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Abstract—Indoor positioning is a thriving research area, which is slowly gaining market momentum. Its applications
are mostly customized, ad hoc installations; ubiquitous applications analogous to Global Navigation Satellite System
for outdoors are not available because of the lack of generic platforms, widely accepted standards and interoperability
protocols. In this context, the indoor positioning and indoor navigation (IPIN) competition is the only long-term, technically
sound initiative to monitor the state of the art of real systems by measuring their performance in a realistic environment.
Most competing systems are pedestrian-oriented and based on the use of smartphones, but several competing tracks
were set up, enabling comparison of an array of technologies. The two IPIN competitions described here include only
off-site tracks. In contrast with on-site tracks where competitors bring their systems on-site—which were impossible
to organize during 2021 and 2022—in off-site tracks competitors download prerecorded data from multiple sensors and
process them using the EvaalAPI, a real-time, web-based emulation interface. As usual with IPIN competitions, tracks
were compliant with the EvAAL framework, ensuring consistency of the measurement procedure and reliability of results.
The main contribution of this work is to show a compilation of possible indoor positioning scenarios and different indoor
positioning solutions to the same problem.

Index Terms—Channel impulse response (CIR) positioning, evaluation, fifth-generation (5G) positioning, foot-mounted
inertial measurement unit (IMU), indoor navigation, indoor positioning, pedestrian navigation, smartphone-based posi-
tioning, vehicle positioning.

NOMENCLATURE

5G Fifth-generation technology standard for broad-
band cellular networks.

AoA Angle-of-arrival.
AoD Angle-of-departure.
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API Application programming interface.
BLE Bluetooth low energy.
CI Channel information.
CIR Channel impulse response.
C-SLAM Channel SLAM.
EKF Extended Kalman filter.
EMI Error mitigation.
ENU East, North, Up.
ESKF Error-state Kalman fitler.
FFT Fast Fourier transform.
FP Fingerprinting.
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GNSS Global Navigation Satellite System.
GPS Global positioning system.
HTTP Hypertext transfer protocol.
IMU Inertial measurement unit.
INS Inertial navigation system.
IPIN Indoor positioning and indoor navigation.
KF Kalman filter.
LiDAR Light detection and ranging.
LLA Latitude, longitude, altitude.
LLOP Linear line of position.
LOS Line-of-sight.
MAE Mean absolute error.
MCC Maximum correntropy criterion.
ML Machine learning.
MU Moving user.
NHC Nonholonomic constraint.
NIST National Institute of Standards and Technology.
NLOS Non-line-of-sight.
NTP Network time protocol.
PCA Principal component analysis.
PDF Probability density function.
PDR Pedestrian dead reckoning.
PERSY Pedestrian reference system.
PF Particle filter.
pRRU Pico remote radio unit.
QQ Quantile–quantile.
RF Radio frequency.
RSRP Reference signal received power.
RSS Received signal strength.
RTOA Relative time of arrival.
SNR Signal-to-noise ratio.
SPA Sum-product algorithm.
SRS Sounding reference signal.
TAE Time alignment error.
TOA Time of arrival.
ToF Time-of-flight.
TRP Transmission reception point.
UE User equipment.
ULISS Ubiquitous localization with inertial sensors and

satellites.
UL-TDOA Uplink time-difference-of-arrival.
UWB Ultrawideband.
VO Visual odometry.
WHIPP Wica heuristic indoor propagation prediction.
WKNN Weighted k-nearest neighbours.
ZUPT Zero-velocity constraint.

I. INTRODUCTION

THE purpose of the IPIN competition is to create an envi-
ronment where methods and algorithms for indoor local-

ization can be tested in a controlled environment as realistic as
possible [1]. The idea is that localization systems described on
papers are next to impossible to compare in a significant way,
for a variety of reasons. First of all, the fact that each research
group almost always works and tests the system in its own
laboratory or nearby facility. Second, systems are often complex

and their description may omit some relevant parameters or
implementation details, making them impossible to reproduce.
Third, but not least important, the infrastructure required to
support positioning may not be fully replicated in a different
location.

Benchmarking based on public competition is one way out
of these problems: research groups are invited to showcase
their system in a way that makes it possible to compare it with
other systems on an even ground. This article introduces IPIN
competition’s outcomes for the 2021 and 2022 editions.

The main contributions of this work in relation to previous
ones [2], [3], [4], [5] are as follows.

1) The introduction of the EvaalAPI, an open source API,
that allows off-site tracks to simulate the stressing condi-
tions of an on-site track.

2) New tracks added that introduce new challenging sce-
narios for indoor positioning, such as Track 8: fifth-
generation (5G) in open plan office.

3) New environments and challenges are introduced to al-
ready existing tracks.

4) Description of state-of-art solutions.

II. EVAAL FRAMEWORK

The EvAAL framework is a set of criteria for defining how an
indoor positioning competition should be set up. It was defined
in 2014 based on the original EvAAL competitions [6].

During a competition, a number of teams compete according
to a set of rules, which define a track. A competition may include
a number of tracks, each centred on different types of devices
and each with its own rules. Tracks can be on-site, with teams
gathering in a physical place to run their working systems, or
off-site, with no physical gathering and no physical devices
involved from the participating team. For each track, competitors
run one or more trials during which the performance of their
systems is measured. In on-site tracks, an actor walks along a
predefined path while carrying or wearing the competing system,
which continuously estimates and records its position along the
path. Reference points are marked along the path, and position
estimation errors are measured for each reference point.

Competitors have the opportunity to survey the environment,
running testing trials on their own, before running (usually) two
scoring trials on which the competition score is computed and
the final competition ranking is established.

The same applies to off-site tracks, with the main difference
being that the competitors do not collect any data, neither for
surveying the environment nor for participating in the compe-
tition. Data collection tasks are delegated to track chairs. All
competitors have the same surveyed data and participate in the
competition with the same information.

In short, the EvAAL framework considers the following four
core criteria:

1) natural movement of an actor;
2) realistic environment;
3) realistic measurement resolution;
4) third quartile of point Euclidean error;

and the following four extended criteria:
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1) secret path;
2) independent actor;
3) independent logging system;
4) identical path and timing.

The criteria are defined and discussed in [6] and analyzed
comprehensively in [1].

A. Integrating Multiple Diverse Tracks

An IPIN competition is in fact composed of several indepen-
dent competitions, called tracks. Each track has its own rules
and purpose. Competitors can participate in one or more tracks.
Tracks adhere to the EvAAL framework, though to different
degrees. Tracks can be either on-site or off-site as follows.

1) On-site tracks are run in real-time, with trials consisting
of a real device collecting sensor data and carried by a
real person (an actor) walking along a predefined path
previously unknown to competitors. The device, which
runs software written by competitors, continuously es-
timates and records the current position. Estimates are
collected at the end of each trial and handed to track
chairs, who then compare them to a ground truth unknown
to competitors. In an on-site environment, competitors
are free to explore the site themselves and make surveys
to tune their systems and discover the specifics of the
competition area. Usually, this happens the day before the
competition proper. During competition proper, scoring
is computed on the best of two trials done on the same
path.

2) Off-site tracks are done on recorded data rather than on
real-time collected data. Track chairs collect sensor data
at a given location and then provide them to competitors.
Competitors run their software on the sensor data, esti-
mate positions, and then hand those estimates to track
chairs to be compared with the ground truth. In an off-site
competition, competitors are provided with training trial
data and/or testing trial datasets to check that their system
indeed works and tune it as long as they need. Then, they
are provided with (usually) two scoring trial datasets, on
which the scoring is finally computed.

As an example, the flagship track of the IPIN competition has
been the on-site Smartphone track, track 1 in the years 2014–
2019. The rules of this track have specified that competitors must
implement their solution as an app running on a commercial off-
the-shelf smartphone, without communicating with the outside
world. Only sensors embedded into the smartphone have been
allowed, and the use of external devices has been excluded.

B. Similar Competitions

As it often happens, many people have had the same idea
around the same time. In 2011, the first EvAAL competition
was held in Valencia (ES) as part of UniversAAL project (FP7-
ICT-2009-4), with two more editions in 2012 and 2013.

Microsoft indoor localization competition was also born in
2011, in association with the International Conference on In-
formation Processing in Sensor Networks [7], [8], [9]. The Mi-
crosoft competition’s aim was to muster different teams around

TABLE I
BASIC STATISTICS FOR ALL PAST IPIN COMPETITIONS

the world using as many different approaches as possible, with
few constraints. Measurements were taken with the competing
systems staying still at a number of reference points, and no
attempt at realistic movement or environment was made. The
competition was held yearly until 2017.

The PerfLoc Prize Competition was run in 2018 by the NIST
(U.S.), while the Positioning Algorithm Competition was run
in 2019 by the IEEE Communication Theory Workshop. Both
competitions were centred on RF systems [5]. The first responder
smart tracking competition is a big and ambitious effort funded
(again) by NIST with $8M, most of which will be awarded
to competitors. It was launched in 2022 and is planned to be
completed end of 2023.

C. Previous IPIN Competitions

IPIN competitions started in 2014 in Busan, with a single on-
site track based on smartphones. The first off-site track was run
in 2015. Years 2020–2022 have not seen on-site tracks because
of travel restrictions.

Table I summarizes the location, number of tracks, and num-
ber of competitors participating in on-site and off-site tracks
during the history of the IPIN competition.

III. INNOVATION IN 2021 AND 2022 EDITIONS

The lessons learned after organizing the off-site edition of
the IPIN Competition 2020 [4] were considered in the 2021
and 2022 editions, which both brought significant innovation as
follows:

1) the introduction of the EvaalAPI in off-site tracks;
2) considering new challenges in existing tracks;
3) the birth of several new tracks introducing new localiza-

tion technologies;
4) novel solutions for the different tracks.

A. EvaalAPI

The EvaalAPI interface is used to run off-site tracks. It was
introduced in 2021 as experimental and established in 2022 for
downloading testing trials and providing position estimates.

The purpose of the EvaalAPI interface (see Section IV) is
to make the results of off-site tracks closer to those of on-site
tracks by removing some distortions that became apparent in
2015 when the first off-site track was introduced. Distortions



POTORTÌ et al.: OFFSITE EVALUATION OF LOCALIZATION SYSTEMS: CRITERIA, SYSTEMS, AND RESULTS 95

include, for instance, fixing positions afterward and smoothing
scoring trajectory with future information.

B. New Challenges in Existing Tracks

This is a short summary of new challenges introduced to
existing tracks in 2021 and 2022. Each is described in deeper
detail in the following sections.

Track 3: Smartphone, introduced in 2015, exploits the sen-
sors of a smartphone. In 2015, the competition
was based on static Wi-Fi fingerprinting. In 2016,
user’s motion and other sensors were introduced. In
2018, the first very large scenario was introduced,
a shopping mall. In 2021, device diversity and user
diversity were introduced to the track.

Track 4: Foot-mounted inertial measurement unit (IMU),
introduced in 2018, exploits data gathered by multi-
sensor equipment mounted on the foot. The PERSY
sensor used in 2018–2020 [3], [4], [5] was replaced
by ULISS in 2021 [10], as the latter is able to
deliver 3-D inertial and magnetic, pressure, and
GNSS data.

Track 7: CIR, introduced in 2020, where an actor moves
around a warehouse-like environment wearing a
tag that regularly transmits UWB signals and
CIR readings are gathered by anchors positioned
around the area. In 2021, a second scenario with-
out training was provided, where clutter elements
from the first scenario were moved within the
environment, allowing the assessment of the adapt-
ability to changes in the environment. In 2022,
training and evaluation data were collected by dif-
ferent agents and the EvaalAPI was adopted.

C. New Localization Technologies

This is a short summary of new localization technologies
introduced in 2021 and 2022. Each is described in deeper detail
in the following sections.

Camera: Introduced in 2022, this is the successor to the
on-site camera Track 2 run in 2019, but with a
different approach. Training data are a set of pho-
tographs taken in an apartment, together with the
shooting position and orientation; scoring data are
more photographs taken in the same environment
by a moving actor.

Vehicle: Smartphone on vehicle, reintroduced in 2022, ex-
ploits sensors of a smartphone attached to a car’s
dashboard. Training data and scoring data come
from a car driving along GNSS-impaired areas and
in underground parking.

5G: Positioning based on 5G technology standard for
broadband cellular networks, introduced in 2022,
exploits reference signals sent by 5G smartphones
to four base stations installed on the ceiling of an
open office.The base stations send measurements

to a location server which estimates the user equip-
ment (UE) location, a method called 5G network-
based localization. This track is intended to encour-
age the development of innovative algorithms for
5G positioning.

D. Novel Solutions for the Competition Tracks

The indoor positioning community was challenged with sev-
eral tracks in 2021 and 2022. A total of 26 (2021) and 29 (2022)
teams submitted their proposal to participate in the competition,
but only 13 (2021) and 26 (2022) submitted their outputs to
participate in the competition (see Table I).

The short description of the proposed indoor localization
solutions is available on the Evaal website [11]. All teams from
the 2021 and 2022 editions were invited to submit an extended
detailed description to be reported in this manuscript. Sec-
tions V–X include descriptions from those teams that accepted
the invitation.

IV. EVAALAPI

From 2015 to 2020, sensor data recorded by track chairs
were timestamped and stored into a file which was then sent
to competitors. Competitors would then send back the results
some days later, by a common deadline. In time, we observed
that competitors were more and more often treating the challenge
more like an optimization problem than the emulation of an
on-site trial. Specifically, we observed three main ways where
optimization differs from emulation of on-site behavior, and
usually provides more accurate results.

One difference is that on-site trials are causal, meaning that
estimates provided by competitors are necessarily based only
on past sensor readings. This can make a big difference in es-
timation accuracy, which is important because real localization
systems are indeed causal.

Another difference is that on-site trials are one-shot, meaning
that if something goes wrong in a trial, you can not just retry it.
A real localization system cannot ask the user to go back and try
again if it detects inconsistencies in its estimation results.

The last notable difference is that on-site trials are run in
real-time, meaning that estimation is timestamped when it is
provided, analogously to a real localization system, which uses
the position information as soon as it gets it, in order to provide
a smooth experience to users.

The introduction of the EvaalAPI interface in 2021 forced
off-site tracks to a behavior, which was causal, one-shot, and
real-time behavior, making them more similar to on-site tracks.
In the following, the detailed working of EvaalAPI is discussed
and some comparisons are made about off-site tracks, which
switched to EvaalAPI.

A. EvaalAPI Concept

To make off-site track behavior more similar to on-site tracks,
the first step is to force causal behavior by forcing the compet-
ing system to provide position estimates as it reads data from
multiple sensors. This is obtained by defining an API for pro-
viding sensor data to the competing system and getting position
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Fig. 1. High-level view of the Nextdata loop.

Fig. 2. EvaalAPI server data logic.

estimates from it. The API is implemented as a web service.
The competing system runs a loop where it repeatedly reads
data from multiple sensors and provides a position estimate.
The EvaalAPI server reads sensor data from a file, provided by
track chairs, where each row is timestamped and contains data
from one or more sensors. The server writes position estimates
obtained by competitors to a file, which is subsequently used by
track chairs to compute the score of the trial.

1) Forcing Causality—The Nextdata Loop: The EvaalAPI
server waits for a Nextdata (Horizon, Position)
command [an HTTP request] from the competing system acting
as a client; it answers the request with timestamped sensor data,
which it reads from the data file. Figs. 1 and 2 illustrate the
server loop. In each iteration of the main loop, the client sends a
Nextdata command. Each carries a position estimate, which the
client has computed on the sensor data received from previous
Nextdata commands, and a requested time horizon, indicating
how much sensor data the client expects as an answer to the
request.

TABLE II
BEST SCORES IN METres (FIRST AND SECOND PLACE) FOR ON-SITE AND

OFF-SITE SMARTPHONE TRACK BEFORE AND AFTER EVAALAPI WAS
INTRODUCED IN 2021

This interface forces causal behavior because the competing
system can base its position estimates only on past (in virtual
time) sensor data; it can exploit no forward knowledge.

2) Forcing One-Shot—Nonreloadable Trials: In order to
force one-shot behavior, each scoring trial can be run only once,
i.e., it is nonreloadable. Each Track provides a number of testing
trials, i.e., reloadable ones, that can be used at will by competi-
tors to tune their system. In addition, it provides a few (usually
two) scoring trials, which can be run only once, on which
the score is computed, and the best one used for ranking the
competitors.

3) Forcing Real-Time—Managing Timeout: In order to force
real-time behavior, the virtual time is linked to the wall time.
Virtual time is relative to the time stamped on each line of the
sensor data file and to the horizon used in each Nextdata
(Horizon, Position) request.

EvaalAPI forces real-time behavior by slowing down virtual
time with respect to wall time by a slowdown factor V (V ≥ 1),
to account for network delays, transmission bottlenecks and
server response time. In practice, EvaalAPI implements a leaky
bucket with a rate defined by the slowdown factor and a threshold
useful for compensating occasional brief networking disrup-
tions; a timeout occurs when the bucket empties.

B. EvaalAPI Implementation

Source code, including a demo program written in Python, is
available and licensed under a GNU Affero General Public Li-
cense [12], which allows anyone to use, modify and redistribute
it freely.

C. EvaalAPI Experience

Results from the competition have shown that EvaalAPI has
made a difference. This is most clear when looking at results
from tracks 1 and 3, given in Table II, which summarizes the
best scores. Tracks 1 and 3 are the oldest and more stable ones.
They are based on the same technology and are run in similar
environments, that is, using sensors from a smartphone in big
office environments. Notably, in 2019 tracks 1 and 3 shared the
same location and even some of the reference points.

During the five on-site smartphone competitions, winning
teams have always obtained scores in the range from approx-
imately 4 to 9 m, which is the same that happened in the first
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three years of the off-site competition. In 2018, scores from
the off-site track started to diverge, becoming much better than
those of the on-site one. This was even more clear in 2019,
when the preparation phase—choosing the path and taking
measurements—was done by the same people in the same area
for both the off-site and the on-site tracks.

In 2021, with EvaalAPI, the off-site track results were back
again to realistic numbers. In 2022, results were bad, apparently
because the competition was more difficult with respect to 2021.
In 2023, tracks 1 and 3 shared the same environment and the
same sensors: results, yet to be published, show again a realistic
alignment between them.

V. TRACK 2: CAMERA (2022)

This section describes track 2, which was based on camera
(computer vision) and took place only in 2022.

A. Track Description

The widespread availability and the combination of sens-
ing, computation, and communication capabilities make smart-
phones an attractive platform for indoor localization. The pre-
ferred localization approaches are influenced by factors, such as
infrastructure availability, size, and type of the target indoor site,
people’s movement characteristics, desired frequency, latency,
and accuracy of the localization result.

Image-based localization does not require the presence of
specific infrastructure, can handle relatively large sites, and can
provide orientation along with position estimation. Although
it is possible to obtain centimeter-level accuracy for room or
apartment-sized sites, in practical applications, achieving and
maintaining similar accuracy in large public areas remains chal-
lenging. Among the relevant issues contributing to this challenge
are variability in visual appearance over time, irregular motion
patterns and the presence of dynamic objects.

The aim of the track 2 competition is to test image-based
indoor localization for pedestrians. The target site was two floors
of an office building with a test area of about 50 m × 50 m per
floor. Using a smartphone, we collected image and sensor data
but focused on using only image data for localization mainly
due to the off-site setting of track 2.

The training data limited site coverage to simulate require-
ments for simplified collection procedures. The scoring trials’
data featured reduced frame rate and larger motion variability in-
cluding stopping, sitting/standing and meandering. The reduced
frame rate was partially motivated by a general preference for
solutions with lower power consumption and partially by prac-
tical time constraints for scoring trials in settings with limited
internet connection speed.

B. Environment and Measurement Setup

Track 2 used three floors of an office building. Data from the
third floor (site 1) were used for training and were provided to
competitors in advance. Data from the other two floors (site 2)
were collected along the trajectories shown in Fig. 3 and divided
into training (plotted in green) and testing (plotted in yellow and

Fig. 3. Data collected at track 2 evaluation site 2—floor 1 (top) and
floor 2 (bottom). From the collected testing data trajectories, two (red)
were used for scoring trials and the rest (yellow) were kept in reserve.

red) sets. The training data were provided to the competitors
on the day before the scoring trials. Two trajectories from the
testing data (red trajectories) were used for the scoring trials on
the competition day.

To obtain ground truth labels, a backpack setup with a LiDAR
(HESAI Pandar-QT) was used to scan the site and build a
localization map. Later, images (640 × 480, 30 fps) and sensor
data were collected using a smartphone (SM-N986 N). Training
data were collected sequentially by several subjects walking
along the hallway in a closed loop, holding the smartphone
in their right hand in front of the body, with the rear camera
facing forward. The recorded pose (longitude, latitude, floor,
orientation) was the pose of the subject and a reasonable effort
was made to keep a steady offset of the smartphone relative to
the body.

For training data, 43 524 images were recorded along four
closed trajectories per floor, combining the inner and outer sides
of the hallway with clockwise and counterclockwise directions.
For testing data, 5244 images were recorded along seven closed
trajectories, keeping each trajectory on a single floor. Unlike
the training data, the testing data trajectories included larger
variations in walking speed (with stopping and sitting) and
direction. Two test data trajectories were selected for scoring
trials on the competition day. The image frame rate was reduced
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Fig. 4. Team CamLoc system architecture.

to 3 fps and reference points were selected for error evaluation.
Scoring trial 1 had a length of 170 m, with 735 images and 80
reference points. Scoring trial 2 had a length of 136 m, with 750
images and 64 reference points.

C. Description of Competitors (Camera)

1) Team CamLoc: In this competition, the team realized a
visual localizing system based on an image retrieval algorithm
and VO. The system architecture can be seen in Fig. 4. The
overall process of the whole system can be divided into the
following parts.

a) Step 1 Build image descriptor database: To lo-
calize the smartphone with an image retrieval algorithm, an
image descriptor database needs to be built in advance. Patch-
NetVLAD [13] model was used to extract the descriptor vector
for each image in the training dataset and save them as files for
the following image retrieval step.

b) Step 2 Image retrieval: During the test, the Patch-
NetVLAD model was used to extract the descriptor of the
query image online. The similarity between the query image
and images in the database will be calculated. The approach
finds the most similar image in the database and uses its ground
truth as the pose of the query image. In order to speed up the
process of similarity calculation, keyframes from the image
descriptor database for every 20 images are selected. Since
image retrieval is a type of nonincremental localizing algo-
rithm, it is used to predict the starting point and relocalize,
which can reduce the cumulative error from the following VO
step.

c) Step 3 VO: It is time-consuming and less general-
izable for each test image to retrieve a similar image in the
database. So, a frame-by-frame monocular VO is implemented
to locate the smartphone in a faster and more robust way, which
enables the system to track the smartphone even in an unknown
environment. For the sake of getting high-quality feature points
and their matching relationship, SuperPoint [14] and Super-
Glue [15] models were used in Team CamLoc’s system. To
make the monocular VO work effectively, the team needs to
align the pose and estimate the scale factor. The poses predicted
by VO are in the camera coordinate system, so the pose between
the VO coordinate system and the LLA coordinate system were
transformed with the help of the ENU coordinate system. Since
VO is a type of incremental localizing algorithm, the problem of
cumulative error is inevitable. To solve the problem, the system
relocalizes with image retrieval for every N frames. In practice,
N is set to 30. As for the scale factor, the prediction and ground
truth on the training dataset were aligned with the Umeyama
algorithm to get the estimated scale parameter.

VI. TRACK 3: SMARTPHONE (2021 AND 2022)

This section describes track 3, which was based on the use of
smartphones and took place in 2021 and 2022.

A. Track Description

The objective of track 3 is to evaluate the performance of
different integrated navigation solutions based on regular smart-
phone sensor fusion (WiFi, Bluetooth, and inertial, among oth-
ers) in an off-site context. As done in the 2016–2020 editions [2],
[3], [4], [5], [16], a data collection strategy and evaluation
procedure has been followed.

All data for track 3 has been collected with the Android app
“GetSensorData” [17], [18], which records and stores all data
coming from sensors available in the smartphone into a single
text file, i.e., into a logfile. As usual, the dataset is split into three
independent subsets, namely, training, validation, and evaluation
using ML terminology. A novelty introduced in 2021 was the
evaluation through the EvaalAPI, renaming those subsets into
training trials, testing trials and scoring trials, respectively.

The first set is for calibration purposes and covers most of
the evaluation area, containing several simple short single-floor
tracks with several key points at relevant positions including
initial, final and turns in the tracks. In the training trials, the
trajectory between two key points is almost straight.

The second set is for validation. It contains useful data for
competitors to evaluate their systems with long trials covering
multiple floors and well-known locations for the key points.
Generally, testing trials only include a few key points and the
user’s movement is not restricted to straight lines between two
consecutive key points. In addition, new areas might be explored.
Testing trials allow the competitors to evaluate the accuracy of
their solutions as many times as they wish, getting an assessment
of the level of maturity of their solution.

The third and last set is devoted to evaluation purposes,
allowing competitors to have an independent external evaluation
without ground truth data, and contains three multifloor very
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TABLE III
SMARTPHONES USED IN TRACK 3 (2021 AND 2022) DETAILING THE

COMMERCIAL NAME, THE MANUFACTURER CODE (IF ANY), THE ANDROID
VERSION, THE SENSORS USED, AND THE EDITION

WHEN THE SMARTPHONE WAS USED

long tracks. In contrast to the systematic data collection done in
the previous trials, the scoring trials include realistic movements
(e.g., simulating a user that was messaging or taking a phone call)
and stops. Only three unlabelled scoring trials were provided to
competitors in each edition. The accuracy score of a scoring
trial corresponds to the 75th percentile of the sample error in
compliance with the Evaal framework. This error is the 2-D
positioning error plus a penalty of 15 m times the absolute
difference between the current and the estimated floors. The
team’s score corresponds to the best (lowest) score among the
three scoring trials.

The main difference introduced in 2021 with respect to the
previous editions was the incorporation of several devices and
users instead of collecting all data with the same device, i.e.,
track 3 chairs challenged the competitors with device diversity.
In 2021, training and validation data were collected with five
smartphones, which are detailed in Table III. The table illus-
trates the range of sensors considered in the competition. For
evaluation in 2021, two scoring trials collected with a Samsung
S7 by two different users and a scoring trial collected with a
Samsung A5 2017 were provided.

This device diversity feature was kept in 2022 but with a
different and larger subset of phones, as shown in Table III, only
a few phones were used in both editions. For evaluation in 2022,
three scoring trials were provided, collected with the smart-
phones BQ Aquaris X5 Plus, Samsung A31 5G, and Samsung A5
2017, respectively.

Given the large amount of data and diversity of smartphones, a
reasonable sampling frequency was set in “GetSensorData” for
all sensors to record at 100Hz in both editions, 2021 and 2022.

In addition to the logfiles, georeferenced floor plans are pro-
vided to competitors. Those floor plans may be useful at the
sensor fusion level, allowing competitors to check whether the
provided positions are coherent with the environment.

The logfiles, supplementary materials and full technical de-
scriptions are available in [19] and [20]. This package com-
plements the ones from the previous editions [21], [22], [23],
[24], [25].

B. Environment and Measurement Setup (2021)

For the 2021 edition, competition data came from the facilities
of the University of Extremadura (Badajoz, ES). The collection
lasted four days and was restricted to the external car park area,

Fig. 5. Floor plan of track 3 (2021) environment and its auditorium
(located on the bottom-right corner in floor 1).

the ground floor and the basement. More than 30 BLE beacons
were deployed in part of the environment to support indoor
positioning, and their location was provided to competitors.

The indoor area included an auditorium, which covers a large
area with a soft floor transition as shown in Fig. 5.

C. Environment and Measurement Setup (2022)

In 2022, competition data came from the facilities of the
University of Minho (Guimarães, PT). The collection lasted four
days and was restricted to the School of Engineering, a three-
storey building, and its surroundings. This time, no additional
infrastructure was deployed to support indoor positioning. In
addition, the scoring trials were collected one month after the
training and testing trials.

The indoor area is a three-storey variable-height building and
it includes a large open patio as shown in Fig. 6.

D. Description of Competitors (Smartphone)

1) Team Leviathan: The proposed system consists of the
following four components.

1) PDR system based on step detection and stride length
estimation.

2) ESKF incorporating IMU measurements, headings and
PDR output.

3) Floor detection and initialization based on Wi-Fi finger-
print and barometer.

4) PF that utilizes the floor plan information.
The flow chart of the proposed system is shown in Fig. 7.

a) Pedestrian Dead Reckoning: The PDR algorithm
estimates the pedestrian step count, stride length and heading.
Thus, PDR exploits accelerometer, gyroscope, and magnetome-
ter data. To remove high-frequency noise, a low-pass filter is
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Fig. 6. Floor plan of track 3 (2022) environment and its patio.

Fig. 7. Flow chart of the indoor localization solution proposed by team
Leviathan.

applied to the norm of the acceleration. Team Leviathan first em-
ploy FFT to convert acceleration data from the time domain into
the frequency domain to better represent the periodic component
in the signal [26]. Then, detection is used to identify the steps.
Unlike traditional stride length estimation, Leviathan’s approach
is more adaptive in the sense that it is formulated as a function
of the peak frequency [27]. The heading of the pedestrian is
initialized and updated by using the Madgwick method, which
combines magnetic field and angular velocity [28].

b) Error-State Kalman Filter: In the scenario of indoor
localization, the types of sensors used may be different. An EKF
is well-known to fuse different kinds of observations together.
Compared with EKF, ESKF applies optimization based on the
error state, which is numerically small. Thus, the estimation error
is smaller during the linearization process, leading to a more
accurate result. In the prediction step, the gyroscope and accel-
eration are used to estimate the current pose. The magnetometer
and the PDR result are used to correct the pose estimation.
Specifically, the PDR module measures the displacement, and
the magnetometer measures the current heading. The observa-
tion error is assumed to follow a Gaussian noise distribution to
correct the pose estimation.

c) Floor Detection and Initial Position and Pose Es-
timation: The Wi-Fi RSS fingerprint and the barometer are
used for floor detection, initial position estimation, and posi-
tion correction. RSS is susceptible to various environmental
changes, e.g., concrete walls, moving humans, temperature and
humidity [29]. Compared with PDR, Wi-Fi localization is less
accurate. Thus, Wi-Fi RSS is mainly used for position correction
and floor detection. A radio map is built from the training data,
and the first few Wi-Fi detections are used to locate the initial
pose. The variance of the barometer is used to detect the floor
change by setting a threshold. The current pose is continuously
matched with Wi-Fi location and floor information. Once a
significant mismatch is detected, the system resets. Data from
the accelerometer and the magnetometer are used to extend
positions to pose estimations by adopting the Madgwick filter.

d) Particle Filter: The PF fuses the trajectory estimated
by the ESKF and compares it with the floor plan to regulate
the distribution of particles. The floor plan images are first
stored as an obstacle probability map. The floor estimation
component first identifies the floor ID and an initial position
guess. Each point x on a 2-D plane can be assigned with a
Gaussian probability distribution

L(x) = 1

σ
√

2π
exp

(
−minx∗∈Ωobs d(x,x

∗)
2σ2

)
(1)

whereΩobs is the set of obstacles,x∗ is the location of the nearest
obstacles, andd(•) is the Euclidean distance between two points.
During each update, a single particle infers its position and the
associated probability of hitting an obstacle. In the resampling
stage, particles in unreachable areas are removed. Moreover,
to account for history information, a particle will be removed
if its accumulated penalty within the time window exceeds a
predefined threshold. New particles are generated following the
distribution of valid particles. The final position is calculated as
the weighted average of the particle positions. In case of system
failure, i.e., when all particles hit obstacles or a wrong floor ID is
reported by the floor detector, random particles will be generated
on the specific floor until system convergence.

2) Team imec-WAVES 2021 and 2022: Team imec-
WAVES’ systems for the 2021 and 2022 competitions are similar
and consist of six modules. Each module has the same func-
tionality in both versions, but some modules are implemented
differently. Fig. 8 shows how these six modules and their com-
ponents interact. The following paragraphs briefly describe each
module. The description applies to both years unless specified
otherwise.

a) EvaalAPI interface: This interface starts the Evaal
API trial and requests the next stream of smartphone data in
blocks of 0.5 s. It parses and structures the received data and
passes it to the PDR module, which employs a step detection
algorithm (see Section VI-D2b). If the PDR module detects
one or more steps, the interface waits for the path estimation
algorithm to provide a new position. If no step is detected, the
interface will take the previous position estimation. The position
is sent back to the EvaalAPI server, and a new block of data is
received.
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Fig. 8. Flow graph of the systems of team imec-WAVES for track 3 in 2021 and 2022.

b) Pedestrian Dead Reckoning: The proposed PDR
algorithm is based on [30]. It uses attitude and heading reference
system (AHRS), that is, pitch and roll data to transform the
accelerometer, gyroscope and magnetometer data from the local
(smartphone) reference frame to the horizontal plane. Step de-
tection is performed by detecting peaks in vertical acceleration.
The heading is estimated by fusing the horizontal gyroscope and
magnetometer data. The adaptive step length estimation is based
on the Weinberg model and reproduced from [31]. The fusion
algorithm works best when the gyroscope and magnetometer
headings are initially aligned. The alignment, as well as gyro-
scope calibration, is done near the start when the smartphone is
held still for several seconds. This time interval is detected by
thresholding the acceleration variance.

c) Graph database of the environment: Each year,
floor plan images of the building are provided. Team imec-
WAVES manually draw the walls over the floor plan using the
graphical interface of the WHIPP tool [32]—resulting in a line
segment for each wall– and also draw over the contours of eleva-
tor shafts and staircases, resulting in a polygon for each staircase
or elevator shaft. For outdoor trajectories, Google Earth was used
to draw the boundaries of the pavement directly surrounding the
building. The line segments and polygons are used directly by
the path estimation algorithm in the 2021 system.

However, calculating intersections and solving the point-
in-polygon problem ad hoc is time-consuming and limits the
number of usable particles under EvaalAPI’s timeout constraint.
Therefore, a 3-D graph was generated from the set of line
segments of each floor in 2022. Each graph node is a possible
location. Two nodes are connected by an edge if the latter does
not intersect a wall and its length is shorter than a specified
maximum human step length. Using the contours, each node
knows whether it is a stair, elevator, or floor node and whether it
is an indoor or outdoor node. The height of each floor is estimated
by converting the pressure data [33] from the training log files,
and a 3-D graph is then created. Finally, the floors are connected
by drawing the staircases with a custom tool. Result is in Fig. 9.

Fig. 9. 3-D graph of the environment of track 3 in 2022.

d) RSS fingerprinting: The training data include
ground truth positions at turning points. In 2021, the team used
a PDR-based method to construct RSS radio maps, known from
the previous competition [3]. Since this method does not work
well for staircases, the Dijkstra algorithm is used with the 3-D
graph in 2022 to create a path on the staircase and match this
path with the PDR output.

Furthermore, several BLE beacon locations were provided in
2021. Therefore, RSS prediction [32] is used to create radio
maps, which cover most of the building, in addition to the
empirical radio maps covering only the training trajectories.

A WKNN fingerprint matching algorithm is used to estimate
the user position. The Euclidean distance metric is used to match
RSS vectors in the validation/evaluation data with RSS vectors
in the radio map. RSS normalization is used to avoid device
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mismatch [34]. The weighted centroid of the k best matches is
selected as the estimated position.

e) Floor (transition) detection: Floor levels and tran-
sitions are detected by fusing data from the pressure sensor,
accelerometer, and RSS fingerprinting into the Viterbi-based
algorithm described in [35]. In both years, there was an out-
door environment consisting of two levels. Therefore, the team
regards these outdoor levels as separate floors, and expands the
team’s existing algorithm with a simple GNSS-based outdoor
detector. If the GNSS coordinate lies outside of the building, a
large cost to all indoor states and vice versa was added.

f) Path estimation: After each step detection, a new 3-D
position is estimated by fusing information from PDR, floor
(transition) detection, RSS fingerprinting, and a 3-D graph of the
environment (2022) or floor plan information directly (2021).
Path estimation in 2021 was performed by a PF, described in
detail in [36]. It includes a reset mechanism that removes almost
all particles when the PF gets stuck. New particles are sampled
randomly in the neighbourhood of the previous sample mean.
Also, if there are no particles on the currently estimated floor
(including outdoor levels), and the floor has not changed during
the last five steps, all particles are randomly resampled on that
floor. The same applies to stair detections.

A new path estimation was used in 2022, which combines
the PF from 2021, and Viterbi-based tracking from [37]. After
step detection, each of the N particles has to search all the K
reachable nodes and spawn a particle at each node. TheseN ×K
new particles inherit the cost of their predecessors and receive
a new cost based on how well the length and angle of the edge
between the new and previous node match. There are additional
costs based on RSS fingerprinting, floor detection, and floor
transition detection for indoor, similar to PF in [36]. The particles
are then resampled based on their cost, and the latest position is
estimated by a clustering algorithm based on [36], in which the
particle with the lowest cost is the first particle of the cluster.
Lastly, if the estimated floor is outdoors, each particle is also
evaluated based on its Euclidean distance to available GNSS
coordinates in both systems.

3) Team X-LAB: The system proposed by X-lab includes the
following three main stages:

1) the 2-D position estimation based on PDR algorithm;
2) the Wi-Fi, Bluetooth, geomagnetic information fusion,

and 2-D position correction;
3) the initial position estimation and floor decision making.

Six types of sensor data were used in the whole processing
of pedestrian positioning. Fig. 10 shows the framework of the
proposed system. In the following paragraphs, each stage is
explained in detail below.

a) PDR: The PDR algorithm consists of step detec-
tion, step length estimation, heading estimation, and movement
modes recognition. Peak detection is used to detect steps, and the
Weinberg method is used to estimate step length. The heading
of pedestrians is calculated by gyroscope data. The heading is
corrected by a KF algorithm using geomagnetic data to solve the
error accumulation problem. In Team X-Lab’s system, a support
vector machine is used to identify four movement modes, includ-
ing normal walking, walking upstairs, walking downstairs, and

Fig. 10. Framework of the proposed system.

other movements. Some statistical characteristics (e.g., mean,
max, min, and derivative) of the accelerometer and gyroscope
are extracted as features. The result of the movement modes
recognition will influence the selection of parameters in the other
three stages.

b) Information fusion and 2-D position correction:
There are two phases in this stage. The feature map construction
in the preparation phase and 2-D position correction in the
real-time positioning phase.

In the preparation phase, the Wi-Fi fingerprint, bluetooth
fingerprint, and geomagnetic fingerprint map were built. Only
a small amount of reference position information is provided
in the training data. Therefore, it is necessary to calculate the
pedestrian position between two reference position points to
obtain more fingerprint information by the PDR algorithm in
the previous stage. To improve the accuracy of fingerprint lo-
calization and the efficiency of the localization algorithm, PCA
is used to eliminate fingerprint information that is not helpful
for localization.

In the real-time positioning phase, particle filtering is used to
correct the pedestrian position. First, the particles are initialized
and the position of the PDR estimate is sampled. Then, the
weights of each particle are calculated by feature maps and
digital maps. Finally, the resampling process is used to obtain the
corrected pedestrian positions. The digital map was created from
a map of the buildings provided by the organizers. It contains
passable and impassable areas.

c) Initial position estimation and floor decision
making: The initial position is provided by fingerprint informa-
tion matching, specifically Wi-Fi, bluetooth, and geomagnetic
information matching. The barometer data are used to calculate
the relative height, and the result of movement modes recogni-
tion is used to judge the floor jointly.

VII. TRACK 4: FOOT-MOUNTED IMU

This section describes track 4, which was based on the use of
foot-mounted IMU and took place in 2021 and 2022.
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Fig. 11. ULISS overview. (a) External package. (b) Internal overview.

A. Track Description

The objective of track 4 is to estimate the position from data
gathered by multisensor equipment mounted on the foot of an
actor walking a predefined path. Since track 4 is focused on the
real use cases of pedestrian navigation, scale and scenario were
considered.

Scale stands for the size of the experimentation area: we
organized IPIN competitions in a large shopping mall around
Nantes in 2021 and in the train station of the same town in 2022.
This allowed us to realize trials longer than 30 min and longer
than 1 km over areas several hundreds of meters wide and long.

Track 4 gives importance to the quality of representativeness
of a scenario. This means that we design our data collection
scenario by thinking about the real movement of a specific citizen
in a specific place: this year, a tourist visiting an automotive
museum. An example to illustrate: navigating through a crowd
inside a wide area is something pretty common for citizens, and
even if this is not the easiest context for positioning system and
algorithm, it deserves to be tackled.

The target environments exhibited features, such as multifloor
levels, stairs, escalators, and lifts, everything that is commonly
used in public places. This is a perfect mix of a citizen’s day-life
scenario and scientific challenges for high-level competition.

Sensors’ data were gathered through the ULISS sensor de-
vice [10], which is able to deliver 3-D inertial data (accelerom-
eter, gyroscope), 3-D magnetic data, pressure data and GNSS
data. Fig. 11(a) and (b) shows, respectively, an overview of
ULISS and its embedded sensors. Table IV presents the technical
specifications of all the sensors embedded in the ULISS. More
detail can be found in the 2021 call for competition [38].

In compliance with the Evaal framework, in track 4, the
accuracy score is computed as the 75th percentile of the sample
error. As in track 3, the sampling error is itself defined as the
sum of 2-D horizontal error plus 15 m per floor misdetection
(absolute difference between current floor and estimated floor).
The 2-D horizontal error is the Euclidean distance between the
estimated horizontal position computed by the competitor and
the ground truth position of reference points (85 points in 2021
and 90 in 2022).

B. Environment and Measurement Setup 2021

In 2021, the competition trajectory was inside the Atlantis
shopping mall in Nantes (one of the biggest in the west of
France).

TABLE IV
TECHNICAL SPECIFICATIONS OF THE EMBEDDED ULISS SENSORS

Fig. 12. Overview of the ground truth of track 4 (2021).

Each of the two scoring trials is a trajectory of 45 min duration,
about 1.2 km long, where almost 95% of paths are indoor. Active
walking (including running) and passive motion (usage of lifts,
escalators, and travelators) were used over four different floors.
Fig. 12 illustrates a bird’s view of each point composing the
ground truth.
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Fig. 13. Some areas where track 4 took place (2021). (a) Travelotor.
(b) Lift. (c) Straight walk.

Some of the different areas of Atlantis shopping mall used are
illustrated in Fig. 13. See the 2021 awards presentation at [39]
for additional details.

C. Environment and Measurement Setup 2022

In 2022, the competition data was collected on 12th July in
the railway station of Nantes.

A full-body wearable device developed by Xsens called
AWINDA was used to provide ground truth. Originally designed
for motion capture, it was able to generate a satisfactory ground
truth after intensive post-processing. The advantage of using
Awinda for ground truth is that we can get ground truth without
having to walk on predefined waypoints on the ground as in
previous years. The main disadvantage is that both systems
(ground truth and competition sensors) need to work perfectly
at the same time. Any problem or bug in either system means a
new data collection that needs to be done.

Each of the two scoring trials includes a walk of about 1.5 km
long in 25 min. Approximately 95% of the walk was done
indoors. Only active walking over four different floors without
elevators or escalators was used. This is one of the limitations
introduced with the new ground truth system. Fig. 14 illustrates
a bird’s eye view of the ground truth for the first scoring trial.
Some of the different places1 of Nantes railway station is shown
in Fig. 15

Additional detail can be found in the Call for Competition
relative to track 4 [40], and the awards presentation [41].

D. Description of Competitors (Foot-Mounted IMU)

1) Team X-lab: The solution presented by X-lab consists of
three steps plus a correction model.

a) Step 1: The IPIN2022 competition evaluates the al-
gorithm in real-time, so it is unknown which mode the tester is
travelling in and the threshold for zero-velocity detector varies
from different modes. There is no way a perfect threshold can be

1SIMON BÉNÉTEAU / MAGENTA FILMS, for the drone view.

Fig. 14. Overview the ground truth of track 4 (2022).

Fig. 15. Views of Nantes railway station. (a) Second floor. (b) Main
entrance. (c) Drone view.

set in the algorithm to perfectly exploit the advantages of ZUPT.
In this case, the first step is to propose an adaptive zero-velocity
detector that is dependent on the tester’s motion modes. The
team’s algorithm is based on the fact that the more violent the
tester’s motion, the larger the threshold of the zero-velocity
detector should be to detect a shorter still phase as possible, while
also noting that missed detections are more easily forgiven than
false detections, hence the used adaptive zero velocity detector
has a relatively small threshold.

b) Step 2: Considering that the biggest shortcoming of
ZUPT is the severe heading drift and the lack of reliable heading
observation, the heading drift can be corrected to some extent
by correcting the pitch and roll angle error through the coupling
relationship of IMU three-axis attitude. The pitch and roll error
observations were built by using the difference between the pitch
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Fig. 16. Test process of track 6.

and roll angles calculated by the INS and the horizontal attitude
estimated by the accelerometer output during the still phase. At
the same time, the difference between the currently estimated
heading angle point and the average value of the heading angle
of the previous five sampling points in the still phase is used as
heading angle error observation to improve heading estimation.

c) Step 3: Given that height error is considered in
IPIN2022 competition, which is expressed as floor error, the
difference between the height calculated by the barometer at the
current moment and the ones at the initial time is used to obtain
the relative height, for assisting in determining the floor changes.

d) Correction model: The escalator and elevator sce-
nario was introduced in the IPIN2021 competition. A moving
platform correction model was proposed in the system developed
by Team X-lab to solve the zero-velocity false detection when
the testers ride still on the escalator and elevator. The motion
characteristics of the escalators and elevators are also taken into
account to constrain the velocity error and improve the posi-
tioning accuracy in the proposed moving platform correction
mode [42].

VIII. TRACK 6: SMARTPHONE ON VEHICLE (2022)

This section describes track 6, which was based on the use of
smartphones attached to a vehicle and took place in 2022.

A. Track Description

The goal of this track is to evaluate the performance of differ-
ent integrated navigation solutions based on a vehicle-mounted
smartphone, which includes GNSS, accelerometer, gyroscope,
and magnetometer, among other sensors. The test route includes
both an outdoor scenario with an unobstructed satellite view, one
with a partially obstructed view and an indoor scenario without
a satellite view. The outdoor scenario with an unobstructed view
accounts for 40% of the total test route and is not considered for
computing the evaluation score.

The test route of track 6 (see Fig. 17) includes an outdoor sce-
nario with an unobstructed satellite view, an attenuation scenario
with a partially obstructed view and an indoor scenario without
a satellite view. In the test process (see Fig. 16), there were
several long interruptions of the GNSS signal and an irregular
test route was adopted. Besides the navigation measurements
derived from the sensors installed in the smartphone, there was
no external aid information and no prior knowledge of the test

Fig. 17. Test route and GNSS condition of track 6.

route. The competitors could only rely on smartphone data to
calculate the vehicle position.

B. Environment and Measurement Setup

In this off-site track, all data for testing and scoring have
been provided by the organizers before the IPIN conference. The
teams in the competition can calibrate their algorithmic models
with several databases that contain readings from the sensors of
the smartphone mounted on the vehicle and some ground truth
positions. Then, each team competes using additional database
files, but in this case, they have to estimate the ground truth
reference without knowing it. Moreover, to prevent the use of
the map-matching method, an irregular driving route is chosen.

The raw multisensor data, which includes the information
of all the signals captured by the smartphone in real-time in
the vehicle scenario, was recorded using a Huawei Mate 20
smartphone. The smartphone was attached to the car dashboard
throughout the test process to record the motion measurements.

The test area of track 6 is a typical urban road environment.
A single test process takes about 1 h and the test route has four
phases: a static initial alignment phase (about 5 min), an open
environment phase (about 20 min), an obstructed environment
phase where the GNSS signal is weakened or blocked by the
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Fig. 18. Overview of adopted system.

nearby buildings or trees (about 25 min, during which the GNSS
positioning results will be often disrupted), and a no GNSS
signal phase (underground parking lot, about 10 min, no GNSS
positioning results). The test vehicle drives in different ways,
such as going straight, turning, reversing, and parking.

During the data collection phase, the same vehicle, smart-
phone, and smartphone installation method are used for all the
testing and scoring trials. The smartphone is securely fixed to
the vehicle body as shown in Fig. 16. The coordinate system of
the vehicle body and the sensors are different, so the mounting
angles are required.

C. Description of Competitors (Smartphone on Vehicle)

1) Team WHU-GD: As shown in Fig. 18, the method uses
a graph-optimization method to fuse GNSS, IMU, and mag-
netometer information. The GNSS provides absolute position
constraints. Moreover, a magnetic field heading helps reduce
heading drift in the long term. However, the GNSS signal is
often disrupted in field testing, and the raw GNSS measurements
are not accessible. Therefore, enhancing the relative positioning
capability based on IMU with the motion model constraint is
crucial. The motion model includes ZUPT and NHC.

This approach estimates the following:
1) the installation parameters Rvb and lb, which are rotation

and translation between the vehicle and body frames;
2) mn, which is the magnetic field vector in the navigation

frame;
3) Si, which is the system state of the keyframe i.

This approach chooses the keyframe according to a fixed time
interval of 1 s.

It is defined as

Si = {tnbi , Rnbi , vnbi , b
a
i , b

g
i , b

m
i } (2)

where tnbi , Rnbi , and vnbi represent the position, rotation,
and velocity of the body frame (alignment with the IMU) in
the navigation frame. bai , bgi , and bmi represent biases of the
accelerometer, gyroscope, and magnetometer, respectively.

The structure of the graph optimization consists of the factors
shown in Fig. 19 and described as follows.

a) Preintegration Factor: This factor establishes the
relative pose and velocity constraint between two consecutive

Fig. 19. Structure of the graph optimization.

keyframes. Because of the low accuracy of the built-in IMU
in the mobile phone, a simplified INS mechanization is used
to enhance efficiency without compromising accuracy. Specif-
ically, the impact of the angular rate and sculling effect due to
the Earth’s rotation and motion speed is neglected.

b) Zero-Velocity Factor: ZUPT is used to reduce the ac-
cumulation of velocity errors. Because the velocity of consumer-
grade IMU increases rapidly, the ZUPT is essential to improve
the accuracy of the relative position when the GNSS signal is
unavailable. This factor gives a prior probability to the velocity
when the zero-velocity state is identified. The raw output of
the IMU over a short period (2 s in this approach) is used for
stationary detection.

c) Nonholonomic Factor: The nonholonomic factor is
based on the assumption that the vertical and lateral velocities
in the vehicle frame are nearly zero, because the mobile phone
installation in the field testing is uncertain, the installation pa-
rameters need to be estimated online. The initial value is esti-
mated when the velocity value is high enough. The installation
parameters are updated online during the testing to prevent the
impact of the installation parameters change.

d) Magnetic Factor: The magnetic field vector limits
the absolute heading during the testing. It is important to note
that the magnetic field vector is very noisy in some places, such
as inside buildings or near electronic devices.

In this context, the χ2-test is adopted to eliminate the effect
of these noise sources.

e) GNSS Factor: The GNSS position is the only source
that can provide absolute position information in this com-
petition, because the GNSS signal is prone to interruption or
nonGaussian noise, the χ2-test is used to determine whether the
current GNSS position is valid. Taking advantage of the flexibil-
ity of the graph-optimization architecture, the relative distance of
the GNSS positions between two keyframes is used first and then
the absolute position constraint after several seconds is applied.
This strategy helps increase the reliability of the position of the
keyframe, which is used in the χ2-test.

f) General notes: This system adopts a sliding window
strategy to ensure the system can run in real-time.

The marginalization strategy is used to preserve the informa-
tion from deleted keyframes.

The parameters of this approach are tuned based on the given
training dataset.
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IX. TRACK 7: CIR IN WAREHOUSE

This section describes track 7, which was based on the use of
CIR in warehouses and took place in 2021 and 2022.

A. Track Description

RF positioning in cluttered indoor environments is challeng-
ing. As signals travel through the environment along different
paths it is difficult to determine the correct ToF of the transmitted
signals. Traditionally, fingerprinting-based solutions have been
used to estimate a rough position from narrow-band signals, such
as Wi-Fi or bluetooth. However, with modern UWB technology,
signals can be transmitted at higher bandwidths, enabling a
much higher spatial resolution from which complex propaga-
tion conditions can be extracted, such as absorption, reflection,
diffraction, and scattering [43]. While UWB is progressively
integrated, but not yet widely spread, into consumer devices,
current progress in development and standardization makes it
likely that it will be ubiquitous in the near future. This allows
for low-cost ad hoc positioning.

To leverage the benefits of the high spatial solution we can
make use of the CI. For sufficiently high bandwidths the CI
roughly corresponds to the complex-valued CIR. Many algo-
rithms have been investigated that exploit the CIR to extract
spatial information in order to enhance the positioning perfor-
mance. They have been used for ToF error mitigation [44], which
uses the CIR to estimate an environment-specific ToF error, fin-
gerprinting [45], which exploits the raw CIR as location-specific
information, and C-SLAM [46], which exploits the multipath
components included in the CIR. Therefore, besides ToF esti-
mates, we provide the raw CIRs, which allows enhancement of
localization accuracy.

The challenge is divided into two parts. In the first part, the
data that is used for training and testing originate from the same
environment setup. In the second part, we made some changes to
the environment setup (i.e., we moved mobile metallic objects)
in order to consider the robustness of the algorithms to envi-
ronmental changes. For the second scenario, we do not provide
training data but only test data. The trajectories we use for testing
in the second scenario stay within a similar area as the one used
in the first scenario.

In 2022, we investigated the generalization to a different agent
for collecting data. In a typical industrial application setting, data
points are easily collected and labelled by automated guided
vehicles, but the tracking targets can be other agents, such as
persons. The different agents have various influences on the
signal, due to the shadowing of, e.g., a person or reflections
of a robot. Also, movement patterns and height of the radio unit
are different, which might also influence the performance. The
majority of the provided data for the validation and training are
collected by a mobile robot, while the evaluation is based on the
tracking of a worker in an industrial setting.

In both years the ground truth of the transmitter positions is
collected using a millimeter-accurate Qualisys motion tracking
system. The data are collected and synchronized by an NTP
server and preprocessed (corrupted data points are removed and
RF and positioning reference data are synchronized).

Fig. 20. Schematic environment setup, including exemplary object
setups 1 and 2 (left-hand side) and a similar real-world environment
(right-hand side).

B. Environment and Measurement Setup (2021)

The environment consists of an area of ≈ 300 m2, partially
enclosed by reflecting walls (consisting of the walls of the mea-
surement wall, including metal gates and artificially included
reflector/absorber walls elements) and various metal objects that
are typical of industrial indoor environments like, e.g., industrial
vehicles or metal shelves. Fig. 20 (left-hand side) schematically
sketches the environment, while the real-world environment is
shown on the right-hand side. The receiving anchors are placed
around the recording area at about 1.5 m height. The transmitter
device is carried by a human/worker and regularly transmits
UWB signals received by the anchors. The data are recorded
using a platform based on the Decawave DW1000 UWB chip
with a centre frequency of 4 GHz and 499.2 MHz bandwidth.

This challenge contains the following two scenarios.
1) For the first scenario a training dataset with ground truth

positional information is provided; the models submitted
by the competitors are evaluated on a test set (a few
trajectories) that originates from the same measurement
campaign, i.e., training and test datasets were recorded
on the same environmental setup. Both training and test
datasets contain complete trajectories while the trajecto-
ries of the test dataset are shorter. The testset does not
contain ground truth position labels.

2) The second scenario presents a modification of the first
scenario. In this setup, clutter elements within the en-
vironment (e.g., forklift, van, etc.) were moved, which
led to a slightly different propagation scenario. The goal
of this scenario is to test if the models submitted by the
competitors overfit the previous environmental setup and
fail to generalize well to changes to the environment.
Therefore, the training dataset does not include any tra-
jectory collected within this modified scenario, which is
only considered in the trajectories within the testset.

C. Environment and Measurement Setup (2022)

The environment consists of a warehouse area of ≈ 1200 m2

partially enclosed by reflecting walls (consisting of the walls
of the warehouse, including metal gates). The environment
contains various metal objects (e.g., industrial vehicles or metal
shelves). Fig. 21 shows a picture of a part of the warehouse.
Receiving anchors are placed around the recording area at about
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Fig. 21. Image of the environment. The mobile robot can be seen on
the right.

Fig. 22. Flowchart of the imec-WAVES localization approach. Each
rectangular box represents a step in the process. Training the regression
model for range error correction is done separately.

1.5 m height. The transmitter device is carried by the mobile
agent/tracking target and regularly transmits UWB signals re-
ceived by the anchors. In the data collection phase, it is attached
to a mobile robot. In the evaluation phase, it is carried as a hand-
held by a human/worker. An exemplary and representative eval-
uation/experiment dataset for adjusting models was provided.

D. Description of Competitors (CIR in Warehourse)

1) Team imec-WAVES (2021): imec-WAVES’ localization
solution’s core is

1) distance estimation between each tag and anchor,
2) range correction through a regression model, and
3) a PF for localization.

Fig. 22 shows the individual steps of the system. A custom
ranging algorithm provides range estimates for each captured
CIR. A first pass of a PF provides an initial approximation of
the user’s location throughout time, from which their motion
trajectory is calculated. Erroneous range estimates are identified
by examining time-range plots for each tag–anchor pair. At this
stage, a set of predictors serves as input for the regression model.
The regression outputs a scalar distance correction that is applied
to the original range estimate. In training, this reduced the MAE
from 24 down to 3 cm (excluding uncorrectable estimates). A
second PF utilizes the updated range estimates to obtain a better
location estimate. Finally, a smoothing step in conjunction with
position interpolation predicts the location at each requested
timestamp.

Fig. 23. (a) Normalized histogram fitting of the ToF estimation errors
and (b) the QQ plots.

a) Ranging algorithm: This solution calculates range
or ToF using a threshold-based algorithm. The threshold is
calculated from the noise, which is determined heuristically
after partitioning the CIR into a noise region, a region-of-interest
which contains the first path component, and a region with only
multipath components and noise.

b) Regression model: The correction model uses
Gaussian process regression with a constant basis function
and exponential kernel. Training is performed with fivefold
cross-validation to reduce the risk of overfitting. Predictors are
calculated from the following.

1) The original CIR measurement (anchor number, first path
bin power, maximum bin power, and distance estimate).

2) The location estimate [AoD from the anchor and compat-
ibility with distance estimate].

3) The motion trajectory [velocity, direction, turning rate,
and angle-of-arrival (AoA) on the tag].
c) Tracking: In this competition, tracking was leveraged

to the PF algorithm, which has better accuracy than the Kalman-
framework filters generally [47]. In this competition, only the
2-D coordinates PMU of the moving user (MU) are considered,
which are updated via the constant velocity motion model, given
as follows [48]:[

P
(t+1)
MU

v
(t+1)
MU

]
=

[
I2 Δt · I2

0 I2

][
P

(t)
MU

v
(t)
MU

]
+

[
Δt · 12×1

12×1

]
nv (3)

where vMU denotes the 2-D velocity of the MU, Δt the time
difference between timestamps t and t+ 1. nv represents the
Gaussian velocity errors. In total, 1000 particles were utilized
to generate the proposed likelihood of the MU locations within
the targeted area. The weights were updated via the PDF of the
ToF estimation errors.

However, in the case of NLOS propagation, the ToF estimates
may have large offsets due to the wrong threshold judgment. To
better quantify the ToF statistical error, its histogram was fitted
on three widely-used distributions, namely, Gaussian, Laplace,
and t location-scale distributions [49]. Fig. 23 shows the his-
togram fitting on these three distributions and their goodness-
of-fit via QQ plots. Benefiting from handling with heavier tails, t
location-scale distribution presents the most straight line in QQ
plots, which illustrates that the ToF estimation errors best follow
t location-scale distribution.
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Fig. 24. Flowchart of the imec-WAVES localization approach. Each
rectangular box represents a step in the process. Training the regression
model for range error correction is done separately.

The same implementation and parameters are used in both
instances of the PF in the systems developed by team imec-
WAVES.

2) Team imec-WAVES (2022): In 2022, the localization so-
lution’s core remains similar to the approach used by Team
imec-WAVES during the IPIN 2021 competition. The main
difference was that in 2021 the EvaalAPI interface was not used,
so the solution presented in 2022 by imec-WAVES was real-time.

It consists of the following.
1) Distance estimation between each tag and anchor.
2) Range correction through a regression model.
3) Two instances of a PF for localization.

Fig. 24 shows the individual steps of the system. A custom
ranging algorithm provides range estimates for each captured
CIR. A first pass of a PF provides an initial approximation of
the user’s location throughout time, from which their motion
trajectory is calculated. A set of predictors serves as input for
the regression model. The regression outputs a scalar distance
correction that is applied to the original range estimate. A
second, final PF utilizes the updated range estimates to obtain a
better location estimate. The location estimate at each requested
timestamp is calculated by using the prediction step of the
final PF.

a) Ranging algorithm: A threshold-based algorithm is
used to calculate range or ToF. The threshold is calculated from
the noise, which is determined heuristically after partitioning the
CIR into a noise region, a region of interest which contains the
first path component, and a region with only multipath compo-
nents and noise. Algorithm parameters are obtained through the
optimization of the training data. A fixed bias correction term is
obtained from the median ranging error of each anchor’s training
data range estimates. The term is subtracted immediately after
the ranging step. Negative range results are dropped. Previous
range estimations are not used.

b) Regression model: The correction model uses
Gaussian process regression with a constant basis function and
a Matern 5/2 kernel. Training is performed with fivefold cross-
validation to reduce overfitting. Predictors are calculated from
the following.

1) The original CIR measurement (anchor number, first path
bin power and maximum bin power).

2) The location estimate (AoD from the anchor, compatibil-
ity with distance estimate, X- and Y-coordinates).

3) The motion trajectory (velocity, direction, and AoA on
the tag).

Due to the real-time character of the data in 2022, trajectory
estimation was much harder. In fact, predictors used in 2021,

Fig. 25. QQ plot of the measurement likelihood functions that are used
in the first and second PF. The first filter incorporates a function based
on a Stable distribution fitted to unbiased ranging error. The second filter
makes use of a t location-scale distribution fitted to the ranging error
after it is corrected by the regression model.

such as turning rate, proved too unreliable this time around.
Furthermore, the regression model could only be trained with
data that contained global timestamps, as these timestamps
are needed to calculate the motion trajectory. This made the
largest available set of training data not applicable for training
this model.

c) Tracking: PF algorithm was used to track the agent.
Only the X- and Y-coordinates of the MU are considered. The
particles are updated through a constant velocity motion model,
using nonadditive process noise. The first PF contains 700
particles, with a measurement noise of 0.17 m and a process
noise of 10 ms−2. The second PF contains 2000 particles, with
a measurement noise of 0.02 m and a process noise of 15 ms−2.
The measurement likelihood function to update the particles
makes use of a PDF fitted to the range estimation errors from the
training data. Fig. 25 shows the QQ plot of each distribution fit.
For the first filter, the PDF is fitted using a stable distribution
on the debiased estimates. In the second filter, a t location-
scale distribution is fitted to the ranges after correction of the
regression model.

3) Team SPSC: Team SPSC used a two-step method similar
to the algorithm presented in [50], [51]. First, a snapshot-based
parametric channel estimation and detection algorithm extracts
delays and corresponding amplitudes of multipath signal com-
ponents out of the received baseband signal. Second, a sequential
estimation algorithm estimates the state of the mobile agent
by using the delays and amplitudes as measurements. More
specifically, the sequential estimation algorithm jointly performs
probabilistic data association and estimation of the mobile agent
state together with all relevant model parameters, employing the
SPA on a factor graph. It adapts in an online manner the time-
varying component SNR as well as the detection probability of
the LOS component. The concept of probabilistic data associa-
tion, together with adaptation of the LOS detection probability,
enables the algorithm to solve the nonlinear positioning problem
and mitigate NLOS situations, while still offering an execution
time in the magnitude order of milliseconds. In the following, the
probabilistic system model of Team SPSC’s algorithm is briefly
discussed.

a) Channel Estimation and Detection Algorithm:
The channel estimation and detection algorithm presented in [51,
Supplementary Material] was applied to the baseband signal
vector at each time n and for each anchor j independently. It
provides a measurement vector z

(j)
n containing a number of
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M
(j)
n measurements z(j)

m,n = [d̂
(j)
n,m û

(j)
n,m]T. Each z

(j)
m,n contains

a distance measurement d̂(j)n,m, and a normalized amplitude mea-

surement û(j)
n,m.

b) SPA-based Sequential Estimation Algorithm:
The components of the measurement vector z

(j)
n are subject

to data association uncertainty, i.e., it is not known which mea-
surement originates from the LOS, from multipath or from a
false-alarm. Based on the concept of probabilistic data associa-
tion, an association variable is defined as

a(j)n =

{
m∈{1 . . .M(j)

n }, z
(j)
n,m is the LOS meas. in z

(j)
n

0 , there is no LOS meas. in z
(j)
n .

(4)
It differentiates between the conditional likelihood functions for
LOS and NLOS measurements, which, for the distance mea-
surements d̂(j)n,m are given as a Gaussian PDF with mean value
that is geometrically related to the agent position pn and a uni-
form PDF, respectively. The system jointly performs sequential
estimation of amplitude states u(j)

n , which are assumed to be in-
dependent per anchor. The corresponding conditional amplitude
likelihood functions are given as Rician PDF and Rayleigh PDF
for LOS or NLOS measurements, respectively. The LOS detec-
tion probability, which occurs as part of the data association prior
and represents the probability that there is a LOS component
per time step and anchor, is modeled as the product pD(uj

n) q
(j)
n ,

between the amplitude-related detection probability pD(uj
n) and

a prior LOS probability q
(j)
n . The latter is modeled discretely,

as a first-order Markov process. The likelihood functions, to-
gether with the prior PDF of the data association variable,
define the joint pseudolikelihood function g̃z(z

(j)
n ;pn, u

(j)
n ,

a
(j)
n , q

(j)
n ).

The agent state is described by the state vector xn =
[pT

n vT
n]

T, which is composed of the 2-D agent position pn

and velocity vn. The agent motion, i.e., the state transi-
tion PDF Υ(xn|xn−1), is modeled by a linear, constant ve-
locity, and stochastic acceleration model with standard de-
viation set to 1/3 of the mean step width of the mobile
agent. The state transition PDF of the normalized ampli-
tudes Φ(u

(j)
n |u(j)

n−1) is modeled as a Gaussian distribution
with standard deviation set to 5% of the last amplitude esti-
mate. The elements of the first-order Markov transition matrix
Ψ(q

(j)
n = ωi|q(j)n−1 = ωk), as well as the initial distributions, i.e.,

f(x0) p(q
(j)
0 ) f(u

(j)
0 ), were initialized heuristically as described

in [50].
By applying Bayes’ rule as well as some commonly used

independence assumptions, the factorized joint posterior PDF
is computed, which is visually represented by the factor graph
shown in Fig. 26.

The agent state is estimated as the minimum mean-squared
error estimate given as

x̂MMSE
n �

∫
xn f(xn|z) dxn . (5)

In order to obtain (5) the marginal posterior PDF is calculated
by performing message passing on the factor graph in Fig. 26

Fig. 26. Factor graph representing the factorization of the joint poste-
rior PDF and the messages according to the SPA. See [50] for further
details.

Fig. 27. Measurement environments.

utilizing the SPA rules. Since the integrals involved in the
calculations of the messages cannot be obtained analytically,
a sequential particle-based implementation is used.

X. TRACK 8: 5G IN OPEN-PLAN OFFICE (2022)

This section describes track 8, which was based on 5G in an
open-plan office and took place in 2022.

A. Track Description

Track 8 was dedicated to 5G positioning based on UL-TDOA,
which is widely adopted in 5G products. 2022 was the first time
such technology was part of an IPIN competition.

The Huawei 5G system is deployed in an indoor office in the
Huawei–Chengdu building. The area is about 15 m×15 m with
ceiling height of 3.2 m. There are working tables, chairs, and
partition panels in the room with heights in the 0.5–1.5 range.
Four pRRUs with known locations are mounted on the ceiling,
see Fig. 27. The UE is a Huawei Mate 30 Pro terminal. The UE
transmits in bursts of 80 ms. The pRRUs detects the received SRS
and calculates the positioning measurements, such as RTOA and
RSRP. The UE was fixed onto a trolley with a constant height of
1.2 m, and the UE moves at a speed of 0.2–0.5 ms−1 within the
reachable area (highlighted in green colour). During the walking
route, the UE signals to some TRPs might be blocked by tables,
partition panels and shelves. The tables and panels are made
of plywood (2–4 cm thick), and the shelves are made of sheet
metal. Hence, there may exist a mixture of LOS, near LOS,
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TABLE V
COORDINATES OF THE PRRUS

Fig. 28. Pipeline of team mobile’s solution.

and NLOS channels. Strong multipath effects may also exist
due to reflections from the environment, such as concrete walls,
columns, and other metallic objects.

Four sets of data are given, named Testing_A, Testing_B,
Scoring_A, and Scoring_B. Each set contains 1000 measure-
ments (≈85 s long) with 50 ground truth positions. Ground
truth positions are only given for the testing sets. The RTOAs is
measured by using the MUSIC algorithm with a known accuracy
of 1 ns tested in a LOS environment. There are existing timing
errors among the receivers in TRPs, called TAE. The TAEs of
the TRPs are unknown, but should be in the−100 to 10 ns range.

The coordinates of the pRRUs’s locations are given in Table V.
The ground truth coordinates of pRRUs3 are actually (12.48 and
9.75 m), that is, the xy coordinates are exchanged with each other.
This is to introduce a coordinate error, which might happen in
practice.

1) Competition Area: For IPIN 2022, due to movement re-
strictions, the data set of track 8 was collected only from one
indoor office instead of two independent indoor scenarios as
planned. Fortunately, the measured office has diverse furniture
and facilities, which enable diverse channels in different loca-
tions, such as strong LOS, near LOS, and NLOS. Four datasets
are measured in the office, and their routines are different in
time. Competitors were encouraged to develop self-localization
for UL-TDOA including TAE estimation and pRRUs selection,
possibly using artificial intelligence.

B. Description of Competitors (5G in Open-Plan Office)

1) Team Mobile: The technical route used by mobile team is
mainly based on an ML approach. Fig. 28 shows the pipeline
of team mobile’s proposed solution. First, simulated data is
generated based on data statistics for the purpose of data aug-
mentation, the training data set is built and then CatBoost [52]
is used to complete the end-to-end positioning task. Then the

Fig. 29. (a) Relationship between the RSRP received by pRRU0 and
the real distance. (b) Relationship between the difference of RSRP and
the real distance difference of pRRU0 and pRRU1.

position estimation is further corrected based on the room layout
and spatio-temporal continuity of the trajectory. Finally, KF is
used to smooth the trajectory and resample it in real-time.

a) Data Analysis and Preparation: The data provided
by Track 8 include the timestamps and eight features which are
the RTOA and RSRP estimated by the four pRRUs. Note that
there are timing errors among the receivers in pRRUs, called
TAEs. The unknown TAEs greatly affects the accuracy of TOAs
and the position estimation results, and it is also time-varying
among different datasets. In contrast, RSRP is more stable be-
cause data in all data sets are collected in the same environment.
In this case, the solution provided by Team Mobile identifies the
RSRP as the key feature.

To fully capture the RSRP feature, an ML-based approach is
planned to be used in order to derive the user position. However,
the labeled dataset provided by track 8 is too small. Thus, an
interpolation method is applied to augment the labeled data.
Then, the relationship between the RSRP received by each
pRRU and the distance in the real data are quantified. Also, the
relationship between the RSRP difference and the real distance
difference of each pRRUs is evaluated. As shown in Fig. 29,
both are negatively correlated.

Based on these relationships, the system can generate many
trajectories in a simulated experimental environment and obtain
the corresponding simulated RSRP. Meanwhile, the team can
verify the effect of the simulation method on the real dataset.
For the interpolated real trajectory in the data set of Testing_B,
the RSRP generated by the simulation algorithm has a similar
distribution with the real RSRP, as shown in Fig. 30.

b) Machine Learning (ML)-based Position Estima-
tion: When there is enough data to form the training data set,
CatBoost is used to complete the end-to-end position estimation
task. CatBoost is a supervised learning algorithm based on
gradient boosting and has excellent performance while reducing
overfitting and the time spent on tuning. The CatBoost model
takes the true coordinate [xt, yt] as a label and the RSRP and the
differences of RSRPs received by two different pRRUs as the
input vector Inputt which can be represented as shown in (7)

Inputt = [Rt
0, . . . , R

t
N−1, DRt

0,1, . . . , DRt
N−2,N−1] (6)

DRt
i,j = Rt

i −Rt
j (7)

where the N means that there are N pRRUs while Rt
i−1 means

that the RSRP received by the ith pRRUs at time t.
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Fig. 30. Distribution of the real RSRP received by pRRU0 and the
simulated RSRP of pRRU0.

c) Position Estimation Correction: Using CatBoost, a
position based on RSRP can be estimated, however, RSRP has
a large random noise that makes the estimation unstable. To
achieve a more stable estimation, the system uses additional
information to optimize the position estimation. For example,
the users cannot pass through obstacles (e.g., furniture) because
of space constraints that can be inferred from the reachable area
and the trajectory in the data set. Furthermore, due to time con-
straints, it is unlikely that the two adjacent estimated positions
are far apart. Therefore, abnormal position estimations are fixed
based on the reachable area, historical position information, and
motion direction.

d) Smoothing and Resampling Trajectory: With
these data processing methods, reliable and stable position esti-
mation can be reached. However, the normal trajectory should
be smooth and continuous. Therefore, a KF is used to smooth
the trajectory in real-time. Then, the relationship between the
recent time and the estimated position is fit and resampled to
obtain the results required by the competition.

2) Team TX8: In the IPIN 2022 competition track 8, two
sets of data are given to calibrate the algorithmic models. In
each dataset, the TOA and RSRP measurements are provided.
As already identified by team mobile, high precision positioning
requires estimating the TAEs accurately, i.e., to get the unknown
timing errors among the receivers in TRPs. In addition, since
the indoor environment is very complex, there exists a mixture
of LOS paths, weak LOS paths, NLOS paths, causing a lot of
outliers in the TOA and RSRP measurements. To achieve high-
precision positioning, the outliers must be handled reasonably.
For the TAEs estimation, the RSRP measurements are employed.
Generally, the RSRP can be expressed as follows:

σ = A− 10ηlog(d) + ε(1) (8)

where σ is the RSRP measurement, d is the distance between the
terminal and TRP, A and η are the model parameters, which can
be determined by using the datasets, and ε is the measurement
noise. In this manuscript, a Bayesian filter is employed to esti-
mate the TAEs and the location of the terminal simultaneously.
The state space model for the TAEs and location estimation can
be written as [53]

xk = F k−1xk−1 +Gk−1wk−1 (9)

zk = h(xk) + vk (10)

F k−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 T 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Gk−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2

2 0 0 0 0

T 0 0 0 0

0 T 2

2 0 0 0

0 T 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

h(xk) = [h1(xk) · · ·h3(xk)g0(xk) · · · g3(xk)] (13)

hi(xk) = di,k − d0,k + bi, k (14)

gi(xk) = Ai − 10ηi log(di,k) (15)

di,k =
√

(xk − xTRPi) + (yk − yTRPi) + 4 (16)

where xk = [xk vx,k yk vy,k b1,k b2,k b3,k]
T , xk and yk are the

horizontal coordinates of the terminal at time k, vx,k, and vy,k
are the horizontal velocities of the terminal at time k, b1,k,
b2,k, and b3,k are the TAEs of the TRPs at time k, wk−1 is
the process noise at time k − 1, T is the sampling interval,
zk = [γ1,k γ2,k γ3,k ρ0,k ρ1,k ρ2,k ρ3,k ], γi,k is the difference
of the TOA measurements of TRPi and TRP0, ρi,k is the RSRP
measurement of TRPi at time k, xTRPi and yTRPi are the horizon-
tal coordinates of the TRPi, Ai and ηi are the model parameters
of the TRPi, vk is the measurement noise at time k.

Considering the outliers in the measurements, vk is modeled
as a heavy-tailed non-Gaussian noise. Since the MCC-based
EKF can handle the heavy-tailed non-Gaussian noise by using
a robust cost function [54], the MCC-based EKF is utilized to
estimate the TAEs and the location of the terminal based on
the state space model proposed above. The workflow of the
developed algorithm is shown in Fig. 31.

3) Team DYS-BUPT: In recent years, the DYS-BUPT team
has been committed to 5G indoor positioning research to meet
the positioning needs under different indoor scenes. In track 8,
for the positioning scheme in the indoor office scene, DYS-
BUPT solution mainly includes three parts and the system block
diagram is shown in Fig. 32.

a) Neural network regression position: In the data en-
hancement part, in order to increase the amount of data for model
training and improve the generalization ability of the model,
neural networks are used to fit the wireless channel propagation
model, so as to systematically generate more training samples
to expand the training dataset, as shown in Fig. 33.

In the later position settlement part, considering that the data
are RSRP collected along the continuous motion, the single point
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Fig. 31. Workflow of the developed algorithm.

Fig. 32. System block diagram of indoor positioning scheme.

Fig. 33. Module A system block diagram.

matching method may cause a large positioning error. The posi-
tion of the dynamic target is constrained by space and time, so a
recursive neural network is adopted. This network is no longer
like the traditional fingerprint positioning, which only relies on
the fingerprint of a certain point to locate each time. Instead, it
takes into account the correlation of RSRP measurements in the
continuous trajectory, considers the space and time constraints
of the motion trajectory on the basis of single point matching,
realizes the correlation of time and location information of RSRP

Fig. 34. Module B system block diagram.

in the trajectory, and transforms discrete positioning tasks into
continuous time series feature discovery tasks.

b) KF fusion position: In the part of data processing,
the clock error between TRP and UE is calculated based on
the first point given in the regression model and the TOA
information collected and then obtain unbiasedTOA data based
on the clock error and the originalTOA. Finally, according to
3 · σ The criterion filters the data and smooths the abnormal
value TOA, as shown in Fig. 34.

In the data solution part, the position at the previous time
is fused with the data collected at this time through Kalman
filtering to obtain the Kalman location estimation at time k. At
the same time, the system obtains the LLOP estimation value
at time k by solving the LLOP algorithm, and combines the
two positioning methods with empirical weighting to obtain the
positioning estimation value of Module B.

c) Numerical weighted fusion and trajectory correc-
tion: In module C, the location estimates obtained from modules
A and B are empirically weighted to achieve better results. Then,
consider the actual situation, and calibrate the areas that cannot
be reached by pedestrians, such as points outside the room, to
obtain more reliable results.

XI. RESULTS

In this section, we report the overall scores for each track
and its competitors in editions 2021 and 2022 of the IPIN
Competition. Table VI presents the results for the 2021 edition,
while Table VII presents the results for the 2022 edition. In both
editions, as usual in the IPIN competition, the reported results
correspond to the third quartile of the error metric, which is the
2-D positioning error plus a floor penalty of 15 m. Each track
defined a cutoff threshold to be eligible for a prize. i.e., teams
providing an error larger than the cutoff were not awarded a
prize. Given the large errors provided by some teams in 2021,
very large errors were reported differently in 2022. For the 2022
edition, the errors larger than three times the cutoff value are
represented by > 3 × 15 in tracks 3 and 4, and by > 3 × 40 in
track 6.
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TABLE VI
RESULTS 2021

TABLE VII
RESULTS 2022

Table VIII gives the main techniques used in the systems
described within this manuscript, where inertial techniques
(PDR or PDR with ZUPT) are used by all teams in tracks
3, 4, and 6. Fingerprinting is also used by smartphone-based
positioning, using only Wi-Fi, BLE, or the combination of
both signals and magnetic field. Floor estimation exploits
barometer information.

Fig. 35. Trajectory plot of track 2 winner’s best scoring trial. The esti-
mated trajectory (est trj) is evaluated against the ground truth trajectory
(gt trj) at predefined reference points (ref pts) based on horizontal Eu-
clidean distances to the corresponding estimated points (est pts) with
an additional penalty for incorrectly estimated floor (marked with floor
error).

As far as algorithms are regarded, a PF is used in Tracks 3 and
7. It is combined with map information. However, some teams
also used environmental information without combining it with
PFs, see the description of teams X-LAB and WHU-GD.

Another important element from the table is that some teams
participated in more than one track: X-LAB and imec-WAVES,
although they use different techniques in different Tracks.

Thus, we see from the table that the tracks created correspond
to different solutions and there is little overlap among different
tracks. The most overlap is among tracks 3 and 4, however, they
are physically very different: track 3 is based on smartphones
that can exploit the combination of data provided by low accurate
built-in sensors of different nature; and track 4 is solely based
on a higher-quality IMU, which enables the integration of better
inertial information in the navigation algorithms.

KF and its variants are used in tracks 3, 7, and 8.

A. Track 2

Two teams participated in Track 2 competition: team1 was
SZUSCRI from Shenzhen University and Smart City Research
Institute; team2 was CamLoc from Beijing University of Posts
and Telecommunications.

During scoring trials, the competitors connected to the testing
server and started receiving testing images and returning back
pose estimations. Each subsequent image was sent only after
receiving the pose estimation of the previous image. The com-
petitors had no indication of which images were to be used as
reference points.

At the end of the scoring trial, the reference points were used
to calculate position errors as a sum of two terms: a position error
calculated from the Euclidean (horizontal) distance between the
estimated position and the corresponding ground truth and a
floor error penalty of 15 m. The third quartile error of the best
scoring trial for each team was 3.2 m for team SZUSCRI and
2.1 m for team CamLoc (see Table VII Track 2: Camera). The
trajectory of the scoring trial for the winner CamLoc is shown
in Fig. 35.
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TABLE VIII
MAIN TECHNIQUES USED BY THE TEAMS PROVIDING FULL DESCRIPTION

Fig. 36. Trajectory plot of track 3 (2021) best scoring trial (top) and a
postprocessed trial (bottom).

B. Track 3

In 2021, a total of 16 teams registered in the competition
but only four of them were able to submit the results with the
EvaalAPI. This means a significant drop in participation when
compared to previous editions, where 11 (2020), 12 (2019),
and 13 (2018) teams submitted the results. Moreover, the best
team scored an error of 4.4 m while the runner-up’s error was
7.9 m, in phase with what is expected for smartphone-based
solutions according to previous on-site competitions [5]. The
lower participation and the scores in 2021 reinforced the idea
that the EvaalAPI was necessary to stress real-world on-site
evaluation features in track 3. Fig. 36 shows the trajectory for the
winner in 2021 (top plot) and the trajectory of a post-processed
trajectory like in previous editions (bottom plot).

Fig. 37. Trajectory plot of track 3 (2022) best scoring trial.

In 2022, a total of ten teams registered in the competition but
only seven of them were able to start the procedure to submit
the results with the EvaalAPI. This means that interested teams
made an effort to adopt the EvaalAPI for evaluation. The number
of teams providing reliable results was in phase with the previous
edition, but only two teams repeated and participated again. In
this case, the best team scored an error of 30.1 m while the
runner-up’s error was 39.8 m, both (of which are) above the
cutoff of 15 m of track 3. Therefore none of the participating
teams was eligible for the award as the overall lowest error
was below the expectations for a smartphone-based positioning
solution. Fig. 37 shows the trajectory for the best-performing
trial in 2022, where we can observe very large positioning errors
in several parts of the trajectory. The results of the other three
participating teams are not shown as the errors were three times
larger than the cutoff of 15 m.

In both editions, the use of advanced PF and/or KF is a core
element to deal with smartphone data, including Wi-Fi finger-
printing and internal measurements. This requires properly rep-
resenting the information contained in the provided floorplans.
3-D graphs are only used by one team, which seems a promising
solution. In addition, the PF and KF filters need to have good
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Fig. 38. Evolution of the two first scores of track 4 over the last five
years.

strategies for settling the initial position and orientation as well
as correcting locations in case of severe deviation.

In the 2022 edition, where the number of different devices
used was higher and without BLE infrastructure supporting
indoor localization, the competitors scored a positioning error
much worse than usual. This even happened to the system
developed by the imec-WAVES team, who has participated in
the competition for many years. This highlights the relevance of
having multiple heterogeneous environments to test every single
solution, as a good promising indoor positioning system may not
fit all environments.

Analyzing the best performing trials (see Figs. 36 and 37),
we can observe that the outputs provided by the competitors
are more realistic than those provided in previous editions with
off-line evaluation. First, trajectories are not shown as perfectly
drawn straight lines as in previous editions (see [4] and Fig. 36)
as noise from sensors is visible in the trajectories as zigzag
movement, drifts or messy trajectories in a challenging walking
style. While short-term displacements can be captured, see text
IPIN between points 35–39 in 2021 and text T3 between
points 58–59 in 2022, noise and drift remain there. Second, the
trajectory cannot be fixed a posteriori, so a large error in the
initial location can end up in a large positioning error over the
whole trajectory as it happened in 2022. Third, integration with
other sources to fix the location in real-time, like map-matching
may be more challenging and filters like PF and KF are compu-
tationally demanding. Those three elements can be seen in the
simulated phone call of around 1 min performed in 2021 between
points 25 and 26. The trajectory of the best trial is messy during
the phone call, it is not fixed either in the short or in the long
term, and it transverses some walls, while in a postprocessed
trajectory, the trajectory between those two key points is drawn
as a straight line.

C. Track 4

In 2021, a total of three teams registered for track 4, of
which only two were able to deliver results via the EvaalAPI
platform. This year was the first time that the EvaalAPI plat-
form was deployed for track 4. As shown in Fig. 38, there
is a large gap in terms of final results before and after the
introduction of the EvaalAPI platform. The best score before
introducing the EvaalAPI platform, where full CSV files were

Fig. 39. Trajectory plot of track 4 (2022) best scoring trial.

shared with competitors in a postprocessing mode, was 0.5 m.
However, it increased to 62 m in 2021 with EvaalAPI in a
quasi-real-time mode. Although this can be partly explained
by competitors’ lack of familiarity with the new platform, the
main reason is the causal effect, which does not provide access
to future information and makes forward-backward adjustment
impossible. Compared with other tracks, track 4 is particularly
affected by this effect due to the error accumulation of the inertial
sensors. Not many absolute “resets” can be performed on track
4, especially in GNSS-denied environments.

In 2022, a total of five teams chose to compete in track 4.
Four teams were able to output quasi-real-time results via the
EvaalAPI. We note that this is better than the previous edition,
both in terms of the number of registered teams and teams able
to produce results. As we can see in Fig. 38, the winner achieves
an accuracy of about 77 m. Even if it seems worse than the
previous editions, a real improvement was achieved taking into
account the complexity of the trajectory this year as displayed in
Fig. 39. We can see clearly that compared with the ground truth
pattern (in green), the competitor’s estimated trajectory suffers
from a continuous rotation drift, which is typical for the dead
reckoning algorithm. The figure shows the best 2-D trace since
the introduction of EvaalAPI. Its final score of 76.9 m versus
61.9 m for the winner of 2021 is explained by the poor quality
of floor estimation that led to 15 m of penalties.

D. Track 7

In 2021, a total of seven teams provided results for the chal-
lenge (see Table IX). Different approaches were investigated by
the competitors: three teams relied on LOS-error mitigation ap-
proaches, three relied on PFs, and one on a C-SLAM approach.
Due to the environment changes, the PF-based approaches dete-
riorate heavily in performance from Test 1 to 2, as the models are
fitted to the specific environments. The EMI-based approaches
do not exhibit this problem, as the environmental conditions stay
similar. The same holds for the C-SLAM approach. Team ISCAS
and Waves shared the first place with almost identical 75th error
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TABLE IX
75TH PERCENTILE OF THE ABSOLUTE ERROR IN m FOR THE 2021 TRACK 7 COMPETITION

TABLE X
75TH PERCENTILE OF THE ABSOLUTE ERROR IN m FOR THE

2022 TRACK 7 COMPETITION

percentiles of 0.0896 and 0.0891 m (the error differences are
within the accuracy limits of the reference system), while team
SPSC took the third place with an average score of 0.1594 m with
a very consistent accuracy for both environments, which indi-
cates good generalization properties. In general, the competition
is advantageous for EMI approaches. In fact, the high number of
anchors provides redundancy high enough that reliance on LOS
connections yields sufficient spatial information for accurate
tracking. As a consequence, no additional multipath informa-
tion, which is exploited by the other approaches, is required.

In 2022, a total of four teams provided results for the chal-
lenge, as detailed in Table X. Team ISCAS achieved the highest
performance with a score of 0.20 m, while team IMEC is very
close with a score of 0.21 m so that both teams share the first
place. Lower results are achieved by team WHU with a score of
0.51 m and team CUMT 1.06 m. The results show that the change
of the agent for data acquisition and inference is feasible, as all
competitors achieved reasonable accuracies. Teams ISCAS and
IMEC have shown that very high performances can be achieved,
which indicates that data-driven algorithms can generalize well
to different agents. The deterioration of the results w.r.t. 2021
challenge can be explained by the different agents and the
quasi-real-time processing of the data to obtain results with the
novel introduction of the EvaalAPI.

XII. LESSONS LEARNED

A. Lessons Learned by Competitors

1) Track 2—Camera:
a) Team CamLoc: Tested many mainstream visual.

Localizing algorithms. Table XI, summarizes their advantages
and disadvantages.

2) Track 3—Smartphone:
a) Team imec-WAVES: Learned that calculating wall

intersections ad hoc for each particle of their PF is very time-
consuming. Because of this and the limited time to upload a new
position, they could not use many particles. This made it hard

for the PF to recover from mistakes, e.g., turning into the wrong
room. However, the reset mechanism worked well, so they still
obtained good results. The 3-D graph solved this problem and al-
lowed them to use more particles. In 2022, some new difficulties
were introduced: some smartphones did not have a magnetome-
ter and/or barometer, no beacon locations were provided, and
the quality of the RSS fingerprints was worse than in 2021. The
SmartPDR algorithm relies on the magnetometer and, therefore,
the fallback PDR algorithm was not available, thus one of the
three trials failed immediately, because of the possibility of a
missing barometer and the bad RSS fingerprinting performance,
this team could not put confidence in (i.e., gave low weights to)
the floor (transition) detection, and the RSS fingerprint matching
algorithms. This was a mistake because the path estimation
algorithm did not respond to correct floor transition detections
and therefore stayed mostly on the same floor.

b) Team X-LAB: Identified that the phone used for col-
lecting the data should be fully considered in the fingerprint
location process. They also found that it is especially important
to prioritize the correctness of each module in the position-
ing system rather than improving the accuracy of a particular
module. An incorrect module will greatly reduce the overall
positioning accuracy, just like the barrel effect.

3) Track 6—Smartphone on Vehicle:
a) Team WHU-GD: identified that the GNSS raw mea-

surements are important to help determine the GNSS signal
quality and that those systems that fuse the GNSS raw measure-
ments and the IMU have potential to provide better accuracy
and robustness.

4) Track 7—CIR in Warehouse:
a) Team imec-WAVES: Listed their lessons learned

as follows.
1) Our approach is less suited to agent generalization than

environment generalization, which was at the heart of the
2021 IPIN T7 competition. Training data was therefore
rather limited and probably contributed to the reduced
precision in comparison to last year’s result.

2) Attempts to characterize error and ranging reliability
based on x and y position were not fruitful.

3) While successful, the constant velocity PF fails to cap-
ture the intricacies of the agent, human, or robotic. The
inclusion of higher order terms, a more dynamic approach
to the PF motion model or a mixture of models will be
investigated in the future.

4) No access to future data points for a given timestamp
creates problems for reliable motion and angle estimation
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TABLE XI
SUMMARY OF THE MAINSTREAM VISUAL LOCALIZING ALGORITHM

in the trajectory, as the initial PF is quite noisy. Some
predictors have lost their use because of it and were
therefore omitted.

5) Limited precision of bin timestamps reduced ranging pre-
cision; output format should be more carefully checked
by organizers.

6) Increased fairness and straightforwardness of the online
submission platform outweigh the technical hurdles that
had to be overcome.
b) Team SPCSC: Proposed a model-based method,

Bayesian approach, which does not use the provided training
data at all. They used parts of the training data to calibrate the
anchor positions. Analyzing the results of track 7 of the IPIN
2021 challenge their proposed algorithm compares well to the
proposed ML-based approaches, consistently showing robust
behavior for all data sets and being only slightly outperformed in
terms of accuracy. An important aspect of the methods presented
in [50] and [51] is the nonuniform NLOS likelihood, which al-
lows the information contained in multipath to be fused in a soft,
Bayesian manner [55], i.e., it constrains the PF-based position
estimate using information contained in the NLOS measure-
ments. However, when there is a LOS connection to at least two
anchors and these anchors provide enough directional diversity
for accurate positioning, the NLOS information has virtually
no effect (especially when the mirror sources due to walls in
the environment setup are far away). A comparison showed that
changing the NLOS likelihood from the proposed nonuniform
to a uniform distribution led to no significant difference in
the resulting performance metrics. The scenario investigated in
track 7 of the IPIN 2021 challenge comprised data of seven
anchors. The LOS to every anchor was obstructed over large
parts of the trajectory. Due to a large number of anchors, there
were only partial obstructed LOS situations, i.e., the LOS to all
anchors was never obstructed simultaneously over significant
time intervals. Therefore, unlike [50] and [51], the method
described in Section IX-D3 does not involve a nonuniform
NLOS likelihood. The team assumed that ML-based methods
that learn a nonlinear regression model that maps to the agent
position pn can, in turn, exploit small differences in the imprint
of the provided radio signal data, leading to the observed gain
in estimation accuracy.

5) Track 8—5G in Open-Plan Office:
a) Team Mobile: Proposed an end-to-end solution based

on a ML approach. Moreover, they used statistical knowledge
to augment data and generate simulated data so that the model
could be effectively trained. They believe that if there is more

real data as the training data set, the CatBoost can perform
better. However, the current solution does not integrate TOA
information well and the trained CatBoost model is unable to
cope with the unknown environment.

b) Team TX8: Identifies that in Track 8, to realize high-
precision positioning, the TAE should be estimated accurately
and the outliers caused by the weak LOS paths and NLOS paths
must be handled reasonably. They used the RSRP measurements
and a path loss model for the TAE estimation. To deal with the
outliers in the measurements, the MCC-based EKF was devel-
oped. In addition, this team identified that the position and ve-
locity constraints can be used to further reduce positioning error.

B. Lessons Learned by Track Chairs

1) Track 3—Smartphone: Three major lessons learned arose
from organising the competition in 2021 and 2022 and the
integration with EvaalAPI. First, with the integration of real-time
assessment, data sampling should be decreased as processing
sensors with sampling frequencies of 200Hz or higher may
not allow real-time processing on the competition side. Second,
device diversity should be handled carefully as some devices
lack the sensors required for positioning or they may behave
under expectations. Finally, the location of the anchor seems
decisive to avoid the presence of very large errors, while being
provided the location of BLE beacons in 2021, no information
about the infrastructure was provided in 2022, which drove to
unexpectedly high positioning errors.

2) Track 6—Smartphone on Vehicle: In track 6 smartphone
on-vehicle, four teams were registered and three teams submitted
their final results. Two final scores were under 40 m, with the best
one at 14.7 m. The key to success appears to be the well-executed
combination of vehicle motion constraint information and mag-
netometer observations including IMU preintegration, ZUPT,
NHC, magnetic heading and graph optimization. Considering
the long interruptions of GNSS signal in the test data, more to
the point is to maintain the vehicle heading accurately.

Considering that more and more mobile phones can support
differential positioning, differential positioning results may be
provided to improve positioning accuracy. In addition, changing
the posture of the mobile phone during the test can be considered,
as this is a typical case in a real scenario.

3) Track 7—CIR in Warehouse: The presented data are ad-
vantageous for EMI approaches because of the high number of
available anchors. To allow for a fairer comparison with other
approaches, future competitions may feature a lower number
of anchors.
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C. Lessons for Competition Organizers

Based on our experience in organizing wide-scale competi-
tions in interesting scenarios, we can provide some insight that
can be useful to scholars and organizers of future competitions.

Among good practices in the framework of such competition
organization, we may also include: getting information about the
site, taking the time to carefully prepare the path and choosing
the proper system able to produce your ground truth.

The first two points involve significant time and effort and
should be planned well in advance together with trips for on-site
surveys and measurements.

The third point, that is producing the ground truth, is a key
enabler for any competition. Measuring reference point posi-
tions by hand and using a 3-D scan are the two ways used by
Track chairs. Advantages of 3-D scans are accuracy, which in
2018 we estimated between 2 and 10 cm [3], [56], and one-shot
postprocessing. Disadvantages are being tied to the chosen site
if you do not have the skill or the equipment to do the survey
yourself, with the risk that your ground truth database will one
day or another be known or learnt by future competitors.

D. Future Direction of the IPIN Competition

Off-site tracks have become more realistic with the intro-
duction of EvaalAPI, an interactive, real-time, causal interface,
which is intended to emulate a real environment similar to that
of on-site tracks.

Challenges ahead are to make the results of on-site and off-
site tracks comparable on a regular basis. Ideally, this would
involve choosing the same environment for analogous on-site
and off-site tracks, as it was done in 2019 for smartphone-based
tracks 1 (on-site) and 3 (off-site). At that time, EvaalAPI was not
available, but this is what was done again in the 2023 edition,
for which results are yet to be published.

XIII. OPEN CHALLENGES AND FUTURE WORK

The IPIN competition has grown in the past years, up to
hosting six off-site tracks in 2022. In the last three years, since
2020, it has only hosted off-site tracks, but has started again with
on-site tracks in 2023.

The main challenge is to keep it interesting for organizers to
dedicate their time to it and for competitors to participate. These
two objectives are partially conflicting.

Most organizers are from the academy, and are not funded for
their involvement in the competition. Their main interest lies
in discussing and experimenting with new ideas, and generally
advancing the state of the art in the field. This can be done by
adding new tracks, possibly rotating among them from year to
year, or by updating the challenges provided by old Tracks.

On the other hand, advancements should not be leaps forward,
as this may alienate interest from competitors, which is linked
to being able to test and show off their methods and algorithms.
For new competitors, this involves being able to learn from
past competitions. For recurring competitors, this involves a
stable API.

Judging from the continuous and appreciative involvement of
organizers, competitors, and the IPIN Conference management,
IPIN competitions have so far managed to meet both objectives
of novelty and stability, in a delicate balance.
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