
26 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023

Analysis of the Recent AI for Pedestrian
Navigation With Wearable Inertial Sensors
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Abstract—Wearable devices embedding inertial sensors enable autonomous, seamless, and low-cost pedestrian nav-
igation. As appealing as it is, the approach faces several challenges: measurement noises, different device-carrying
modes, different user dynamics, and individual walking characteristics. Recent research applies artificial intelligence (AI)
to improve inertial navigation’s robustness and accuracy. Our analysis identifies two main categories of AI approaches
depending on the inertial signals segmentation: 1) either using human gait events (steps or strides) or 2) fixed-length
inertial data segments. A theoretical analysis of the fundamental assumptions is carried out for each category. Two state-
of-the-art AI algorithms (SELDA, RoNIN), representative of each category, and a gait-driven non-AI method (SmartWalk)
are evaluated in a 2.17-km-long open-access dataset, representative of the diversity of pedestrians’ mobility surroundings
(open-sky, indoors, forest, urban, parking lot). SELDA is an AI-based stride length estimation algorithm, RoNIN is an
AI-based positioning method, and SmartWalk is a gait-driven non-AI positioning method. The experimental assessment
shows the distinct features in each category and their limits with respect to the underlying hypotheses. On average,
SELDA, RoNIN, and SmartWalk achieve 8-m, 22-m, and 17-m average positioning errors (RMSE), respectively, on six
testing tracks recorded with two volunteers in various environments.

Index Terms—Dead reckoning, deep learning, indoor positioning, inertial sensors, machine learning, pedestrian navi-
gation.

I. INTRODUCTION

THE development of pedestrian navigation solutions has
been an active field of research for almost two decades.

The first technology employed is the global navigation satel-
lite system (GNSS) working in open-sky outdoor conditions.
Indoors, radio-beacon-based technology is deployed to locate
pedestrians with ranging or mapping of signal footprints. These
technologies are now widely commercialized but operate only
in equipped infrastructure involving high installation and main-
tenance costs. Other approaches, aiming at fully autonomous
navigation, are still being developed. They rely on image pro-
cessing with simultaneous localization and mapping (SLAM),
structure from motion or odometry methods, and inertial signals
processing to infer the pedestrian’s dynamics using wearable
sensors. Inertial pedestrian navigation is very attractive because
it does not require infrastructure, is operational with low-cost
sensors that can be attached to several locations on the person’s
body (wrist, trousers pocket, etc.), and comply with the European
General Data Protection Regulation recommendation promoting
privacy by design technologies.

Manuscript received 16 December 2022; revised 3 March 2023 and
4 April 2023; accepted 14 April 2023. Date of publication 26 April 2023;
date of current version 23 June 2023. This work was supported by the
French National Research Agency under Grant ANR 20 LCV1 0002 and
the French company Okeenea Digital. (Corresponding author: Hanyuan
Fu.)

This work involved human subjects or animals in its research. Ap-
proval of all ethical and experimental procedures and protocols was
granted by Comité pour les recherches impliquant la personne humaine.

The authors are with the AME-GEOLOC, Gustave Eiffel Univer-
sity, F-44340 Bouguenais, France (e-mail: hanyuan.fu@univ-eiffel.fr;
valerie.renaudin@univ-eiffel.fr; yacouba.kone@univ-eiffel.fr; ni.zhu@
univ-eiffel.fr).

Digital Object Identifier 10.1109/JISPIN.2023.3270123

But pedestrian inertial navigation faces challenges. It
accumulates positioning errors over time due to low-cost
sensor noises. It lacks robustness when the pedestrian motion
mode changes (slow/normal/fast walking, staircases, stationary,
etc.) or when the wearable fixing point varies (handheld
sensors, in the trouser/vest pocket, etc.). It also fails to adapt
to individual walking gait characteristics (disability, injury).
Artificial intelligence (AI) is interesting for simultaneously
addressing all these varying conditions and thus providing
improved robustness and positioning accuracy. Consequently, it
is increasingly applied to inertial pedestrian navigation research.
Less explicit than traditional physics-based approaches, it raises
design and hyperparametrization issues.

This article aims at analyzing the recently proposed ap-
proaches in the field of pedestrian navigation with inertial
wearable sensors to identify the key features that contribute to
the success or limitations of robust and accurate positioning. It
extends the previous conference proceeding [1], which classifies
AI-based inertial pedestrian navigation methods into two main
categories depending on the inertial signals segmentation. A de-
tailed analysis of the fundamental hypotheses in each category,
their likelihood, and their impact on positioning performance is
conducted. A comparison with a non-AI pedestrian navigation
approach is added. The experimental performance assessment is
conducted with handheld inertial sensors on a larger open-access
dataset in three different environments: 1) urban, 2) forest, and
3) a shopping mall parking lot, including indoor and outdoor
parts and staircases.

The rest of this article is organized as follows. Section II
presents the AI-based pedestrian navigation state-of-the-art
methods: human-gait- and sampling-frequency-driven AI meth-
ods, along with their underlying hypotheses. The three methods
selected for evaluation are described in Section III. Section IV is
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dedicated to the experimental evaluation and comparison of the
three selected methods on pedestrian tracks. Finally, Section V
concludes this article.

II. STATE-OF-THE-ART ON CURRENT AI METHODS FOR

PEDESTRIAN INERTIAL NAVIGATION

AI-based methods for pedestrian inertial navigation can be
classified into two classes [1]: (A) human-gait-driven and
(B) sampling-frequency-driven methods. The first category is
inspired by the nature of human walking and the inertial signals
are segmented with the user’s gait (step or stride) events, whereas
the second category segments inertial data into fixed-length
sequences, usually overlapped.

A. Human-Gait-Driven AI Methods

The inertial data sequences are segmented using the gait
events (step or stride instants) and processed to estimate the
gait vector of each segment. Gait events are derived from the
cyclic inertial signals patterns. For instance, Abiad et al. [2]
consider that a peak in the acceleration norm or a valley in the
angular rate norm represents a step instant, regardless of the
device’s location. However, gait detection under irregular hand
movements remains challenging.

Due to the different features needed to estimate the step/stride
length and the walking direction, they are often treated sepa-
rately.

1) Stride/Step Length Estimation: Feature engineering is
performed to select the most informative features for stride/step
length estimation. According to the work in [3], there are four
categories of relevant features: 1) statistical (mean, variance, am-
plitude, etc.), 2) time-domain (number of peaks, zero-crossing
ratio, etc.), 3) frequency domain (dominant frequencies, spec-
trum energy, etc.), and 4) higher-level features based on em-
pirical models. Stride/step length can be regressed by differ-
ent models: Klein and Asraf [4] use a convolutional neural
network, Zhang et al. [5] use an online sequential extreme
learning machine (OS-ELM), and the authors in [3] and [6] com-
bine six regressors: 1) extreme gradient boost (XGBoost) [7],
2) LightGBM [8], 3) K-nearest neighbor [9], 4) decision tree
[10], 5) AdaBoost [11], and 6) support vector regression [12].

An alternative to feature engineering is end-to-end regression
with a sequence of inertial measurements over a gait interval.
Feature extraction is usually performed by a deep network.
Gu et al. [13] use two stacked autoencoders, Yan et al. [14] use
a deep believe network built with multiple Gaussian Bernoulli
Restricted Boltzmann Machines [15], and the authors in [16]
use an LSTM [17]. We will detail the model in Section III. The
regression task is done by one or several dense layers.

The main challenge of stride/step length estimation is the
changeable device locations, user dynamics, and different indi-
vidual walking characteristics. Classifying the device’s location
can improve robustness [3], [4]. Customizing the model for each
individual is another way to improve accuracy [18].

2) Walking Direction Estimation: Estimating the user’s walk-
ing direction with wearable inertial sensor measurements is a
complex problem because the misalignment between the de-
vice’s pointing direction and the user’s walking direction is

Fig. 1. Human gait cycle [26].

not necessarily constant. A common strategy is to express the
inertial measurements in the navigation frame via device attitude
tracking.

Liang et al. [6] used the device’s yaw angle and magnetometer
measurements as features to infer the user’s walking direction
using an OS-ELM network. Pedestrian heading estimation [19]
do not need explicit device attitude tracking, instead, it performs
data augmentation and adaptive alignment by a learnable spatial
transformer network to make the model invariant to the inertial
data’s rotation.

B. Sampling-Frequency-Driven AI Methods

This branch of AI methods considers pedestrian positioning
as an end-to-end problem. Inertial measurement sequences are
segmented into fixed-length segments, usually overlapped. Deep
networks are trained to infer the user’s average velocity or
change in position over a segment.

The constant sampling frequency of the inertial measurements
is a necessary condition for this branch of methods. If it is not
the case, data interpolation and synchronization are needed.

RIDI [20], the “ancestor” of this branch, considers only strap-
down configurations (leg pocket, in a bag, hand-held, and body
mounted). Raw inertial measurements are corrected thanks to a
device attitude tracking algorithm and a neural network, before
being integrated twice to obtain the user’s position. The same
team later proposed RoNIN [21], which can operate beyond
strap-down configurations, that we selected for experimental
evaluation (see Section III). IONet, another pioneer of this
category, regresses the user’s walking direction change and dis-
placement every time it receives a 200-frame segment (200 Hz).

C. Hypotheses Made for Each AI Category

The underlying hypotheses of each category are listed and
analyzed.

1) Hypotheses for the Human-Gait-Driven AI Methods:
• Hypothesis GH1: Human walking is cyclic. A normal

cycle of human locomotion is illustrated in Fig. 1. In [22],
walking locomotion is described as a process in which the
erect, moving body is supported by first one leg, and then
the other. As the moving body passes over the supporting
leg, the other leg swings forward to prepare for its next
supporting phase.

• Hypothesis GH2: According to the work in [23], the upper-
and the lower-body movements are correlated. During
normal walking, the head and the trunk move up and down
as the center of gravity follows the lower limbs’ periodic
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movements, and arms flex and extend reciprocally. This
hypothesis makes gait event detection from inertial signals
plausible.

• Hypothesis GH3: Human paces are regular and con-
strained. According to a statistical study presented by [3],
within 10 145 strides of gait measurements of different
subjects and different walking dynamics, collected by a
foot-mounted device, 99.5% of strides were within 1.55 m,
and no stride exceeds 1.75 m. The mean and standard devi-
ation of stride lengths are 1.33 m and 0.18 m, respectively.

• Hypothesis GH4: Step/stride length and inertial signals
collected from different body parts are correlated. Empir-
ical models are developed based on hip or foot-mounted
sensors. Weinberg [24] found a correlation between the
hip’s vertical acceleration amplitude and stride length.
Ladetto [25] found a correlation between acceleration
variance and stride length. The hypothesis is plausible
considering the correlation between foot movements and
those of the rest of the body (GH2).

• Hypothesis GH5: A corollary of GH1, when the device
location remains the same, the user’s change in walking di-
rection over two consecutive steps shall be approximately
the same as the change in the device’s pointing direction.

GH1 and GH3 are observed during natural walking, certain
users such as senior citizens can easily break these assumptions.
GH2 is a simplification of reality since users can move freely
their arms and hands while walking. As for GH4, even if these
correlations exist, they are likely to be significantly diversified
depending on the device carrying mode, which explains the fact
that most research works either consider a single carrying mode
[14], [16] or perform carrying mode classification [3], [4]. GH5
can be easily corrupted by noisy movements (swinging, device
in pocket/bag).

2) Hypotheses for Sampling-Frequency-Driven AI Methods:
• Hypothesis FH1: The true kinematic of the user’s center

of mass is continuous and can be recovered from inertial
measurements collected from different body parts.

• Hypothesis FH2: Each fixed-length segment is indepen-
dent of the others. In other words, a segment contains
sufficient information to recover the user’s velocity or
change in position over the same time window.

• Hypothesis FH3: The inertial signals are sampled at a
constant sampling frequency.

This branch of methods is naturally suitable for using deep
learning models, which require fixed-length inputs. FH2 is ap-
proximately true if we consider regular and cyclic movements
that the user’s speed can be estimated with the signal’s frequency
and amplitude. However, the correlation between the user’s
speed and the signal’s frequency or amplitude can vary from
one individual to another. The same hypothesis also implies that
a segment contains sufficient information to yield a walking
direction inference. According to a survey [27] on traditional
methods for walking direction estimation with an unconstrained
device, existing methods such as principal component analysis
[28], [29], forward and lateral accelerations modeling [30],
and frequency analysis of inertial signals [31] assume that the
walking direction is observable with handheld inertial sensors
during one step/stride. As a result, we expect noisy inferences
from this approach.

III. SELECTED METHODS FOR THE EXPERIMENTAL

ASSESSMENT: SELDA, RONIN, AND SMARTWALK

We selected the method pedestrian Stride-length Estima-
tion [16] based on LSTM and Denoising Autoencoders (ti-
tled SELDA in the rest of the article) among the gait-driven
AI methods. The latter is representative of the category with
sufficient implementation and data processing details, along
with a benchmarking dataset. RoNIN [21] is selected among
the sampling-frequency-driven AI methods since the authors
published their implementation, trained model weights, and a
part of their dataset.

We would also like to evaluate a complete positioning non-AI
gait-driven method for comparison; thus, we selected Smart-
Walk. The method combines several techniques such as machine
learning, statistical model, and an extended Kalman filter (EKF)
to infer the user’s trajectory; moreover, some parameters in the
model are customized for each user.

A. SELDA: Pedestrian Stride-Length Estimation Based
on LSTM and Denoising Autoencoders

The stride length estimation AI model proposed in [16] takes
as input stride segments of inertial measurements: Three-axis
acceleration and angular rate, collected by a handheld smart-
phone, along with higher-level features from empirical models
(Weinberg [24], Ladetto [25], Scarlett [32], etc.) computed with
the acceleration segment.

SELDA requires the user to carry the device in “texting”
mode, in such a way that the z-axis of the device points to
the sky. Stride events for signal segmentation are detected by a
foot-mounted device. This setup is constrained and impractical
for deployment.

1) SELDA Dataset: Publicly available [33], is collected by
five volunteers of different gender and height, holding the smart-
phone horizontally in front of their chest.

The dataset covers both indoor and outdoor scenarios includ-
ing staircases.

The inertial signal sampled at 100 Hz is segmented by stride
instants provided by the foot-mounted reference tracker, which
also provides stride length ground truth.

2) Adaptation for Experimental Assessment: We use only 4
higher-level features instead of 35 since only 4 definitions are
available.

Among learning samples from the SELDA dataset, we only
consider the stride length range between 0.3 m and 1.8 m. The
original dataset is split into a 6319-sample training set and a
175-sample validation set.

Since SELDA only estimates stride length, for illustration’s
purpose, we pile up three modules, namely stride detection,
SELDA, and heading estimation to build a positioning system.
Stride instants and walking directions are provided by our foot-
mounted reference tracker [34], [35].

B. RoNIN: Robust Neural Inertial Navigation

RoNIN expresses acceleration and angular rate measurements
in the navigation frame, via the device attitude provided by
Android’s game rotation vector (GRV) and a spatial alignment
procedure. An AI model (RoNIN ResNet) is trained to infer the
user’s horizontal velocity (Vx, Vy), given a fix-length segment
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Fig. 2. Experimental setup for studying the GRV.

(200 frames) of acceleration and angular rate expressed in the
navigation frame. Inferred velocities are integrated to obtain the
user’s trajectory. Both RoNIN datasets, model implementation,
and trained model weights are publicly available [36].

1) RoNIN Dataset: It is collected mainly in indoor environ-
ments by 100 volunteers and 3 Android devices, covering usual
scenarios such as a smartphone in a bag, in the pocket, handheld,
walking, sitting, etc.

The ground truth trajectories are provided by visual-inertial
SLAM performed by a tango phone attached to the volunteer’s
chest.

All measurements are synchronized and sampled at 200 Hz.
2) Importance of the GRV: GRV is a quaternion provided

by Android API, indicating the device’s orientation w.r.t some
gravity-aligned reference frame [37]. To better understand it,
we compare it to a transparent EKF device attitude tracking
algorithm MAGYQ [38]. We attach rigidly our “home-made”
navigation device (see Section IV) ubiquitous localization with
inertial sensors and satellites (ULISS) and a smartphone on an
aluminum plate to align their z axes (see Fig. 2). We recorded
the following two tracks.

• Track 1: slow and steady rotations.
• Track 2: random rotations during walking.

In Fig. 3(a) and (b), we plot the Euler angles of the smartphone
given by GRV (top figure) and those of the ULISS given by
MAGYQ (middle figure). The roll angle of ULISS evolves in
the same way as the pitch angle of the Android device and the
pitch angle of ULISS evolves in the same way as the Android
device’s roll angle. The ULISS yaw angle is opposite to the yaw
angle of the Android device. In the bottom figure, we plot the
variation of their angular offsets given by (1). The subscript “a”
stands for Android and “u” stands for ULISS

Δroll = rollu − rollu(t = 0)− (pitcha − pitcha(t = 0))
(1)

Δpitch = pitchu − pitchu(t = 0)− (rolla − rolla(t = 0))
(2)

Δyaw = yawu − yawu(t = 0) + (yawa − yawa(t = 0)) (3)

The figures show that the GRV is good at estimating roll and
pitch (related to gravity). There is no large difference between the
GRV and the MAGYQ result. The offset between game rotation

Fig. 3. Comparison of attitude angles estimated by Android GRV and
MAGYQ for two scenarios. (a) Track 1: Euler angles of slow and steady
rotations. (b) Track 2: Euler angles of random rotations during walking.

Fig. 4. (a) ULISS sensor. (b) Experimental setup: One ULISS sensor
is held in the user’s right hand and the other on the user’s right foot.

yaw and ULISS yaw is almost constant during several minutes
of recordings.

We observe punctual peaks in the bottom plots, which are
due to are due to slight synchronization lags or the difference in
response time of the two devices.

We can conclude that the offset between the GRV and the
device’s orientation, w.r.t to North-East-down frame, is approx-
imately constant for several minutes. For this reason, we replace
the GRV with MAGYQ in our experiments to make the RoNIN
more transparent.
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Fig. 5. Environments for experiments: (a) Campus. (b) Office building. (c) Woods. (d) City. (e) Parking lot in a shopping mall.

3) Adaptation for Experimental Assessment: The article
proposes three variants based on different deep learning models:
1) ResNet [39], 2) LSTM [17], and 3) temporal convolutional
network [40] to estimate the user’s position. We only assess
RoNIN ResNet, since it yields the best results. We use the
published model implementation and trained model weights for
experimental assessment. We replace the GRV and the spatial
alignment procedure with MAGYQ.

C. SmartWalk

It appeared interesting to make a comparison with an older
solution based on classical signal processing techniques instead
of recent AI tools: SmartWalk [40]. It is a pedestrian positioning
algorithm fusing data from a triaxis accelerometer, a triaxis
gyroscope, a triaxis magnetometer, a barometer, and a GNSS
receiver. In this article, GNSS raw data are not included in the
positioning algorithm to ensure a fair comparison with the other
AI-based solutions. SmartWalk contains several modules.

1) Step Detection, Step Length Estimation, and Carrying
Mode Classification: This module processes the wearable raw
acceleration and angular rate readings at 200 Hz. The original
step detection module was replaced with SmartStep [2], [42].
Step length s is estimated by a linear model [43]

s = h× (a× f + b) + c (4)

whereh is the user’s height, f is the frequency of the acceleration
magnitude, and a, b and c are universal parameters learned on
a group of users. A personalized calibration is as well possi-
ble [44]. The device’s carrying mode is classified into either
texting or swinging mode. Irregular and static phases are also
detected [43].

2) GMM for Walking Direction Inference: This module
adopts a Gaussian mixture model (GMM) to model the mis-
alignment between the device’s pointing direction and the user’s
walking direction [45]. First, the device’s accelerations are
transformed into the local North-East-Down frame using the
EKF-based device attitude tracking algorithm: MAGYQ [38].
Then, the distribution of the horizontal accelerations, when the
user is walking toward the North (0◦ heading), is modeled by a
weighted sum of 2-D Gaussian distributions

facc(x) =
q∑

k=1

τkN(x,mk, Pk) (5)

where τk is the weight of Gaussian component k, parameterized
by mean mk and variance Pk. A GMM model is learned for
each individual for a device handling mode, by expectation
maximization. Finally, the walking direction of a step is inferred
by rotating the learned GMM by angle θ to maximize the

TABLE I
SUMMARY OF THE INPUTS AND OUTPUT OF EACH SELECTED METHOD

log-likelihood of the horizontal accelerations cloud over one
step. θ is the inferred user heading for this step.

3) Corrections: An EKF completes SmartWalk with the fol-
lowing corrections.

1) Identify the stairs with a barometer and use a fixed step
length (30 cm) when the user is on stairways.

2) Use a fixed step length (50 cm) in the propagation model
and the estimated step lengths as observations.

3) Fuse the GMMs inference with the device’s pointing di-
rection given by MAGYQ according to hypothesis GH5.
High confidence is given to the GMM at the beginning of
the trajectory to match the initial heading with the GMM
prediction.

Table I summarizes the inputs and outputs of the three selected
methods.

IV. EXPERIMENTAL ASSESSMENT

A. Experimental Setup

1) Hardware: The device ULISS [46], shown in Fig. 4(a),
was developed by the GEOLOC laboratory at University Gus-
tave Eiffel and is used for the experiments. It is a state-of-
the-art Inertial Navigation System containing an Xsens Mit-7
IMU-Mag sensor, a barometer, and a GNSS receiver, provid-
ing acceleration, angular rate, magnetic field, and atmospheric
pressure readings at 200 Hz, GNSS reading at 5 Hz, using GPS
timestamps. It is used for the experimental assessment instead of
a smartphone because the signal acquisition is controlled and the
sensors are calibrated. One ULISS is mounted on the foot and is
the reference solution, i.e., ground truth, with a 0.3% positioning
error over the traveled distance [47]. It is the winning solution
of the three-year French national competition (MALIN) for the
noncollaborative positioning of soldiers in challenging indoor
environments [35].

2) Scenarios: As shown in Fig. 4(b), the test person holds
one ULISS horizontally (the z-axis points to the sky) and walks
naturally, as requested by SELDA. All scenarios started outdoors
for the initialization of MAGYQ and the foot-mounted reference
solution. Both algorithms need a magnetometer calibration with-
out strong artificial magnetic fields for the initialization. For the
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TABLE II
CHARACTERISTICS OF THE SIX TESTS IN OPEN ACCESS [47]

TABLE III
PERFORMANCE EVALUATION OF SELDA-BASED PDR, RONIN, AND SMARTWALK

Fig. 6. Volunteer 1: Estimated trajectories by SELDA (red), RONIN (orange), SmartWalk (green), and the ground truth (blue).

sake of fairness, the ground truth initial walking direction is
given to all three implemented positioning methods.

Four different surroundings, representing the diversity of
common pedestrian navigation contexts, were chosen for the
experiments. Fig. 5 shows the diversity of these environments.
Tests 1–3 were recorded on the campus of the university by a
healthy man (volunteer 1, 1.66 m height), and tests 4–6 in various
environments (forest, city, and parking lot) by another healthy
man (volunteer 2, 1.80 m height). The six recorded tracks are
provided in open source [48]. They include raw inertial signals,
calibration parameters, and ground truth trajectories. Table II

summarizes the main characteristics of these six evaluation
tracks.

B. Performance Evaluation

Three metrics are selected to evaluate the horizontal trajec-
tories estimated by each selected method: the scale factor (SF),
the EndPoint error Rate (EPR), and the root-mean-square error
(RMSE).

1) Scale Factor: It is the ratio of the total length of the
estimated trajectory les to the total length of the ground truth
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Fig. 7. Volunteer 2: Estimated trajectories by SELDA (red), RONIN (orange), SmartWalk (green), and the ground truth (blue).

Fig. 8. Volunteer 1: Stride length predicted by SELDA (blue), Weinberg (green), and the ground truth (orange).

trajectory lgt. The ratio is expected to be close to 1

SF =
les
lgt

. (6)

2) Endpoint Error Rate: It is the ratio of endpoint error (EPE)
to the ground truth trajectory’s total length lgt

EPE =
√

[(xend − x̂end)2 + (yend − ŷend)2] (7)

EPR =
EPE
lgt

. (8)

3) Root-Mean-Square Error: It measures the standard devi-
ation on the horizontal positioning accuracy

RMSE =

√
1
n

∑n

i=1
[(xi − x̂i)2 + (yi − ŷi)2] (9)
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Fig. 9. Volunteer 2: Stride length predicted by SELDA (blue), Weinberg (green), and the ground truth (orange).

Fig. 10. Volunteer 1: Velocity predicted by RoNIN (blue) and the ground truth velocity (orange).

where n is the number of points in the trajectory, (xi, yi) is the
user’s ground truth position at time step i, and (x̂i, ŷi) is the
predicted one.

The experimental results are reported in Table III. Esti-
mated and ground truth trajectories are shown in Fig. 6 for
the on-campus datasets (volunteer 1) and in Fig. 7 for the
forest/urban/parking dataset (volunteer 2).

C. Analysis of the Inertial Pedestrian Positioning
Estimates

1) Walking Distance: The SF evaluates the quality of the
estimated walking distances. Table III shows that RoNIN always
underestimates the walking distance. But the standard variation
of RoNINs SF (0.067 for volunteer 1 and 0.019 for volunteer
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Fig. 11. Volunteer 2: Velocity predicted by RoNIN (blue) and the ground truth velocity (orange).

2) is smaller than the one of SELDA (0.079 for volunteer 1
and 0.065 for volunteer 2), which over or underestimates the
walking distance. Globally, RoNIN is able to better follow the
pedestrian’s dynamics changes as compared to SELDA. But
important drifts are observed in the RoNIN trajectories for Tests
2 and 3. These observations are further detailed in Figs. 8–11.

Figs. 8 and 9 show the stride lengths predicted by SELDA
(blue) against the ground truth (orange) for both volunteers. To
complete the analysis, stride lengths estimated by the state-of-
the-art Weinberg model (green) are plotted over.

The “nearly flat” line of the SELDAs predictions shows that it
fails to capture the variations in the user’s movement, especially
when the user is taking stairs (smaller strides). Weinberg esti-
mates, sharing one higher-level feature with SELDA, are much
better at tracking variations in walking dynamics. The RoNINs
velocity plots (see Figs. 10 and 11) show better performance in
the tracking of walking changes: start, stop, and taking stairs.
But, as foreseen by the theoretical analyses (FH2), the velocity
estimates are noisy. The integration of the inferred velocities
smooths this noise.

Globally, the two categories of methods show completely
opposite behaviors. The failure of SELDA and the robustness
of RoNIN can be explained by their training datasets. All stride
length labels from SELDAs training set and their distribution are
shown in Fig. 12. The mean and standard deviation of SELDA
stride length labels are 1.36 m and 0.078 m. Most of the labels
are close to the mean value, which is the best guess that the
model can achieve. On the other hand, RoNIN regresses the two
components of the velocity, whose variations are more important
due to the infinity possibility of the walking direction.

Thanks to the sampling-frequency-driven data segmenta-
tion, RoNIN is more data-intensive than SELDA for the same
amount of measurements. For example, if a normal walking

Fig. 12. SELDA training set. (a) Stride length labels. (b) Stride length
distribution.

sequence lasts 12 s and is sampled at 200 Hz, only about 10
strides segments can be extracted from the track for SELDA.
An average gait cycle lasts about 1.2 s. On the other hand,
((12 × 200)− 200)/5 + 1 = 441 segments can be extracted for
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Fig. 13. Volunteer 1: Stride length predicted by SmartWalk’s step model (orange), step model corrected by an EKF (green), and the ground truth
(blue).

Fig. 14. Volunteer 2: Stride length predicted by SmartWalk’s step model (orange), step model corrected by an EKF (green), and the ground truth
(blue).

RoNIN, i.e., 200 measurement points in one segment, with a
stride of 5 frames.

For volunteer 1, SmartWalk tracks the best the user’s dynam-
ics (with a 0.038 standard variation), whereas it is RoNIN (with
a 0.019 standard variation) for volunteer 2. To understand the
observation, stride lengths estimated by the SmartWalk’s step

model without (orange) and with (green) EKF correction are
illustrated against the ground truth (blue) in Figs. 13 and 14. Step
instants detected by processing the handheld inertial sensors
data are projected on the ground truth to observe the derived
stride (2 steps) length. Strides larger than 2 m can be observed
in the blue dots, illustrating the underdetection of gait events
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Fig. 15. Volunteer 2: Efficiency of the EKF correction: Ground truth (blue), GMM (orange), corrected GMM by MAGYQ (green), and MAGYQ (red).

in the SmartWalk approach. Similar to SELDA, SmartWalk’s
estimations form a relatively flat (less than SELDA) line when
there is no staircase. When the staircase detection function is op-
erational with the barometer readings, SmartWalk outperforms
both RoNIN and SELDA in scenarios with staircases (Tests 1
and 3). Without a stairway, RoNIN gives the best user dynamics
tracking. On the other hand, SmartWalk can be sensitive to
barometer noises and overdetect staircases. In Test 4, several
tiny strides of 60 cm are inferred but no stairway is included in
the track.

Despite SELDAs failure of tracking the user’s dynamics by
giving almost constant stride length inferences, its SFs are closer
to 1 than the other two methods, when stairs are not included in
the track (Tests 2, 4, 5, and 6). Indeed, the constant stride length
estimated by SELDA corresponds to an average learned from its
training set. Because human walking is regular and constrained,
the deviation of a stride length around the average is bounded.

2) Walking Direction: Only RoNIN and SmartWalk are com-
pared for the walking direction estimation task since SELDA
does not predict the latter. Noisy velocity inferences result in
noisy walking directions estimated by RoNIN. SmartWalk is
better than RoNIN since the mean RMSE of SmartWalk is
smaller in both cases of volunteers 1 and 2. The EKF correction
module is efficient here.

The benefit of SmartWalk’s EKF correction is illustrated in
Fig. 15 for Volunteer 2. Similar to RoNIN, GMM standalone
(orange) yields noisy walking direction estimations. On the other
hand, the trajectories estimated with MAGYQ’s yaw angle (blue)
have almost the same shape as the ground truth. Under the
hypothesis that when the carrying mode remains steady, the
change in the user’s walking direction over two consecutive
steps shall be the same as the change in the device’s pointing
direction (Hypothesis GH5). The device’s yaw angle can be
utilized to correct GMM results since MAGYQ results are more
accurate and smooth. The fusion improves significantly the
walking direction estimation, especially for turnings (green).

V. CONCLUSION

This article analyzes the features of existing AI-based pedes-
trian inertial positioning techniques with wearable sensors both
at the theoretical and experimental performance levels. A two-
category classification, based on the inertial segmentation strat-
egy, is presented: either using the human gait analysis or the
inertial signals sampling frequency.

A theoretical analysis of the fundamental assumptions that al-
low the two categories of AI-based methods to function properly
is carried out. A state-of-the-art algorithm from each category
(SELDA and RoNIN) and a classical signal-processing-based
algorithm (SmartWalk) are detailed and implemented for the
2.17-km experimental assessment in six scenarios and environ-
ments covering the diversity of pedestrians’ mobility (open-sky,
indoors, forest, urban, parking lot). The dataset is open-access.

SELDA uses the flat-foot instants of a foot-mounted tracker
to segment inertial signals. It was found to be inefficient for
labeling wearables’ training datasets [42] and unrealistic in real-
life situations. To better capture the walking changes with gait-
driven AI methods, different walking dynamics (various stride
lengths) should be added to the training dataset, and adopting a
user-centric approach could be beneficial.

Compared to SELDA, the signal segmentation and labeling
strategies of RoNIN show better learning. It estimates the walk-
ing distance up to an SF, which is found to be stable for the
same individual and different from one individual to another.
In addition, noisy predicted velocities and lack of precision in
estimating turnings result in important positioning drifts.

SmartWalk shows that the gait analysis can provide efficient
corrections to trajectory estimation: better displacement esti-
mates on stairs, smooth walking direction on straight lines, and
correct turning angle estimation. It is worth noticing that signif-
icant changes in the device’s yaw angle can indicate turnings.
However, hypothesis GH5 still needs to be tested under diverse
scenarios other than the “texting” case.
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Globally, SELDA, RoNIN, and SmartWalk achieve 8-m,
22-m, and 17-m average positioning errors (RMSE), respec-
tively, on six testing tracks recorded with two volunteers in
various environments, over a 2.17-km walking distance.

Both categories are facing challenges. Gait-driven AI methods
need to improve their robustness to deal with different device
poses and user dynamics. Sampling-frequency-driven AI meth-
ods need to reduce noises in their predictions. A direction for
improvement is to fuse the two approaches to capture the user’s
dynamics with a fixed sampling frequency-based processing and
correct the trajectory using estimated gait parameters. Finally,
customizing the model parameters for each user is another
promising strategy.
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