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Abstract—Ultra wideband (UWB) signals are a promising choice for indoor positioning applications, since they are able
to penetrate walls to a certain extent. Nevertheless, signal reflections and non-line-of-sight propagation cause bias in
the measured range. This ranging error can be corrected with machine learning (ML) methods, such as convolutional
neural networks (CNNs). However, these ML models often generalize poorly between different environments. In this work
we present an instance-based transfer learning (TL) approach, that enables generalizing a CNN-based ranging error
mitigation approach to a new situation with only a few unlabeled training samples. The performance of the UWB error
correction approach is demonstrated in a real-life infrastructure-free cooperative positioning setting.

Index Terms—Cooperative positioning, infrastructure-free navigation, transfer learning (TL), ultra wideband (UWB).

I. INTRODUCTION

U LTRA wideband (UWB) positioning has become popular
during the recent years. UWB systems transmit extremely

short pulses in a way that radio power is spread over the en-
tire spectrum yielding very low power spectral density. UWB
operates at frequencies ranging from 3.1 to 10.6 GHz [1]. One
of the main benefits of UWB in ranging is that the received
power does not undergo fading in multipath environments, such
as indoor spaces. Instead, the multipath propagation scenario
follows the log-distance law [2]. Thus, UWB is an intriguing
choice for a ranging signal in indoor positioning, as it is capable
to penetrate walls and other structures. However, when the sig-
nal passes through an obstacle [non-line-of-sight (NLOS)], the
time-of-arrival (TOA) estimates are distorted. Some problems
encountered with UWB pulse propagation are reverberation and
multipath cancellation [3]. For instance in in-building UWB
pulse reception, the initial line-of-sight (LOS) response is not
always the dominant one. Due to multipath effect, there can be
several return signals stronger in amplitude than the LOS signal.
This results in bias in the measured range, which is problematic
from position estimation perspective.

Generally, there are three different options for mitigating
the effect of the bias [4]. First option is to discern the NLOS
measurements from LOS measurements, and simply exclude the
NLOS measurements from position estimation. NLOS detection
(as well as mitigation) may be achieved based on statistics
derived from channel impulse response (CIR) [5], [6], [7],
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[8], [9], [10], or using CIR directly as an input to a neural
network [11], [12], [13]. CIR is a representation of the radio
environment as received by the UWB sensor [14]. In the analysis,
either full channel-state information (CSI) or UWB waveforms
can be utilized. Second option is to utilize estimation methods
that are robust to outliers in measurements. Robustness may be
achieved with certain algorithm choices [15], [16], [17], [18],
[19], [20] or combining UWB with other sensors (typically
inertial measurements) [21], [22], [23], [24], or both. Third
option is to estimate the bias in the UWB measurement, and
to remove that before using it in the positioning algorithm.
Often NLOS detection and mitigation are treated as separate
problems, in which NLOS detection must be solved first [25],
[26], [27], [28], [29], but that is not always necessary [30],
[31], [32], [33].

Exclusion of the NLOS signals is a suitable approach for
computationally constrained devices, that have limited resources
for complex bias correction approaches or complicated estima-
tion methods. However, in that case, depending on the envi-
ronment there may be too few LOS measurements available
for positioning. Bias correction approaches make it possible to
use all available range measurements. However, they typically
require a large amount of training data or characterization of
the environment, which makes generalization of the models
difficult. Furthermore, especially neural networks using full CIR
can require a large number of parameters, which may be prob-
lematic in memory constrained devices. Location estimation
methods that are robust to NLOS measurements or other outliers
may be somewhat computationally complex, but require less
information of the navigation environment.

UWB ranging error mitigation approaches do not generalize
well from one environment to the other [13], [25]. One po-
tential solution may be transfer learning (TL) [34], a branch
of machine learning (ML) research that aims for transferring
knowledge from a source domain to a target domain. In the
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context of this article, source domain would be the environment
or situation where the UWB data has been gathered, and target
domain the environment or situation where the knowledge is
applied.

To the best of the authors’ knowledge, only model-based TL,
which aims for adapting an existing trained model to a new target
domain, has been applied in UWB localization context. Park
et al. [13] applied model-based TL for LOS/NLOS detection.
Morawska et al. [35] generate a map of location corrections and
utilize model-based TL in generalizing the corrections into new
environment. Yin et al. [32] applied TL with shared-hidden-layer
autoencoder-type neural network in training a model for ranging
error mitigation usable in different environments.

The problem with model-based TL is that it requires labeled
samples from the target domain. However, collecting labeled
samples is typically time consuming and may not be feasible
in all applications. Therefore in this work we apply instance-
based TL, which requires only unlabeled samples from the target
domain.

Our objective in this work is to find an efficient and generaliz-
able way for correcting the bias in UWB ranging. The proposed
method will be demonstrated in practice in a infrastructure-
free cooperative positioning scenario. In tactical and rescue
operations the location of the team members is a critical part
of situational awareness. However, in such situations localiza-
tion methods based on external infrastructure (for example,
Global Navigation Satellite Systems) may not be available.
Infrastructure-free navigation methods, that are based on carry-
on sensors, such as inertial measurement units (IMUs), enable
standalone position estimation with self-contained systems [36],
[37], [38]. The positioning performance may be enhanced with
cooperative approaches, where the team members measure dis-
tances to one another [37], [39]. UWB signal is well suited to
this purpose.

The main contributions of this work are as follows.
1) We propose a CNN-based method for estimating the bias

caused by NLOS and multipath conditions to UWB range
measurements. The method does not require explicit
knowledge of the LOS/NLOS status.

2) We show an effective TL approach for overcoming
the problem of poor generalization of ML models be-
tween environments. Contrary to existing research, TL is
achieved without labeled samples from the target envi-
ronment.

3) We demonstrate the effect of different ranging error
mitigation approaches on cooperative infrastructure-free
positioning in a real world measurement campaign.

The rest of this article is organized as follows. Section II gives
an overview of instance-based TL. Section III summarizes the
methods used in this work and Section IV discusses the tests
and test results. Finally, Section V concludes this article and
discusses future research on this topic.

II. INSTANCE-BASED TL

This section gives an overview of instance-based noninduc-
tive TL. The derivation is done following Yang et al. [34].

A. Problem Formulation

In instance-based TL the objective is to use labeled data from
a source domain to accomplish a task in target domain. Formally,
a feature space X and marginal probability distribution PX =
P (x|x ∈ X ) together form a domain D. A task contains a label
space Y and predictive function f(x). In probabilistic terms,
f(x) may be expressed as PY |X = P (y|x ∈ X ).

Source domain is then DS = {XS ,PX
S } and similarly target

domain is DT = {XT ,PX
T }. Source domain labeled data are

noted asDS = {(xSi
, ySi

)}nS
i=1, wherexSi

∈ XS and ySi
∈ YS .

Similarly target domain unlabeled data are DT = {(xTi
)}nT

i=1
with xTi

∈ XT . The number of instances in source and target
domains are nS and nT , respectively. The goal of TL is to learn
the target domain task TT = {YT , fT (·)}.

B. Instance-Based Noninductive TL

In instance-based noninductive TL it is assumed that the
difference between source domain DS and target domain DT

results only from the difference between the marginal distribu-
tions, formally PX

S �= PX
T . Notably, it is assumed that PY |X

S =

PY |X
T . Now the objective is to learn the target domain task TT ,

specifically the task predictive function fT (·) in terms of its
parameters θT . The optimal solution can be achieved by solving
the optimization problem

θ∗T = arg min
θT∈Θ

E(x,y)∼PX,Y
T

[�(x, y, θT )] (1)

where �(x, y, θT ) is loss function in terms of parameters θT .
Without target domain labeled data the optimization problem
in (1) cannot be solved directly. With Bayes’ rule and definition
of expectation it can be shown that (1) becomes

θ∗T = arg min
θT∈Θ

E(x,y)∼PX,Y
S

[
PT (x,y)
PS(x,y) �(x, y, θT )]

]
. (2)

Using the assumption PY |X
S = PY |X

T , the likelihood ratio in (2)
becomes

PT (x, y)

PS(x, y)
=

PT (y|x)PT (x)

PS(y|x)PS(x)
=

PT (x)

PS(x)
.

Now the optimization problem in (2) can be solved without
label information using the empirical approximation

θ∗T = arg min
θT∈Θ

nS∑
i=1

PT (xSi
)

PS(xSi
)
�(xSi

, ySi
, θT ). (3)

The density ratio PT (x)
PS(x) can be estimated with a rejection

sampling based approach, for example [40]. Other potential
approaches include function approximation and Kernel mean
matching [34].

In rejection sampling a binary random variable δ ∈ {0, 1} is
utilized as a selection variable such that δ = 0 denotes the target
distribution PT and δ = 1 the source distribution PS . Using this
notation the target marginal distribution can be expressed as
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Fig. 1. Illustration of the instance-based TL process for UWB ranging
error mitigation.

PT (x) = P (x|δ = 0), and similarly source marginal distribu-
tion PS(x) = P (x|δ = 1). Now based on Bayes’ rule

PT (x)

PS(x)
=

P (x|δ = 0)
P (x|δ = 1)

=

P (δ=0|x)P (x)
P (δ=0)

P (δ=1|x)P (x)
P (δ=1)

=
P (δ = 1)P (δ = 0|x)
P (δ = 0)P (δ = 1|x)

=
P (δ = 1)(1 − P (δ = 1|x))

P (δ = 0)P (δ = 1|x)

=
P (δ = 1)
P (δ = 0)

(
1

P (δ = 1|x) − 1

)
.

(4)

Thus, the density ratio can be estimated as
PT (xSi

)

PS(xSi
) ∝

1
P (δ=1|xSi

) . A binary classifier, that distinguishes between the
source and target domain instances, can be used to estimate prob-
ability P (δ = 1|xSi

). The density ratio estimates can be used
for reweighting the source domain instances or for importance
sampling. In this work we use reweighting.

III. METHODS

This section summarizes the details of applying TL for UWB
ranging error mitigation in infrastructure-free pedestrian navi-
gation. The process is illustrated in Fig. 1.

A. UWB Signals

We can describe CIR of an UWB system by the general
equation for impulse responseh(t) of a fading multipath channel

h(t) =

i=0∑
N

aiδ0(t− τi). (5)

The h(t) in (5) depicts the signal propagation paths N in a
reflective environment between the transmitter and receiver [1].
Attenuation between the transmitter and receiver on path i is
denoted by ai and propagation delay at time t by τi, and δ0 is
the Dirac delta function

y(t) = x(t) ∗ h(t) + n(t). (6)

Fig. 2. Examples of received UWB waveforms in different environ-
ments. The transmitted pulse is shown in green.

If x(t) is the UWB pulse sent by the transmitter, the total
received signal in (6) is a superposition of the received signal
echoes. Convolution is denoted by ∗.

Additive white Gaussian noise n(t) accounts for noise com-
ponents other than those on the propagation path, such as sensor
noise. In this work we use the received signal y(t) as an input for
the neural network. In case where all transmitters are of same
type, i.e., transmit the same signal x(t), deconvolution of the
signal to obtain CIR may be omitted to preserve computational
power. However, if a mixture of different transmitters is used, the
method proposed in this article may be applied also to the CIR.
Example of received UWB waveforms in different environments
is shown in Fig. 2.

B. Transfer Learning

Both UWB waveforms and CSI derived from CIR have
already been applied as CNN input for environment recogni-
tion [41], [42]. These works show that environments can be
differentiated based on the UWB waveform or CIR. Thus, it
is justified to use a similar approach for training the binary
classifier, that in instance-based TL estimates the probability
P (δ = 1|xSi

). In this work we apply convolutional neural
networks (CNNs) for both instance weighting and regression
tasks [43]. CNNs learn convolutional kernels during training
process, and thus are well suited for images and other spa-
tially dependent data. They usually have fewer parameters
compared to fully connected neural networks. For weighting
the distance training samples, we first train a simple CNN for
binary classification between the static distance measurements
(source domain) and the measurements made while moving
(target domain). The CNN hyperparameters, that were chosen
experimentally, are listed in Table I. Explanation of the different
terms may be found from [43], for example. The weights used in
instance-based TL will be computed based on the neural network
output corresponding to the source domain class.

C. Ranging Error Mitigation

We train another CNN for estimating the bias in the UWB
range measurement. The training target is the measurement bias,
more precisely the difference between the distance reported by
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TABLE I
NEURAL NETWORK HYPERPARAMETERS

the radio and the true distance between the radios. For this task
we need a more complex CNN, which hyperparameters are listed
in Table I.

In instance-based TL the loss of each individual sample will
be weighted according to (3). Those source domain training sam-
ples that are more similar to the target domain, will have a larger
effect when updating the neural network weights. However, in
practice the weights are often unevenly distributed such that a
small number of the sample weights have a very large value,
whereas the rest are relatively small. In this case instance-based
TL approaches may yield poor results despite theoretically
correct weighting [44]. As a practical observation, for example
neural network optimizers perform better with roughly evenly
distributed weights.

For this reason we transform the weights before using them in
training. First, we apply hyperbolic tangent, which is a sigmoid-
type function, to spread the weights more evenly. The resulting
values range from −1 to 1, so we scale the values back to the
original range such that the minimum and maximum weight
remain the same. This way the relative order of the weights and
the scale of the values are preserved, and the CNN training works
better.

D. Infrastructure-Free Cooperative Positioning

IMUs measure acceleration and rotation, and can provide
relative localization independent of any external signals. The
IMU may be mounted on the body or on the foot of a pedestrian.
While walking or running, the foot of the pedestrian will be
momentarily stationary at each step. When placing the IMU
on the pedestrians foot, this fact can be utilized to reduce the
heading drift by applying Zero-Velocity Updates (ZUPTs) in
the navigation filter [45]. This is called footmounted pedestrian
dead reckoning (PDR) [46].

In this work, we combine an independent PDR position solu-
tion with cooperative UWB ranging for a team of two pedestri-
ans. This is done using an extended Kalman filter (EKF) [47],
which processes PDR-based location increments aiming to com-
pensate for heading drift typical for inertial navigation. The
EKF is fully decentralized, meaning that the position solutions

of the team members are computed independent of each other.
The state is modeled as m = [x y z θ]T , where x, y, and z are
the 3-D coordinates and θ is the heading offset. The state and
measurement model, f and h, respectively, are similar to our
previous publication [48]. State model is

f(mt−1) = mt−1 +

[
R(θt−1)xincr,t

0

]
(7)

where xincr denotes the difference between consecutive PDR
location estimates and R(θ) is a rotation matrix on xy-plane.
The measurement model is

h(mt) =

∥∥∥∥∥∥∥
⎡
⎢⎣xt

yt

zt

⎤
⎥⎦− xcol

∥∥∥∥∥∥∥ = rUWB,t (8)

where rUWB,t refers to the range measurement. To account for
the uncertainty in the location of the collaborating team member,
xcol, their location uncertainty is scaled along the direct line
between the location estimates using σ2

col,t = uT
t cov(xcol)ut,

where ut is the unit vector pointing from one team member to
the other [49]. Noise termσ2

col,t is then added to the measurement
covariance at each update. The team members location and
location uncertainty are assumed to be transmitted alongside
the ranging signal.

IV. TESTS AND TEST RESULTS

This section describes the tests and summarizes the test results
in order to verify the presented approach.

A. Data Collection

The UWB devices used in this work are TimeDomain PulsOn
440 radios (P440), which have been used both in ranging data
collection and navigation tests. The collected waveforms con-
sists of 1632 datapoints depicting the magnitude of the received
UWB pulse. The radios report also the two-way TOA-based
range measurement.

1) Range Data Collection: The training data for ranging er-
ror mitigation has been collected at two different locations. First
environment is Finnish Geospatial Research Institute’s (FGI)
former office in Kirkkonummi, Finland, consisting of regular
office rooms and hallways in three floors. Second data collection
site is a regular apartment in a multifloor apartment building.

At FGI office there are several reference points marked on
floor that have been located precisely with a total station. At
the apartment a grid of reference points at 0.5 m × 0.5 m was
measured and marked on the floor. The UWB radios were placed
on a number of distinct reference points with a known distance
between them. The training data contains both LOS and NLOS
measurements.

At the office a total of 166 700, and at the apartment total
of 170 681 training samples was collected. A histogram of
the different reference distances is shown in Fig. 3, and the
histogram of the residual ranging errors (for part of the data)
in Fig. 4.
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Fig. 3. Number of measured training data at different distances in
office and apartment environments.

Fig. 4. Distribution of ranging errors without correction.

2) Navigation Test Setup: In navigation test there are two
persons operating as a team. Both are equipped with the P440
radios carried approximately at shoulder level. For footmounted
PDR wireless XSens Awinda IMUs are placed on the foot of
each team member. The reference system is carried by one of
the pedestrians, and consists of NovAtel Propak6 receiver and
Honeywell HG1700-AG58 IMU mounted on a backpack with
metal frame.

The navigation test was conducted at FGI, where also part
of the ranging data has been collected. The pedestrians start
the route from outdoors, enter the building at ground level
(approximately at (−19, 38) in Figs. 8–10) and climb stairs to
the third floor. At third floor they visit few office rooms before
exiting the building again at ground level through different doors
and returning to the starting point.

B. Ranging Error Mitigation

For determining the appropriate weights for the collected
source domain data samples, we train a binary CNN classifier
as explained in Section III. We use Python and Tensorflow for
training all neural networks. As target domain samples, we use
all of the range measurements obtained during the navigation
test, 631 in total. Since the amount of source domain samples,
337 381, is considerably larger than target domain samples,
the training data needs to be balanced. We randomly choose

Fig. 5. Distribution of residual ranging errors after correction using
model trained without TL. Calculated for independent test set not used
during CNN training.

Fig. 6. Distribution of residual ranging errors after correction using
model trained with TL. Calculated for independent test set not used
during CNN training.

a number of samples matching the amount from navigation
tests from both office and apartment environments, so the total
amount of training data for the classifier is 1893 samples. We use
randomly chosen 20 % of those samples as validation set during
training. With this classifier, 94.8 % of all available 337 381
source domain samples would have been correctly classified.

In order to compare the effect of ranging error mitigation
with and without instance-based TL, we train two CNNs. The
structure and other training conditions of both neural networks
are the same as detailed in Table I. We randomly choose 80 %
of the training samples for training the neural network, 5% for
validation during the training phase, and 15% as separate test
set.

The residual ranging errors of the test set are shown in Fig. 5
for unweighted CNN and in Fig. 6 for weighted CNN. We can
see that the distribution of residual ranging error for the weighted
and unweighted CNNs are very close to each other, even though
for weighted case the standard deviation is slightly smaller. The
numerical values are given in Table II. However, it should be
noted that these results do not directly correspond to the target
domain case where we do not have reference for the distance
measurements. From target domain, Fig. 7 shows the estimated
range biases for the two different CNNs. The unweighted CNN
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TABLE II
MEAN AND COVARIANCE OF RESIDUAL RANGING ERRORS

Fig. 7. Estimated range biases for Person 1 with and without TL. NLOS
measurements are reported by the P440 UWB radio.

marked in red makes somewhat larger corrections especially at
the end of the test, where the team members are outdoors.

C. Navigation Results

Indoors, it is near impossible to obtain a reliable reference
of the distance between two UWB radios while they are carried
by pedestrians moving at a fast pace. Therefore, we evaluate
the performance of instance-based TL via positioning accuracy
in realistic navigation test. The proposed approach is evaluated
against uncorrected UWB ranges, uncorrected UWB ranges with
NLOS exclusion (based on inbuildt detection method of the P440
device), uncorrected UWB ranges combined with normalized
EKF innovation-based outlier test [50], and CNN-based correc-
tion that has been trained without instance weighting.

In order to isolate the effect of ranging error mitigation from
other design choices, certain simplifications have been made.
The heading estimate has been artificially initialized to the
heading matching the reference solution at the beginning of the
test. Poor initialization of the heading would affect navigation
performance considerably during such a short test taking only 6
min. However, determining an initialization procedure is beyond
the scope of this work. For UWB measurements, in EKF we use
the mean and covariance values presented in Table II for each
test case.

During the test only Person 2 carries the reference system that
enables computing positioning errors throughout the whole test.
Nevertheless, utilizing the fact that both team members start
and end the test at the same position, we can compute the so
called loop closure error. It represents the difference between
the expected and estimated location at the end of the test.

The standalone PDR solutions are illustrated in Fig. 8, and
the positioning errors are given in Table III for Person 1 and

Fig. 8. Standalone PDR results for Person 1 and Person 2.

TABLE III
LOOP CLOSURE ERROR FOR PERSON 1

TABLE IV
POSITIONING ERRORS FOR PERSON 2

Fig. 9. Cooperative navigation solution for both team members.

in Table IV for Person 2 carrying the reference. From the
illustrations it can be seen that the heading of the PDR solutions
drifts considerably.

Fig. 9 shows the cooperative positioning results when TL-
based UWB ranging error mitigation has been applied. It can
be seen from the figure, as well as from Tables III and IV,
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Fig. 10. Navigation results with different methods for Person 2.

that especially in horizontal plane the error has been reduced
considerably.

Fig. 10 shows the results for Person 2 with standalone PDR
and the different ranging options. Based on the illustration, as
well as the numerical results in Tables III and IV it is plain that the
TL-based ranging error mitigation yields the best performance.
However, in vertical direction the improvement is not as evi-
dent. Nevertheless, the results show that correcting the ranges
with poorly adapted CNN may even degrade the positioning
performance compared with the uncorrected case. In addition,
excluding NLOS measurements (15 out of 132 for Person 1 and
5 out of 146 for Person 2) or outliers based on EKF innovation
(18 for Person 1 and 23 for Person 2) seems to degrade the
navigation performance. This is related to the Kalman filter state
formulation. If the heading offset estimate has not converged,
in absence of measurements the PDR-based track continues to
wrong direction.

In terms of loop closure error the uncorrected case yields
numerically best results. This is due to a sudden jump in the
position estimates toward the end of the track, shown in Fig. 10
approximately at (−5, 25), resulting from the other team mem-
ber emerging from inside the building after a pause in UWB
measurement updates. Considering the positioning errors for the
whole track in Table IV, the loop closure result for the uncor-
rected case seems somewhat coincidental. Out of the different
mitigation approaches, the TL-based corrections yield best loop
closure errors for both team members.

D. Discussion

We have shown that the UWB ranging error can be miti-
gated with a CNN-based approach. Compared with uncorrected
ranging error, both CNN approaches yield close to zero-mean
residual error distribution. Furthermore, the distributions are not
skewed or strongly heavytailed. This is beneficial especially
from Kalman filtering point of view. The distributions from
CNNs trained with and without TL are relatively close to each
other. However, there is a difference resulting from how individ-
ual samples are corrected. The results show that without TL the

CNN tends to apply larger corrections. From practical point of
view, direct evaluation of the error mitigation performance is not
possible for pedestrians moving indoors at fast pace. Therefore,
we evaluate the performance through positioning results.

The navigation test results show that TL-based UWB rang-
ing error mitigation performs best compared with uncorrected
ranging or even using corrected ranges without adaptation to the
situation and environment. The performance improvements are
especially evident in horizontal direction, whereas in vertical
direction there is little to no improvement. The poor navigation
accuracy in vertical direction is typical to PDR, where the height
solution generally tends to drift upward. Including other sensors
to the fusion, such as barometer, enables more accurate height
estimation [22], [51].

The obvious drawback of the presented approach is having
to train several neural networks. This might not be feasible
in tactical operations. Initializing the network with pretrained
weights may speed up the training process. Nevertheless, for
the weight generation in instance-based TL only a few, notably
unlabeled, samples are needed. For model-based TL applied in
existing research (discussed in Section I) labeled samples are a
necessity, which makes model-based TL even less applicable in
tactical scenarios. It is expected that the progress in CPU and
GPU development, as well as in quantum computing, will make
training the networks sufficiently fast even for tactical and rescue
missions.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have demonstrated an instance-based TL
approach that solves the problem of poor generalization of
ML models over different environments in indoor navigation.
The CNN-based approach corrects UWB ranging errors, and
is easily generalized to different environments and situations
with only a small number of unlabeled training samples. The
performance of the presented approach is validated in real-world
infrastructure-free cooperative positioning test. In addition to
cooperative localization, this UWB ranging error mitigation
method is well suitable also to other applications besides sensor-
based navigation.

Future work will include computationally efficient methods
for CNN training and means for mitigating the effect of corre-
lated estimation errors in cooperative positioning.
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[26] K. Bregar and M. Mohorčič, “Improving indoor localization using con-
volutional neural networks on computationally restricted devices,” IEEE
Access, vol. 6, pp. 17429–17441, 2018.

[27] S. Maranò, W. M. Gifford, H. Wymeersch, and M. Z. Win, “NLOS identi-
fication and mitigation for localization based on UWB experimental data,”
IEEE J. Sel. Areas Commun., vol. 28, no. 7, pp. 1026–1035, Sep. 2010.

[28] K. Wen, K. Yu, and Y. Li, “NLOS identification and compensation for
UWB ranging based on obstruction classification,” in Proc. 25th Eur.
Signal Process. Conf., 2017, pp. 2704–2708.

[29] K. Yu, K. Wen, Y. Li, S. Zhang, and K. Zhang, “A novel NLOS mitigation
algorithm for UWB localization in harsh indoor environments,” IEEE
Trans. Veh. Technol., vol. 68, no. 1, pp. 686–699, Jan. 2019.

[30] B. Cao, S. Wang, S. Ge, and W. Liu, “Improving positioning accuracy
of UWB in complicated underground NLOS scenario using calibra-
tion, VBUKF, and WCA,” IEEE Trans. Instrum. Meas., vol. 70, 2021,
Art. no. 8501013.

[31] X. Yang, “NLOS mitigation for UWB localization based on sparse pseudo-
input Gaussian process,” IEEE Sensors J., vol. 18, no. 10, pp. 4311–4316,
May 2018.

[32] Z. Yin, X. Jiang, Z. Yang, N. Zhao, and Y. Chen, “WUB-IP: A high-
precision UWB positioning scheme for indoor multiuser applications,”
IEEE Syst. J., vol. 13, no. 1, pp. 279–288, Mar. 2019.

[33] Q. Zhang, D. Zhao, S. Zuo, T. Zhang, and D. Ma, “A low complexity
NLOS error mitigation method in UWB localization,” in Proc. IEEE/CIC
Int. Conf. Commun. China, 2015, pp. 1–5.

[34] Q. Yang, Y. Zhang, W. Dai, and S. J. Pan, Transfer Learning. Cambridge,
U.K.: Cambridge Univ. Press, 2020.

[35] B. Morawska, P. Lipinski, K. Lichy, and K. Adamkiewicz, “Trans-
fer learning-based UWB indoor localization using MHT-MDC and
clusterization-based sparse fingerprinting,” J. Comput. Sci., vol. 61,
May 2022, Art. no. 101654.

[36] A. Morrison, N. Sokolova, and E. H. Eriksen, “Collaborative navigation
for defence and emergency services,” Eur. J. Navigation, vol. 13, no. 3,
pp. 17–24, Dec. 2015.

[37] J. Rantakokko et al., “Accurate and reliable soldier and first responder
indoor positioning: Multisensor systems and cooperative localization,”
IEEE Wireless Commun., vol. 18, no. 2, pp. 10–18, Apr. 2011.

[38] L. Ruotsalainen, R. Guinness, S. Gröhn, L. Chen, M. Kirkko-Jaakkola, and
H. Kuusniemi, “Situational awareness for tactical applications,” in Proc.
Inst. Navigation GNSS, 2016, pp. 1190–1198.

[39] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, and
N. S. Correal, “Locating the Nodes: Cooperative localization in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 54–69,
Jul. 2005.

[40] B. Zadrozny, “Learning and evaluating classifiers under sample selection
bias,” in Proc. 21st Int. Conf. Mach. Learn., 2004, Art. no. 114.

[41] M. Mäkelä, J. Rantanen, J. Ilinca, M. Kirkko-Jaakkola, S. Kaasalainen, and
L. Ruotsalainen, “Cooperative environment recognition utilizing UWB
waveforms and CNNs,” in Proc. Eur. Navigation Conf., 2020, pp. 1–8.

[42] G. Kia, D. Plets, B. Van Herbruggen, E. De Poorter, and J. Talvitie, “Toward
seamless localization: Situational awareness using UWB wearable systems
and convolutional neural networks,” IEEE J. Indoor Seamless Positioning
Navigation, vol. 1, pp. 12–25, 2023.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[44] R. Xia, Z. Pan, and F. Xu, “Instance weighting for domain adaptation via
trading off sample selection bias and variance,” in Proc. 27th Int. Joint
Conf. Artif. Intell., 2018, pp. 13–19.

[45] I. Skog, P. Handel, J.-O. Nilsson, and J. Rantakokko, “Zero-velocity
detection an algorithm evaluation,” IEEE Trans. Biomed. Eng., vol. 57,
no. 11, pp. 2657–2666, Nov. 2010.

[46] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,” IEEE
Comput. Graph. Appl., vol. 25, no. 6, pp. 38–46, Nov./Dec. 2005.

[47] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge, U.K.: Cam-
bridge Univ. Press, 2013.

[48] M. Mäkelä, M. Kirkko-Jaakkola, T. Hammarberg, T. Malkamäki, J.
Rantanen, and S. Kaasalainen, “Cooperative heading estimation with von
mises-fisher distribution and particle filtering,” in Proc. 25th Int. Conf. Inf.
Fusion, 2022, pp. 1–8.

[49] P. Strömbäck et al., “Foot-mounted inertial navigation and cooperative
sensor fusion for indoor positioning,” in Proc. Int. Tech. Meeting Inst.
Navigation, 2014, pp. 89–98.

[50] F. Gustafsson, Statistical Sensor Fusion. Lund, Sweden: Studentlitteratur,
2010.

[51] J. Rantanen, L. Ruotsalainen, M. Kirkko-Jaakkola, and M. Mäkelä,
“Height measurement in seamless indoor/outdoor infrastructure-free nav-
igation,” IEEE Trans. Instrum. Meas., vol. 68, no. 4, pp. 1199–1209,
Apr. 2019.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


