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ABSTRACT: As the adoption of  Electric  Vehicles  (EVs)  intensifies,  two primary  challenges emerge:  limited range due to
battery  constraints  and  extended  charging  times.  The  traditional  charging  stations,  particularly  those  near  highways,
exacerbate  these  issues  with  necessary  detours,  inconsistent  service  levels,  and  unpredictable  waiting  durations.  The
emerging technology of dynamic wireless charging lanes (DWCLs) may alleviate range anxiety and eliminate long charging
stops; however, the driving speed on DWCL significantly affects charging efficiency and effective charging time. Meanwhile,
the  existing  research  has  addressed  load  balancing  optimization  on  Dynamic  Wireless  Charging  (DWC)  systems  to  a
limited extent. To address this critical issue, this study introduces an innovative eco-driving speed control strategy, providing
a  novel  solution  to  the  multi-objective  optimization  problem  of  speed  control  on  DWCL.  We  utilize  mathematical
programming methods and incorporate the longitudinal dynamics of vehicles to provide an accurate physical model of EVs.
Three  objective  functions  are  formulated  to  tackle  the  challenges  at  hand:  reducing  travel  time,  increasing  charging
efficiency, and achieving load balancing on DWCL, which corresponds to four control strategies. The results of numerical
tests indicate that a comprehensive control strategy, which considers all objectives, achieves a minor sacrifice in travel time
reduction while significantly improving energy efficiency and load balancing. Furthermore, by defining the energy demand
and speed range through an upper operation limit, a relatively superior speed control strategy can be selected. This work
contributes to the discourse on DWCL integration into modern transportation systems, enhancing the EV driving experience
on major roads.
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1    Introduction
Road  transport  is  responsible  for  the  lion’s  share  of  fossil  fuel
consumption  and  carbon  emissions  within  the  global
transportation  matrix  (Chai  et  al.,  2016; Ehsani  et  al.,  2016).
Addressing  critical  global  challenges,  such  as  climate  change  and
the  energy  crisis,  calls  for  a  paradigm  shift  towards  a  sustainable
road  transport  system.  In  this  context,  Electric  Vehicles  (EVs)
emerge  as  a  beacon  of  hope,  rapidly  gaining  traction  and
popularity  (He  et  al.,  2022; Liu  et  al.,  2022a; Zhang  et  al.,  2022).
Yet,  the  adoption  curve  of  EVs  is  somewhat  tempered  by
persistent user concerns, notably the vehicle’s range (Ahasan et al.,
2022; Ruan  and  Lv,  2022; Zhang  et  al.,  2021b)  and  the  inherent
charging  latency  (Aljehane  and  Mansour,  2022; Boddapati  et  al.,
2022; Ji et al., 2022).

Drivers’ range  anxiety  can  be  alleviated  by  the  emerging
Dynamic  Wireless  Charging  (DWC)  technology,  which  uses  a
charging  infrastructure  embedded  under  the  road  surface  to
transmit  power  to  the  vehicle’s  inductive  pickup  assembly  while
the  vehicle  is  moving  to  provide  charging  for  a  moving  electric
vehicle.  It  does  not  require  the  EV  to  stop  while  it  is  charging,

which can reduce the travel time for charging technologies on the
move  (He  et  al.,  2020; Kim  et  al.,  2019).  DWC  lanes  can  be
considered  charging  stations  when  a  high  demand  for  EVs  that
need to be charged. Thus, DWC technology will promote the use
of electric vehicles and significantly change the development of the
road  transportation  sector.  For  those  keen  on  real-world
applications,  DWC  is  not  just  a  concept  confined  to  research
papers. Several industrial applications have been pioneered across
the globe. Recently, an Israeli technology company, ElectReon, has
completed  the  deployment  of  its  dynamic  wireless  charging
system  on  1.65  km  (1.02  miles)  of  public  roads  on  the  Swedish
island  of  Gotland  (Radu,  2022).  Also,  in  other  countries  and
regions,  electric  vehicles  are  operating  on  roads  using  DWC
technology,  for  example,  the  Qualcomm  Halo  DEVC  in  France
(Hilton, 2017) and the OLEV tram installed in the Grand Park in
Seoul, Republic of Korea (Jang et al., 2016). In Fig. 1, we highlight
some  of  the  trailblazing  initiatives:  Bombardier’s  PRIMOVE
System,  Qualcomm’s  Halo  DEVC,  KAIST’s  OLEV  tram  system,
and  notable  applications  from  Chinese  cities  like  Nanning,
Suzhou, and Changchun.

According  to He  et  al.  (2020),  the  application  of  DWC  lanes
was  mainly  analyzed  in  inner  city  areas.  However,  with  the
advancement of battery technology, the charging demand for EVs
often  occurs  in  inter-city  trips.  In  DWC  lanes,  EVs  need  to
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increase  their  state  of  charge  (SoC)  at  low  speeds  over  a  limited
DWC  section.  However,  slowing  down  on  the  freeway  is  not
acceptable  for  vehicles.  The  limited  number  of  freeway  service
areas and varying service rates make it  impractical  to build more
charging stations. This can result in piles of unused stations due to
random power  demand,  leading  to  long  queues  at  some stations
while  others  have  no  electric  vehicles  being  charged.  This  study
proposes  a  solution to  the  problem by introducing a  DWC lane.
Electric vehicles in need of charging can drive into the DWC lane
to  increase  their  SoC.  This  helps  avoid  long  queues  at  charging
stations  and  also  predicts  the  queues  at  stations.  The  DWC  lane
also allows the power demand to be uniformly distributed in time
and space.

DWC presents  promising  economic  advantages,  including  the
reduction  of  fuel  costs,  enhanced  convenience  and  range  for  EV
users,  and  decreased  reliance  on  conventional  fuel-powered
vehicles  (Bi  et  al.,  2019; Liu  and  Song,  2017).  These  factors
collectively  contribute  to  the  commercialization  prospects  of
DWC  technology.  Moreover,  the  transformative  potential  of
DWC technology in the EV industry and sustainable energy sector
may  lead  to  the  implementation  of  government  subsidies  and
policies (Lazzeroni et al., 2021; Majhi et al., 2022). These measures
could  include  financial  assistance,  tax  incentives,  or  direct
subsidies  aimed  at  supporting  businesses  and  consumers  in
adopting DWC technology.  The advantages  of  DWC technology
are  contingent  upon  ensuring  a  reliable  charging  efficiency.
Concurrently, attention must be given to reducing travel time and
implementing appropriate load balancing measures to prevent an
excessive concentration of vehicles in specific charging areas. Such
concentration  could  result  in  decreased  charging  efficiency  and
increased  queue  time.  To  achieve  the  optimal  application
experience  of  DWC  technology,  it  is  imperative  to  contemplate
the interrelated issues of charging efficiency, travel time reduction,
and  load  balancing.  In  this  context,  the  implementation  of  a
vehicle  speed  control  strategy  assumes  a  pivotal  role.  When
charging a vehicle using DWC, it is important to control the speed
of the vehicle to ensure a safe and efficient charging process (Yang
et  al.,  2022).  In  addition,  the  vehicle’s  speed  can  also  impact  the
energy utilization efficiency, traffic efficiency (He et al., 2023), and
charging process time of DWC, which ultimately affects the EV’s
mileage  (Li  et  al.,  2022; Zheng  et  al.,  2022).  This  study  has
developed  a  nonlinear  mixed-integer  programming  method  to
determine the speed trajectory for the corresponding DWCL lane,
in order to address the issue of vehicle speed control in the DWC

lane.  The  technique  ensures  optimal  energy  use  efficiency  and
reduces mileage anxiety by regulating the speed of vehicles in the
DWC  lane.  This  study  does  not  plan  to  assign  electric  vehicles
from  the  freeway  to  the  DWCL  lane,  which  is  the  upper-level
problem within the scope of this study. In the results of this paper,
the  efficiency  of  the  traffic  flow,  the  charging  demand  of  the
driver, and the load pressure of the DWC lane are simultaneously
optimized by a carefully designed control.

In this study, we proposed a load-balancing eco-driving strategy
for  autonomous  electric  vehicles  in  charging  lanes  with  DWC
lanes, aiming to satisfy the different charging demands of EVs. In
addition, the load pressure to the DWC lanes, as well as the traffic
system, is considered. Note that reducing the load pressure on the
traffic  system  is  equivalent  to  alleviating  traffic  congestion.  The
contributions of this study are listed below.

1)  An  eco-driving  speed  control  approach  was  developed
specifically  for  EVs  operating  on  DWCLs.  This  strategy  seeks  to
bolster  charging efficiency and the duration of  effective charging,
offering a potential avenue for enhanced in-transit charging while
prioritizing both safety and efficiency.

2)  Through  the  formulation  of  three  objective
functions—minimizing travel time, maximizing charging benefits,
and  achieving  a  balanced  load—a  comprehensive  optimization
framework  was  established.  Integral  to  this  framework  was  the
incorporation of the vehicle’s longitudinal dynamics as a physical
model  for  calculating  EV  energy  consumption.  The  various
examined  control  strategies  showcased  their  unique  strengths  in
balancing  load  distribution  with  energy  consumption
considerations.

3)  The  study  furnishes  valuable  insights  into  the  plausible
integration  of  DWCLs  within  modern  transportation
infrastructures.  This  perspective  suggests  a  roadmap  to  augment
the  EV  driving  experience  on  highways,  possibly  alleviating  the
well-documented concerns of range anxiety.

The  technical  route  presented  in Fig.  2 illustrates  the
progression  of  the  research,  which  delineates  the  systematic
process  of  developing a  load-balancing eco-driving  speed control
strategy. It encompasses key steps such as establishing an accurate
EV’s  battery  model,  formulating  an  objective  function  based  on
travel  time,  energy  consumption,  and  load  balance,  deriving  and
scrutinizing multiple control strategies, selecting the most superior
speed  control  approach,  and  ultimately  crafting  a  bespoke  eco-
driving  strategy  that  incorporates  longitudinal  dynamics.  By
adhering  to  this  methodological  framework,  researchers  and
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Fig. 1    Test  and  applications:  (a)  Bombardier,  PRIMOVE  (Bombardier,  2023);  (b)  Qualcomm  Halo  DEVC  (Hilton,  2017);  (c)  KAIST  OLEV  (Khaleej,  2020);
(d) Nanning, China (Tan et al., 2022); (e) Suzhou, China (Hawkins, 2023); (f) Changchun, China (Changchun International Automobile City (CIAC), 2023).
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practitioners  can  effectively  optimize  the  performance  and
efficiency of eco-driving systems.

2    Literature review
Wireless  power  transfer  (WPT)  technology  is  an  emerging
technology  to  realize  electric  vehicle  charging.  It  is  an  energy
transfer  method  that  achieves  electrical  energy  from  the  power
source to load without direct  electrical  contact  (Jiang et  al.,  2012;
Mohamed  et  al.,  2020; Wen  et  al.,  2019)  and  is  mainly  classified
into three types: static wireless charging (SWC), dynamic wireless
charging  (DWC),  and  quasi-dynamic/static  wireless  charging
(QDWC).  SWC  and  DWC  modes  are  defined  by  whether  the
vehicle  is  charged  at  non-zero  speed,  while  QDWC  mode  can
charge an electric vehicle when it is stationary or DWC technology
enables wireless charging of EVs by transmitting electrical energy
from  a  management  unit  located  outside  the  road  to  a
transmitting  coil  buried  below  the  road  surface,  using  the
phenomenon  of  magnetic  induction  (Theodoropoulos  et  al.,
2015).  Specifically,  when the  coil  is  energized,  a  magnetic  field  is
generated.  When  the  electric  vehicle  is  driven  on  the  wireless
charging section, the receiving coil inside the vehicle generates an
induced  current  by  cutting  the  magnetic  induction  lines.  This
current is then transmitted through a circuit to the battery system,
thus completing the wireless charging process.

The history of DWC technology can be traced back to the late
1970s. In 1997, a team of researchers at Oakland University made

a breakthrough in the application of wireless charging technology
to  electric  vehicle  charging  and  developed  the  world’s  first
wirelessly  charged  bus  in  collaboration  with  the  Konstant,
Germany.  This  was  followed  by  the  development  of  the  first
working  prototype  of  wireless  charging  for  electric  vehicles  by  a
team of researchers at the University of California, Berkeley, USA.
Although  DWC  has  many  benefits,  its  commercialization  and
industrialization has not been successful. This is due to issues such
as  high  costs,  safety  concerns,  and  low  charging  efficiency.  To
address  these  problems,  numerous  studies  have  suggested
optimization  strategies  for  factors  like  charging  time,  lane
selection,  driving  speed  control,  and  energy  transfer  efficiency.
Chen et al. (2016) proposed a UE model for the user equilibrium
problem  to  describe  the  equilibrium  traffic  distribution  after
deploying  charging  lanes  in  the  network. Liu  et  al.  (2021)
investigated  the  optimal  location  and  tariff  of  dynamic  wireless
charging sections for electric  vehicles  to minimize the total  social
cost within a given budget. The main problem of the traffic system
is  to  design  energy-optimal  wireless  charging  speed  control  by
guiding the vehicle travel speed and rated charging voltage (Gong
et  al.,  2018; Tan  et  al.,  2019). Zhang  et  al.  (2021a) designed  the
location, power, and length of DWC lanes and proposed an eco-
driving  strategy  for  electric,  connected,  and autonomous  vehicles
to  reduce  the  cost  and  range  of  vehicle  trips  near  signalized
intersections. Na et al. (2018) proposed a problem to minimize the
energy  consumption  of  charging  devices  by  determining  the
movement paths and efficient charging points of mobile chargers

 

Load-balancing eco-driving strategy

Battery model

Battery charge model Battery discharge model Excess power model

Domain constraints

Driver's need and power safety Variable domain

Objective function

Travel time Energy consumption Load balance

Integrate longitudinal dynamics

Derive control strategy

Performance acceptable? Different target needs?

Select superior speed control strategy Develop bespoke eco-driving strategy

Evaluate control strategy

Fig. 2    Technical route of load-balancing eco-driving speed control strategy.
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and  proved  that  the  problem  is  NP-hard. Yassine  et  al.  (2019)
proposed a game-theoretic approach to optimize the efficiency of
wireless  charging  on  the  move  taking  into  account  traffic
congestion.

DWC systems suffer from a supply-demand imbalance (Green
and Guha, 1995; Hörcher and Graham, 2018; Huang et al., 2021).
To  solve  this  problem,  many  researchers  have  tried  to  shift  the
demand  from  peak  periods  to  low-peak  periods  to  balance  the
supply and demand in the system. For example, pricing strategies
are  often  used  in  public  transportation  systems  to  alleviate
congestion  problems  (De  Palma  and  Lindsey,  2011).  In  network
theory,  load  balancing  is  used  to  distribute  network  traffic  to
multiple  servers  to  achieve  optimal  utilization  of  resources
(Bourke,  2001).  From  the  perspective  of  load  balancing,  many
researchers have adopted similar strategies to address the supply-
demand  imbalance  in  DWC  systems. Freire  et  al.  (2010)
integrated  renewable  energy  generation  into  an  electric  vehicle
charging  strategy  to  optimize  grid  load  balancing. Liu  et  al.
(2022b) used  the  concept  of  load  balancing  to  design  a  single-
agent  deep  reinforcement  learning  model  to  optimize  vehicle
dispatching  in  a  ride-hailing  system.  It  is  important  to  note  that
when roads and energy supply are considered as multiple servers
(multiple charging stations, lanes, and road segments), changes in
traffic demand are closely related to load balancing. Therefore, two
load  balancing  scenarios  need  to  be  considered  in  the  charging
lanes  charges  problem,  i.e.,  load  balancing  of  different  charging
stations  and  load  balancing  of  each  DWC  segment  in  charging
lanes. The focus of this study is on the latter. Table 1 summarizes
the strategies and targets employed in previous literature for load
balancing and optimizing traffic efficiency.

This  study  proposes  a  speed  control  of  EVs  in  charging  lanes
with  a  model  framework  that  discretizes  the  road  segment  and
time. The travel time, net energy input, and load balancing in each
DWC  segment  are  considered  in  the  speed  control.  The
remainder  of  this  paper  is  organized  as  follows.  In  Section  3,  we
present  the  formulation  and  analysis  of  the  model  of  the  traffic
system  and  discuss  extensions  to  our  transportation  model.  In
Section 4, we conduct numerical tests in a case study, and then we
provide a conclusion in Section 5.

3    Problem statement
This study proposes a scheme to address EV drivers’ range anxiety
on a long trip on the highway with charging lanes. And the vehicle’s
speed  control  in  charging  lanes  is  planned  in  this  study.  In  the
highway  system,  EVs  should  wait  for  a  long  time  in  the  nearby
charging station. Alternatively, they can drive into the DWCL lane
to increase their SoC and then search for a charging station with a
short waiting time. There may exist one or several charging lanes

between  two  charging  stations,  and  vehicles  with  different
charging  demands  (which  is  dependent  on  the  operation  of
administration in central control or the decision of drivers) can be
guided or controlled into different charging lanes to make the total
system efficient.

This  study  focuses  on  a  more  detailed  problem,  that  is,  the
speed control of EVs in charging lanes. In the charging lanes, the
EV’s speed should be carefully planned to make the load pressure
on  the  DWC  lanes  modest.  In  addition,  the  travel  time  on
charging  lanes  should  be  reduced,  otherwise,  some  vehicles  will
waste time on the charging lanes.

3.1    Eco-driving strategy in a charging lane for EVs

S
S ∈ S (|S| = S)

l ws

s ws = 1 ws = 0

For the convenience of readers, we list some notations frequently
used  in  this  study  in Table  2.  The  DWCL  lane  consists  of 
segments,  and  each  segment  is  indexed  by .  We
assume that the length of  each segment is  common and denoted
by . We use  to record whether a DWC lane is laid on segment
 or not. If it is, , otherwise, .

U
u ∈ U SoC ∈ [SoCmin, SoCmax]

SoCu,0 SoC
u SoCu,s SoC u
s

u cu,s+u tu,s+u
u

s+u (s+u ∈ M) u

Consider  a  battery  of  vehicles  that  need  to  be  charged  is
controlled  or  guided,  which  is  recorded  in  set   .  A  specific
vehicle  is  indexed by .  We use  to
denote  the  vehicle’s  state  of  charge.  is  the  initial  of
vehicle  and  is  the  of  vehicle  at  the beginning of
segment .  A vehicle shares only one trip in this study. Thus, the
trip  is  also  indexed  by .  We  use  and  to  denote  the
initial  battery capacity and departure time for trip ,  respectively,
where  is the departure location for the trip .

3.2    Assumptions
The administrator then faces an optimization problem to operate
and  manage  each  vehicle’s  motion  and  decision  to  improve  the
DWC system. To facilitate the optimization model,  we adopt the
following assumptions in the investigated problems.

Assumption 1.  The acceleration is consistent in each segment.
We assume that the vehicle’s acceleration in each segment has no
change  to  reduce  the  dimension  of  the  optimization  problem.
Notice  that  the  assumption  is  reasonable  when  the  length  of  the
segment  is  not  long,  and  the  vehicle’s  velocity  can  also  vary  to
improve the total performance of the DWC system.

Assumption 2. All vehicles share the same battery properties.
Assumption 3. The road elevation and temperature are consistent,

and the influence of the charging rate caused by slope inclination
and temperature  change are  not  taken into account.  In the short
term, the temperature and slope can be seen as fixed and the slope
is an exogenous variable dependent on the topological structure of
the road.  The temperature may change within a  day,  but  we can
discretize the operation time into several  time intervals,  in which
the temperature has little change in each time interval.

 

Table 1    Comparison of various strategies

Ref. Strategy Target
Chen et al. (2016) User equilibrium model User equilibrium problem
Liu et al. (2021) Logit-based stochastic user equilibrium model Optimal locations and electricity prices
Zhang et al. (2021a) W-eco-driving control strategy Decrease the total energy consumption and increase traffic efficiency
Yassine et al. (2019) Game-theoretic approach Optimize the efficiency considering traffic congestion
Freire et al. (2010) Vehicle-to-grid charge strategy Optimize grid load balancing
Liu et al. (2022b) Single-agent deep reinforcement learning model Optimize vehicle dispatching in a ride-hailing system
He et al. (2014) Network equilibrium model Minimize the trip times and costs without running out of charge
Aljehane and Mansour
(2022)

Deep learning with metaheuristic optimization
strategy

Optimal allocation of renewable energy sources and charging
stations
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Assumption 4. On a charging link, an EV driver can choose his
or  her  travelling  speed  between  a  maximum  currently  allowable
speed and a  minimum speed limit.  Assumption 4  is  the  same as
an  assumption  in Chen  et  al.  (2016).  More  detailed  explanations
can be found in Chen et al. (2016). The assumption is reasonable
with the cooperation of connective and autonomous vehicles (Qu
et al., 2022).

3.3    Model related to the electric vehicle’s battery
The  models  of  the  battery’s  discharging  and  charging  are
proposed in Section 3.3.1.

3.3.1    Battery charge/discharge model

p−
u,s

u
m p+

u,s

u s

When an electric vehicle runs on a DWC lane, the variation of its
actual energy storage is dependent on its energy consumption and
charging.  To  simplify  the  model,  we  use  to  represent  the
average value of  the -th vehicle’s  energy consumption power in
the -th  segment,  and  use  to  represent  the  average  value  of
the -th vehicle’s charging power in the -th segment. Then, the n-
th vehicle’s energy storage is formulated as

cu,s = cu,s+u +

s−1∑
i=s+u

Δu,i u ∈ U , s ≥ s+u (1a)

Δu,s =
2l

vu,s + vu,s+1
+ E−

u,s u ∈ U , s ∈ S\ {S} (1b)

Discharge  model: The  discharge  model  of  the  EV’s  battery,
also  known  as  the  energy  consumption  model,  consists  of  the
energy  consumption  for  rolling  resistance,  road  slope  resistance,
acceleration  resistance,  and  wind  resistance  (Chang  et  al.,  2014).
The energy consumption model adopted here is a physical model
based on vehicle longitudinal dynamics from the reference (Wang
et al., 2015).

pu,s u
s pu,s

The  model  is  built  in  a  reverse  way,  and  it  can  calculate  the
energy  consumption  for  a  given  speed  profile.  Let  continuous
variables  denote the EV battery power consumed by vehicle 
at  segment .  The  battery  power  consumption  is  given  in
Eq. (2):

p−
u,s = (Fr + Fg + Fa + Fair) · v+ PLoss (2a)

Fr = frmg cosα (2b)

Fg = mg sinα (2c)

Fair =
1
2ρCdAv2 (2d)

Fa =

(
m+

4Jw
r2 +

Jm
r2dr2

)
a (2e)

a v
Fr

Fg Fair

where  and  denote the instantaneous acceleration and velocity
of the vehicle, respectively;  denotes the rolling resistance force;

 denotes the force originating from the road slope;  is the air

 

Table 2    Summary of notations

Notation Description
Set

U U := {1, 2, . . . ,U}Set of EV index, and 

S S := {1,2, 3, . . . , S}Set of discrete route segment, 
Parameter
u u ∈ UIndex of EV, 
s s ∈ SIndex of segment, 
ws = 1 s = 0 when the segment  is a wireless charging segment,  otherwise
cu,s+u uInitial battery capacity for vehicle trip character index 
tu,s+u uDeparture time for vehicle trip character index 

s+u uDeparture location for vehicle trip character index 

s−u uDestination location for vehicle trip character index 
SoC State of charge for electric vehicle
SoCmax Maximum state of charge
SoCmin Minimum state of charge
l Distance per segment
Cu uBattery capacity for vehicle 
Ps Lane use penalty for segment s
Variable
xu,s = 1 s u = 0 when the DWC lane in segment  is selected by vehicle ,  otherwise
vu,s u sContinuous variables, initial speed for vehicle  at segment 
au,s u sContinuous variables, acceleration for vehicle  at segment 
SoCu,s SoC u s of vehicle  at the beginning of segment 

p+u,s u sContinuous variables, EV battery power charging of vehicle  at segment 

p−u,s u sContinuous variables, EV battery power consuming of vehicle  at segment 
E−u,s u sContinuous variables, the energy consumption of vehicle  at segment 
Δu,s u sContinuous variables, EV battery input power of vehicle  at segment 
peu,s u sContinuous variables, amount of excess power for vehicle  at segment 
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Fa PLoss

A ρ Cd

α Jw
Jm rd

resistance force;  denotes the acceleration force;  denotes the
vehicle  powertrain  loss,  which  determines  in  the  dynamometer
test;  is the front area of the vehicle;  is the air density;  is the
coefficient  of  air  resistance;  is  the  road  slope;  is  the  wheel
inertia,  is the motor inertia;  is the gear reduction ratio.

It should be noted that the trajectories of vehicles should satisfy
the vehicle’s kinematics, i.e.,

au,s =
v2u,s − v2u,s−1

2l u ∈ U, s ∈ S\ {S} (3)

u
s

Then,  the  vehicle’s  energy  consumption  for  vehicle  in
segment  can be formulated as

E−
u,s =

(
1
4ρCdAl+

1
2meq

)
v2u,s+1 +

(
1
4ρCdAl−

1
2meq

)
v2u,s

+ frmgl− 2lPLoss

vu,s+1 + vu,s
u ∈ U, s ∈ S\ {S}

(4)

Charge  model: We  adopt  a  simple  model  to  describe  the
charging rate of EVs as Eq. (5)

p+
u,s = pc u ∈ U, s ∈ S (5)

Equation  (5)  indicates  that  the  charging  power  is  constant,
which is also adopted by He et al. (2014).

3.3.2    Excess charging power

pe
u,s s
u

SoCmax

For the operation feasibility, we do not permit the vehicle to enter
or quit in the internal link of a designed segment. Thus, the vehicle
should finish the charging process but not leave the DWC lane in
a  segment.  To  describe  the  property,  we  define  a  continuous
variable  as  the  amount  of  excess  power  on  segment  for
vehicle/trip .  As  shown  in Fig.  3,  the  green  curve  illustrates  the
current  battery  power  in  each  charging  segment,  and  the  vehicle
stops charging and maintains when the battery is fully charged or
reaches the value of .

pe
u,sBased on the definition of , we present it as Eq. (6):

pe
u,s =


0,Δu,s ≤ Cu(SoCmax − SoCu,s)

Δu,s − Cu(SoCmax − SoCu,s),

Δu,s ≥ Cu(SoCmax − SoCu,s)

u ∈ U , s ∈ S

(6)

3.4    Domain constraints

cu,min u

Driver’s  need  and  power  safety:  Before  driving  into  the  DWC
lane, each vehicle or driver has a charging need for having enough
energy  storage  to  finish  the  rest  of  the  trip.  We  use  the  variable

 to record the -th vehicle’s needs when they leave the DWC

SoClane.  For  safety  purposes,  the  vehicle’s  is  not  allowed  to
exceed  the  maximum  value  of  the  setting.  Thus,  the  following
constraint should be satisfied.

cu,min ≤ cu,s u ∈ U (7a)

cu,s ≤ SoCmax u ∈ U , s ∈ S (7b)

SoC

Equation (7a) states that the energy storage of each vehicle after
charging  should  meet  the  energy  demand to  finish  the  following
trip  task.  Equation  (7b)  indicates  that  the  power  storage  of  a
vehicle cannot exceed the maximum value of .

xu,s, vu,s, au,s

Variable  domain:  The  decision  variables,  including
 have  their  domain  according  to  their  definitions

and  the  performance  of  the  vehicle.  In  summary,  these  variables
are constrained by Eq. (8):

xu,s ∈ {0, 1} u ∈ U , s ∈ S (8a)

vmin ≤ vu,s ≤ vmax u ∈ U , s ∈ S (8b)

amin ≤ au,s ≤ amax u ∈ U , s ∈ S (8c)

3.5    Objective function
The load-balancing eco-driving strategy intends to reduce vehicle’s
energy consumption and travel  time provided that  each vehicle’s
charging demand is satisfied, and the traffic system, as well as the
DWC  system,  is  load-balancing  (no  traffic  congestion  and  no
much  pressure  on  the  DWC  system).  We  conclude  these
objectives with Eq. (9):

F1 =
∑

u∈U,s∈S

l
vu,s

(9a)

F2 =
∑

u∈U,s∈S

(pe
u,s − Δu,swsxu,s) (9b)

F3 = max
s∈S

{∑
u∈U

wsxu,s

}
(9c)

F3

In  the  above  objectives,  Eq.  (9a)  is  the  total  travel  time  for
vehicles  running  on  the  DWC  lane.  Reducing  the  travel  time
when  all  vehicles  have  enough  energy  storage  can  also  avoid  the
stack  of  vehicles  in  the  DWC  lane.  Equation  (9b)  is  the  additive
inverse  of  energy  storage  variation,  and  minimizing  it  indicates
that  the  vehicle  can  be  charged  as  much  as  possible  within  a
reasonable  velocity  range.  Equation  (9c)  represents  the  loading
pressure on the DWC lane.  We should reduce the value of  to
improve the lifetime of the DWC service.

4    Numerical test

4.1    Parameters, scenarios, and metrics

L = 5 km
l = 500 m

[10 m/s, 20 m/s]

pc = 90 kW

In  this  section,  some  numerical  tests  conducted  to  verify  the
effectiveness  and efficiency  of  the  speed control.  The  total  length
of the DWCL lane is , and the length of each segment is

.  The  case  when  the  power  demand  is  huge  is  not
considered. Also, the speed is in the range of  to
meet  the  condition  of  Assumption  4.  The  constant  power  of  the
DWC lane is set as , the same in He et al. (2014). The
parameters  related  to  the  discharging  of  EVs  are  the  same  in

 

SoC

SoCmax

SoCmin

Segment, s Charging segment

pe
u,s

Fig. 3    Diagram of excess power.
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Chang et al. (2014).

F1, F2, F3

F = αF1 + βF2 + γF3

Four  cases  tested  in  this  section  are  set  based  on the  objective
function in Section 2. To simplify, we named the four cases Case
A, Case B,  Case C,  and Case D. Case A,  Case B,  and Case C are
the speed control problem considering , respectively. And
the  fourth  case  considers  the  three  objectives  together,  i.e.,

.
The  following  metrics  are  proposed  to  compare  the

performances of the speed control in different scenarios:
● Average travel time (ATT) is the travel time’s mean value for

all vehicles that through the DWCL lane.
● Average  energy  consumption  per  kilometer  (AECpk)  is  the

average  energy  consumption’s  mean  value  for  all  vehicles  that
through the DWCL lane.

● Maximum  power-out  time  (MPOT)  is  the  maximum  value
of the power output for all segments when the EVs in a planning
period are all serviced.

4.2    Fundamental test

[10 m/s, 20 m/s]

[7.2 kW·h, 9.6 kW·h]

SoC

We  conduct  a  fundamental  test  when  the  speed  of  the  vehicle
should  be  in  a  range  of .  While  this  range  of
speeds may fall short of conventional highway standards, they can
still  result  in  significant  time  savings  compared  to  stopping  for
recharging, thereby providing tangible benefits for vehicle owners.
To mitigate the negative impact of  relatively low charging speeds
on  traffic  flow,  judicious  network  planning  and  road  design
strategies  can  be  explored.  These  include  situating  charging
sections in areas with lower speed limits, such as ramp zones, and
introducing dedicated slow lanes for charging purposes alongside
regular  lanes  (Chandra  et  al.,  2022; Chen  et  al.,  2016; Liu  and
Song,  2018; Ushijima-Mwesigwa  et  al.,  2018; Wang  et  al.,  2023).
As battery technology and wireless charging continue to advance,
future  reductions  in  charging  time  may  facilitate  faster  passage
through charging lanes. The methodologies proposed in this study
will  remain  applicable  for  speed  planning  considerations  at  that
juncture.  The demand for energy input is 
and  the  number  of  vehicles  that  should  be  charged  is  121.  Each
vehicle  corresponds  to  a  combination  of  the  two  integer  values
from the ranges of  and velocity. The hardware configuration
used in our  research includes  an Intel  Core i7  CPU with a  clock
speed  of  2.2  GHz.  We  utilized  MATLAB  to  invoke  Gurobi  and
conducted  the  simulation  process  on  a  personal  computer.  The
vehicle  velocity  trajectories  are  sequentially  planned  according  to
their  entry  order  into  the  system.  Utilizing  MATLAB  on  a
personal  computer,  each  vehicle’s  trajectory  can  be  planned  in
under one second, resulting in a total optimization time of 71 s for
121 vehicles.

We  present  the  overall  performances  of  the  four  cases  in
Table 3. The control in Case A and Case B was always adopted in
traditional eco-driving strategies, which aim to reduce the total (or
average) travel time and energy consumption. The control in Case
C  tries  to  reduce  the  maximum  value  of  the  charging  time  of
segments, which can avoid or postpone the damage of the DWC
lane caused by prolonged use and overload.

α = 10
β = 1 γ = 10 F = 10F1 + F2 + 10F3

Even  though  the  control  in  Case  C  can  reach  the “load
balancing”, the energy consumption is greater than the controls in
Case  A  and  Case  B.  To  make  a  tradeoff  between  load  balancing
and  the  vehicle’s  energy  consumption,  the  control  in  Case  D  is
proposed.  The  weight  parameters  utilized  in  Case  D are ,

,  and ,  that  is, .  It  should  be
noted that  due to  the inherent  variance in the dimensions of  the
three objectives, the absence of weighting would unduly diminish

the  significance  of  objectives  with  smaller  numerical  values.  At
present,  the  weight  parameters  employed  have  not  undergone
meticulous optimization;  rather,  they have been approximated to
ensure a comparable magnitude across all objectives. Nonetheless,
in practical industrial applications, it  is advisable to tailor weights
according  to  specific  requirements  or  employ  appropriate
normalization  or  standardization  techniques  to  address  the
inherent discrepancies in the objective dimensions. The properties
of the control in Case D are concluded:

• Compared with the control in Case A, the control in Case D
increases  ATT  by  5.92%,  but  decreases  AECpk  by  2.97%  and
reduces MPOT by 2.95%.

• Compared with the control in Case B, the control in Case D
increases AECpk by 9.31% but reduces ATT by 23% and reduces
MPOT by 23.48%.

• Compared with the control in Case C, the control in Case D
increases  MPOT  by  6.64%  and  ATT  by  5.43%,  but  reduces
AECpk by 6.91%.

The  results  of  the  comparison  from  the  aggregate  perspective
seem to  suggest  that  the  control  in  Case  C  is  the  best.  However,
the aggregate results  cannot prove the microscopic behaviours of
vehicles with the control in Case C are also the best.  To illustrate
the microscopic performance, we presented the average speed and
energy consumption for each segment in Figs. 4 and 5.

The  results  in Figs.  4 and 5 reveal  that  the  speed  and  energy
consumption in each segment for Case C fluctuates in the widest
range.  Despite  the  assumption  in  Assumption  4,  reducing  the
speed  fluctuation  always  benefits  the  traffic  system.  Even  though
the variances of speed and energy consumption are the smallest in
Case B, the charging time in this case is too high, which will bring
damage to the power grid.

4.3    Extension tests
To test the effectiveness of the four controls,  we conducted more
numerical  tests.  The  charging  demand  of  vehicles  and  the  speed
range in the DWCL lane are changed. The results of the extension
tests are concluded in Tables 4–6.

The above tables convey the following information:
• The control in Case A: It has a good performance in travel

time-saving.  It  has  a  good  performance  in  energy
consumption saving when the vehicle’s energy demand is high
(8.8–9.6  kW·h).  The  reason  is  that  the  vehicles  do  not  need  to
make a  tradeoff  between the  charging time in  different  segments
and energy consumption. It  also has a good performance in load
balancing  when  the  vehicle’s  energy  demand  is  low  (7.2–8.0
kW·h) and the required speed is relatively low (10–13.3 m/s).

•  The  control  in  Case  B:  It  has  a  tremendous  advantage
over other controls when the energy-related metric is of most
interest to drivers.

•  The  control  in  Case  C:  It  has  a  good  performance  in
energy consumption and travel  time when energy demand is
high (8.8–9.6 kW·h). The performance of this control is relatively
poor when energy demand is low.

• The control in Case D: It has better performance than the
control  in  Case  D  on  travel  time  and  energy  consumption

 

Table 3    Metrics of the controls in four cases

Case ATT (s) AECpk ((kW·h)/km) MPOT (h)
A 354.887 0.472 1.323
B 487.938 0.419 1.678
C 356.539 0.492 1.204
D 375.895 0.458 1.284
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Fig. 4    Average speed in each section for the four cases.
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Fig. 5    Average energy consumption in each section for the four cases.
 

Table 4    ATT for different speed ranges and charging demand for four cases (Unit: s)

Speed (m/s) Charging demand (kW·h) Case A Case B Case C Case D

10.0–13.3
8.8–9.6 393.24 497.74 394.25 398.35
8.0–8.8 361.96 497.74 363.22 396.44
7.2–8.0 330.95 497.74 333.40 397.77

13.3–16.6
8.8–9.6 392.52 491.17 393.81 393.59
8.0–8.8 361.22 491.17 362.74 371.60
7.2–8.0 330.19 491.17 331.76 365.35

16.6–20.0
8.8–9.6 391.65 481.73 392.95 392.15
8.0–8.8 360.34 481.73 362.10 365.12
7.2–8.0 329.30 481.73 331.76 358.49
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when  charging  demand  is  high.  When  the  vehicle’s  speed  is
high, the travel time is extremely close to the travel time for Case
A.

4.4    Discussion
This study proposes a new solution to direct electric vehicles that
need to be charged to drive DWCL lanes at a controlled speed. It
should be noted that the main content, i.e., the controls of vehicles
in  the  DWCL  lane,  is  a  piece  of  the  puzzle  of  the  energy
management  system  on  the  highway  with  the  DWCL  lane.  The
results in this study are essential for constructing the whole energy
management system. We present the following explanations:

1) When using the energy management system on the highway
with  DWCL  lanes,  a  group  of  vehicles  will  be  designated  to  a
specific  charging  lane.  Once  assigned,  controlling  the  speed  of
these  vehicles  can  be  viewed  as  a  separate  issue  by  limiting  their
speed.  As  a  result,  this  study’s  model  is  a  part  of  the  energy
management system.

2)  This  study  provides  valuable  insights  into  how  to  allocate
vehicles  to  different  charging  lanes  based  on  their  charging
demands  and  speed  intervals.  By  selecting  the  appropriate  speed
control, vehicles can be batched together and directed to the same
charging lane. If vehicles are not allocated efficiently, causing high
pressure  on  the  DWC lane  and  low efficiency,  the  speed  control
should be re-evaluated.

5    Conclusions
As  the  global  transition  towards  sustainable  transportation
accelerates,  EVs  stand  out  as  pivotal  players  offering  significant
reductions  in  carbon  emissions  and  fossil  fuel  dependency.
Despite  their  promise,  inherent  challenges  related  to  charging
efficiency,  driving  range,  and  infrastructure  integration  remain.
This study embarked on addressing these challenges by presenting
a  load-balancing  eco-driving  strategy  designed  for  autonomous
EVs navigating on DWCLs.

In this study, a mathematical programming approach has been
proposed to identify optimal speed controls for EVs. Four distinct
control  strategies  considering  various  objectives,  such  as  travel
time, energy consumption, and load balancing, have been derived.
The  results  of  numerical  tests  indicate  that  a  comprehensive
control  strategy,  which  considers  all  objectives,  achieves  a  minor
sacrifice  in  travel  time  reduction  while  significantly  improving
energy  efficiency  and  load  balancing.  This  study  contributes
concise  comparisons  between  different  considerations
incorporated  within  the  objective  functions.  Importantly,  the
findings  highlight  that  controls  with  differing  objectives  exhibit
dominant  ranges  in  energy  demand  and  speed.  By  determining
the energy demand and speed range through an upper operation
limit, a relatively superior speed control strategy can be selected.

At  the  heart  of  our  investigation  was  the  bespoke  eco-driving
speed control strategy for EVs on DWCLs, emphasizing enhanced
charging  efficiency  and  extended  effective  charging  duration.
Through this, EVs could harness the full spectrum of continuous
charging benefits  while  upholding safety  and efficiency.  A trio  of
objective  functions  was  meticulously  formulated,  providing  a
panoramic  perspective  of  the  challenge:  curtailing  travel  time,
amplifying  charging  benefits,  and  ensuring  a  balanced  DWCL
load. This multifaceted approach was enriched by weaving in the
vehicle’s  longitudinal  dynamics,  offering  an  accurate  physical
model  for  EV  energy  consumption.  Our  deep  dive  into  various
control  strategies  unearthed the unique strengths and nuances  of
each,  particularly  in  striking  a  balance  between  load  distribution
and energy consumption.

Our  results  showcased  that  a  strategy  that  synergised  all
objectives,  struck  a  harmonious  balance,  making  only  a  slight
concession in travel time but yielding substantial improvements in
energy  efficiency  and  load  balancing.  Additionally,  our  findings
illuminate  the  path  for  the  seamless  integration  of  DWCLs  into
the modern transportation tapestry. By facilitating continuous on-
the-move  charging  on  arterial  highways,  DWCLs  hold  the
potential  to  redefine  the  EV  driving  narrative,  addressing  and

 

Table 5    AECpk for different speed ranges and charging demand for four cases (Unit: kW·h)

Speed (m/s) Charging demand (kW·h) Case A Case B Case C Case D

10.0–13.3
8.8–9.6 0.4711 0.4399 0.4790 0.4711
8.0–8.8 0.4891 0.4399 0.5006 0.4761
7.2–8.0 0.5137 0.4399 0.5308 0.4758

13.3–16.6
8.8–9.6 0.4529 0.4236 0.4702 0.4538
8.0–8.8 0.4705 0.4236 0.4917 0.4682
7.2–8.0 0.4948 0.4236 0.5163 0.4700

16.6–20.0
8.8–9.6 0.4313 0.4046 0.4474 0.4316
8.0–8.8 0.4486 0.4046 0.4737 0.4461
7.2–8.0 0.4725 0.4045 0.5062 0.4503

 

Table 6    MPOT for different speed ranges and charging demand for four cases (Unit: h)

Speed (m/s) Charging demand (kW·h) Case A Case B Case C Case D

10.0–13.3
8.8–9.6 1.418 1.681 1.328 1.346
8.0–8.8 1.331 1.681 1.225 1.341
7.2–8.0 1.245 1.681 1.128 1.345

13.3–16.6
8.8–9.6 1.424 1.681 1.328 1.34
8.0–8.8 1.336 1.681 1.219 1.264
7.2–8.0 1.248 1.681 1.115 1.244

16.6–20.0
8.8–9.6 1.431 1.675 1.341 1.353
8.0–8.8 1.341 1.675 1.229 1.259
7.2–8.0 1.251 1.675 1.119 1.235
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possibly  eliminating  the  prevailing  range  of  anxiety  concerns.
Looking  to  the  horizon,  the  future  beckons  further  exploration
into  the  intricate  interplay  between  vehicle  allocation,  speed
control, and DWCL efficiency.

As  EV  adoption  scales,  understanding  and  optimizing  this
dynamic  will  be  critical.  We  envisage  delving  deeper  into  the
energy  management  ecosystem  of  highways  featuring  DWCLs,
aiming  to  craft  strategies  that  further  elevate  the  EV  user
experience.  Furthermore,  within  the  related  research  field,  the
impact  of  charging  time  on  the  lifetime  of  DWC  lanes  remains
uncertain.  Once  this  relationship  is  established,  it  will  enable  the
reformulation  of  the  speed  control  problem  by  imposing
constraints on the utilization of each DWC segment. In addition,
we  will  consider  the  demand  prediction  (Lin  et  al.,  2023),
microscopic  behaviors  (Cao  et  al.,  2023; Shen  et  al.,  2023)  of
vehicles  to  investigate  the  DWC  planning  and  optimization  in
depth, and make the optimization to be practical with large model
(Liu et al., 2023; Qu et al., 2023).
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requirements  and  can  be  obtained  by  contacting  the
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