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Abstract— Vulnerable road users like pedestrians, pedal-, and
motorcyclists have accounted for an increasing proportion of
traffic fatalities in the last 15 years. Simultaneously, harmonic
radar systems have been implemented for applications where
distinction between specific targets and surrounding clutter is
required. However, the doubled frequencies conventionally used
in harmonic radar systems are not licensed for automotive
applications. Connecting the 76–81 GHz automotive band with
the 134–141 GHz currently going through regulation instead
necessitates what we propose to call inharmonic radar. There-
fore, an innovative frequency modulation instead of doubling
is required. This modulation is achieved and presented in this
work with an active tag based on a novel 1.75 times fractional
frequency multiplier. It successfully implements the required
frequency conversion upward of –53 dBm of input power with
undesired spectral components suppressed by more than 20 dB.

Index Terms— Automotive, clutter suppression, D-band,
frequency-modulated continuous wave (FMCW), harmonic,
inharmonic, millimeter-wave (mm-wave), radar, SiGe, tag, vul-
nerable road users, W-band.

I. INTRODUCTION

AUTOMOTIVE radar sensors have become an integral
part of the sensor technology integrated into today’s

cars. The main aim is increased traffic safety for people
inside and surrounding the vehicle. However, according to the
National Highway Traffic Safety Administration (NHTSA),
the proportion of fatalities assigned to the group of outside
vehicles, consisting of motor- and pedal cyclists, pedestrians,
and other nonoccupants, has increased by 70% since 1996 [1].
This includes the highest number of fatal bicycle accidents
in 2021 since data collection of the fatality analysis reporting
system (FARS) started in 1975 [2]. Accordingly, the safety of
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Fig. 1. Block diagram of the targeted inharmonic radar application. Utilizing
the potential future automotive band from 134 to 141 GHz as the clutter-free
receive channel is proposed for spectral compliance. This requires a tag based
on novel 1.75 times frequency multiplication, which is presented in this work.

vulnerable road users with a small radar cross section (RCS)
should be of growing concern.

Therefore, we have presented a harmonic radar system in
previous research [3], [4], [5]. It allows for detecting vulner-
able road users like pedal cyclists in a separate, clutter-free
receive channel. To distinguish them from the stronger linear
reflections of their surroundings, they are equipped with an
active tag. By multiplying the frequency of the received ramps
by a factor N inside of this tag, they are, in theory, the only
targets appearing when downconverting with this multiplied
ramp at the radar system. The previous work is in line with
other harmonic radar systems also based on N = 2 [6], [7],
[8], [9], [10], [11], [12], [13], [14]. Advantageously, frequency
doubling is easily realizable even at millimeter-wave (mm-
wave) frequencies by Gilbert-cells or push-pull-doublers [15].
Medical applications, as presented in [16], can utilize that
approach directly, thanks to the location of the ISM bands
at 61/122 GHz [17]. In our case, the harmonic frequencies
from 152 to 162 GHz are not licensed for automotive applica-
tions. They instead are part of a larger frequency band ranging
from 151.5 to 164 GHz currently considered for 6G [18], [19].

Instead, a new automotive band around 140 GHz is cur-
rently being discussed [20]. Emerging as a firm favorite is
the frequency band ranging from 134 to 141 GHz, which
has already enticed the design of transceivers addressing
this potential application [21], [22]. Among the advantages
expected from this new band is an increased bandwidth
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Fig. 2. Block diagram of the proposed frequency multiplier. To generate
fout = 1.75 · fin, a quarter of the input frequency is subtracted from its
doubled signal with an SSB-mixer. Additionally, the simulated differential
large signal power into every component after interstage matching losses is
given, as well as their individual current consumption from a 3.3-V supply.

of 7 GHz. It can be utilized to improve range resolution
and interference avoidance, while angular resolution benefits
from the reduced wavelength [23], [24]. Apart from those
advantages for fundamental radar systems, this potential new
band represents a possibility for the tag-based detection of
vulnerable road users to adhere to the regulations of the future
frequency spectrum.

Instead of harmonic, the relation between the two bands
necessitates what we propose to call inharmonic radar,
in harmony with music theory [25], [26], therefore, requir-
ing an innovative frequency conversion approach. It is the
topic of this article and achieved with a tag based on a
novel N = 1.75 frequency multiplier. The resulting har-
monic seventh of the automotive band from 76 to 81 GHz
equals 133–141.75 GHz, thus covering the potential new band
from 134 to 141 GHz completely, as illustrated in Fig. 1
alongside the targeted application.

II. MONOLITHIC MICROWAVE INTEGRATED CIRCUIT

The developed realization of this uniquely required fre-
quency conversion is illustrated in Fig. 2. It is based on the
frequency doubler from the harmonic tag presented in [4],
complemented by a /4-divider. Subsequently, a single-sideband
(SSB) mixer is used. It consists of two individual mixer cells
multiplying its 90◦ phase-shifted input signals in the time
domain. Adding the mixers’ outputs as

sout(t) = cos
(ωin

4
t
)

· sin(2ωint) − sin
(ωin

4
t
)

· cos(2ωint)

= sin(1.75ωint) (1)

exclusively results in the desired multiplication factor.
To come as close to this perfect sine wave at the desired

frequency as possible, the phase-shifted, or IQ, signals are
required. A scaled version of the integrated hybrid coupler
presented in [27] provides those for the doubled frequency.
A layout view is depicted in Fig. 3(a). Port 1 acts as the input,
while Port 4 is isolated with a 100-� resistor. The outputs at
the other two ports are designed to offer the required phase
shift with a low-amplitude imbalance.

A /4-divider based on two subsequent /2-stages provides
the other required frequency. Each stage consists of a fedback
D-Flip-Flop comprised of two latches. Both are realized in
emitter-coupled logic (ECL) with inductive shunt peaking
exclusively in the first stage [28]. The schematic of the
/4-divider and specifically the second stage is illustrated in

Fig. 3. Components responsible for the generation of the IQ signals:
(a) scaled version of the Lange coupler presented in [27] for the doubled
frequency and (b) the intrinsic 90◦ phase shift between the two latches of the
second divider is used for the IQ generation of the quartered input frequency.

Fig. 4. (a) Micrograph of the realized tag with a close-up of the novel
frequency multiplier. (b) Photograph of the measurement setup.

Fig. 3(b). Utilizing the output of both latches provides the
required IQ signals [29]. A buffer amplifies each before acting
as one input of the corresponding mixer, both of which
consist of the same Gilbert-cell with an inductive load, similar
to [30].

These individual components come together on the realized
tag, of which a micrograph is presented in Fig. 4(a), with a
close-up of the 1.75 frequency multiplier. As to not introduce
additional phase and amplitude imbalance, a significant focus
was placed on the symmetry of the layout. Therefore, the
input is matched to the frequency doubler and /4-divider
simultaneously, which are arranged in series. Thus, only one
orthogonal crossing of the doubler’s input and the divider’s
output is required. The coupler’s output and mixer’s input
are designed point symmetrically for identical transmission
line lengths. An amplifier chain is located in front of the
multiplier, as presented in [4]. It is essential as the way to the
tag primarily limits the maximum range by defining an R−2

proportionality when achieving Psat instead of R−6 if not [4],
[7]. Additionally, the sensitivity curve of the introduced divider
means that for input powers that are too low, the output power
at the desired frequency will equal zero when the divider stops
working. The amplifier chain will stop that from happening
for as high of a range between the tag and the radar as
possible.
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Fig. 5. Output spectrum measured single-endedly for a desired frequency of
137.5 GHz. The signal of 1.75 fin is clearly the strongest, with good spectral
purity. In the final application, it will be further improved by the symmetrical
load, bond wires included in the output matching, and filtered by the antenna.

In total, the monolithic microwave integrated circuit
(MMIC’s) dimensions are 1448 × 1964 µm2 with an active
area of 500 × 1790 µm2. It consumes a current of 120 mA
from a 3.3-V power supply.

III. MEASUREMENT RESULTS

Subsequently, the tag is measured on a probe station to
validate its functionality. Therefore, the input signal is pro-
vided by a PSG by Keysight Technologies and multiplied via a
frequency sextupler to reach the automotive band. The output
spectrum is measured single-endedly with Keysight’s UXA
with a waveguide probe attached to a WR6.5SAX from VDI,
as shown in Fig. 4(b). The resulting spectrum for a desired
center frequency of the 134–141 GHz band of 137.5 GHz is
shown in Fig. 5. Clearly, the desired frequency at 1.75 fin
represents the strongest signal. The undesired sideband at
2.25 fin offers a sideband suppression of 23.8 dB. Additionally,
the measurement shows leakage at 2 fin with an amplitude
21.8 dB lower than the desired frequency. While those results
are promising, as shown, they are expected to improve further
in the final application. The 2 fin leakage is significantly
reduced when applying a symmetrical load in simulations.
Additionally, the matching network at the output was designed
to include bond wires, with which the sideband suppression is
increased. Finally, the tag PCB will include an antenna whose
resonance bandwidth further filters the output signal.

As the frequency conversion with high spectral purity is
verified successfully, the dependency of the input power is
subsequently investigated. It was varied by a programmable
attenuator behind the W -band sextupler. The obtained results
for the minimum, center, and maximum frequencies of the
desired band are presented in Fig. 6. For an input power P3 dB
of −49 to −53 dBm, the tag sends out upward of 3 dB less than
its saturated output power. This Psat reaches up to −12 dBm
single-endedly. The maximum conversion gain of 40 dB results
in an equivalent RCS of 0 dBsm for antennas with 12 dBi at
input and output, when calculated as shown in [3]. Inside an
inharmonic radar at fout =137.5 GHz, saturation occurs, if

PRX,tag = PTX + GTX,f + GRX,f − FSPLf > −53 dBm (2)

with the radar system’s and tag’s antenna gain and the
free-space path loss at the fundamental frequency as GTX,f,

Fig. 6. (a) Compression curve of the inharmonic tag measured on-chip at
the minimum, center, and maximum frequencies of the desired band. The tag
sends out its Psat down to −49 to −53 dBm of the input power, depending
on the frequency. (b) Resulting in a maximum conversion gain of 40 dB and
calculated RCS of 0 dBsm with assumed 12 dBi input and output antennas.

TABLE I
STATE-OF-THE-ART FREQUENCY CONVERTING RF TAGS

GTX,f, and FSPLf, respectively. Subsequently, the power
received at the radar system PRX,i can be calculated as

PRX,i = Psat + GTX,i + GRX,i − FSPLi (3)

with the system’s and tag’s inharmonic antenna gain GRX,i
and GTX,i, and inharmonic free-space path loss FSPLi, respec-
tively. Due to the sophisticated multiplication factor with its
additional components, the presented tag exhibits a higher
current consumption than the state of the art in Table I.
However, the parameters for the link budget compare very
favorably. Therefore, it should allow for tens of meters of
detectable range in the targeted radar application, while intro-
ducing spectral compliance for automotive.

IV. CONCLUSION

In this article, we presented an active tag for automotive
applications. It successfully connects the current automotive
band at 76–81 GHz with the likely future band at 134–
141 GHz. Therefore, an implementation of a 1.75 frequency
multiplier was proposed and realized. For a desired center
output frequency of 137.5 GHz, a suppression of undesired
sidebands and the LO signal of at least 21.8 dB were measured
single-endedly. The tag sends out its Psat upward of −53 dBm,
which should allow for tens of meters of clutter-free detectable
range inside an inharmonic radar.
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