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ABSTRACT: Reinforcement learning (RL) can free automated vehicles (AVs) from the car-following constraints and provide
more possible explorations for mixed behavior. This study uses deep RL as AVs’ longitudinal control and designs a multi-
level  objectives  framework  for  AVs’  trajectory  decision-making  based  on  multi-agent  DRL.  The  saturated  signalized
intersection is taken as the research object to seek the upper limit of traffic efficiency and realize the specific target control.
The  simulation  results  demonstrate  the  convergence  of  the  proposed  framework  in  complex  scenarios.  When prioritizing
throughputs  as  the  primary  objective  and  emissions  as  the  secondary  objective,  both  indicators  exhibit  a  linear  growth
pattern with increasing market  penetration rate (MPR).  Compared with MPR is 0%, the throughputs can be increased by
69.2% when MPR is 100%. Compared with linear adaptive cruise control (LACC) under the same MPR, the emissions can
also be reduced by up to 78.8%. Under the control  of  the fixed throughputs, compared with LACC, the emission benefits
grow  nearly  linearly  as  MPR  increases,  it  can  reach  79.4%  at  80%  MPR.  This  study  employs  experimental  results  to
analyze  the  behavioral  changes  of  mixed  flow  and  the  mechanism  of  mixed  autonomy  to  improve  traffic  efficiency.  The
proposed method is flexible and serves as a valuable tool for exploring and studying the behavior of mixed flow behavior
and the patterns of mixed autonomy.
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1    Introduction
Intersections are the bottleneck that affects the traffic efficiency of
urban road networks (Wu and Qu, 2022; Yu et al.,  2021).  Under
saturated  flow  conditions,  congestion  and  queue  overflow  are
more  likely  to  occur,  resulting  in  greater  loss  of  traffic  efficiency
(Vahidi and Sciarretta, 2018). The autonomous driving technology
has  been  considered  to  have  great  potential  in  increasing  road
network  capacity,  reducing  emissions,  and  stabilizing  traffic  flow
over the past 10 years (Phan et al., 2020). Various control policies
represented  by  Automatic  Cruise  Control  (ACC)  have  been
widely used in newly-produced high-level vehicles (Xiao and Gao,
2011), which means that it is technically feasible to directly control
the actions of Automated Vehicles (AVs). Therefore, the design of
control  policies  for  AVs  in  mixed  autonomy  is  particularly
important  and  meaningful,  from  the  perspective  of  system-level
optimization.

Currently,  some  studies  have  focused  on  control  methods  for
improving traffic efficiency at intersections with mixed autonomy.
These  studies  can  be  roughly  divided  into  two  types:  modeling
optimization  methods  based  on  traditional  mathematics  and
model-free methods based on Artificial Intelligence (AI).

The  control  idea  of  the  modeling  optimization  methods  can

mainly  include  three  categories:  single-agent  trajectory
optimization (Dai  et  al.,  2016; Han et  al.,  2020; Jiang et  al.,  2017;
Zhang  and  Yang,  2021),  multi-agent  distributed  cooperation
(Stryszowski  et  al.,  2021; Wang  et  al.,  2021)),  and  multi-agent
global  planning  (Fayazi  and  Vahidi,  2018; Feng  et  al.,  2018;
Morales  Medina  et  al.,  2018).  The  single-agent  methods  will
introduce  more  randomness  with  the  market  penetration  rates
(MPR) increasing, and the multi-agent methods are usually more
difficult  to  solve.  All  these  methods  inevitably  design  subjective
rules such as dynamics assumptions (Meng and Cassandras, 2022)
and communication structure (Jing et al., 2019; Liu et al., 2018) in
the  modeling  process.  Theoretically,  high-level  AVs  can  surpass
human-driven  vehicles  (HDVs)  at  the  reaction  time  and  the
decision-making  ability  (Chen  et  al.,  2021).  Using  the  modeling
optimization  methods  may  ignore  some  special  traffic  patterns
due  to  design  rules,  so  the  results  obtained  by  modeling
optimization  methods  are  not  guaranteed  to  be  optimal  at  the
system level.

AI  methods  have  an  advantage  over  modeling  optimization
methods in that they can understand real-world constraints under
model-free  (Liu  et  al.,  2023).  Reinforcement  learning  (RL)  can
decouple  the  dynamic  characteristics  of  AVs  (Zhou  et  al.,  2020),
and  its  Markov  characteristics  also  have  good  adaptability  to  the
optimization  problem  of  sequential  decision-making  (Aragon-
Gómez  and  Clempner,  2020).  Deep  Reinforcement  Learning
(DRL) methods developed from RL have also been used in some
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related works (He et al. 2023; Kiran et al., 2022). Most of them are
the  optimization  of  traffic  signal  (Aslani  and  Mesgari,  2017;
Mushtaq et al.,  2021; Zhang et al.,  2021), and the optimization of
one  vehicle’s  intelligent  trajectory  on  the  road  (Ding  et  al.,  2022;
Hoel et al., 2019; Makantasis et al., 2020; Ye et al., 2019). Some of
works applied the DRL at AVs are oriented to the fully AVs flow
(Li et al., 2020), and other works are oriented to the mixed traffic
autonomy,  which  focuses  on  the  conflict  resolution  at  non-
signalized intersection (Isele et al., 2017; Guan et al., 2020).

There  are  two  challenges  in  applying  multi-agent  DRL  to
saturated  signal  intersections.  Firstly,  although  the  multi-agent
architecture  can  improve  the  learning  ability  of  RL,  it  poses  new
convergence  challenges  in  complex  environments.  Secondly,
mixed  vehicles’ behaviors  are  different  from  traditional  driving
behaviors.  Constructing  saturated  traffic  conditions  at  a  single
intersection  is  difficult  without  constraints,  due  to  queued
overflow upstream and saturated input downstream.

This study designs a multi-level objectives framework for AVs’
trajectory  decision-making  based  on  multi-agent  DRL.  The
proposed  method  can  realize  the  flexible  multi-level  objective
control,  and  we  used  it  to  explore  the  upper  limit  of  the
throughputs  during  the  green  phase  of  saturated  signalized
intersections.  It  can  make  decisions  based  on  predetermined
objectives.

The  rest  of  this  paper  is  organized  as  follows:  Section  2
introduces  the  decision-making  framework.  Section  3  introduces
the  environment  selection  and  the  setting  parameters  of  the
simulation  experiments.  In  Section  4,  we  show  the  results  and
discussion of  the  experiments  results,  including  the  discussion of
the  algorithm  convergence  performance,  the  superiority,  and  the
flexibility  of  the  proposed  RL  method.  According  to  the  results,
some phenomena worth discussing are also be found. In Section 5,
we conclude the paper and propose future research.

2    Method

2.1    Markov decision processe (MDP) problem statement
This  work  considers  a  simplest  urban  four-way  saturated
signalized  intersection,  which  only  allows  straight  travel.  When
there is only one lane in the same direction, vehicles cannot make
lateral lane changes. The acceleration action along the longitudinal
direction of the lane can be regarded as the dynamic behavior of
the vehicle. We used a DRL algorithm to control the acceleration
of  AVs  in  mixed  autonomy  and  a  classical  micro  car  following
model  to  simulate  HDVs.  We  used  the  intelligent  driver  model
(IDM) for HDVs:

aIDM = a
[
1− (v/vo)δ − (s∗ (v,Δv) /s)2

]
(1)

aIDM

vo δ

s∗ (v,Δv)

where  is  the  acceleration  of  a  HDV; a is  the  maximum
acceleration of the HDV; v is the speed;  is the expected speed; 
is  the  acceleration  index; s is  the  distance  from the  front  vehicle;

 is the expected following distance.
Fig.  1 shows  the  difference  between  the  decision-making

mechanisms  of  single-agent  and  multi-agent  at  a  saturated
signalized  intersection  with  mixed  autonomy.  Multi-agent
decision-making is more flexible and comprehensive for complex
tasks  aimed  at  improving  traffic  efficiency  through  system-level
optimization  compared  to  single-agent  decision-making.  In  the
multi-agent  architecture,  system-level  objectives  like  total
throughputs can be added to the multi-level objectives, besides the
individual-level objectives of the vehicle’s own trajectory. The AVs
have  specific  perception  capabilities  while  in  a  queue,  including
speed and distance. The road infrastructure is equipped to receive
this  information,  as  well  as  the  current  traffic  phase.  In  addition,
this work does not consider the cooperation of AVs, which means
any other AVs will regard other AV as HDV units.
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{S,A,P,R, γ} t
st ∈ S st

at ∈ A

st+1 ∼ P (st+1|st, at) ∈ [0, 1]

r (st, at, st+1)

The total environment is modeled as MDP, which is defined as
. At each time step , the state of the environment is

.  The  agent  obtains  the  state  by  observing  the
environment, and then executes an action  according to its
own  policies.  Performing  this  action  will  enable  the  agent  to  get
the  next  state  according  to  the  state  transition  probability

,  and  the  environment  will  feed  back
the  agent’s  immediate  rewards  through  the  defined  reward
function .

πθ：S→ A θ
Qπ

π∗
θ

The  aim  of  the  agent  is  to  solve  the  MDPs  and  obtain  the
optimal  policies.  By  sampling,  it  can  maximize  its  cumulative
discount  expected  reward.  The  agent’s  policies  are  defined
as , which can be parameterized by . The cumulative
reward function  is defined as shown in Eq. (2), and the optimal
policy  can be calculated from the expectation of the reward as
Eq. (3):

Qπ (st, at) = rt + γt max
at+1

Qπ (st+1, at+1) (2)

π∗
θ = argmax

π
Est∼ρπ,a∼πθ [Qπ (st, at) |at∼πθ(at|st),s0 ] (3)

γ
ρπ

π

where  the  discount  factor  is  introduced  to  express  that  the
longer  the  time,  the  less  impact  the  reward;  is  the  stable
distribution of the MDPs under the policy .

2.2    Proximal policy optimization algorithm
The  goal  of  the  standard  RL  is  to  maximize  the  cumulative
expected  reward  of  the  agent  (Eq.  (2)).  The  gradient  descent
algorithm is used to calculate the estimator of the parameterized of
the  policy.  Compared  with  the  value-based  RL,  the  advantage  of
policy-based RL is that the algorithms can learn random policies.
which  are  constructive  for  non-communicating  agent
environments. In addition, the policy-based RL can also avoid the
convergence  problem  of  some  estimation  function  due  to
nonlinear approximation and partial observation.

J (·)
J (·)

According  to  the  Deterministic  Policy  Gradient  (Silver  et  al.,
2014),  when  the  agent’s  policy  is  deterministic  and  the  action
space is continuous, there is a deterministic policy. The gradient of
policy  parameters  is  shown  as  Eq.  (4)  and  Eq.  (5)  is  the
update rule of :

∇θJ (πθ) = Est∼ρπ,a∼πθ

[
∇θlogπθ (at|st)Qπ (st, at) |a=πθ(s)

]
(4)

θnew ← θnow + β · ∇J (θnow) (5)

β J (·) θ
πθ

where  is  the  learning  rate  of  the  policy  gradient ;  is  the
parameter of policy .

μθ → πθ

Qw → Qπ

L (ω)

In  training  process,  the  Actor-Critic  (AC)  framework
(Bhatnagar et al., 2009) can be used to reduce the variance caused
by  insufficient  interaction.  AC  framework  has  two  types  of  deep
neural  networks.  The  actor-network  is  used  to  approximate  the
policy  function  and  perform  interaction  with  the
environment  and  produce  actions.  The  critic-network  is  used  to
approximate evaluate the value function  and guide the
policy  promotion.  For  the  actor-network,  the  policy  gradient  is
still used to update the parameters. For the critic-network, the loss
function  is as Eqs. (6) and (7):

L (ω) = [Qω (st, at)− Qω (st+1, at+1)]
2 (6)

Qω (st + 1, at + 1) = rt + γtQω
(
st+1, μθ

(
st+1|θμ

)
|ωQ) (7)

Qωwhere the approximate value function  is parameterized by the

ω πθ μθparameter ; the policy function  is parameterized by .
Policy gradient is on policy, and its data utilization is inefficient.

It can add a replay buffer to AC, and use sampling to convert on-
policy to off-policy to improve the sample utilization (Wang et al.,
2016). The AC framework with a replay buffer is shown in Fig. 2.

Aπ

Qπ Aπ
For  Eq.  (6),  the  advantage  function  can  be  used  to

approximate the cumulative reward function . is designed as

Aπ (st, at) = Qω (st, at)− Vω (st) (8)

Vω (st) stwhere  is the expected reward function according .
Qπ

Aπ

To  reduce  the  variance  of ,  the  generalized  advantage
estimator  (GAE) (Schulman et  al.,  2015)  can be  used to  estimate
the advantage function :

ÂGAE(χ,λ)
t = (1− λ)

(
Â(1)

t + λÂ(2)
t + λ2Â(3)

t + · · ·
)

=

∞∑
l=0

(χλ)l (rt+1 + χV (st+l+1)− V (st+l)) (9)

χ λ ∈ [0, 1]where  is discount rate;  is the step size of the updates.
Proximal Policy Optimization (PPO) (Schulman et al., 2017) is

a  widely  used  RL  algorithm.  Compared  with  the  classic  policy
gradient RL algorithms with AC architecture such as TRPO, PPO
is  a  first-order  optimization  algorithm  that  utilizes  Generalized
Advantage  Estimation  (GAE)  to  achieve  faster  convergence  than
classic policy gradient RL algorithms with AC architecture such as
Trust  Region Policy  Optimization (TRPO).  Furthermore,  PPO is
straightforward  to  implement.  PPO  is  effective  in  high-
dimensional  state  space  environments  and  has  been  proven  to
perform  well  in  specific  multi-agent  engineering  tasks.  PPO
enhances  the  architecture  displayed  in Fig.  2 by  adding  an  actor
network and Algorithm 1 shows the pseudocode for PPO.

Algorithm 1 Proximal policy optimization

i ∈ {1, · · ·,N}1: For  do
πθold T {st, at, rt}2:     Run policy  for  timesteps, collecting

Â1, Â2, . . . , ÂT3:     Estimate advantage 
θold ← θ4:     

j ∈ {1, . . . ,M}5:     For  do

JPPO (θ)
T∑
t=1

(πθ (at|st) /πθold (at|st)) Ât − λKL [πθold |πθ]6:           = 

θ JPPO (θ)7:         Update  by a gradient method w.r.t 
8:     end for

j ∈ {1, . . . ,B}9:     For  do

LBL (ϕ) = −
T∑
t=1

(∑
t′>t

γt′−trt′ − Vφ (st)
)2

10:        

θ LBL (ϕ)11:        Update  by a gradient method w.r.t 
12:    end for

KL
[
πold|πθ

]
＞βhighKLtarget13:    if  then

λ ← αλ14:        
KL
[
πold|πθ

]
＜βlowKLtarget15:    else if  then

λ ← λ/α16:        
17:    end if
18: end for

2.3    Design  of  multi-level  objective  decision-making
process for multi-agent
This work integrates the decision-making process into the flexible
multi-level  objectives  framework,  based  on  the  PPO  algorithm.
The framework is as shown in Fig. 3.
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N

Firstly, we set a multi-level objective (such as throughputs, fuel
consumptions, emissions, and average speed) for the multi-agents
and assign these objectives to the reward correction unit. Secondly,
the number of agents is set according to MPR, and the training
networks  are  initialized  according  to  whether  the  policies  are
shared between agents. Then, the policies are learned through the
interaction  between  the  simulation  environment  and  the  multi-

agents. Finally, the trajectories are checked before convergence.
More  specifically,  this  work  introduces  the  following  units  to

the standard PPO algorithm for solving the MDPs.

2.3.1    Multi-agent framework unit

Multi-agent framework is based on the idea of centralized training
and  decentralized  exploration.  Centralized  training  is  carried  out
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with  global  information,  while  each  agent  interacts  with  the
environment  in  independently  manner.  We  assumed  there  were
no communication rules between agents, and we did not consider
the scenario where an agent malfunctions.

As  shown  in  the  green  part  of Fig.  3,  each  agent  is  equipped
with  two  actor-networks,  and  shares  the  same  critic-network.
When  the  agent  shares  policies,  the  actor-networks  of  all  agents
share their parameters. Each agent only uses the local information
it  can  observes  to  choose  actions  according  to  its  own  actor-
networks.  The  critic-network  uses  the  information  of  all  agents
that can be observed to update.

N θFor  agents, the gradient of policy parameters  of the agent is

∇θi J
(
μθi

)
= Es∼ρπ,ai∼μθi

×

[∇θi logμθi
(ai|si)Qωi ({si} , a1, · · · , aN) |ai=μθi(si)

] (10)

The replay  buffer  records  the  experience  of  all  agents,  and the
critic-network is updated as Eqs. (11) and (12):

L (ωi) = E{si}∼ρμθi ,ai∼μθi

[(
Qt

ωi

({
sti
}
, at1, · · · , atN

)
− Qt + 1

ωi

)2]
(11)

Qt + 1
ωi = rti + γiQt+1

ωi

({
st+1
i
}
, at+1

1 , ..., at+1
N
)

(12)

2.3.2    Reward correction unit

The  method  of  single-agent  DRL  multi-objective  control  usually
designs a weighted reward function. The reward is

rt =
∑

n
ηnr

n
t (13)

ηn
rnt

where  is the weighted parameters of the n-th control objective;
and  is  the  instantaneous  reward  related  to  the n-th  control
objective.

There are two issues with using the weighted reward.
Firstly, the linear weighted reward function has the risk of local

convergence or non-convergence at the multi-agent environment.
To illustrate the problem, we analyze a control scenario with multi-
level  objectives,  where  throughput  is  considered  at  the  first  level
and  acceleration  change  at  the  second  level.  If  the  weight  of  the
instantaneous  reward  about  the  throughputs  is  set  to  the
maximum,  the  agent  will  give  priority  to  explore  the  action  that
increases  the  throughputs,  while  ignoring  other  actions  like  the
speed. Although the higher the speed usually means the higher the
throughputs,  the  agent  cannot  link  the  two  variables  together.
During  the  initial  stages  of  training,  the  effects  are  quite
prominent. Even the slightest alteration in acceleration may not be
adequate to increase throughputs. In fact, it may result in a penalty
due  to  the  acceleration  change,  which  will  accumulate  until  the
end of the simulation. Consequently, the agent may choose to halt
as it cannot discover efficient actions to improve throughputs.

Secondly, the throughputs increase monotonically with respect
to the traffic time, while the change of acceleration is fluctuating in
a  relatively  stable  interval.  A  practical  method  for  achieving  a
balance  of  various  objectives  involves  developing  a  segmented
function for the throughputs.

To solve the problems, we add a reward correction unit (the red
part  in Fig.  3)  in  the  design-making  progress.  After  finishing  an
episode, the agent checks the realization the multi-level objectives,
and corrects the accumulated rewards according to

Ri =
∏
l

η′
l

(
φl

record − φl
i

)∑
t≥0

rit (14)

Ri rit
i t η′

l
l φl

record
l

where  is  the  cumulative  reward  of  the i-th  episode;  is  the
instantaneous reward of the -th episode at  step;  is the penalty
coefficient  of  the -level  objective;  is  the  expected  value  of
the -level objective.

φl
record δl

φl
record

φl
record η′

l
l

Through the reasonable design of  and ,  flexible multi-
level objectives control can be realized. If the first-level objective is
to  maximum  one  index,  can  record  the  maximum  value
and keep update during the training process; if there has a specific
control  index,  can  be  designed  to  the  index.  can  be
designed as positively correlated with .

In  addition,  when  setting  multi-level  control  objectives,  it  is
important  to  consider  the  potential  relationship  between
indicators  to  avoid  contradictory  settings  that  could  affect
algorithm efficiency.

2.3.3    Trajectory check unit

The  agent  should  prioritize  safety  as  a  hard  constraint  for  all
vehicle  actions.  In  the  modeling  optimization  methods,  a
minimum  safety  distance  is  usually  designed  as  a  constraint,  but
the  distance  is  also  not  easy  to  design properly.  A small  distance
cannot  guarantee  the  safety  risks  caused  by  the  reaction  time  of
HDVs. A large distance can ensure safety, but the vehicles cannot
achieve  more  active  car-following  behaviors.  Especially  for  AVs,
an  improperly  safety  distance  may  cause  the  algorithm to  ignore
the  optimal  solution  located  at  the  boundary  of  the  constrained
space.

Considering  the  aforementioned  differences,  we  designed  a
minimum safety  distance  of  2.5  m for  HDVs  to  comply  with  its
dynamic  characteristics.  Simultaneously,  we  set  the  minimum
safety  distance  of  AVs  to  0.1  m  to  encourage  the  behaviors  of
accelerating  and  exploring.  The  value  of  AVs’ minimum  safety
distance is  small  compared to that  of  HDVs.  The purpose of  the
small  distance  is  to  help  the  RL  agent  make  the  most  efficient
following  actions  during  trajectory  planning,  which  increases
traffic  efficiency.  Under  a  reasonable  control  model,  the  smaller
the  distance,  the  higher  the  upper  limit  of  performance
improvement.  Based  on  a  reasonable  control  model,  AV  can  be
flexibly controlled to achieve its minimum safety distance.

To reconfirm the rationality of the planning scheme in terms of
safety,  we  designed  that  RL  can  use  penalty  to  assurance  the
constraint  of  safety.  When a  collision  occurs,  a  large  penalty  will
be  immediately  obtained  by  agents  and  the  current  simulation
episode will be ended.

We also added a trajectory check unit to guarantee the safety, as
shown  in  the  yellow  part  of Fig.  3.  For  the  episodes  where  the
simulation is close to convergence, safety checks can be performed
at  the  end  of  each  episode  based  on  the  spatial–temporal
trajectories. If the trajectories are not meeting the requirements of
the safety index, we use the reward correction unit to correct the
cumulative rewards.  Then we put the experiences into the replay
buffer for retraining.

In  addition,  based  on  the  same  considerations,  it  is  not
advisable  to  incorporate  comfort  objectives  into  the  multi-level
objectives.

3    Experimental
We use an open-source framework called “Flow” (Wu et al., 2017)
to  link  the  transport  simulator  SUMO  (Lopez  et  al.,  2018)  and
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python  library  Rllib  (Liang  et  al.,  2017).  We  visualize  the  AV
policies in SUMO, and interact the simulation data with the agent
within  each  step.  After  a  certain  period  of  learning  iteration,  the
control objectives can be achieved. In addition, this work chooses
the  discount  factor as  large  as  possible  (close  to  1)  to
approximate the non-discount problem.

3.1    Simulation environment
This  work takes  saturated  signalized  intersections  as  the  research
object,  focusing  on  the  through  process  of  the  vehicles  in  an
entrance  lane  during  a  green  phase.  In  order  to  improve  the
efficiency of the algorithm and reduce hardware consumption, we
need  to  use  a  simpler  simulation  environment,  including  shorter
simulation time and fewer agents.

The  simulation  of  signalized  intersections  generally  requires
input  control  at  the  signal  entrance.  At  a  single  intersection,  no
input  distribution  can  accurately  reproduce  the  saturated  traffic
behavior. The queued overflow phenomenon at the exit cannot be
achieved by imposing constraints.

To  accurately  simulate  saturated  signalized  intersections,  we
need  to  set  up  an  environment  with  at  least  3  consecutive
signalized intersections. The exit of the first intersection is also the
entrance of the second intersection, and the entrance of the third
intersection  is  also  the  exit  of  the  second  intersection.  Then,  the
control of the entrance and exit sections in the second intersection
is equivalent to the saturation constraint control. On these settings,
we  can  only  focus  on  the  control  policies  of  the  vehicles  on  the
middle section of the road through the second signal intersection.

As  shown  in Fig.  4,  we  only  focus  on  the  second  intersection
along  the  advancing  direction  of  the  flow,  whose  trajectories  are
highlighted by a red box. The blank at the bottom left of the box is
due  to  vehicle  delays  caused  by  the  signal,  and  the  blank  at  the
bottom  right  is  because  the  number  of  vehicles  entered  is
insufficient. We can fill in the bottom right blank by increasing the
number of continuous signals, so we conducted a simulation with
5 consecutive intersections. As shown by the blue box in Fig. 4, it
is  the  spatial-temporal  trajectories  of  the  fifth  intersection  along
the direction of the flow.

N
5N

5N

Through Fig. 4, it can be seen that if we want to fully simulate
the  vehicles’ behavior  during  a  duration  of  green  phase  under
saturation  constraints,  at  least  5  consecutive  saturated  signalized
intersections  need to  be  designed.  The  second signal  cycle  of  the
fifth  intersection  can  be  used  as  the  observation  object  of  the
study.  If  the  number  of  vehicles  on each road segment  is ,  the
number of agents at 100% MPR is . The computational burden
is even more of an exponential order of .

All vehicles are HDVs, which using the IDM model as the car-
following model. All intersections have the same fixed signal cycle.
The yellow time is included in the duration of green phase.

To  simplify  the  problems,  we  consider  finding  an  alternative
environment. Inspired by the work in Kreidieh et al. (2018), their
work  confirmed  that  the  stop-and-go  waves  in  a  ring  road  are
similar to that of the road section. We designed a ring road with a

signal and conducted a simulation of the same traffic conditions as
Fig. 4 again. The spatial–temporal trajectories of the ring road are
shown in Fig. 5.

Comparing Figs.  4 and 5,  it  can  be  seen  that  the  spatial-
temporal  characteristics  of  the  vehicles  in  a  signalized  ring  road
are completely similar to that of a saturated signalized intersection.
In  addition,  except  the  first  signal  cycle  is  slightly  different,  the
second and third signal cycles are also completely similar, both of
which  are  the  same as  the  saturated  signalized  intersections.  The
differences in the first cycle may be caused by the different initial
acceleration  conditions  of  the  two  environments,  which  can  be
ignored.

Opting  for  a  signalized  ring  road  can  result  in  a  substantial
reduction in the number of agents, up to five times less compared
to  saturated  signalized  intersections.  Moreover,  the  spatial-
temporal  aspect  of  a  signalized  ring  road  is  akin  to  that  of  a
saturated signalized intersection. Hence, in this work, a signalized
ring  road  is  employed  as  a  simulation  environment  instead  of
saturated signalized intersections.

3.2    Experiment settings
To  perform  experiments  in  a  signalized  ring  road,  we  designed
MDPs elements, simulation settings, and hyper-parameters of the
training networks.

3.2.1    MDP elements

Space = {xi, vi, di, L}i∈AVState.  The  State  Space  includes  the
collection  of  the  spatial  position,  speed,  distance  from  the
preceding vehicle, and signal control state (period and phase) of all
AVs in the environment. Because in this work we do not consider
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cooperative driving, no relevant states are designed for AVs.
Action = {ai}i∈AV

[amin, amax] ai ∈ [amin, amax]

Action. The  Action  Space  consists  of  the
collection of the acceleration vectors of all AVs. At each time step,
RL-agent  can modify  the  real-time acceleration of  the  AVs in  its
control  range.  If  the  acceleration interval  of  the  vehicle  is  limited
to , and its action is .

Reward. To  encourage  high  throughputs  and  punish  high
acceleration, we design the reward function as Eqs. (15) and (16):

Reward = (∥vdes∥ − ∥vdes − vt∥)
∑

Tgreen

nthrough + αP (15)

P = v
(
Mva+Mg (fr + i) + 0.5ρaCDAf(v+ vwind)2

)
(16)

vdes vt
nthrough

Tgreen α P

where  is  the  desired speed;  is  the  speed of  the  AVs in  the
environment at step;  is the number of vehicles passing the
green  phase ; is  the  weight  factor;  and  is  the
instantaneous  emission,  which  is  defined  by  Eq.  (16)
(Abousleiman and Rawashdeh, 2015).

The meanings and values of symbols in Eq. (16) are shown in
Table 1.
 
 

Table 1    Coefficients of Eq. (8)

Description Symbol Value Unit
Aerodynamic drag coefficient CD 0.3 —

Frontal area Af 2.6 m2

Rolling resistant coefficient fr 0.005 —
Vehicle mass M 1,200 kg

Gravitational acceleration g 9.8 m/s2

Air mass density ρa 1.225 kg/m3

Rotational inertia dactor (mass factor) vwind 0 —
Regenerative braking factor δ 1 —

 

3.2.2    Simulation settings

Detailed  settings  of  the  simulation  settings  are  shown in Table  2
and the parameters of the IDM model used throughout this paper
are  shown  in Table  3.  When  selecting  vehicle  parameters,  we
tended  to  set  thresholds  as  high  as  possible  to  increase
randomness  and  flexibility.  Expanding  the  action  spaces  can
enhance  traffic  efficiency  to  a  greater  possibility.  Our
determination  of  parameter  values  was  primarily  based  on  the
work of Treiber et al. (2000).
 
 

Table 2    Simulation settings

Parameter Value Unit
Time step 0.1 s

Road length 260 m
Vehicle length 5 m

Minimal gap for HDVs 2.5 m
Minimal gap for AVs 0.1 m

Max vehicle speed 40 km/h
Acceleration ability of vehicles 3.5 m/s2

Deceleration ability of vehicles −3.5 m/s2

Duration of green phase (including yellow time) 35 s
Duration of red phase 35 s

 

3.2.3    Hyper-parameters of the networks

Table  4 shows  the  detailed  settings  of  hyper-parameters  for  the
networks at the experiments.

4    Results and discussion
This work evaluates the proposed RL method from three aspects:
(1)  algorithm  convergence,  (2)  superiority:  a  case  to  find  max
throughputs  under  the  saturation  flow  and  a  case  to  find  max
throughputs under saturation flow to prove the superiority of the
proposed  RL  method,  and  (3)  flexibility:  a  case  to  achieve  the
specific  throughputs  under  the  saturation  flow  to  prove  the
flexibility of the proposed RL method.

4.1    Algorithm convergence
Fig. 6 shows reward-curve of the standard PPO and the proposed
RL  method.  Generally  speaking,  the  proposed  RL  method  is  not
prone  to  local  optima  or  non-convergence.  The  proposed  RL
method  is  more  stable,  and  its  curves  will  not  appear  a  sudden
drop like the curve of MPR = 40% using standard PPO. While the
standard  PPO  has  a  risk  of  local  convergence  and  non-
convergence in the complex tasks (MPR = 60% and 80%).

In the simple tasks (MPR = 20% and 40%), the efficiency of the
two  algorithms  is  similar,  which  can  converge  within  100
iterations.  The  jagged  fluctuation  of  the  proposed  RL  method’s
reward  curve  in  the  early  stage  of  training  is  caused  by  the
secondary punishment of the accumulated reward. The curves of
the proposed RL method become stable when the training process
enters the convergence stage.

The proposed algorithm is more computationally efficient than
standard  PPO.  This  is  due  to  the  secondary  dynamic  reward
correction  (Eq.  (14)),  which  adjusts  based  on  real-time
accumulated training experience.  It’s  similar  to  incorporating the
knowledge  of  experts  to  expedite  the  process  of  exploration  and
training.

4.2    Superiority:  A  case  to  find  max  throughputs  under
the saturation flow
Adaptive cruise control (ACC) can actively avoid congestion and
is  often  used  as  AVs’ following  model  to  study  the  mixed  flow
behavior  of  mixed  autonomy  (Kesting  et  al.,  2008).  Linear
adaptive  cruise  control  (LACC)  is  used  as  benchmarks  for
performance  comparison  with  our  RL  approach,  since  our
research does not consider the cooperation between vehicles.  We
set a two-level control objective for RL agent to explore the upper
limit  of  the  throughputs:  The  first  level  is  maximum  the
throughputs, and the second level is the minimum emissions.

Fig.  7a shows  the  throughputs  using  RL-Control  and  LACC-

 

Table 3    Parameters of the IDM model used throughout this paper

Parameter Value Unit
Desired velocity 40 km/h

Maximum acceleration 3.5 m/s2

Acceleration index 4 —
Expected following distance 2.5 m

 

Table 4    Hyper-parameters settings

Hyper-parameter Value

Actor- networks and critic-networks 3 layers with 32 units each
and ReLU non-linearities

Batch size 20 × 1,520
Policy initialization Standard Gaussian

γDiscount factor 0.999
Learning rate 0.01
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Control at various MPR. Fig. 7b shows the throughput benefits of
using RL-Control at various MPR. Fig. 8 shows the emissions and
benefits of the emissions using RL-Control and LACC-Control at
various MPR. To eliminate  randomness,  the data  in Figs.  7a and
7b are the mean of 10 simulation results.

As  shown  in Fig.  7a,  RL-Control  has  a  obvious  improvement
on the throughputs compared with LACC-Control. When MPR is
100%,  22  vehicles  both  can  pass  through  the  signal  at  a  cycle.
LACC-Control will fall into a “control bottleneck” in the range of
MPR  =  40%–70%,  which  will  not  significantly  increase  the
throughputs.

As shown in Fig. 7b, with the increase of MPR, the throughput
benefits  have  linearly  improvement  compared  with  the  fully
HDVs (MPR = 0%). When MPR is 100%, the throughput benefits
can reach 69.2%.

The  throughput  benefits  also  have  improvement  compared
with  the  LACC-Control  with  the  same  MPR.  The  curves  of  the
benefits  show  a  segmented  fluctuation  rising  pattern,  and  there
both exit a jump in the range of MPR = 30%–40%, 70%–80%.

As  shown  in Figs.  8a and 8b,  with  the  increase  of  MPR,  the
emission  benefits  of  RL-Control  have  near  linearly  improvement
compared  with  LACC-Control  at  the  same  throughputs,  even  if

the emissions are set as the second-level multi-target setting.
Compared Figs.  7 and 8,  LACC-Control  can achieve  a  certain

degree of throughput increase when MPR is greater than 70%, but
it  is  at  the  expense  of  high  emissions.  The  poor  performance  of
LACC-control  at  high MPR is  also  consistent  with  our  inference
in Fig. 1: the method based on single-agent control is not suitable
for complex conditions.

In addition,  the proposed RL method is  based on multi-agent,
and we do not set cooperation rules for agents. The benefits under
the  high  MPR  show  that  the  agent  seems  to  have  explored  a
certain  undesigned  cooperation  rule,  which  also  shows  the  great
potential of the proposed RL method to adapting to the complex
conditions.

To  analyze  the  spatial-temporal  characteristics  at  mixed
autonomy  in  more  detail,  we  show  the  spatial-temporal
trajectories of LACC-Control and RL-Control at  various MPR in
Figs. 9–11. According to the conclusions in in Section 3.1, we only
focus on the spatial-temporal  characteristics of  the mixed flow in
the second signal cycle.

Generally  speaking,  whether  using  RL-Control  or  LACC-
Control, the AVs tend to maintain a smaller headway to improve
the  traffic  efficiency.  While  the  throughputs  are  increasing,  the

 

1,500

1,000
Av

er
ag

e 
re

w
ar

ds

500

0
0 20 40

Iterates
(a) MPR = 20% (b) MPR = 40%

(c) MPR = 60% (d) MPR = 80%

Standard PPO
Proposed method

60 80 100

4,500

3,000

Av
er

ag
e 

re
w

ar
ds

1,500

0
0 20 40

Iterates

Standard PPO
Proposed method

60 80 100

8,000

6,000

Av
er

ag
e 

re
w

ar
ds

2,000

4,000

0
0 20 40

Iterates

Standard PPO
Proposed method

60 80 100

12,000

Av
er

ag
e 

re
w

ar
ds

6,000

0
0 20 40

Iterates

Standard PPO
Proposed method

60 80 100

Fig. 6    Reward-curve of the standard PPO and the proposed RL method. (a) MPR = 20%, (b) MPR = 40%, (c) MPR = 60%, (d) MPR = 80%.

 

25
LACC-control
RL-control20

15

Th
ro

ug
hp

ut
 (v

eh
)

10

5

0
0 10 20 30 40 50

MPR (%)
(a) Throughput (b) Throughput benefit

60 70 80 90 100

70
LACC-control
RL-control

20

40
50
60

30

Th
ro

ug
hp

ut
 b

en
ef

its
 (%

)

10
0

0 10 20 30 40 50
MPR (%)

60 70 80 90 100

Fig. 7    Improvements of throughput at various MPR. (a) Throughput, (b) throughput benefit.

Multi-level objective control of AVs at a saturated signalized intersection with multi-agent deep reinforcement learning approach 257

https://doi.org/10.26599/JICV.2023.9210021
 



speed of passing the intersection is also improving.
RL-Control can eliminate the stop–and–go fluctuations on the

road  to  a  certain  extent  and  it  has  the  higher  comfort  of  the
trajectories, compared with LACC-Control.

As  shown  in Fig.  9,  when  MPR  is  less  than  30%,  Compared
with LACC control,  there is  little difference in the distribution of
overall  spatiotemporal  trajectories.  This  shows  that  it  is  with  the
similar  mechanisms  to  improve  traffic  efficiency  when  use  RL-
Control  or  LACC-control  as  an  AVs  car-following  model.  RL-
Control adopts a smoother acceleration change when passing the
green  phase.  The  optimization  is  without  sacrificing  throughput,
so it can be used as an eco-driving policy.

As shown in Fig. 10, when MPR is in the 40%–70% range, the
spatial-temporal  trajectories  of  LACC-Control  and  RL-Control
begin to show obvious differences. LACC-Control will cause large
waves, which is caused by the acceleration principle of LACC. The
actions of the AVs in pursuit of a smaller distance will increase the
waves.  This  means  that  when the  MPR is  greater  than 40%,  it  is

necessary  to  consider  the  system-level  optimizing,  such  as  RL-
Control, in order to reduce waves.

As  shown  in Fig.  11,  when  the  MPR  is  higher  than  80%,  the
spatial-temporal  trajectories  of  LACC-Control  and  RL-Control
gradually  become  analogously  again.  It  means  that  the  choice  of
control policies has less influence on mixed traffic behavior. There
are  easier  for  AVs to  achieve  the  effect  of  cooperation.  From the
spatial-temporal  trajectories,  the  cooperation  mode  may  be  the
synchronized  acceleration  and  deceleration.  Similar  to  MPR  less
than  30%， it  is  with  the  similar  mechanisms  to  improve  traffic
efficiency when use RL-Control or LACC-control as an AVs car-
following model.  However using RL-Control is much better than
using LACC-control.

In addition, as shown in Fig. 8, when MPR reaches 100%, two
interesting phenomena are worth discussing:

1) Although both 22 vehicles can pass through the signal in one
cycle,  the  stop-and-go  waves  still  cannot  be  completely  resolved.
The  phenomenon  is  caused  by  the  insufficient  shifting  distance.
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This  may  mean  that  the  value  of  the  saturated  flow  with  mixed
autonomy needs to be re-corrected at the high MPR conditions.

2)  The  comparison  of  passing  speeds  between  LACC-Control
and  RL-Control  during  the  green  phase  reveals  that  achieving
higher throughputs does not depend on a higher passing speed or
the  system  limit  speed.  The  related  studies  on  speed  control
usually  set  the  maximum  speed  limit  as  the  exit  speed  of  the
intersection.  From  our  results,  the  setting  seems  inappropriate
under saturated flow.

4.3    Flexibility: A case to achieve the specific throughputs
under the saturation flow
To prove  the  flexibility  of  the  proposed  RL  method,  we  set  two-
level objectives for RL-Control: the first-level objective is the same
throughputs as the LACC-Control experiment in Section 4.2, and
the second-level objective is the minimum emissions.

According  to  the  results  in  Section  4.2,  the  spatial-temporal
trajectories  of  LACC-Control  and  RL-Control  are  similar  at  low
MPR, so we carried out three experiments with MPR of 40%, 60%,
and 80%.

As shown in Fig. 12, RL-control can reduce emissions by 64.5%,

72.0%, and 79.4%, with MPR of 40%, 60% and 80%, respectively,
compared  with  LACC-Control.  The  emissions  benefits  grow
nearly linearly with MPR increasing.

Figs.  13–15 are  spatial–temporal  trajectories  of  LACC-Control
and RL-Control at MPR = 40%, MPR = 60%, and MPR = 80%. It
can be seen that RL-Control can greatly alleviate the stop-and-go
waves in the mixed flow, when the throughputs are the same.

It  should  be  noted  that  the  green  circle  in Figs.  13–15 shows
that the AVs controlled by RL actively adjust the speed to reduce
emissions. When the green phase starts, an AV can be the leader
of the platoon passing the green phase. The higher the MPR in the
platoon,  the  smoother  the  spatial–temporal  trajectories  of  the
platoon passing the green phase.

There is also a phenomenon can be found in Figs. 13 and 14. In
LACC-Control, there is a high probability that the first one to pass
the  green  phase  is  an  HDV,  since  MPR  is  not  very  high.  The
phenomenon  has  a  negative  impact  on  the  overall  emissions.  In
RL-Control, the agents will control the last AV from the upstream
intersection to actively decelerate and make the AV be the leader
of  the  platoon  at  current  green  phase.  Meanwhile,  RL-Control
does  not  affect  the  overall  throughputs  compared  with  LACC-
Control.
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Fig. 10    Spatial–temporal trajectories of experiment at various MPR (40%–70%).(a) MPR = 40% LACC-Control, (b) MPR = 40% RL-Control, (c) MPR = 50% LACC-
Control, (d) MPR = 50% RL-Control, (e) MPR = 60% LACC-Control, (f) MPR = 60% RL-Control, (e) MPR = 70% LACC-Control, (f) MPR = 70% RL-Control.
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5    Conclusions and future work
This  work  proposed  a  multi-level  objectives  framework  for  AVs’
trajectories  decision-making  based  on  multi-agent  DRL.  The
proposed method has stable convergence performance in complex
conditions.  The  proposed method is  superior  and flexible,  and it
can be used to analyze the behavior changes of mixed flow and the
mechanism of mixed autonomy to improve traffic efficiency.

We  took  the  saturated  signalized  intersection  with  mixed
autonomy as the research object. At the experiment of superiority,
we come to the following conclusions:

1)  Using  RL-Control  based  on  the  proposed  method,  the
throughputs  increase  linearly  as  MPR  increases,  compared  with
fully  HDVs.  When  MPR  is  100%,  the  throughputs  benefits  can
reach 69.2%.

2)  It  is  with  the  similar  behavioral  characteristics  of  the
reliability  to  use  RL-Control  and  LACC-control  as  an  AVs  car-

following  model  when  MPR  is  below  30%  and  more  than  80%.
The former (below 30%) has similar traffic efficiency between RL-
Control and LACC-control, while the latter (more than 80%) has
different traffic efficiency.

3)  When  MPR  is  above  40%,  it  is  necessary  to  study  the
cooperation of AVs under the system-level optimizations.

4)  If  the  cooperation  is  not  considered,  when  MPR  is  higher
than 80%, AVs’ behaviors are less affected by the choice of control
policies.

At  the  experiment  of  flexibility,  we  come  to  the  following
conclusions:

1)  Using  RL-Control  based  on  the  proposed  method,  the
emission benefits increase nearly linearly as MPR increases at 40%,
60%, and 80%. RL-control can reduce emissions by 64.5%, 72.0%
and  79.4%,  respectively,  compared  with  the  LACC-Control  with
the same MPR.

2) The traffic efficiency can be improved by flexibly distributing
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Fig. 11    Spatial–temporal trajectories of experiment at various MPR (80%–100%). (a) MPR = 80% LACC-Control, (b) MPR = 80% RL-Control, (c) MPR = 90% LACC-
Control, (d) MPR = 90% RL-Control, (e) MPR = 100% LACC-Control, (f) MPR = 100% RL-Control.
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the  vehicles’ distribution  between  the  upstream and downstream
intersections.

We  also  found  some  interesting  phenomena  of  mixed

autonomy  worthy  of  discussion,  which  can  provide  some
references  and  directions  for  the  studies  of  mixed  autonomy  at
saturated signalized intersections.
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1) The benefits under the high MPR show that the agent seems
to have explored a certain undesigned cooperation rule.

2)  The  value  of  the  saturated  flow  with  mixed  autonomy  at  a
high MPR needs to be re-corrected.

3)  Setting  the  exit  speed  of  the  intersection  as  the  maximum
speed limit,  this  constraint  setting seems inappropriate under the
saturated flow.

The  focus  of  our  follow-up  research  will  be  on  modeling  and
adjusting  engineering  parameters  based  on  the  theoretical
threshold,  specifically  in  the  study  of  robustness  and  cooperative
adaptability.

Replication and data sharing
Code  and  experimental  data  are  available  at https://doi.org/
10.26599/ETSD.2023.9190025.
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