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Abstract—Depending on the environment, an increasing number of localization methods are available ranging from
satellite-based localization to visual navigation, each with its own advantages and disadvantages. Fast and reliable
identification of the environment characteristics is crucial for selecting the best available localization method. This
research introduces a deep-learning-based method utilizing data collected with wearable ultra-wideband devices. A novel
approach mimicking radar behavior is presented to collect the relevant data. Channel state information is proposed for
training of the neural network and enabling the environment detection to obtain the desired situational awareness. The
proposed detection approach is evaluated in three types of environments: 1) indoor, 2) open outdoor, and 3) crowded
urban. The results show that fast and accurate environment detection for seamless localization purposes can be achieved
with a precision of 91% for general scenarios and a precision of 96% for specific use cases.

Index Terms—Channel impulse response (CIR), environment detection, neural networks, seamless localization, signal
processing, ultrawideband (UWB).

I. INTRODUCTION

W ITH the expansion of semiautonomous and autonomous
positioning in different fields, including vehicle trans-

portation, vessel and ship tracking, and unmanned aerial vehicles
(UAVs) navigation, the necessity of seamless localization is
more tangible every day [1]. Changes in the environment are
unavoidable in most of the positioning scenarios, and reaching
the best available performance requires the selection of the
best sensors and devices for each environment. For instance,
considering three examples: 1) a vessel navigating in a canal in
urban areas and under bridges, then moving to the sea far from
any tall buildings, 2) a vehicle driving in an indoor parking area,
moving to a crowded city center and then to an open highway, 3)
a pedestrian walking in a wide park with no tall buildings, then
walking to a narrow street and then entering a shopping center,
it is clear that obtaining high-performance seamless positioning
requires the understanding of the environment, and choosing the
best available sensors and devices accordingly. Global naviga-
tion satellite systems (GNSS) receivers can work perfectly in
open environments while their efficiency degrades significantly
in urban areas with tall buildings due to multipath effects [2]. In
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addition, 5G networks can provide accurate position estimation
in urban areas where the base stations and line-of-sight (LOS)
signals are available [3], [4]. Instead, for indoor environments,
where the anchors of radio frequency (RF) signals such as WiFi
or ultrawideband (UWB) are available, multilateration based
on range measurements can provide a good positioning solu-
tion [5]. Furthermore, in scenarios where cameras or LiDAR are
available, computer vision methods can offer good positioning
performance based on map information [6]. Thus, a moving
user, navigating in different types of environments might take
advantage of different devices and switch between them or fuse a
set of them to obtain accurate position estimates. This procedure
is illustrated in Fig. 1.

Consequently, a fast and accurate method is required for the
system to detect the change in environment and deploy the most
reliable positioning method and devices based on the known type
of environment [7], [8]. One of the main benefits of environment
detection, as discussed in the literature [9], is that it results in less
memory allocation by avoiding unnecessary data collection in
a new detected environment [10]. The environment detection
also enables reduced power consumption by keeping ON, or
turning ON, only the most relevant sensors in each environ-
ment [11]. Furthermore, being aware of the type of environment
requires sensing solutions, which are also considered for 6G
networks under the simultaneous communication and sensing
functionality [12]. Considering that aerial base stations (ABS)
carried by drones are integrated in 6G cellular architecture [13],
environment detection can improve the situational awareness of
the drones and enhance the performance of the communications
system. Besides, in the scenarios where there is uncertainty
on GNSS measurements due to signal reflections from nearby
buildings, environment detection can help to recognize the
potentially challenging urban environment. As a result, false
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Fig. 1. Pedestrian walking in three different environments. 1) Crowded
urban area, where (s)he uses 5G signals for positioning. 2) Indoor build-
ing, where (s)he utilizes camera and map-based method for localization.
3) Open area, where the pedestrian deploys GNSS receivers to locate
itself.

detection due to strong reflections of GNSS signals in urban
environments can be recognized [14], [15], and further managed
by appropriate actions.

Situational awareness, e.g., knowing in which type of envi-
ronment a mobile user is currently located, can be realized using
different technologies. One promising candidate that we propose
is the use of UWB radio chips. UWB chips are being integrated
into recently manufactured smartphones and this trend is ex-
pected to increase in future [16]. Thus, in near future, majority
of the pedestrians are likely carrying an embedded UWB chip
within their phones. This level of availability of UWB signals
makes them a potential candidate for environment detection.
Furthermore, UWB is a low-power technology and UWB signals
have a bandwidth of around 500 MHz, which means a narrow
pulse in time domain (in order of nanoseconds) [17], [18]. This
wide bandwidth, which results in a narrower pulse and high
time-resolution in comparison with other RF signals, enables
the separation of different multipath components. In addition,
this specification of UWB makes it a suitable candidate for
accurate range measurement and positioning [5]. Consequently,
this technology is available in many of the positioning scenarios
where part of the positioning should be done in an indoor
environment; so, in addition to range measurement, it can be
utilized for environment detection as well. On the other hand,
one recently introduced technology of 6G is Joint Radar and
Communication (JRC) [19]. With the rise and utilization of JRC,
the demand for radar-compatible methods will further increase
in the near future. In this work, we present a method that mimics
radarlike behavior to scan the environment and detect the type
of environment based on UWB signals. For this purpose, we
need a device-to-device (D2D) communication of two UWB

devices: 1) a transmitter and 2) a receiver. Thus, the transmitted
signal traveling in the environment captures the specifications in
the environment and can be received by the receiver. Finally, the
characteristics of the environment can be extracted by analyzing
the channel information of the signal. These two devices are
carried by the end user, meaning that no infrastructure of UWB
is required in the area of interest.

To analyze the UWB signals, neural networks have been quite
often exploited in recent research due to the high performance
and efficiency. In comparison with other traditional machine
learning methods, such as random forests, neural networks
have the ability to extract the features from the given data-set.
Convolutional neural networks (CNNs) are usually a proper
candidate to analyze channel impulse response (CIR) of signals
since they have the capability to extract patterns among image
data. In this research, we have a set of signal data for which
we want to find the patterns among them and find to which
environment they belong. A neural-network-based UWB signal
analysis has been investigated in the literature for Non-LOS
(NLOS) and LOS detection [20], ranging error correction [21],
and device-free localization [22]. Although the mentioned ref-
erences have different research goals, all of them utilize UWB
CIR and CNNs for the analysis of the data. These references
prove that the neural networks have the capability to learn the
patterns in UWB signals data for research goals in the domain of
positioning. In this research, the goal is environment detection.
Channel information of signal is computed from CIR. Consid-
ering that this information describes how a signal propagates
from the transmitter to the receiver, the channel information can
characterize the environment.

In this work, we introduce a novel method inspired by radar
technology to detect the type of environment for a pedestrian
moving in different areas. The main contributions of this work
are listed as follows.

1) We propose a method for environment detection, which
utilizes a wearable system for pedestrians, and does not
need any infrastructure-related devices and is indepen-
dent of any anchors or base stations in the environment.
The proposed method can also be considered to mimic
6G JRC technology, which will be available in the future
devices.

2) For the first time, we propose utilizing UWB channel
state information (CSI) data for detecting the type of
environment. CSI is the representation of the signal in
the frequency domain, estimated by calculating the fast
Fourier transform (FFT) of the CIR. This enables fast and
accurate infrastructure-free environment detection with
relatively low power consumption. While the methods
presented in the literature consider only detection be-
tween indoor and outdoor, we propose detection over
an extended set of environments, including indoor, open
outdoor, crowded urban, and shopping mall.

3) Considering that extracting raw channel data in appli-
cation programming interface (API)-level from smart-
phones is not currently available, we have used spe-
cific UWB devices to extract the channel information.
Although it would be desired to access the raw data at
the API level to enable various third-party applications,
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there are also other possible use cases for the proposed
method. For example, the raw data could be processed at
the device chipset, and only compressed information, or
directly environment detection results, would be passed to
the API level. For the presented results, we have collected
experimental data from nine different environments in
Ghent, Belgium, using Wi-PoS devices, developed by
IMEC and Gent University [23]. Moreover, the dataset
is open-source and available on IEEE DataPort for the
researchers for future studies [24].

4) To achieve accurate results, we apply CNN-based ma-
chine learning methods to train and detect the type of
environment. Furthermore, we describe the structure of
the network and optimize and report the related hyperpa-
rameters. The proposed network is generalized utilizing
regularization algorithms and the results prove that the
method works for data collected from various places.

The rest of this article is organized as follows. A more
detailed comparison between the state-of-the-art methods and
our method is presented in Section II. Our proposed system
for environment detection utilizing UWB CSI is presented in
Section III, the experimental setup is provided in Section IV,
the performance evaluation is presented in Section V. Finally,
Section VI concludes this article.

II. RELATED WORK

Most of the environment detection methods presented in the
literature rely on separate infrastructure. For example, to detect
the change in the environment, Zhu et al. [25] utilized the
GNSS signals Carrier-to-Noise Ratio (CNR) and the number of
available satellites, which are accessible by the GNSS receiver
at the location of the user. However, the GNSS-based meth-
ods are generally considered to be power-hungry [9] and have
uncertainties due to signal reflections [14]. Furthermore, the
efficiency of the GNSS-based methods is highly dependent on
the number of available satellites. The proposed method in this
article consumes significantly less energy but yet provides high
detection accuracy without the need of deployment of satellites
or preinstalled base stations or anchors in the environment of
interest.

In multisensor-based methods, several sensors are utilized to
enable the environment detection. The sensors utilized in [26]
include magnetometer, barometer, GNSS receiver, light, and
pressure to distinguish between indoor and outdoor environ-
ments. Different types of outdoor areas, such as open areas
and urban areas, are considered with a single “outdoor” class,
and moreover, the average required time to detect the type of
environment is 5s. In contrast, the proposed approach in this
article is developed to detect multiple types of environments,
not just outdoor and indoor, while still being significantly faster
by providing the detection solution within less than 1 s.

In some scenarios, the light intensity can support other
methodologies for environment detection. Li et al. [27] analyzed
the received signal strength (RSS) of WiFi signals collected from
different access points and fuse the results with light intensity

information. The machine learning algorithms of adaptive boost-
ing are utilized to detect between indoor, outdoor, and semiopen
environments with an average accuracy of 85%. This method
is dependent on the availability of WiFi access points in the
environment.

Inertial measurement units (IMUs) can also be utilized to
detect the type of environment. Kelishomi et al. [9] used the
IMU inside a mobile phone to detect the physical activities
of the user and then make a decision about the environment
type based on the user activity. In [9], only indoor and outdoor
environments are investigated, and the investigation of differ-
ent types of outdoor environments is excluded because of the
unavailability of data. Besides, the detection based on physical
activity is highly dependent on the age of the pedestrian moving
in different environments. In this work, we introduce a novel
method to classify different types of environments, including
crowded urban and open outdoor areas. Moreover, the proposed
method in this article is not dependent on the user activity, or
the age of the user, but entirely relies on the characteristics of
observed UWB signals after propagating through the channel.

Ali et al. [11] have presented SenseIO for indoor/outdoor
detection. SenseIO is a multimodel method, which takes ad-
vantage of the global positioning system (GPS), WiFi APs, light
intensity, and human activity recognition. In spite of several
technologies and sensors utilized in SenseIO, the environment
detection accuracy for outdoor areas stays below 90%. Further-
more, there is no information regarding the time required to
detect the environment type. However, in critical scenarios of
seamless localization such as those for autonomous vehicles and
drones, a precise and fast detection of the environment type is
necessary. In our method, we introduce an infrastructure-free
approach, which is independent of GNSS signals, WiFi APs as
well as other sensors.

Jeon et al. [28] utilize computer vision methodologies to
detect the change in the environment by discovering if the robot
is passing the door to a new environment. They use AI YOLOv5
model for real-time object detection in the images captured by
a camera. The change in environment found by door passing
detection takes an average time of 3600 ms and the method is
highly dependent on the shape of the door in the infrastructure.

5G signals CSI is used in [29] to detect the indoor and outdoor
environment. Authors have utilized an unsupervised funnel on
top of a supervised feature extraction method called Fukunaga–
Koontz transform (FKT) to detect the type of environment. The
average accuracy achieved is 75%. Although the method is a
low-power methodology in Internet-of-Things (IoT) scenarios,
it is dependent on the availability of one access point in the
infrastructure.

As discussed above, fast and accurate recognition of various
types of environments has remained unaccomplished in pre-
vious works. In this work, we utilize UWB CIR to introduce
an infrastructure-free method. Besides conventional indoor and
outdoor detection, the proposed method is able to recognize
between different types of indoor and outdoor environments,
including open outdoor and crowded urban areas, in less than
1 s. To the best of our knowledge, environment detection has
not been investigated using the CNN-based analysis of UWB
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TABLE I
LIST OF RELATED WORKS IN ENVIRONMENT DETECTION

signals. A summary of the related works including the method-
ologies, measurements, limitations, and the dependence to the
infrastructure, the average time required for predicting the envi-
ronment type, and types of environment investigated is presented
in Table I.

III. SYSTEM DESIGN

This section presents the overall framework of the method,
data collection, data preparation, and the neural network
training.

A. Overall Framework

The overall framework of our proposed method is illustrated
in Fig. 2. After the data collection in the offline phase, data are
first prepared. Different labels are investigated and considered
in various scenarios. Then, the prepared data are fed to the CNN
to train the network. In the online phase, the test set is fed to the
trained network and the type of environment is detected for the
unseen test dataset. The signal we investigate is the UWB signal
and the data analysis method is CNN. The methodology of data
collection and the description of the environments are provided
in the next section.

B. Data Collection

The data are collected using a novel methodology to mimic
monostatic radar behavior with UWB chips. Wi-PoS devices
are utilized in the form of wearable systems on the arm of a
pedestrian. These devices are used with an embedded Decawave
DW1000 UWB transceiver [23], which enables the collection
of UWB CIR data. As illustrated in Fig. 3, the UWB signal

transmits from Wi-PoS 1 and after reflection from the walls, trees
or other elements in the environment it is received by Wi-PoS 2
on the other arm. For the experiment, the CIR of this signal is
collected by the laptop that the pedestrian carries.

The used channel for the transceiver is the UWB channel
5 with a center frequency of 6.489 GHz and the bandwidth
of 499.2 MHz. The bitrate is 110 kb/s with a pulse repetition
frequency (PRF) of 64 MHz and a preamble length of 4096.
Furthermore, the time resolution of the CIR is 1.016 ns.

During the signal transmission, the signal experiences multi-
path effects due to reflections, diffraction, and scattering, which
are environment dependent. For instance, a crowded urban en-
vironment with narrow streets or sidewalks, tall walls, groups
of people, or moving vehicles, results in effects to the signals,
which are different than effects of open area environments free
from such strong multipath effects [30]. Consequently, the CIR
of the signal changes due to different environmental effects [31].
These patterns in the signal generated by different environments
can be learned by a neural network [32]. In this work, the raw CIR
data are collected from nine different sites in Ghent, Belgium.

The data collection is performed by a pedestrian wearing
the UWB devices and walking in different environments. The
pedestrian wears the UWB devices on the arms and carries the
sensors, power banks, and the laptop for data collection. As the
pedestrian walks in an environment, the signal is transmitted by
a transceiver on one arm and then received by the transceiver on
the other arm, as previously illustrated in Fig. 3. The equipped
pedestrian with the devices is illustrated in Fig. 4, and the
considered data collection locations on the map are shown in
Fig. 5.

One of the challenges in collecting the experimental data was
the application and collection of the required permissions for
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Fig. 2. Overall framework of the proposed method to detect the type
of environment.

Fig. 3. Procedure of data collection utilizing the Wi-PoS devices as
wearable systems.

a pedestrian to move in different areas of Ghent city with the
wearable equipment. The corresponding permissions have been
granted by relevant organizations and authorities. For the data
collection, the pedestrian walked for 10 min in each environment
and collected more than 4000 CIR vectors per environment.
Each CIR vector is made of 300 time-domain samples, which
represent the CIR as a function of time. The CIR datasets are

collected using a Python script and the data are stored on the
laptop. The places that the pedestrian has walked are described
and demonstrated in more detail in Section IV.

C. Data Preparation

To feed the CIR data to the neural network, we first com-
pute the CSI by calculating the FFT of the CIR [33]. CSI is
a frequency-domain signal representation, or a feature, which
describes how a signal propagates from the transmitter to the
receiver as function frequency. In this way, CSI is able to
characterize the environment [3] and is a good candidate for
environment recognition utilizing the power of artificial intelli-
gence (AI). Before we explain the data preparation method, we
will have a closer look at CIR and CSI definition.

1) CIR and CSI Definition: For a deeper understanding of
the CIR and CSI, and especially how they are affected by the
environment, it is beneficial to consider a related multipath radio
propagation channel model. Assuming the use of omnidirec-
tional antennas, the received signal can be represented as [34]

r(t) =

K−1∑

k=0

bks(t− τk)e
j2πfD,kt + w(t) (1)

where s(t) is the transmitted signal as a function of time t, and
K is the number of multipath components. Furthermore, bk is
a complex path coefficient for the kth multipath component, τk
and fD,k denote the path delay and Doppler shift in respective
order. Finally, w(t) is additive white Gaussian noise, which can
be also modeled to include other additive error sources, such
as interference. The environment affects the parameters of the
above signal model in various ways. For example, the following
hold.

1) The path delays τk are related to path propagation time
and consequently the distances and reveal some informa-
tion on proximity and density of surrounding objects.

2) Path coefficients bk are affected by attenuation along
the path as well as different channel interactions, such
as reflections, scattering, and diffraction, depending, for
example, on used materials in surrounding objects.

3) Moving objects in the environment induce Doppler shifts
fD,k to each multipath, which causes time-dependent
phase rotation of the received signal.

Fundamentally, the observed CIR includes all paths, and
there is no need to distinguish separate paths for the proposed
environment detection. On the contrary, the CIR, including joint
path information and interpath dependencies, is processed as a
whole in the proposed CNN architecture in the next section to
extract the essential features for the environment detection. The
presented model in (1) is very generic and can be applied to all
considered environments by appropriately tuning the channel
parameters. The reference transmitted signal is the one emitted
by the emissor device.

The recorded data consists of CIR measurements, where
each CIR measurement includes 300 complex-valued samples.
Moreover, each sample represents the channel response at a
specific channel propagation delay. By applying the discrete
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Fig. 4. Pedestrian carrying the setup in an indoor environment.

Fig. 5. Nine different places where data collection is done in Ghent
city, Belgium.

Fourier transform, we observe the channel frequency response
(also 300 samples), denoted as the CSI in the article. Each
sample in the obtained CSI represents the channel response
for a specific frequency. Assuming that the kth sample of CSI
is denoted as h(k) ∈ C, in step 4 in Algorithm 1, the polar
form is calculated as h(k) = |h(k)| exp(j arg{h(k)}), where
|h(k)| is the amplitude (or modulus) and arg{h(k)} is the phase
(argument) of the kth CSI sample.

It is worth noticing that the noise-free CIR of the channel can
be obtained by substituting a unit impulse function for s(t) in

Fig. 6. Two CIR measurements collected from indoor and outdoor
environments.

(1), and removing receiver noise. The example of one measured
CIR in an indoor area (Krook Library) and one in an outdoor
area (Citadel Park) is illustrated in Fig. 6.

The change in CIR amplitude with respect to the propagation
time of the signal from the transmitter to the environment can
be observed in Fig. 6. The first few peaks in this figure show the
reflections from the object in the environment. From (1), the CIR,
and consequently the CSI, can be estimated by assuming the
signal s(t) known at the receiver. The procedure to prepare the
CSI to be fed to the neural network is presented in Algorithm 1.

D. Neural Network Training

When it comes to pattern recognition by image and signal
analysis, CNNs can be considered as proper candidates [35].
CNNs are capable of finding the essential patterns and extracting
the features from the data. Feature extraction is done by the
elementwise product of the given input and a kernel, represented
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Fig. 7. Proposed CNN architecture.

Algorithm 1: Data Preparation Algorithm.
Input: The raw CIR data of all the environments
Output: CSI Data.

1: for each environment do
2: for each CIR collected vector do
3: Compute discrete Fourier transform using FFT

function to estimate CSI based on raw CIR vector;
4: Calculate the polar form of CSI complex elements:

amplitude and phase;
5: Unwrap the phase and calibrate by removing the

offset in phase values of the samples in one CSI
vector;

6: Put the amplitude and calibrated unwrapped phase of
each sample of the vectors separately in two
consecutive columns.

7: end for
8: end for

by an array of numbers. The kernel slides over all the elements
in the input, and regarding the fact that the convolutional layer
conducts a linear operation, it is usually followed by a nonlinear
layer to enable backpropagation.

1) Proposed Network: The structure of the neural network
used in this work is illustrated in Fig. 7.

The calculated CSI data vector has 300 samples, which
describe the channel response over different frequencies, and
each sample has an amplitude and a phase. This results in the
shape of data as matrices with 2 rows and 300 columns. We
have tried different shapes of matrices to be fed to the neural
network and tuned the shape based on the size of the filters in
our convolutional layer. The most suitable shape in accordance
with the convolutional layer setting is 30 rows and 20 columns.
The number of layers has been selected in a way to improve
the training accuracy while preventing the overfitting by using

dropout in each layer as a regularization method. We use the
Adam optimizer to optimize the learning rate, weights, and
biases of the network [36]. To prevent the problem of gradient
exploding, gradient clipping is applied in each epoch of training.
The number of classes for the last layer, which is a Softmax
classifier, varies for different scenarios as explained in the next
section.

IV. EXPERIMENTAL SETUP

In this section, the environments of data collection are de-
scribed. The four different scenarios for evaluating the proposed
method are explained and the hyperparameters of the neural
network are provided.

A. Environments Description

Nine different environments are considered in this research
to test the robustness of the proposed methodology. These envi-
ronments are described in this section. One of the environments
is a railway station. Different parts of this environment are
shown in Fig. 8 and all the other environments are illustrated in
Fig. 9. More photos of the environments are available in dataset
description [24].

1) Fourth Floor at iGent Tower in the Premises of Gent
University: This environment has narrow corridors with more
than 15 offices and a small kitchen area. Many researchers were
present during the day of data collection and there were at least
one to two researchers near the pedestrian while she was walking
on this floor. The pedestrian walked inside the corridors, about
1 m far from the walls and she also walked inside three offices.
This floor is shown in Fig. 9(a).

2) Zwijnaarde Open Area: At the Ghent University campus,
there are some open areas hundreds of meters far from the tall
towers and a few university buildings. The pedestrian walked in
the open area for 10 min. Every few minutes, one car or bike
or a student moved at least 10 m away from the pedestrian.
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Fig. 8. Sint-Pieters railway station, platforms, and the station building.

Fig. 9. Images of environments. (a) iGent tower fourth floor. (b) Zwijnaarde open area, where Gent University campus is located. (c) Stadhuis
street in the city center of Ghent city. (d) Floors of Zuid shopping mall. (e) Portus Ganda and the yachts moored in the waters of Flanders. (f) De
Krook library and the bookshelves. (g) Citadel park in Ghent city. (h) Graffiti street, where the pedestrian walked to collect the data from the crowded
city center.

The campus area, where data collection took place, is shown in
Fig. 9(b).

3) Stadhuis Street and Nearby: The Ghent city hall is lo-
cated on Stadhuis street, which is in the heart of the city center.
In this street and nearby, there are a lot of historical buildings on
narrow streets and alleys. The pedestrian walked on this street,
and during the data collection, there were a lot of tourists walking
around and many cyclists passing by. At some parts, the trams
and cars were also around. This street and its surroundings are
shown in Fig. 9(c).

4) Zuid Mall: Zuid shopping mall has three floors of stores.
There is a big area in the center with a lobby on floor −1 and the
roof on floor 3. The shops are at the sides and there is a walking
area about 5 m in each floor. The pedestrian has walked on floor
−1 and the 2nd floor. There were at least four people walking
near the pedestrian while walking on the floors. This mall and
its floors can be seen in Fig. 9(d).

5) Portus Ganda: Portus Ganda is a port area, a yacht moor-
ing provided by the city of Ghent. It is located at a crossing in the
old waterways of the river Leie. The pedestrian walked around
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the river and on the bridge, where the buildings are quite far,
and a few people in the area were walking at least 5–10 m away
from the pedestrian. During the test, a few cars also passed by.
Some parts of this port area are shown in Fig. 9(e).

6) Sint-Pieters Railway Station: This station is most of the
time crowded as the people and tourists are taking the trains or
arriving from other cities. This site consists of different types of
areas including a) some indoor parts with high roofs and coffee
shops nearby, and at least 10 people passing by in the narrow
corridors, b) some tunnel parts with stairs ending in an open
area, and c) open areas on the platforms where the trains come
and go. During the test, a few trains have passed and hundreds of
people have been around on the platform. The pedestrian walked
in all the different types of areas including a), b), and c) during
the data collection. The different areas in this station are shown
in Fig. 8.

7) Krook Library: De Krook library is a large building, from
which two floors are explored by the pedestrian. First floor
is made of stands having CDs, DVDs, and novels, as well as
the standing computers for reservations. There were at least 20
people nearby on the day the pedestrian collected data on this
floor. Then, she took the stairs to the second floor, where there
were bookshelves making narrow corridors, and some areas with
small tables, where people were reading their books. The second
floor was less crowded on the day of testing and there were a
few people in each corridor of bookshelves. Some parts in De
Krook library, where the data collection took place, are shown
in Fig. 9(f).

8) Citadel Park: Citadel park is a big open area with sparse
trees. There are only a few buildings in the center of the park,
which were hundreds of meters away from the pedestrian during
the data collection. The park was almost empty of people on the
day of data collection. The pedestrian walked in the open areas
and passed some trees on her path. Citadel park is illustrated in
the pictures of Fig. 9(g).

9) Graffiti Straat: Graffiti Straat is a 2–3-m-wide alley, which
is less than 200 m long and there are buildings and walls on the
sides. People and tourists walk by and cyclists pass in this alley.
On the day of data collection, there were about 10 people in the
alley. The pedestrian walked the alley and continued her path on
the streets in the city center, which looks similar to the Stadhuis
street. She was one to 2 m far from the walls while walking. The
pictures of Graffiti street are visible in Fig. 9(h).

B. Considered Scenarios for Training the Neural Network

Before feeding the dataset as the input to the neural net-
work, we should first define the classes based on the type of
environment. While having a closer look at the data collected
at the railway station, we can see that this environment is
made of some parts which seem to be indoor, some parts to
be open outdoor, and some crowded parts such as a crowded
urban area. Going back to the purpose of this research, which
is the improvement of seamless localization, the classification
of the environment types is highly dependent on the available
sensors and positioning algorithms. To elaborate, in one possible
scenario, all the nine environments can be classified as simple

Fig. 10. Data preparation, training, and test phase in environment
detection for nine different labels in scenario 1.

as two classes including: “indoor” and “outdoor,” having one
positioning method for indoor areas and another one for outdoor
areas. In another possible scenario, one can classify the nine en-
vironments into four different classes including “shopping mall,”
“indoor,” “outdoor,” and “crowded urban.” For instance, in the
latter mentioned scenario, the positioning system could have
four different sets of sensors and relevant positioning algorithms,
which would be switched according to the detected environment.
To investigate several granularities toward the labels or classes
of environments, and to see how the network behaves for each
granularity, we investigate various number of labels as defined in
the following scenarios. Note that for each of these scenarios, a
new network (with same structure as explained in Section III-D)
is trained.

1) Scenario 1. Nine Labels Using All the Nine Environments
Datasets: In this scenario, we consider each environment
as one class to observe the capability of the network on
classifying nine different labels. The nine environments
investigated in this scenario have similar characteristics
and by defining this scenario, we are interested in finding
the network behavior while it confronts these similari-
ties. For instance, a park is similar to a campus area
considering the open environments and lack of buildings,
whereas an office is similar to a library by having narrow
corridors, walls, and desks. Nonetheless, we would like
to investigate how the network classifies these similar
environments, and thus, we prepare the dataset and feed it
to the neural network with the steps illustrated in Fig. 10.
As shown in Fig. 10, nine datasets with raw CIR vectors
are first prepared for being fed to the neural network.
Then, the dataset is randomly split according to a uniform
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Fig. 11. Data preparation, training, validation, and test splitting for four
labels in scenario 2.

distribution into three types as training, validation, and
test. In the offline phase, the network is trained and
validated using the training and validation set; after this,
in the online phase, the test dataset is utilized to test the
performance of the trained network and find out how
accurate the network is in estimating the environment
category.

2) Scenario 2. Four Labels and Training by Using Seven
Environments Datasets: Another scenario is the move-
ment of a pedestrian in four types of environments. In
this scenario, we have utilized the data collected in seven
environments and we have considered four labels for these
environments as shown in Fig. 11. The consideration of
the classes in this scenario is inspired by the scenarios de-
fined in 3rd Generation Partnership Project (3GPP) tech-
nical report on channel models [37]. The environments
considered under the same class have similar character-
istics. Library and offices are both indoors, Stadhuis and
Graffiti street are both crowded urban areas, and port and
park are both open outdoor areas. However, the shopping
mall, as illustrated in Fig. 9(d), has characteristics that
make it different from previous labels. For this reason,
we have considered this environment as a different class.

3) Scenario 3. Three Labels and Training by Using Six
Environments Datasets: The third scenario that we have
considered is the movement of pedestrian in three dif-
ferent types of environments. This scenario is similar
to previous scenario but excludes the shopping mall. In
this scenario, the data collected in six environments are
utilized and split as illustrated in Fig. 12.

4) Scenario 4. General Test Scenario With Three Labels
and Training by Using Three Environments Datasets
Where Testing Is Performed in Environments Unseen in
the Training Data: The last scenario considered in this
research has the same classes as the previous scenario, but
with a different consideration of datasets. The purpose

Fig. 12. Data preparation, training, validation, and test splitting for
three labels in scenario 3.

Fig. 13. Data preparation, training, validation, and test splitting for
three labels for general test in scenario 4.

of this scenario is to investigate how the trained neural
network would behave, if it is trained over one set of
environments and tested on other environments, which
in human eyes seem to have similar features with the
previous sets. In other words, the testing is applied for
environments, which has not been earlier seen in the
training data. In this scenario, we consider training over
data collected in iGent Tower Offices, Stadhuis street, and
Portus Ganda port area. After the network is trained, we
test the operation of the network by feeding data from
totally different places, unseen by the trained network,
including data from Library de Krook, Graffiti Street, and
Citadel Park. We refer to this scenario as a general test
scenario, as we believe, it is able to illustrate the general-
ization of the proposed methods and accompanied results.
The data splitting regarding this scenario is illustrated in
Fig. 13.

The training, validation, and test vectors in all of the four
scenarios are selected randomly from the whole dataset. All the
above scenarios are summarized in Table II.

1) Hyperparameters: Hyperparameters are the parameters
that define the network structure and how a network should be
trained. These parameters are tuned in a way to get the maximum
validation accuracy and minimum validation loss. The tuned
parameters, used to train the networks for all scenarios 1 to 4,
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TABLE II
DIFFERENT SCENARIOS INVESTIGATED IN EVALUATION

TABLE III
OPTIMIZED HYPERPARAMETERS FOR TRAINING THE NETWORK

IN ALL THE SCENARIOS

are listed in Table III. The parameters are achieved by trying
different values and investigating their effect on the validation
accuracy and loss. Loss in this contest is a measure showing the
error between the predicted values (output of neural network)
and ground truth labels. In this work, the loss value is calculated
using a negative log likelihood loss function. The loss value
itself depends highly on the model, network architecture, reg-
ularization method, and optimization algorithm. However, the
important rule of training the neural network is that the loss value
should decrease while training the network. It is important to
focus on monitoring the loss value during training and evaluating
the performance of the trained model on a separate validation
set [38]. The most suitable value of each hyperparameter has
been selected to train the network and prepare it for the online
phase, that is, testing the network with the test set. To elaborate
the procedure of finding the best hyperparameters, a few number
of layers are first considered to see how the network behaves
in learning from the data. For instance, we started with three
convolutional layers. After training the neural network, we could
see that underfitting is happening so more layers have been added
to learn from the data. After this change in the number of layers
and increasing the layers one by one until no more underfitting
is happening, we could see that the loss is increasing. We have
solved this problem by regularization methods, such as dropout
layers. Another problem we observed was the fluctuation in
accuracy values. We solved this issue by batch normalization.
Different batch sizes and epoch sizes have been tried to train
the network with the best accuracy while preventing overfitting.
We observe the validation accuracy and loss in comparison with
training accuracy and loss to decide for each hyperparameter.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
environment detection method. We consider different scenarios,
as presented in Table II, to investigate different labels and the
efficiency of the presented system.

Fig. 14. Accuracy of training and validation in scenario 1.

Fig. 15. Loss of training and validation in scenario 1.

A. Performance Evaluation for Different Scenarios

In the following, we present and analyze the performance
of the proposed method for different scenarios, introduced in
Table II.

1) Scenario 1: The training and validation accuracy
achieved in scenario 1 are illustrated in Figs. 14 and 15, re-
spectively. Moreover, the confusion matrix for the test sets is
illustrated in Fig. 16.

In scenario 1, we have trained the network over nine different
labels. As illustrated in Fig. 14, the network is well trained. The
higher validation accuracy in comparison with training accuracy
(see Fig. 14) and the lower validation loss in comparison with
training loss (see Fig. 15) are a result of the utilization of the
dropout regularization method to prevent overfitting. In this case,
the network is trained with an average accuracy of 75% and an
average loss of 0.58. By observing the behavior of the network
on different datasets, as illustrated in Fig. 16, we can see that
the most confusing dataset is related to Sint-Pieters railway
station where many test vectors are detected as the shopping
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Fig. 16. Confusion matrix for test set in scenario 1.

Fig. 17. Accuracy of training and validation in scenario 2.

mall and the port area. By looking at the pictures of the railway
station in Fig. 8, we can see that the different parts of the
railway station resemble other types of environments and the
network is highly confused while detecting the different parts.
Another observation from Fig. 16 is that some vectors collected
at the offices are detected as library, some vectors collected
at Zwijnaarde open area are detected as port area, and some
vectors collected at Stadhuis crowded city center are detected
as graffiti alley, and vice versa. This confusion, which results
in 70% precision, is reasonable as there are obvious similarities
between the confused environments. It shows that the network
is learning the environment by CSI data and it proves that
CSI is a good representative of environment characteristics. For
example, some parts of the library are very similar to the offices,
which are seen as similar channel effects on the collected signals.
This will result in network detecting an office as a library. The
general form of the confusion matrix is diagonal, showing that
most of the test data are detected correctly.

2) Scenario 2: For scenario 2, the network is retrained
with new definitions of environment labels, as described in
Section IV-B. The training and validation accuracy achieved in
scenario 2 are illustrated in Fig. 17. Furthermore, the confusion
matrix for the test set is illustrated in Fig. 18.

In this scenario, four labels are considered for the classifi-
cation including indoor, open outdoor, crowded urban, and a

Fig. 18. Confusion matrix for test set in scenario 2.

Fig. 19. Accuracy of training and validation in scenario 3.

shopping mall as shown in Fig. 11. The network is very well
trained with an average accuracy of 97% (see Fig. 17). The
confusion matrix presented in Fig. 18 shows an environment
detection precision of 94% for the considered test vectors. The
main confusion is between the crowded urban area and the
shopping mall. This confusion can be justified by the fact that
some parts in crowded urban areas resemble the shopping mall
and the network cannot classify the differences between these
two environments. As discussed earlier, some signals collected
in the crowded urban area are facing the same effects in the
shopping mall. This effect can be, for example, a result of the
present people walking in the area.

3) Scenario 3: Similar to scenarios 1 and 2, the training
and validation accuracy achieved in scenario 3 are illustrated in
Fig. 19. Furthermore, the confusion matrix for the test sets is
illustrated in Fig. 20.

In scenario 3, the network is trained over three labels, as
illustrated in Fig. 12. The accuracy of training and validation
indicates that the network is very well trained on the training
datasets (see Fig. 19) with a 95% average training accuracy.
By analyzing the illustrated confusion matrix in Fig. 20, the
environment detection precision achieved in scenario 3 is 96%.

4) Scenario 4: Finally, the training and validation accuracy
achieved in scenario 4 are illustrated in Fig. 21. In addition, the
confusion matrix for the test sets is illustrated in Fig. 22.
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TABLE IV
ACCURACY AND LOSS VALUES OF THE NETWORK IN THE FOUR SCENARIOS

Fig. 20. Confusion matrix for test set in scenario 3.

Fig. 21. Accuracy of training and validation in scenario 4.

In scenario 4, we analyze the robustness of the method when
generalized toward new, unseen environments. We train the
network on data from three environments, and test on the data
collected in completely different environments, as illustrated in
Fig. 13. The network achieves up to 93% training accuracy,
as shown in Fig. 21. By investigating the confusion matrix in
Fig. 22, regardless of testing with unseen data, an environment
detection precision of 91% is achieved. It is worth mentioning
that we have tried scenario 4 by swapping the environments of
training and test data. The results are slightly different. In this
case, the mean training accuracy is 93%, the mean validation
accuracy is 94%, and the precision is 91%. A summary of the
loss and accuracy values of training and validation of the network
for each scenario is presented in Table IV.

As observed in the results, the network learns the type of
environment from CSI data. In scenario 1, we observed that
similar indoor environments such as library and office, port and

Fig. 22. Confusion matrix for test set in scenario 4.

park, and two crowded urban streets can be confusing for the
network since they have similar characteristics. In scenarios
2 and 3, we have considered similar environments under the
same label and we have seen that the network is trained with
high accuracy, resulting in high precision in detecting the en-
vironment for the test set. Furthermore, we have shown that
the methodology is robust by Scenario 4, in which the test set is
collected from a totally different environment than those used for
the training. It takes 3ms for the trained neural network to detect
the environment type for each CSI measurement using high-end
GPUs and Pytorch software framework. The required time for
collecting one CIR sample is 167ms and the time required for
FFT and CSI preparation from CIR is 99 ms. In total, one CIR
vector collection and detection of environment based on that
vector takes 269 ms. This amount of time shows that this method
is faster than the previous methods in the literature as compared
in Table I.

VI. CONCLUSION

In this article, we present a novel method for fast environment
detection utilizing CNN and CSI of UWB signals. Wi-PoS de-
vices in form of wearable systems are utilized for data collection.
The proposed method mimics the monostatic radar behavior to
scan the environment and is completely infrastructure-free. We
have shown that the CSI data can represent the environment
characteristics and by using machine learning algorithms for
CSI data analysis, we are able to detect the type of environment.
The results prove that the proposed method operates with a
precision of up to 96% for specific use cases and a precision
of 91% for general scenarios, where the considered test data are
entirely unseen by the trained network. In addition, the proposed
approach is significantly faster than prior methods, presented in
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the literature. Considering potential future steps of this research,
we are interested in utilizing the proposed method in seamless
positioning scenarios for vessels, vehicles, and UAVs. Another
possible future research topic is object and material detection by
applying similar methods as proposed. In addition, we are also
interested in the utilization of denoising techniques to elaborate
effects of noise and interference on environment detection.
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