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Uncertainty-Based Fingerprinting Model
Monitoring for Radio Localization

Maximilian Stahlke , Tobias Feigl , Member, IEEE, Sebastian Kram , Bjoern M. Eskofier ,
and Christopher Mutschler

Abstract—Indoor radio environments often consist of areas with mixed propagation conditions. In line-of-sight (LoS)-
dominated areas, classic time-of-flight (ToF) methods reliably return accurate positions, while in nonline-of-sight (NLoS)
dominated areas (AI-based) fingerprinting methods are required. However, fingerprinting methods are only cost-efficient
if they are used exclusively in NLoS-dominated areas due to their expensive life cycle management. Systems that are
both accurate and cost-efficient in LoS- and NLoS-dominated areas require identification of those areas to select the
optimal localization method. To enable a reliable and robust life cycle management of fingerprinting, we must identify
altered fingerprints to trigger update processes. In this article, we propose methods for uncertainty estimation of AI-
based fingerprinting to determine its spatial boundaries and validity. Our experiments show that we can successfully
identify spatial boundaries of the fingerprinting models and detect corrupted areas. In contrast to the state-of-the-art,
our approach employs an intrinsic identification through out-of-distribution (OOD) detection, rendering external detection
approaches unnecessary.

Index Terms—5G, fingerprinting, hybrid localization, radio localization, ultra-wideband (UWB), uncertainty
quantification.

I. INTRODUCTION

INDOOR positioning enables applications such as monitor-
ing of production facilities or robot localization. There are

many indoor localization techniques based on LiDAR [1], ul-
trasonic [2], or cameras [3], that have high localization accuracy
but lack robustness due to dynamic environments, ambient noise,
and changing light conditions. Therefore, radio-based localiza-
tion systems are often employed as they provide robust local-
ization results. Here, time-of-flight (ToF) or time-difference-of-
arrival (TDoA) radio systems enable centimeter accuracies [4].

To achieve a robust radio frequency (RF)-based ToF or TDoA
localization, line-of-sight (LoS) between transmitter and re-
ceivers has to be ensured, which is rarely given in realistic indoor
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Fig. 1. Schematic top view of a typical (dynamic) industrial environ-
ment with a radio localization system.

environments. Thus, often error mitigation methods such as
nonline-of-sight (NLoS) identification [5], [6], [7], [8] are used
to assist RF-based algorithms. While error mitigation methods
require at least three transmitters with LoS, fingerprinting meth-
ods [9] enable high localization accuracies in NLoS dominated
areas, as they do not require LoS conditions. However, the main
drawback of fingerprinting is that it requires extensive measure-
ment campaigns with a position reference system with regular
updates of the fingerprints when the environment changes [10].
Hence, identification of corrupted fingerprints is crucial to
enable reliable localization and trigger update routines [11].
However, as industrial environments may change frequently and
the effort of data recording increases significantly with the size of
the environment, fingerprinting models may only be employed
in NLoS-dominated areas, where it is necessary. Thus, a combi-
nation of various localization methods or technologies [12], [13]
is useful to ensure a cost-efficient and maintainable localization
system.
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Fig. 1 shows a typical industrial environment, with machines
(purple rectangles) and shelves with goods (gray rectangles).
To localize industrial trucks (white rectangles), a radio system
with seven receivers (blue circles) is deployed. There are two
different sections in this area. For the localization in the machine
hall (green area, left), we typically employ classical RF-based
positioning approaches, i.e., nondata-driven multilateration or
multiangulation methods, as the LoS between the receivers and
four transmitters within the area is always guaranteed. However,
in the orange area on the right-hand side, the propagation condi-
tions are more challenging for classical localization algorithms
as the LoS to the majority of the receivers is blocked. In this area,
fingerprinting methods enable high localization accuracy, with
the expense of collecting and labeling data. To enable continu-
ous, robust, and cost-efficient localization, a combination of both
positioning techniques is necessary. The combination of both
methods enables the propagation environment-dependent selec-
tion between the classic method in LoS and AI-based fingerprint-
ing in NLOS-dominated areas. However, the selection requires
to identify the spatial limitation of the fingerprinting model
intrinsically. Environmental changes alter fingerprints, which
leads to a degradation in the localization performance [11]. The
position of the large shelves in the red area in Fig. 1 changed.
This leads to a change in the radio fingerprints as the channel
state (LoS/NLoS) and reflections change. So, the fingerprinting
model performs badly in this particular area. Hence, we must
identify corrupted areas to trigger a retraining process to keep
fingerprinting models up-to-date.

To address these challenges, in our previous work [14], we
showed how uncertainty estimation of neural networks identifies
samples out of the training data area and thus, enables a com-
bination of classic radio-based positioning and fingerprinting
methods. We formalize and extend our previous work [14] by
examining the spatial limitations of the fingerprint model and
the identification of obsolete fingerprints. We call this extension
out-of-distribution (OOD). We provide an additional dataset
of a 5G radio system with a lower bandwidth compared to
ultra-wideband (UWB) to investigate the influence of bandwidth
on identification performance. Finally, we evaluate different
uncertainty approaches regarding their ability to identify OOD
samples. In contrast to state-of-the-art methods, our approach
identifies the limitations of the fingerprinting model intrinsi-
cally, rendering an additional detection and localization system
unnecessary.

The rest of this article is organized as follows. Section II
reviews related work. We introduce our novel approach in Sec-
tion III. Section IV describes the experiments, and Section V
discusses the results. Finally, Section VII concludes this article.

II. RELATED WORK

Radio localization achieves high localization accuracies in
the centimeter range, even in areas affected by multipath trans-
mission, making it a very good candidate for high-precision
localization [15]. However, due to blockage of LoS, classical
positioning algorithms are restricted to pure LoS or areas with
minor NLoS propagation with the assistance of error mitigation

methods [5]. To enable localization in NLoS-dominated areas,
fingerprinting improves the localization accuracy significantly
as it benefits from the complexity of the radio channel to create
unique radio fingerprints for positioning [16]. There exist both
feature-based fingerprinting methods [17], [18] and methods that
employ the raw channel state information (CSI) to exploit more
information [19], [20]. However, fingerprinting methods require
a large training database to cover the entire localization area and
high maintenance overhead due to environmental changes [11].

The fusion of classical approaches with data-driven [deep
learning (DL)]-based fingerprinting methods helps to achieve
a stable and reliable positioning system that is cost efficient.
Some approaches parallelize fingerprinting and multilateration
by fusing individual Kalman filters with their state covariance
matrix, which represents the uncertainty of the position es-
timates [21]. He et al. [22] employed TDoA localization to
identify fingerprinting areas in an LTE network. Bite et al. [23]
employed other sensors for RSS fingerprinting area selection,
such as pyroelectric infrared sensors. However, the quality of
these area selection techniques is restricted to the coarse lo-
calization accuracy of the alternative algorithm and system.
Instead, we complement fingerprinting with classic localization
using the same radio system. In pure LoS environments, we
classic localization reliably identifies the fingerprint area, else
fingerprinting intrinsically identifies (NLOS) areas.

Techniques that build on DL-based fingerprinting employ
uncertainty-based methods, that provide an intrinsic reliability
estimation of the predicted position. Foliadis et al. [24] proposed
a late fusion approach, that averages fingerprinting results w.r.t.
their uncertainty. Russel et al. [25] proposed a direct integration
of the predictive uncertainty into a Kalman filter. However, their
work focuses on modeling the heteroscedastic uncertainty within
the domain, while our work focuses on the detection of OOD
samples.

There are several approaches to model the uncertainty of
neural networks, such as Monte Carlo (MC) dropout [26],
stochastic weight averaging Gaussian (SWAG) [27], or Laplace
approximations [28] applied to the full network [29], subnet-
works [30], or just the last layer [31]. Especially ensemble-
based methods, e.g., based on multiple SWAG models [32]
(MultiSWAG) or deterministic neural networks [33], modeling
the epistemic uncertainty (model uncertainty) well due to their
versatile modeling of the loss landscape [32].

III. METHODOLOGY

We give an overview of uncertainty estimation for neural
networks and describe how to detect OOD data samples based
on uncertainty estimation in the following.

A. Uncertainty Estimation

In radio-based fingerprint localization, there are several
sources of uncertainty, that are not reflected in the estimation
of our deterministic neural network and lead to high prediction
errors [11]. To also model the uncertainty of our model, we
are interested in the predictive distribution [34], which can be
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modeled as

p(y∗ | x∗,D) =

∫
p(y∗ | x∗, θ)︸ ︷︷ ︸

Data

p(θ | D)︸ ︷︷ ︸
Model

dθ (1)

while θ are the parameters of our neural network,y∗ is our predic-
tion given an input x∗ from a distinct dataset D = {xk, yk}Nk=1.
The predictive distribution p(y∗|x∗,D) is composed of two
different types of uncertainties, the aleatoric uncertainty, i.e.,
data uncertainty, and the epistemic uncertainty, i.e., model uncer-
tainty. The aleatoric uncertainty reflects sensor noise, synchro-
nization errors, or erroneous ToA estimates [35] and is typically
constant within space. Hence, it can be modeled as zero-mean
Gaussian noise [36]. Thus, in contrast to the epistemic uncer-
tainty, the aleatoric uncertainty is independent of the training
data distribution. Fingerprinting models learn a one-by-one
mapping of radio signals to positions, with a restricted predictive
horizon to its spatial neighborhood. However, fingerprinting fails
if radio signals from different areas are fed to the algorithm along
with environmental changes altering the radio fingerprints. In
both cases, the samples cause high localization errors [11] and
are considered as OOD. They are reflected by high epistemic
uncertainty and depend highly on the training data distribution.

There are various ways to model the uncertainty. Bayesian
and ensemble-based methods are the most promising [34]. We
compare different nonensemble-based approaches (single net-
work approaches), SWAG [27] and subnetwork Laplace ap-
proximation [30], and ensemble-based approaches such as MC
dropout [26], MultiSWAG [32], and deep ensembles [33].

1) Single Network Approaches: Single network Bayesian
approaches approximate the posterior distribution by modeling
the weights of the neural network as Gaussian distributions and
are therefore Bayesian. SWAG [27] optimizes the weights θ of
the neural network until it converges to a local minimum of the
loss function. As training continues, the weights change slightly
due to the optimizer’s gradient steps and traverse the local
minima in the weight space. The weights are used to estimate
parameters of Gaussian distributions by maximum likelihood
(ML) estimation

p(θ | D) ≈ N (θ̄,Σ) (2)

with

θ̄ ≈ 1
N

N∑
i=1

θi (3)

where θi are the weights after N additional gradient steps, θ̄ is
the mean of the weights and

Σ ≈ 1
N − 1

N∑
i=1

(θi − θ̄)(θi − θ̄)T (4)

the covariance matrix. Estimating the full covariance matrix Σ
is often intractable and can be approximated by the assumption
of statistical independence between the weight distributions,
i.e., Σ̃ = diag(Σ). The Laplace approximation [30] works sim-
ilar. Here, also a converged neural network is employed with
the estimated weights θ̂, while the Gaussian distributions are

estimated by the Taylor series expansion of the log posterior

log p(θ | D) ≈ log p(θ̂ | D)− 1
2
(θ − θ̂)TH(θ − θ̂) (5)

where the first-order term vanishes at the minimum of the loss
function and H = ∇2 log p(θ | D) is the Hessian. The Laplace
approximation can then be formulated as

p(θ | D) ∼ N
(
θ̂,H−1

)
. (6)

The burden of the Laplace approximation is to calculate the
Hessian H, which is expensive and intractable for large archi-
tectures. Consequently, several approximations are investigated,
i.e., a diagonal covariance matrix or a Kronecker factoriza-
tion [29]. The approximation can also be applied only to the last
layer to enhance the efficiency [31]. Most recently, Daxberger
et al. [30] showed that a Laplace approximation, with a full
covariance matrix, on a subnetwork with the most contributing
weights, i.e., those with the largest magnitudes, yields a very
good tradeoff between tractability and expressiveness. So, we
employ Laplace approximation with a full covariance matrix on
1.000 weights selected by its magnitude.

For inference, SWAG approximates the intractable integral (1)
by Monte Carlo estimation, by means of N sampled deterministic
networks. Thus, we return a position estimate

ŷk =
1
N

N∑
i=1

fθi(xk) (7)

while we employ the variance of the Euclidean distance

σ2
k =

1
N − 1

N∑
i=1

(||fθi(xk)||2 − ||ŷk||2)2 (8)

as a scalar uncertainty estimate, where || · ||2 is the L2-norm.
The Laplace approximation directly estimates the covariance
matrix of our 2-D position, where we use the determinant of the
covariance matrix as scalar uncertainty estimate.

2) Ensemble Approaches: Single network approaches
model the distribution of weights only locally around the
MAP estimate. Hence, the loss landscape may not be
sufficiently represented in the posterior. Instead, ensemble-based
approaches have a better representation on the loss landscape,
as every neural network will find a different, similar good,
local minima in the loss landscape [32]. We employ different
ensemble-based approaches, such as deep ensembles [33]
and MultiSWAG [32]. We also consider MC dropout [26]
as an ensemble-based approach, despite the fact that only
a single network is trained. In MC dropout, dropout layers
are integrated into the architecture and stay activated during
training and evaluation. Thus, during every forward pass, a
different subnetwork is created for the prediction. MC dropout
estimates the uncertainty similar to SWAG, as given in (8).
The other ensemble-based approaches, i.e., MultiSWAG and
deep ensembles, train various models with random weight
initialization. In MultiSWAG, several SWAG models are
trained, while their samples are used to estimate a Gaussian
posterior. The ensemble is then modeled as a Gaussian mixture
model, while the variance is used as uncertainty estimate. Deep
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ensembles learn the variance of the input samples directly
during the training process by means of a negative likelihood
loss with a head for the mean and the variance. Also here, the
ensemble is modeled as Gaussian mixture model. However, in
contrast to MultiSWAG, no sampling is required as the models
are deterministic.

B. Out of Distribution Identification

We have to identify samples that are either outside of the
fingerprinting area or corrupted due to environmental changes
to enable a proper fingerprint life cycle management. In our
previous work [14], we found that OOD samples are linearly
separable from in domain samples. So, we have to define a single
threshold for the uncertainty estimates to classify OOD samples.
Statistical methods such as interquartile ranges approximate a
threshold that may not fit perfectly and require fine-tuning.

Thus, to identify out of area samples, we propose a classifica-
tion scheme that is based on logistic regression to have a more
reliable threshold estimation. Data samples are recorded inside
and outside the fingerprinting area and a logistic regression
classifier [37] is trained based on the uncertainty of the samples.
As we solve a binary classification problem, we label the samples
as inside and outside of the area, and so, do not require a
reference system.

C. Tracking Filter

In our evaluation, we show the fusion of UWB ToF measure-
ments with a fingerprinting model. For the fusion of fingerprint-
ing models and the ToF measurements we use a 2-D extended
Kalman filter with a constant velocity model. As we directly
estimate the position of the moving object with our fingerprinting
models, the observation model is an identity matrix w.r.t. the x
and y positions. Our observation model for the ToF measure-
ments from the UWB system is based on Feng et al. [38]. For
the fingerprinting, we assume that the position estimation errors
of our DL models follow a homoscedastic unbiased Gaussian
distribution within the training area. We assume this as we record
a high density of data within the training area, and thus, the
noise is only affected by the noisy ToA estimation, which is
typically considered as unbiased and Gaussian distributed. This
allows to estimate a constant variance of the position for the
measurement noise covariance matrix using the training data
distribution. Samples that are identified as OOD are not fed into
the Kalman filter, as the fingerprinting model cannot extrapolate
to unknown areas, as shown in Section V-A. For the UWB-ToF
measurements, we assume a constant variance of the ToF errors
as the error does not depend on the environment in LoS areas.

IV. EXPERIMENTAL DESIGN

A. UWB Data

For data acquisition we employed a small robot platform that
carries a Decawave DW1000 UWB radio transceiver module.
For the radio system, we configured a two-way ranging setup
with a bandwidth of 499.2 MHz at a center frequency of 4 GHz
with six stationary transceivers. We recorded data at 4 Hz and

Fig. 2. Real world image (left) and top view (right) of the UWB en-
vironment. The anchors are placed at the edges of the environment
(green and blue dots). The environment contains (red) walls that block
the signals on the outside (black surface) and reflect the signals in the
inside. The orange area indicates subspace for fingerprinting, whereas
the blue area is for classical ToF-based positioning.

Fig. 3. Real world image (left) and top view (right) of the 5G environ-
ment. The anchors (green dots) are placed at the edges of the envi-
ronment. The environment contains blocking walls (red), small shelves
(blue), a fork lift (grey), a van (orange), and a work platform (white). The
blue rectangle indicates the recording area.

reference positions with a millimeter-accurate camera-based
motion tracking system (Qualysis). We constructed a complex
NLoS dominated environment including walls, that reflect radio
signals on the inner side (iron surface) and absorb them on the
outside (black surface). The real world environment is shown
in Fig. 2 on the left-hand side, while the schematic top view is
shown on the right. The transceivers, indicated as dots, are placed
at the edges of the recording area. The reflective walls, indicated
in red, are placed to mimic a blockage of the LoS between the
anchors and the robot platform. This causes ranging errors in
the UWB radio system and leads to high localization errors with
classical positioning approaches. For training and testing, we
employ different recordings to avoid overfitting to the training
database.

B. 5G Data

To obtain 5G data, we employed a proof-of-concept
5G downlink-TDoA positioning setup software-defined radio
(SDR) system with six transmitters. The carrier frequency is
at 3.75 GHz, with a bandwidth of 100 MHz, and a recording
frequency of 100 Hz. We utilized the Nikon iGPS, a submil-
limeter optical reference system, to obtain position ground truth
information. The environment of the 5G dataset, shown in Fig. 3,
reflects a typical industrial environment. The real environment
is shown on the left, while a schematic top view is shown on the
right. It includes a forklift (grey), a work platform (white), a van
(orange), absorber walls (red), a small shelve (yellow), and large
metal shelves (purple). Again, the receivers, indicated as green
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dots, are placed at the edges of the environment. We recorded
two states of the environment. In the first state (Industrial 1), the
obstacles are placed at the semitransparent positions, while we
moved the obstacles to the nontransparent positions (Industrial
2). For training and testing, we employ different recordings to
avoid overfitting the training database.

C. Data Preprocessing

For data preprocessing, we follow the idea of [11] to exploit
the raw CIR in the time domain and the corresponding ToF /
TDoA using a CNN. We generate a 3-D tensor with dimension
[2, NA, Lw], with NA Anchors, Lw time steps in the temporal
resolution of the CIR and their real and imaginary parts (2). We
pad the CIRs by the corresponding ToF/TDoA within the tensor
to model the unique relative shift of the first path of arrival for
every position in the area.

D. Model Architectures

Inspired by Stahlke et al. [11], we used a simple six-layer CNN
that consists of four convolutional layers and two fully connected
layers as our fingerprinting model. For the convolutional layers
we employ batch normalization for training stabilization and
the rectified linear units (ReLU) for all layers except for the last
layer, where we employ the identity function. We did not use
local pooling. Instead, we used a global average pooling over all
channels before the dense layers to keep the temporal resolution
of CIRs. The sizes of the kernels are increased in the consecutive
convolutional layers to ensure a growing receptive field with the
depth of the model. For the UWB model, the first convolutional
layer has a kernel size of [1 × 3], the second [2 × 5], the third
[4 × 15], and the last [6 × 30]. The 5G model utilizes a kernel
size of [3 × 3] for the first, [5 × 5] for the second, [7 × 7] for
the third and [10 × 10] for the last layer. Instead, for UWB,
we selected larger kernels widths as the temporal resolution
of the UWB CIRs is higher compared to the 5G CIRs. The
MC dropout models have an additionally dropout layer, with a
dropout rate of 30%, before the last layer. We removed the batch
normalization layers for the SWAG models as they contradict
the SWAG logic as each sample of the weights requires the
batch normalization to be adjusted by the training data [27]. This
would lead to a high overhead, hindering real-time inference.
For the models within the deep ensemble, we added two fully
connected layers with a single output as a second head for
the variance. Table I summarizes the architectures. Note that
we did not optimize the architecture for performance. Instead,
we focused on simplicity and inference speed to provide an
uncertainty-based OOD identification approach that does not
suffer from complex architectures.

E. Performance Metrics

We use the uncertainty estimations of the neural network to
identify the spatial limitations or corrupted areas of the finger-
printing model. To evaluate the performance, we formulate the
problem as a classification problem considering samples within
the training area or below a certain localization error as positive

TABLE I
PARAMETERS OF THE FINGERPRINTING ARCHITECTURES FOR THE UWB

AND 5G RADIO SETUPS

samples and samples above as negative samples. Since we need
to define a continuous uncertainty value threshold to classify
OOD samples, we use the receiver operating characteristic
(ROC) curve to evaluate the performance of classification for
all thresholds. The ROC curve compares the false positive rate
(FPR), i.e., false positives divided by the number of negatives,
to the true positive rate (TPR), i.e., true positives divided by the
number of positives, for all thresholds in a binary classification
problem. To quantify the performance of the classifier, we ex-
ploit the area under the ROC curve (AUROC), which quantifies
the overall performance and threshold stability. The AUROC
ranges from [1, 0], while 1 is a perfect classifier. To quantify
the performance at a certain threshold, we use the balanced
accuracy, as we often have imbalanced datasets w.r.t. in-domain
and out-of-domain samples. The balanced accuracy is the mean
of TPR and true negative rate (TNR), i.e., TNR = 1 − FPR.
As localization error, we employ the Euclidean distance from
the estimated position to the reference and evaluate the circular
error at the 90% percentile (CE90) and the mean absolute error
(MAE).

V. EVALUATION

First, we evaluate the uncertainty estimation for OOD (out
of area identification and the identification of environmental
changes) of fingerprinting models. Second, we investigate the
effect of combining ToF positioning and CIR fingerprinting on
the positioning accuracy.

A. Out of Distribution Identification

OOD samples cause large errors in fingerprinting models
as they cannot extrapolate into unknown areas or fail if the
fingerprint is altered due to environmental changes [11]. Thus,
we investigate the capability of the out of area identification and
the detection of outdated fingerprints. For the investigation of
the out of area identification, we created several subspaces in the
environments of the 5G and UWB datasets. First, we investigate
an extrapolation scenario, where we vertically split the envi-
ronment and so, create two different nonoverlapping areas. As
fingerprinting models cannot extrapolate outside of the training
area, an uncertainty-based identification may be rather simple.
In a second, more challenging investigation, we remove an areal
within the training area. The fingerprinting model may be able
to interpolate, as the “left out” area is surrounded by the training
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Fig. 4. Uncertainty estimation for out of area identification with a verti-
cal split for the UWB environment. (a) Training subspace (orange rectan-
gle) in the recording area is shown as blue rectangle. (b) ROC-curves of
the out of area identification for the uncertainty models. (c) Heat map
of the positional error. (d) Heat map of the predictive uncertainty of
MultiSWAG.

data. So, also, the uncertainty-based OOD identification is more
challenging as the data samples are more similar to the training
data compared to the extrapolation case. As a final evaluation,
we examine whether we identify environmental changes in the
5G environment.

1) Vertical Split: First, we investigate the abilities of the
uncertainty approaches to identify spatially separated areas. We
created a fingerprinting area, which has no overlap with the un-
seen area, hence, the fingerprinting model needs to extrapolate.
Both environments, the UWB environment and the INDUSTRIAL

1 environment of the 5G dataset shown in Figs. 4(a) and 5(a) are
split vertically. For both figures, the orange rectangles indicate
the training areas, whereas the blue rectangle shows the total area
for prediction. The errors of the fingerprinting models are shown
in Fig. 4(c) for the UWB and in Fig. 5(c) for the 5G environment.
The black dashed line shows the transition from the training area
(left) to the unseen area (right). The heatmaps show the limited
extrapolation capabilities of the neural network, as none of the
networks can extrapolate into the right area, causing large errors.
The uncertainty, estimated by the best uncertainty approaches,
i.e., MultiSWAG for the UWB and deep ensembles for the 5G
environment, are shown in Fig. 4(d) for the UWB and in Fig. 5(d)
for the 5G model. Both uncertainty approaches can identify the
spatial limitations of the model very well. Here, the MultiSWAG
model from the UWB dataset achieves an AUROC of 0.99. This
indicates that the model has a low sensitivity to the uncertainty
threshold, while achieving a high balanced accuracy of 0.97 for
the optimal threshold. We see similar results for the 5G dataset,
as the AUROC is at 0.97 for the deep ensembles, with a balanced
accuracy of 0.91 for the best threshold. The balanced accuracy
is lower compared to the UWB database, as samples close to
the transition boundary are falsely classified shown in Fig. 5(d).
Samples close to the transition line on the right still have a low

Fig. 5. Uncertainty estimation for out of area identification with a verti-
cal split for the 5G environment. (a) Fingerprinting training subspace (or-
ange rectangle) in the recording area (blue rectangle). (b) ROC-curves
of the out of area identification for the uncertainty models. (c) Heat map
of the positional error. (d) Heat map of the predictive uncertainty of Deep
ens.

TABLE II
AUROC RESULTS FOR BOTH RADIO SYSTEMS (UWB, 5G) ON THE OUT OF

AREA IDENTIFICATION FOR THE VERTICAL SPLIT (SPLIT) AND THE PATCH
LEFT OUT (PATCH), AND THE ENVIRONMENTAL CHANGE OF THE 5G

DATASET (CHANGED)

uncertainty and are considered as inside. This effect is smaller
at the UWB dataset shown in Fig. 4(d). We think this is due
to the higher aleatoric uncertainty that is caused by the lower
bandwidth of the 5G radio system. The standard deviation of the
training error, only including in domain samples, is 0.29 m for the
5G system, while the UWB system has only a standard deviation
of 0.16 m, and thus, also a lower aleatoric uncertainty. As the
neural network estimates a combined uncertainty of aleatoric
and epistemic uncertainty, the samples need a higher distance
to the training area as the epistemic uncertainty has to dominate
the overall uncertainty to enable a reliable identification of OOD
samples.

We evaluated different uncertainty approaches to identify the
spatial limitation of the model. The ROC curves are shown in
Fig. 4(b) for the UWB and in Fig. 5(b) for the 5G dataset and
the AUROC values are presented in Table II. In both datasets,
the ensemble-based methods, deep ensembles and MultiSWAG,
achieve the highest AUROC values of 0.99 for the UWB and 0.96
and 0.97 for the 5G dataset. Laplace approximations is lower
then the ensemble-based methods, but still achieve an AUROC
value of 0.97 for the UWB and 0.92 for the 5G dataset. SWAG
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Fig. 6. Uncertainty estimation for out of area identification with a patch
left out for the UWB environment. (a) Training subspace (orange rectan-
gle) in the recording area shown as a blue rectangle. (b) ROC-curves
of the out of area identification for the uncertainty models. (c) Heat
map of the positional error. (d) Heat map of the predictive uncertainty
of MultiSWAG.

Fig. 7. Uncertainty estimation for out of area identification with a patch
left out for the 5G environment. (a) Training subspace (orange rectangle)
in the recording area shown as blue rectangle. (b) ROC-curves of the
out of area identification for the uncertainty models. (c) Heat map of the
positional error. (d) Heat map of the predictive uncertainty of Deep ens.

achieves a lower AUROC of only 0.86 for the UWB and 0.83
for the 5G dataset. MC fails with only an AUROC of 0.55 for
the UWB and 0.69 for the 5G dataset.

2) Patch Subspace: In a second evaluation, we remove a
rectangular area from the training datasets. In contrast to the
vertical split, the unseen area is surrounded by the training area
and thus, we assume that the network interpolates positions to
a certain extent, rendering the uncertainty-based area identifica-
tion potentially more challenging. The left out areas are shown
in Fig. 6(a) for the UWB and in Fig. 7(a) for the 5G dataset,

whereas the blue areas indicate the total area and the orange
rectangles the left-out patches. The errors of localization are
shown in Fig. 6(c) for the UWB and in Fig. 7(c) for the 5G
dataset. In both scenarios, the neural networks interpolates in
some sections, while the fingerprinting models still fail in the
most sections of left-out areas. The results of the uncertainty
estimation are shown in Fig. 6(d) for the UWB and in Fig. 7(d) for
the 5G dataset. The uncertainty approaches identify the spatial
limitations of the training area well, with an AUROC of 0.94 for
the UWB with the MultiSWAG approach and 0.92 for the 5G
dataset with the deep ensembles model. Here, the AUROC is
similar to the left subspace evaluation, lower for the 5G dataset,
which is due to the same reason as in the vertical split evaluation.
As the 5G system has a higher aleatoric uncertainty, a distinction
between aleatoric and epistemic uncertainty is more difficult,
which results in a lower reliability close to the borders of the
training area.

In general, the AUROC is lower for all uncertainty approaches
compared to the vertical split evaluation of the UWB dataset
shown in Fig. 6(b) and the 5G dataset shown in Fig. 7(b).
The AUROC values are presented in Table II. Again, the
ensemble-based approaches, i.e., MultiSWAG and deep ensem-
bles, achieve the best results with an AUROC of 0.94 and 0.88
for the UWB and 0.86 and 0.84 for the 5G dataset. The Laplace
approximation achieves a higher AUROC of 0.87, close to the
deep ensembles, for the UWB dataset but fails in the 5G dataset
with an AUROC value of only 0.73. Also, SWAG and MC only
achieve low AUROC values of below 0.6 in both datasets and
thus, cannot identify the spatial limitations of the fingerprinting
models reliably.

3) Environmental Change: Stahlke et al. [11] showed that
environmental changes affect the accuracy of the fingerprinting
model, mostly locally at the area of the environmental change. In
this evaluation, we investigate whether uncertainty approaches
identify outdated fingerprints to provide a reliability measure or
trigger a retraining process to update the fingerprinting model.
We consider samples with an error that is larger than three
standard deviations of the training dataset as corrupted, 0.9 m
for the 5G dataset, and thus, OOD. The samples with accuracies
below 0.9 m are considered to be valid. Fig. 8(a) shows the
training environment with the objects at the semitransparent po-
sitions and the test environment at the nontransparent locations.
Fig. 8(c) shows the errors of the fingerprinting model. We see that
the errors are especially high close to the environmental changes,
indicated as black dashed rectangles. This makes it easy to
identify these areas and update and correct the fingerprint model.
The uncertainty estimated by the best model, MultiSWAG, is
shown in Fig. 8(d). While the uncertainty identifies the corrupted
areas, the performance is worse compared to the other evaluation
with an AUROC of only 0.86. While the corrupted area left to
the new position of the van (most left rectangle), reflects the
error quite well, the uncertainty of other areas is underestimated,
especially at the transition between the valid and corrupted areas.
We assume that this is the same effect as in the other evaluations,
in which the transition areas are often underestimated due to
the uncertainty. As the affected areas are relatively small, the
transition areas dominate the corrupted area, which leads to
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Fig. 8. Uncertainty estimation for the identification of environmental
changes for the 5G environment. (a) Training scenario with the semi-
transparent and test scenario with the nontransparent elements. (b)
ROC-curves of the identification for the uncertainty models. (c) Heat
map of the positional error. (d) Heat map of the predictive uncertainty
of MultiSWAG.

Fig. 9. AUROC for increasing ensemble sizes for the UWB dataset.
Blue indicates the deep ensemble model, while orange indicates Mul-
tiSWAG. The split scenario is indicated as solid line, while the patch
scenario is indicated as dotted line.

worse results. Fig. 8(b) shows that only the ensemble-based
methods, i.e., deep ensembles and MultiSWAG, achieve a high
AUROC of 0.84 and 0.86. The other approaches perform poorly
with AUROC values only up to 0.58, rendering a identification
of corrupted areas impossible.

B. Ensemble Size

Our evaluations have shown that ensemble-based methods,
i.e., deep ensembles and MultiSWAG, achieve the highest accu-
racies in OOD identification. However, compared to single net-
work approaches, such as SWAG and Laplace approximations,
ensembles, beside MC dropout, have a high overhead during
training and inference, as multiple networks have to be trained
and evaluated during runtime. Thus, we analyze the required
size of the ensemble to reliably identify OOD samples. Fig. 9
shows the AUROC values for various ensemble sizes for the
UWB radio evaluations. Blue indicates deep ensembles, while
orange indicates MultiSWAG. The scenarios, split and patch,

Fig. 10. AUROC for increasing ensemble sizes for the 5G datasets.
Blue indicates the deep ensemble model, while orange indicates Multi-
SWAG. The split scenario is indicated as solid line, the patch scenario
is indicated as dotted line and the changed scenario as dashed line.

are indicated as solid and dotted line. In the split scenario,
MultiSWAG already achieves the highest results at an ensemble
size of four models, while the deep ensembles require around ten
networks to achieve similar results. In the patch scenario, both
models are almost similar, and still improve the performance
for ensemble sizes larger than ten. However, the improvement
is only small and generates a high overhead during training
and evaluation. We see similar results for the 5G radio system,
shown in Fig. 10. Deep ensembles and MultiSWAG show similar
results, for various ensemble sizes, while the easier scenarios,
i.e., split and patch, require around ten networks to achieve the
highest results. In the environmental change (Changed) scenario,
the ensembles still benefit from a larger number of networks. The
results show that a number of around ten networks have the best
trade of between training and evaluation complexity and OOD
identification performance.

C. Threshold Stability

A crucial step to identify OOD samples is to define a threshold,
at which uncertainty the samples are within or out of the distri-
bution. While this can easily be done with a few labeled samples
or interquartile ranges, as described in Section III-B, estimating
a new threshold for every new model or environmental change is
time consuming or not feasible. We thus, evaluate the robustness
of thresholds within an environment for the several states of the
environment, i.e., split and patch subspace and the environmen-
tal change. For a state, the threshold with the highest balanced
accuracy is selected and applied to the other states of the envi-
ronment, to benchmark the sensitivity of the threshold across the
environmental states. When we apply the ideal threshold within
the same environment, i.e., split and patch, for the UWB dataset,
we achieve a balanced accuracy of 0.97 and 0.87, while we only
have a degradation of 0.02 if we apply the threshold from the
patch environment in the split environment. When we apply the
threshold from the split environment to the patch environment,
we have a degradation of 0.04 and achieve a balanced accuracy
of 0.83. The results show that the performance is relatively
stable for different thresholds. For the 5G datasets the threshold
stability is even better (see Table III). The diagonal elements
show the balanced accuracy with the ideal threshold for the
environment and the off-diagonal elements show the results
with the threshold of the other environment state. The rows
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TABLE III
BALANCED ACCURACIES FOR THE ENVIRONMENTAL STATES OF THE 5G

SYSTEM

show the results within the environment, while the columns
indicate the environment from which the threshold is derived.
The highest degradation in the accuracy, by 0.03, is the threshold
applied from the patch environment to the split environment.
For other combinations, the thresholds are stable across the en-
vironmental states. Interestingly, the thresholds estimated by the
spatially limited models, i.e., split and patch, reliably estimate
corrupted areas in the changed environment state. This indicates
that a threshold estimated once, for a certain environment, is
stable also across environmental changes and spatial model
compositions.

D. Positioning

In this section, we investigate the fusion of classical ToF
positioning and radio fingerprinting in a Kalman filter in the
UWB environment. We only trained the fingerprinting models in
a subspace to show the combination of classical ToF positioning
with data-driven fingerprinting models using the proposed out-
of-area identification. For the ToF positioning baseline we only
used the ToF measurements in the Kalman filter. Environments
often have areas with different propagation conditions, such as
the environment shown in Fig. 2 on the right-hand side. On the
right-hand side of the environment, some transceivers, indicated
as gray dots, exhibit reliable LoS conditions, while on the left
hand side there is no clear subspace with reliable LoS conditions
to a subset of transceivers. We therefore train a fingerprinting
model on the left hand side, indicated as orange area, and use
classical ToF positioning on the right hand side, indicated as
blue area, only considering the gray transceivers. We use the
classical ToF positioning as fall-back solution, which takes over
if the fingerprinting model has a high uncertainty. The logistic
regression classifier for the threshold estimation is trained on
a different dataset within the same environment. Fig. 11 shows
the cumulative distribution functions (CDFs) of the localization
error (Euclidean distance) using only ToF positioning (UWB
ToF), only fingerprinting trained on the left hand side (UWB
Fp.) and the combination of classical ToF positioning and fin-
gerprinting (Combined). The results show that the combined
approach achieves the highest accuracy with an MAE of 0.21 m
and a CE90 of 0.32 m. The classical approaches achieve reliable
positioning on the right hand side, while the fingerprinting model
takes over on the left hand side to enable a high accuracy.
By only using the classical ToF positioning the localization
accuracy is lower with an MAE of 0.56 m and a CE90 of 1.39 m.

Fig. 11. Cumulative distribution function of the positioning error for the
split environment.

NLoS links cause errors in the ToF measurements, which leads
to errors in the localization accuracy on the left hand side of
the area. Localization only using the fingerprinting model fails
with an MAE of 2.72 m and a CE90 at 8.46 m. The model is
only trained on the left hand side, which leads to significant
errors as the neural network cannot extrapolate into unknown
areas as shown in Section V-A1. To identify the limitations
of the neural network is therefore crucial to enable a reliable
positioning.

VI. DISCUSSION

In this section, we discuss the key findings of our evaluations
along with recommendations for robust model monitoring.

A. OOD Identification is Challenging at the Boundaries

Our evaluations show that uncertainty-based OOD identifica-
tion works, for various radio systems with different bandwidths.
We found that samples, that are spatially far apart, are reliably
identified as OOD, while samples close to the border line from in
and out-of-domain areas are more challenging to identify. This
may be due to the fact that samples closer to the in-domain are
more similar as samples far away due to the manifold of the
CSI [39], [40]. Thus, samples in the proximity of the border line
have a lower epistemic uncertainty compared to samples that are
far away.

B. Bandwidth Impacts the OOD Identification
Performance

We show in our evaluations in Section V-A, that a radio system
with a lower bandwidth has a higher OOD error at the transition
line compared to a system with higher bandwidth. This is due
to the higher aleatoric caused by the lower bandwidth. In hybrid
localization scenarios, when we combine classical TDoA/ToF-
based localization with fingerprinting, we thus, recommend to
add a padding to the training area overlapping with the areas
of classical positioning. So, an unreliable identification within
the transition area does not affect the accuracy, as the finger-
printing and the classical methods are valid in this transition
area.
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C. Ensemble-Based Methods are Superior in OOD
Detection

We have shown that ensemble-based methods, i.e., deep en-
sembles and MultiSWAG, perform superior compared to sin-
gle network approaches. However, their effort for training and
evaluation is significantly higher compared to single network
approaches, as multiple networks have to be trained and eval-
uated to estimate the uncertainty. While the performance of
MultiSWAG and deep ensembles is almost on par, MultiSWAG
requires an additional sampling process for every single net-
working, rendering the inference even more expensive. Also,
SWAG and MC dropout require multiple forward passes to
estimate the uncertainty, rendering them equally expensive as
the deterministic deep ensemble, which requires only a single
forward pass for every network. Also, the Laplace approxima-
tion has an overhead during inference, as the Jacobi matrix of
the subnetwork has to be calculated to estimate the uncertainty.
However, in contrast to the other single-network approaches, the
effort is comparably low. We thus, recommend to employ deep
ensembles, which require a higher training effort, but similar
effort on the inference compared to single network approaches.
However, if inference time is crucial, the Laplace approximation
can be deployed for simpler use cases.

D. Thresholds for OOD Identification are Stable Within
an Environment

A binary classification of OOD samples requires a threshold
for the uncertainty. While the determination of a threshold for
a spatial limited model is straightforward as described in Sec-
tion III-B, defining a threshold, that identifies corrupted areas, is
more difficult. We typically do not have several environmental
states at training time to derive a threshold by the proposed
approach. However, our analysis of the threshold stability de-
scribed in Section V-C shows that, within an environment, a
threshold is stable across various environmental states, i.e., fin-
gerprinting models trained in different areas of the environment
and at environmental changes. Thus, we recommend deriving
a uncertainty threshold via out-of-area samples and monitoring
the model for outdated fingerprints.

E. Generalization Across Radio Technologies

Our experiments show that our approach works across UWB
and 5G ToA/ToF-based localization systems. It may also be
applicable to WIFI-based [41] systems and other multiantenna
architectures such as MIMO [42], as long as they provide a
clear match of channel measurements and position. However,
for MIMO systems, the bandwidth may not be the limiting factor
of OOD identification due to their high spatial diversity.

VII. CONCLUSION

In this article, we show that our uncertainty-based approach
successfully identifies spatial constraints of fingerprint models
and corrupted fingerprints. In contrast to the state-of-the-art, we
identify OOD samples of the fingerprint model intrinsically, so
additional positioning systems are not required for identification.

In our ablation study, we find that ensemble-based uncertainty
methods are superior in identifying OOD samples compared to
single-network approaches on UWB and 5G radio systems data.
Our method enables the combination of classic radio localization
and fingerprinting while simultaneously providing a reliability
measurement of the fingerprint model. Thus, our method dras-
tically reduces the cost of data collection and labeling process
in LoS areas and enables more robust positioning in complex
NLoS environments. On top of that, our system guarantees an
efficient maintenance process.
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