationary. As a result,
the Doppler velocity, which should be zero when the target
is stationary, is randomly distributed. This leads to significant
errors in motion tracking.

Third, the orientation and velocity information obtained from
a single Wi-Fi link is limited compared to multiple Wi-Fi links,
making it difficult to maintain stable performance during motion
tracking.

To address the above challenges, this article makes the fol-
lowing contributions.

1) We propose a Zero Velocity Identification and Cali-
bration (ZVIC) algorithm. It uses the phase difference
information to accurately identify the stationary and

moving states of the target over a pair of Wi-Fi devices.
In addition, it calibrate the random noise of the Doppler
velocity when the target is stationary, addressing the
shortcomings of the DFS acquisition method.

2) Applying the particle filter, we propose a trajectory es-
timation method based on Doppler velocity and phase
difference. We use the Doppler velocity as a measure
of the filter and use the phase difference information to
remove particles with low confidence.

3) We propose a novel Wi-Fi-based motion tracking system,
WiMT, which harnesses a single pair of unmodified Wi-Fi
devices. In evaluations conducted within real indoor en-
vironments, the ZVIC accuracy is 92.6% for nonmoving
and 85.2% for moving, median tracking error is 7.28 cm.

The rest of this article is organized as follows. In Section II,
we introduce the related work. The preliminary is presented in
Section III. Section IV is dedicated to the method. The WiMT is
evaluated in Section V. Section VI covers the discussion. Finally,
Section VII concludes this article.

II. RELATED WORK

A. Wi-Fi-Based Indoor Localization and Tracking

In recent years, Wi-Fi-based indoor localization has attracted
the attention of researchers. As an early attempt, RADAR [19]
utilized RSSI to locate and track the user in-building, but only
meter-level accuracy is achieved due to the multipath effect.
ViVi [20] employed fingerprint spatial gradient of RSSI to
locate target and achieves great performance. Subsequently,
researchers turn their attention to CSI, which can describe the
amplitude and phase of Wi-Fi signals, enabling decimeter or
even centimeter-level localization and tracking accuracy. Ar-
rayTrack [12] expands the number of antennas on receiver and
proposes multipath suppression algorithm to effectively remove
the reflection paths between transmitter and receiver to obtain
AoA. In applications such as elderly care and intrusion detection,
it is inconvenient for users to carry Wi-Fi devices, so device-free
localization and tracking solutions are proposed. xD-Track [17]
is the first practical passive human localization system, which
combines ToF, AoA, Angle of Departure (AoD), and DFS to
fully characterize the wireless channel between transceivers.
WiDir [31] innovatively analyzed the phase change dynamics
from multiple Wi-Fi subcarriers based on Fresnel zone model
and infers the target’s moving directions. Widar [14] and In-
doTrack [13] estimated target’s moving speed, direction, and
location at a decimeter level. In practical applications, it is in-
convenient to deploy multiple Wi-Fi links. Hence, Widar2.0 [25]
first implements target tracking via one Wi-Fi link. It combines
the four parameters of AoA, ToF, DFS, and signal attenuation,
but it cannot be robust in the whole motion tracking. PITrack [32]
designed a scheme to dynamically select the best receivers
among multiple Wi-Fi devices to maximize velocity estimation
accuracy for moving targets, and achieve position independent
target tracking. The mathematical model is very dependent
on the angle of departure and angle of arrival of the signal.
WiTraj [27] proposed a solution of three Wi-Fi link based on
the CSI quotient model, no matter how the target moves, it can
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ensure that there are two links in the system to achieve motion
tracking. However, the transceiver equipment requires a special
placement, which is inconvenient in practical applications. In
addition, the Doppler velocity calculated by WiTraj is randomly
distributed when the target is stationary, which causes a large
error in trajectory estimation. In order to overcome the above
shortcomings, WiMT proposed the ZVIC algorithm to remove
the Doppler velocity noise when the target is stationary, and only
use one Wi-Fi link to realize target tracking.

B. Wi-Fi-Based Gesture and Activity Recognition

Wi-Fi-based human gesture and activity, as a novel communi-
cation approach, are widely adopted in human–computer inter-
faces (HCI) for its natural and straightforward properties [33].
WiGest [34] utilized variations in the RSSI of Wi-Fi signals
to estimate human hand gestures. In order to overcome the
shortcoming that coarse-grained RSSI is easily affected by
the environment. CARM [18] proposed CSI-speed model and
CSI-activity model, and uses these two models to establish the
relationship between CSI value dynamics and human activities.
WiDance [35] presented a Wi-Fi-based contactless dance-pad
exergame based on DFS. However, it can only recognize eight
predefined directions and cannot recognize complex move-
ments. RT-Fall [36] exploited phase difference and amplitude
of the fine-grained CSI to detect target’s body falling. QGes-
ture [37] used CSI values provided by COTS Wi-Fi devices to
measure the movement distance and direction of human hands.
SignFi [38] utilized CSI as the input and a convolutional neural
network (CNN) as the classification algorithm to recognize 276
sign gestures, which involve the head, arm, hand, and finger
gestures, with high accuracy. In [39] and [40], Wi-Fi-based
human pose tracking solutions are proposed. These works are
based on deep learning methods, CSI data needs to be recollected
and trained when adding actions and changing the environment.
Widar3.0 [26], WiGesture [30], DPSense [41], and [42] pro-
posed position-independent gesture recognition methods, solve
the problem that the recognition accuracy drops when changing
scenes and locations. However, the above works depend on
the number of devices and special placement. WiMT does not
depend on the placement of devices, and only uses a pair of
Wi-Fi devices to realize motion tracking.

III. PRELIMINARY

In this section, we first introduce the basics of CSI, and then
explain the principle of the CSI quotient.

A. Channel State Information

In a narrow-band flat fading channel, the Wi-Fi orthogonal
frequency division multiplexing (OFDM) system viewed in the
frequency domain can be defined as [43]

�Y = H �X + �N (1)

where �Y and �X represent the received and transmitted signal
vectors, respectively. H denotes the channel frequency response
(CFR) and �N is the additive white Gaussian noise (AWGN).

Fig. 1. Signal propagation paths indoors. The path between TX and
RX is Line of Sight (LoS).

In an indoor environment, wireless signals propagate from
TX to RX through multiple paths, i.e., one Line of Sight (LoS)
path and multiple reflection paths from objects (such as walls,
furniture, and the moving target) [44], as shown in Fig. 1. Hence,
the CFR in time and frequency as amplitude and phase in the
format of CSI is a superposition of signals from all the paths.
Mathematically, the CSI can be represented as [44]

H(fi, t) =
L∑

k=1

Ai,ke
−j2πfiτk(t) (2)

where fi is the carrier frequency of the ith subcarrier, i is the
index of the OFDM subcarrier, i ∈ [1, 30]. L is the number
of paths, Ai,k denotes the amplitude, and τk(t) represents the
propagation time of the kth path. Moreover, the phase of CSI
at carrier frequency fi propagating along the kth path can be
written asϕi,k = 2πfiτk(t), τk(t) can be calculated by dk(t)/c,
where dk(t) is the length of kth path, and c is the speed of light.
In Fig. 1, we can see that the propagation paths are divided into
static paths and dynamic paths. We assume there is only one
dynamic path reflected by moving target and the static paths
are composed of the LoS propagation and other reflection paths
from static objects in the environment. Considering the case of
one subcarrier, the CSI can be rewritten as [27]

H(f, t) = Anoise(f, t)e
−jϕoffset(f,t)(Hs(f) +Hd(f, t)) (3)

where Anoise is the amplitude noise, ϕoffset is the random phase
offset caused by hardware imperfections, Hs(f) is the static
component, and Hd(f, t) is the dynamic component.

B. CSI Quotient

The CSI-quotient model takes the ratio of CSI readings of two
antennas on the same RX as a new base signal, which can be
expressed as follows [27]:

Hq(f, t) =
CSI1(f, t)

CSI2(f, t)
=

Hs1(f) +Hd1(f, t)

Hs2(f) +Hd2(f, t)
(4)

where Hq(f, t) denotes the CSI quotient, Hs1(f) and Hs2(f)
represent the static components, while Hd1(f, t) and Hd2(f, t)
represent the dynamic components.

The DFS can be derived by employing the CSI-quotient
model. The rationale for this method is that the CSI quotient
between two antennas is a Möbius transform, the length of the
reflection path changes by one wavelength, and the CSI quotient
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Fig. 2. WiMT System Overview: CSI data are collected by single pair of Wi-Fi devices and preprocessed to calculate the CSI quotient and phase
difference. The random noise in the Doppler velocity is identified and removed by the ZVIC algorithm. The motion detector is used to detect the
moving state of the target. When the target is moving, the trajectory of the target is estimated using a particle filter.

rotates into a perfect circle in the complex plane accordingly.
Therefore, the DFS can be calculated by how many complete
circles are rotated in the complex plane by the CSI quotient:

fD =
Δρ

2πΔt
(5)

where fD denotes the Doppler frequency shift, Δρ is the phase
change of the rotating circles in the Hq(f, t), and Δt represents
the sampling intervals. Accordingly, the Doppler velocity vD
can be obtained as follows:

vD = fDλ (6)

where λ is the signal wavelength. The Doppler velocity in-
directly reflects the speed of a person’s movement, providing
velocity information for motion tracking.

IV. METHOD

In this section, we demonstrate how WiMT achieves motion
tracking with a single WiFi link. The system framework is
illustrated in Fig. 2. First, the CSI is acquired by the RX equipped
with three antennas. Then, the CSI data undergoes preprocessing
to remove noise from the amplitude and phase while calculating
the CSI-quotient to obtain the Doppler velocity. Subsequently,
the denoised phase and Doppler velocity are fed into the ZVIC
algorithm to derive fine-grained Doppler velocity. Finally, the
Doppler velocity and phase difference are used as observation
inputs for the particle filter, which calculates the target’s position.

A. CSI Collection and Preprocessing

1) CSI Collection: We use Intel 5300 NIC to receive CSI
data, TX is equipped with one antenna, and RX is equipped
with three antennas. Therefore, the dimension of the CSI data
matrix is 1× 3× 30.

2) CSI Denoise: Due to the imperfections in hardware de-
vices, the phase of CSI contains phase noise introduced by car-
rier frequency offset (CFO), sampling frequency offset (SFO),
and packet detection delay (PDD), while the amplitude of CSI
is polluted by environmental noise. We employ the Savitzky–
Golay filter and linear transform method [16], [36], [45] to
remove noise from the amplitude and phase, respectively. Fig. 3
shows the comparison of the raw CSI and the denoised CSI,

Fig. 3. Comparison of raw and denoised CSI. The blue lines are
amplitude and orange dots are phase. The noise in amplitude and phase
are effectively removed. (a) Raw CSI. (b) Denoised CSI.

Fig. 4. Normal and tangent motion directions.

where blue line is the amplitude, and the orange dots represent
the phase. Obviously, the amplitude noise and the randomly
distributed phase offset noise in Fig. 3(a) are effectively removed
by the above methods, and the results are shown in Fig. 3(b).
We can calculate the phase difference with the denoised phase.

3) Coarse-Grained Doppler Velocity Calculation: As previ-
ously stated, we use the CSI-quotient model to compute the
Doppler velocity. First, we calculate the CSI quotient between
two antennas using (4), and then we compute the Doppler
velocity using (5) and (6). In an indoor environment, we col-
lect CSI data of the target moving in both the normal and
tangential directions, as shown in Fig. 4, and calculate the CSI
quotient and Doppler velocity. In Fig. 5(b) and (d), the CSI
quotient in the complex plane is plotted for two traces, with
trace A moving along the normal direction and trace B along
the tangent direction. For clarity, Fig. 5(a) and (c) displays the



GUO AND JING: TOWARD LOW-COST PASSIVE MOTION TRACKING WITH ONE PAIR OF COMMODITY WI-FI DEVICES 43

Fig. 5. CSI quotient of traces A and B. Trace A is along normal direction and trace B is along tangent direction. I and Q are the real and imaginary
parts of CSI quotient. The CSI quotient of trace A form complete circles on the complex plane, but trace B cannot form. (a) I/Q wave of trace A.
(b) CSI quotient of trace A. (c) I/Q wave of trace B. (d) CSI quotient of trace B.

Fig. 6. Doppler velocity calculated by CSI quotient method. (a) is the velocity of normal direction motion, has a stable and regular trend. (b) is
the velocity of tangent direction motion, has an irregular trend. (c) is the velocity of nonmoving, should be equal to zero, but randomly distributed.
(a) Along normal direction. (b) Along tangent direction. (c) Non-moving.

real and imaginary parts of the CSI quotient. The CSI quotient
of trace A forms multiple complete circles, whereas that of
trace B is irregular and lacks a circular shape. Similarly, as
shown in Fig. 6, the Doppler velocity exhibits a stable and
regular trend in the normal direction, while it is irregular in the
tangent direction and during nonmotion. Notably, in Fig. 6(c),
the target is stationary, yet the velocity is nonzero and randomly
distributed.

From the results, it is evident that the CSI-quotient model
accurately estimates Doppler velocity for motion directions
with significant changes in reflection path length (e.g., normal
direction). However, for directions with constant or insignificant
changes in path length (e.g., stationary and tangent directions),
the estimated Doppler velocity contains randomly distributed
noise. This issue makes it difficult to determine whether the
target is stationary or moving along the tangential direction.
To eliminate random noise in Doppler velocity, we input the
coarse-grained Doppler velocity obtained from the CSI-quotient
model into the ZVIC algorithm.

B. ZVIC Algorithm

The ZVIC algorithm consists of two parts. First, the phase
difference between the antennas is calculated. Second, the phase
difference information is used to estimate the motion state and
direction of the target, identify the Doppler velocity noise, and
calibrate according to the motion state.

1) Phase Difference Calculation: The AoA of the reflected
signal varies with the target motion, as shown in Fig. 1. AoA

Fig. 7. Uniform linear antenna array.

Fig. 8. Phase difference.

changes from θ1 to θ2 as the person moves. Moreover, the
variation of AoA can be estimated by the phase difference
between the two antennas. According to (2), the CSI phase of
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Fig. 9. Phase difference of distinct antenna pairs. The y-axis represents the phase difference and the unit is radian. Ant12 represents the antenna
combination of first and second, and so on. (a) Static. (b) Move away from LoS. (c) Move close to LoS path.

the ith subcarrier propagated by the kth path to the nth antenna
can be expressed as

ϕi,k,n = 2πfiτk + 2πfiΔt(n− 1) (7)

where Δt represents the time difference of signal arriving at the
adjacent antenna on RX. Assuming that the signal is on the same
subcarrier via the same path, the CSI phase on different antennas
can be expressed as

ϕn = 2πfτn(t). (8)

As shown in Fig. 7, the wave paths of the signals reflected by
the target arriving the RX are different, and the signal wave path
difference between adjacent antennas is dsinθ, where d is the
antenna spacing λ/2, and θ is the AoA. Taking antennas 1 and 2
as examples, the phase difference of the signals received by the
two antennas can be expressed as

Δϕ = ϕ2 − ϕ1 = 2πf(τ2(t)− τ1(t)) = πsinθ. (9)

We define the variation range of AoA as −π
2 to π

2 , and the
phase difference is monotonically increasing in the domain of
definition as shown in Fig. 8, which allows us to accurately
capture the variation of AoA.

In Fig. 9, we plot the phase difference when the target is
stationary and moving. The x-axis is the packet index, and the
y-axis is the phase difference between the antennas. “Ant12”
represents the phase difference of the CSI received by antennas
1 and 2, and so on. In Fig. 9(a), it can be observed that the
phase difference is a straight line when the target is stationary.
As shown in Fig. 9(b), when the target moves away from the
LoS on the right side of the LoS, the AoA gradually increases,
and the phase difference also increases accordingly. In Fig. 9(c),
when the target is close to the LoS, the AoA gradually decreases,
and the phase difference decreases accordingly. Based on the
variation of the phase difference, we can accurately distinguish
the motion state and direction of the target, and then obtain a
fine-grained Doppler velocity.

2) Extracting Fine-Grained Doppler Velocity: The phase dif-
ference exhibits minor fluctuations around a stable value during
stationary periods, while it increases or decreases with the mo-
tion direction when the target is in motion. Observing this con-
tinuously, we notice peaks and troughs in the phase difference
waveform, corresponding to changes in motion direction. The
second part of the ZVIC algorithm identifies points with abrupt
changes in slope and mean within the phase difference, with
the peak-trough pairs containing these points representing the
beginning and end of motion. We retain the Doppler velocities
between these start and end points, setting the rest to zero, result-
ing in fine-grained Doppler velocities without random noise. The
algorithm process is outlined in Algorithm 1. The input consists
of phase differences P and coarse-grained Doppler velocities
x̂D, while the output is the fine-grained Doppler velocities vD.
The index of peaks and troughs in phase difference is stored in
p, with the index of abrupt changes in slope and mean stored in
p1 and p2, respectively. M holds the index of identified motion
start and end points, and C represents the confidence of Doppler
velocities, with confidence values of 1 between the start and end
points in M and zero elsewhere.

To test the performance of the ZVIC, we collected 20 s of CSI
data at a sampling rate of 400 Hz while the target was moving and
stationary, and use the data collected by the OptiTrack as ground
truth. In Fig. 10, we employ the phase difference to identify the
start, end, and direction of each piece of motion. Each pair of
circles represents a start point and an end point. Moreover, the
phase difference changes as the direction of motion changes.
Based on above information, each Doppler velocity is given a
confidence level of 0 for stationary and 1 for moving, and a
fine-grained Doppler velocity is obtained. Notably, the ground
truth represents the hand motion speed, and we utilize the metric
of zero speed to differentiate between stationary and moving
states of the target. In Fig. 11, the black line represents the
ground truth, while the blue and orange lines correspond to the
Doppler velocity obtained from WiTraj and ZVIC algorithms,
respectively. The x-axis denotes time, and the y-axis represents
Doppler velocity or hand movement speed. By comparison, it
can be clearly seen that ZVIC accurately identifies the stationary
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Algorithm 1: ZVIC Algorithm.
Input: P , x̂D

Output: vD
1: Find the index of all peaks and troughs in P and store

them in p.
2: Compute the index of the values of the slope and mean

abrupt changes in P , store them in p1 and p2 respectively.
3: m1 ← sortasc(p ∪ p1)
4: m2 ← sortasc(p ∪ p2)
5: // Identify abrupt changes in the slope of the phase

difference
6: for i← 1 to length(p1)
7: j ← findindex(m1 == p1[i])
8: M1[2i− 1]← m1[j − 1]
9: M1[2i]← m1[j + 1]

10: end for
11: // Identify abrupt changes in the mean of the phase

difference
12: for i← 1 to length(p2)
13: j ← findindex(m2 == p2[i])
14: M2[2i− 1]← m2[j − 1]
15: M2[2i]← m2[j + 1]
16: end for
17: M ←Merge M1 and M2, remove duplicates
18: C ← zeros(length(P ), 1)
19: // Find the start and end of motion
20: for i← 1 to length(M)/2
21: C(M(2i− 1) : M(2i))← 1
22: end for
23: // Remove the Doppler velocity noise
24: vD ← x̂D · C

and moving state of the target, and filters out Doppler velocity
noise when stationary.

C. Motion Trajectory Estimation

In the Fresnel zone, a geometric relationship exists between
the target’s movement velocity and Doppler velocity. Leveraging
this relationship, we utilize the fine-grained Doppler velocity
to estimate the target’s movement velocity. By establishing an
observation equation based on the geometric relationship, we
employ the fine-grained Doppler velocity and phase differences
as inputs for the particle filter, enabling the estimation of the
target’s position coordinates.

1) Geometric Relationship: There is a geometric relation-
ship between Doppler velocity and target moving velocity as
shown in Fig. 12. The ellipse is the Fresnel zone with TX and
RX are the focus, αT and αR are the Angle of Departure (AoD)
and AoA of the signal, respectively.�vH is the moving velocity of
the target, the speed is vH , and the direction is φ. vn represents
the normal component of �vH , and the reverse extension of the
normal velocity intersects the x-axis at point F . We assume that
the target is at point H , and TX and RX are at points T and R,
respectively. HF is the angular bisector of ∠THR[13], [32].

Fig. 10. Action start and end point. The orange line represents the
ground truth, while the blue line corresponds to the phase difference.
Red circles are the start points of the action, and green circles are the
end points. The x-axis represents time, and the y-axis signifies either
hand movement speed or phase difference. When the target moves, the
phase difference will abruptly change from zero to the corresponding
value, and show different trends with different moving directions.

Fig. 11. Comparison of WiTraj and ZVIC. The black line represents the
ground truth, while the blue and orange lines correspond to the Doppler
velocity obtained from WiTraj and ZVIC algorithms, respectively. The x-
axis denotes time, and the y-axis represents Doppler velocity or hand
movement speed. ZVIC accurately identifies the stationary and moving
state of the target, and filters out Doppler velocity noise when stationary.

Fig. 12. Geometric relationship between human velocity and Doppler
velocity.
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The projection of vn on the extension line of RH is vD

2 , where
vD is the Doppler velocity.

Based on the above geometric relationship, we can obtain the
following equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∠1 = π

2 − αT+αR

2

∠2 = π
2 + αT−αR

2 + φ

vn = vHcos∠2

vD = 2vncos∠1.

(10)

Simplifying (10) gives the velocity of the target

vH = − vD

sin(φ+ αT−αR

2 ) · 2sin
(
αT+αR

2

) . (11)

2) Particle Filter: We use particle filter to update the tar-
get’s position, correspondingly, the state model and observation
model can be represented as [46]{

Xt = f(Xt−1, ut, wt)
zt = h(Xt, vt)

(12)

where Xt denotes the state, ut is the control input, wt is the state
noise, zt represents the observation, and vt is the observation
noise at time t. The state transition and observation functions
are represented by f(·) and h(·), respectively.

We define the process state Xt and observation state zt are as
follows, respectively:

Xt = [x, y, vx, vy, φ]
T (13)

zt = [vD, φ̂t,Δϕ]T (14)

where x and y are the coordinates of the target, vx and vy are the
velocity components of vH along the x-axis and y-axis, φ is the
moving direction of target. vDt denotes the Doppler velocity
at time t, φ̂t is the estimated heading angle, derived from the
phase difference and the variance of the Doppler velocity, Δϕ
is the phase difference. We assign the known initial position
coordinates to the state variables x and y, the initial heading
angle is determined by φ̂1, and the initial values of the two
velocities depend on the heading angle. During each iterative
update, the system state Xt is initialized with 1000 particles,
which are sampled from a Gaussian distribution. Each particle
is assigned a weight of 1/1000. The observation equations are{
vDt =

√
v2
xt + v2

yt
· sin (φt +

αT t−αRt

2

) · 2sin
(
αT t+αRt

2

)
φt = φ̂t

(15)

where
√
v2
xt + v2

yt
is equal to target moving speed vHt.

Particle weights are updated based on new observations. Par-
ticles closer to the new observation values are more important,
with larger weights. We use Gaussian distributions to update the
weights. Accordingly, we employ low-variance resampling to
select particles, and obtain the system state value for the current
iteration by taking the mean of the resampled particles.

Notably, the phase difference Δϕ is an observation state, but
it cannot be used to estimate system state Xt directly. Although
the phase difference is a fine-grained parameter to capture the
motion state and direction of the target, it deviates from the

Fig. 13. Motion tracking result. The red and blue triangles are
transceivers. Blue solid line is using phase difference information. Or-
ange dashed line is without using phase difference information.

actual value. If it is directly involved in the operation, a large
error will be introduced.

Fortunately, we found that the phase difference can be em-
ployed to remove low-confidence system state particles. The
method flow is described as follows:

1) Calculate the slope slopet of the phase difference from
t− 1 to t, and then use the particle to calculate the slope
slope′t of the phase difference Δϕ′t in the same way.

2) If the product of the two slopes is greater than or equal to
zero, the confidence of the particle is high, otherwise the
confidence is low.

According to Fig. 12, we can derive the relationship between
the AoA of the reflected signal and the target’s position

sinαR =
yt√

(xt − xr)2 + (yt − yr)2
(16)

based on (10) and (16), the formula for calculating the phase
difference with particles can be written as

Δϕ′t =
π · yt√

(xt − xr)2 + (yt − yr)2
(17)

where the xr and yr are the coordinates of RX.
The motion tracking result is shown in Fig. 13. The green solid

line in the figure is the ground truth of the trajectory, the red and
blue triangles represent the transmitter and receiver, respectively.
The blue solid line and the orange dashed line are the trajectory
estimation results based on particle filter, where the blue solid
line represents the result using phase difference, and the orange
dashed line represents the result without using phase difference.
By comparison, it can be seen that the estimation result with the
participation of phase difference has a smaller error, and without
the participation of the phase difference, there is a large error in
the estimation of the motion direction.

Ultimately, the coordinates of the target are updated with
the particle filter, and the particles with low confidence are
eliminated by the phase difference, which improves the esti-
mation accuracy and realizes low-cost passive motion tracking
based on one pair of Wi-Fi devices.
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Fig. 14. Experimental environment setup. (a) The layout of the experi-
mental room. (b) The experimental scene. The indoor environment.

V. EVALUATION

In this section, we validate WiMT through a series of experi-
ments. We first describe the experiment methodology, followed
by assessing the Doppler velocity denoising and ZVIC iden-
tification accuracy in both stationary and moving states. Sub-
sequently, we examine WiMT’s motion tracking performance
under various experimental conditions.

A. Experiment Methodology

1) Implementation: WiMT is evaluated in an indoor scenario
depicted in Fig. 14, with a room size of approximately 5 m ×
6 m. There are furniture and computer equipment in the room,
which is a typical multipath propagation environment. Two PCs
equipped with Intel 5300 network cards serve as TX and RX,
where TX has a single antenna and RX has three antennas form-
ing a uniform linear array. The spacing between RX’s antenna
array is half the wavelength of the signal, and the placement
angle between TX and RX is such that the line connecting TX’s
antenna and RX’s second antenna is perpendicular to the RX
array. The distance between RX and TX is set to 3.2 m, and the
height is set to 1.3 m. Both TX and RX PCs run on Ubuntu 14.06,
with CSI Tool [47] installed for transmitting and recording CSI.
The devices operate in monitor mode, choosing channel 64 at
5.32 GHz, with a bandwidth of 20 MHz. TX sends 200, 400,
and 1000 packets per second, that is, the packet sampling rate
is 200 Hz, 400 Hz, 1000 Hz. The CSI data are processed offline
using MATLAB 2022a, rather than in real time.

2) Data Collection: We collect three CSI datasets to sep-
arately evaluate the performance of the ZVIC algorithm in
denoising, motion/stationary state identification, and the motion
tracking accuracy of the WiMT system. The quantity of CSI
samples included in each dataset is distinct, and due to variances
in time and sampling rates, the number of packets in each sample
also differs. For ease of distinction, we label them as dataset1,
dataset2, and dataset3.

Dataset1 contains 50 CSI samples, each with a duration of
10 s. We ask volunteer to remain stationary at three different
locations while collecting CSI data at three sampling rates. This
dataset is used to assess the performance of the ZVIC algorithm
in eliminating random noise from Doppler velocities.

Dataset2 consists of 20 CSI samples, with the first seven
groups having a 40 s duration, while the remaining groups have
a 20 s duration, all sampled at 400 Hz. We ask volunteer to sit

Fig. 15. Push–pull action. (a) Push. (b) Pull.

along the extended line of the LoS path midpoint and perform
push–pull actions along this extension. The push involves mov-
ing the hand toward the LoS path, while the pull is the opposite,
as shown in Fig. 15. In the 40 s data, 6–8 push–pull actions are
executed, and in the 20 second data, 2–4 push–pull actions are
performed. After each push or pull, volunteer pauses for 1–3 s,
with the time ratio of moving to stationary states approximately
1:2.5. This dataset evaluates the ZVIC algorithm’s ability to
identify moving and stationary states.

Dataset3 comprises 203 CSI samples, documenting vol-
unteers walking along three indoor trajectories (line-shaped,
L-shaped, and rectangle-shaped). We place labels on the ground,
depicting walking trajectories, where the starting point of each
trajectory is fixed and known in the trace estimation. When the
target walks along L-shaped and rectangle-shaped trajectories,
she/he pauses for 1–3 s at each turning point, where the direction
changes, then continues walking. We collect 189 line-shaped
trajectory data from four volunteers at three different sampling
rates and nine L-shaped and five rectangular trajectory data
from one volunteer at a 400 Hz sampling rate. This dataset is
employed to evaluate the motion tracking accuracy of the WiMT
system.

3) Ground Truth: We utilize the millimeter-level precision
OptiTrack system to record the ground truth. When collecting
dataset1 and dataset3, markers are placed on the target’s shoul-
der, and when collecting dataset2, markers are placed on the
gloves worn by the target. The OptiTrack system records the
marker coordinates at a 100 Hz sampling rate. To calculate the
accuracy, we employ interpolation to align the lengths of the
ground truth and the WiMT system outputs.

B. Performance of ZVIC Algorithm

1) Comparison with state-of-the-art: As mentioned earlier,
there is random noise in the Doppler velocity calculated by the
WiTraj method when the target is stationary. In order to evaluate
the performance of the ZVIC algorithm in removing noise, we
utilize data from dataset1 to compute Doppler velocities using
both WiTraj and ZVIC algorithms. We calculate the mean, stan-
dard deviation, and mean square error of the Doppler velocities.
The result is shown in Table I. Although the mean Doppler
velocity calculated by the WiTraj method is small, which is
−0.312 m/s, the standard deviation is 2.503 m/s, and the mean
square error is 6.360. The Doppler velocity calculated by the
ZVIC algorithm has a mean of 0 m/s, a standard deviation of
0.039 m/s, and a mean square error of 0.002. The comparison
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TABLE I
COMPARING WITRAJ AND ZVIC DOPPLER VELOCITIES

Fig. 16. Distribution on CDF of target velocity estimation error. The
target is stationary at three different positions and 50 sets of CSI data
are recorded at three different sampling rates.

shows that ZVIC effectively removes the noise in the Doppler
velocity when the target is stationary.

In addition, in order to evaluate the influence of the estimation
error of the Doppler velocity vD on the target velocity vH , we use
the above CSI data to calculate the target velocity. As we know,
the velocity should be zero when the target is stationary. We put
vD calculated by WiTraj and ZVIC into (10), respectively, to
obtain vH of target, where φ equals to π/2, the coordinates of
TX and RX are (0,0) and (3.2,0), the initial position of target
is (1.6,1). We take the absolute value of all calculation results
and make a difference with the ground truth, calculate the target
velocity estimation error, and show the cumulative distribution
function of the error in Fig. 16.

As shown in Fig. 16, the error of target velocity calculated
by ZVIC is smaller than WiTraj. The median error of ZVIC is
about 0 m/s and the WiTraj is 1.3476 m/s, the mean error of
ZVIC and WiTraj are 0.0011 m/s and 1.8682 m/s, respectively.
It can be seen from the results that the noise in the Doppler
velocity calculated by the WiTraj method is not negligible, which
introduces a large error to the estimation of the moving velocity
and the ZVIC algorithm can effectively remove these noises.

2) Moving and Nonmoving State Identification Accuracy:
We evaluate the recognition accuracy of ZVIC algorithm for
nonmoving and moving states of target using dataset2. Using the
ZVIC algorithm, we identify the target’s moving and stationary
states in each CSI sample. Then, we calculate the velocities
by differentiating the target positions recorded by Optitrack,
obtaining the ground truth for motion and stationary states, and
compute the recognition accuracy of the ZVIC algorithm. The
confusion matrix of nonmoving and moving state is shown in
Fig. 17. The recognition accuracy of nonmoving and moving
states are 92.6% and 85.2%, respectively.

Fig. 17. Confusion matrix of moving and nonmoving state
identification.

3) Impact of Subcarrier: We test the accuracy of ZVIC in
removing Doppler velocity noise on different subcarriers. In
Fig. 18(a), the x-axis represents the phase difference index,
where “1” is the phase difference of CSI between the first antenna
and third antenna, “2” denotes the first antenna and second
antenna, “3” indicates the second antenna and third antenna.
The y-axis is the error rate, and the z-axis is the subcarrier
index. It can be seen that the identification error rates are distinct
using different subcarrier and phase difference combinations.
The performance of the 14th to 21st subcarriers is the most
stable, and the error rate is zero in different phase difference
combinations. The error rates of the first to seventh subcarriers
are relatively large when PDI are 2 and 3, and the largest error
rate is the sixth subcarrier when PDI is 3, which is 57.6%.

4) Impact of Moving Direction: We employ ten data samples
with a sampling rate of 200 Hz in dataset1 to analyze the velocity
estimation errors of ZVIC method in five moving directions,
and compare with the WiTraj method. In Fig. 18(b), the x-axis
is the moving angle, and the y-axis is the mean square error
of the velocity vD. It can be seen that the error gradually
decreases with the increase of the moving angle, the error of
ZVIC are distributed between 0–0.03, and the error of WiTraj
are distributed between 0.5–2. The ZVIC has stable denoise
performance in different moving directions.

5) Impact of Sampling Rates: In order to appraise the de-
noise performance of ZVIC under different sampling frequen-
cies, we utilize 30 data samples, calculate the mean square error
of the velocity vD at 200 Hz, 400 Hz, and 1000 Hz, and compare
with WiTraj. As shown in Fig. 18(c), the x-axis is the sampling
rate, and the y-axis is the mean square error. As the sampling rate
increases from 200 to 1000 Hz, the error of WiTraj also floats
from 0.3 to 20 accordingly. In contrast, the error of ZVIC does
not change with the sampling rate, and fluctuates stably between
0 and 0.03. Similarly, the ZVIC has stable denoise performance
in different sampling rates.

C. Performance of WiMT

We evaluate WiMT’s motion tracking performance using
the line-shaped trajectory data from dataset3. The line-shaped
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Fig. 18. Error distribution under different experimental settings. (a) x-axis represents the phase difference index, y-axis is the error rate, and z-axis
is the subcarrier index. (b) x-axis is the moving angle and y-axis is the mean square error of Doppler velocity. (c) x-axis is the sampling rate and
y-axis is the mean square error of Doppler velocity. (a) Different subcarriers. (b) Different moving directions. (c) Different sampling rates.

Fig. 19. Line-shaped trajectories. (a) and (c) are trajectories along the normal direction. (b) and (d) are trajectories along tangent direction.
(a) Away LoS. (b) Towards RX. (c) Close LoS. (d) Towards TX.

trajectory includes four walking directions, namely away LoS,
close LoS, toward RX, and toward TX. Close LoS and away
LoS are directions perpendicular to the LoS path between RX
and TX, while toward RX and toward TX are directions parallel
to the LoS path. WiMT processes each CSI sample and outputs
the target’s position coordinates accordingly. The tracking error
of WiMT is calculated as the Euclidean distance between the
output position coordinates and the ground truth. The trajectory
estimation results are shown in Fig. 19. The red and blue triangles
in the figure represent TX and RX, respectively. The orange solid
lines are the results of WiMT estimation, and the blue dotted
lines are the ground truth. Fig. 19(a) and (c) are walking along
the normal direction, Fig. 19(b) and (d) are walking along the
tangent direction. To evaluate the tracking accuracy, we compute
the Euclidean distance between each point estimated by WiMT
and the ground truth.

We evaluated the overall performance of WiMT with me-
dian error, mean error, and 90th error of 7.28 cm, 9.25 cm,
and 19.92 cm, respectively, the percentage of median error to
walking distance is 3.64%. Then, we evaluate the four walking
directions separately, as shown in Fig. 20 and Table II. The
median error of the four directions is 6.02–11.52 cm, the 90th
error is 16.66–22.90 cm, and the percentage of the median error
to the walking distance is < 6.0%.

1) Impact of Moving Distance: Since the line-shaped trajec-
tory has a length of only 2 m, we aimed to assess WiMT’s

Fig. 20. CDF of line-shaped.

TABLE II
TRACKING ERROR OF DIFFERENT MOVING DIRECTIONS

performance on longer walking distances and more complex
trajectories by collecting L-shaped and rectangle-shaped trajec-
tories, with respective lengths of 3 and 6 m. WiMT’s estimation
results for both trajectories, as well as the ground truth, are
presented in the Figs. 21 and 22. The red and blue triangles in the
figure represent TX and RX, respectively. The orange solid lines
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Fig. 21. L-shaped trajectory.

Fig. 22. Rectangular trajectory

Fig. 23. CDF of three trajectories.

are the results of WiMT estimation, and the blue dotted lines are
the ground truth. We have plotted the CDF graph of the WiMT
tracking errors for three different types of trajectories, as shown
in Fig. 23. The red line represents the line-shaped trajectory, the
green line represents the L-shaped trajectory, and the purple line
represents the rectangle-shaped trajectory. The median tracking
errors for these three trajectories are 7.28 cm, 24.01 cm, and
39.14 cm, respectively.

2) Impact of Sampling Rate: We collect CSI with sampling
rates of 200, 400, and 1000 Hz. Then, we calculate the tracking
error of WiMT at different rates. In Fig. 24(a), the boxplot of
median error at three sampling rate are printed. It can be seen
that the performance of WiMT at different rates is stable, and
the mean errors are distributed between 0.05 and 0.1 cm.

3) Impact of Subject: In order to test the tracking accuracy
of WiMT for different walking targets, four volunteers were
invited to participate in the experiments, including two males and
two females, with an age distribution between 24 and 29, and a
weight and height of 50 to 65 kg and 165 to 180 cm, respectively.
From Fig. 24(b), we can learn that the error distribution of
WiMT is basically the same, WiMT is barely affected by moving
targets.

4) Impact of Moving Direction: In Fig. 24(c), 1 and 2 rep-
resent normal direction, 3 and 4 represent tangent direction,
and WiMT performs better than normal direction in tangent
direction. However, the errors in four directions are stably dis-
tributed between 1 and 25 cm.

VI. DISCUSSION

In this section, we discuss the limitations of the proposed
method and future work.

A. Single Target Tracking

WiMT employs a pair of Wi-Fi devices to collect CSI data,
proposes the ZVIC algorithm to obtain fine-grained Doppler
velocities, and subsequently utilizes a particle filter to estimate
target coordinates, achieving single-target motion tracking. Em-
ploying a pair of Wi-Fi devices to gather CSI and utilizing
model-based approaches to analyze data for multitarget detec-
tion and tracking proves challenging. However, this will be the
focus of our future work. We will attempt to leverage deep
learning method to extract features from CSI phase, Doppler
velocities, and phase differences to train models, ultimately
achieving multitarget detection. In addition, we will explore
the fusion of Wi-Fi with other sensors (e.g., smart insoles) to
facilitate multitarget detection and tracking.

B. Assumption of Known Initial Position

WiMT operates under the assumption that the initial position
is known, initializing particles at the precise location. Accu-
rately obtaining a target’s starting position in real time using
a pair of Wi-Fi devices is challenging in practical applica-
tions. In real-world applications, we will initially measure the
coordinates of commonly used starting points such as beds,
sofas, and doors. Before applying the particle filter, we will
perform a coarse-grained position search, matching the position
coordinates with parameters such as DFS, phase difference,
and AoA to pinpoint the initial position of human movement.
This location will then be fed into the particle filter for trajec-
tory tracking. Moreover, if the filter does not achieve conver-
gence, we will restart the process of coarse-grained position
search.

C. Coarse-Grained Direction Recognition

WiMT identify motion directions parallel and perpendicular
to the LoS path with a pair of Wi-Fi devices collecting CSI. In
practical applications, this can be used to sense forklift directions
at intersections in warehouse aisles for collision prevention.
Additionally, in gesture recognition, multiple gestures can be
formed using four directions, eliminating the need for retraining
when adding new gestures compared to deep learning meth-
ods. However, WiMT’s performance significantly declines when
tracking targets moving along circular or zigzag trajectories.
Consequently, fine-grained motion direction recognition will be
a focus of our future work. We intend to leverage the phase
difference information in time and space, as well as Doppler
shifts, to perceive changes in the direction of human movement
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Fig. 24. Impact of different experimental setups. (b) Subjects are two males and two females, with age distribution 24 to 29, weight and height of
50 to 65 kg and 165 to 180 cm. (c) 1 and 2 represent normal direction, 3 and 4 represent tangent direction. (a) Impact of sampling rate. (b) Impact
of subject. (c) Impact of moving direction.

in a more detailed manner, thereby achieving tracking of more
complex trajectories.

D. Compared With Existing Work

In a nonmoving state, the recognition accuracy of WiMT is
92.6%, while WiTraj achieves 98.2%. For moving states, WiMT
has an accuracy of 85.2%, with WiTraj at 87.8%. In terms
of median tracking error for rectangular trajectories, WiMT is
39.13 cm, while WiTraj has an error of 40 cm. The errors as
percentages of the total walking distance are 6.5% and 2.5% for
WiMT and WiTraj, respectively. WiTraj requires three Wi-Fi
links for implementation, with one link needing a special place-
ment, whereas WiMT only utilizes one link. Although WiMT’s
precision is slightly inferior to that of WiTraj, it enhances
usability and reduces deployment costs.

VII. CONCLUSION

In this article, we present WiMT, a low-cost passive mo-
tion tracking system using a single pair of off-the-shelf Wi-Fi
devices. We propose the ZVIC algorithm to remove the Doppler
velocity noise, realize nonmoving and moving recognition with
an accuracy of 92.6% and 85.2%, respectively. Moreover, we
utilize the particle filter to track target’s motion. To improve the
tracking accuracy, phase difference information is employed to
eliminate particles with low confidence. Thus, we achieve the
trajectory tracking with median error of 7.28 cm for line-shaped
trajectory, and the percentage of the median error to the walking
distance is 3.64%. Furthermore, we set various experimental
conditions to verify the robustness of WiMT. The results show
that WiMT has stable recognition and tracking accuracy under
different experimental conditions.
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