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ABSTRACT: Real-time  and  accurate  traffic  light  status  recognition  can  provide  reliable  data  support  for  autonomous
vehicle decision-making and control systems. To address potential problems such as the minor component of traffic lights in
the perceptual domain of visual sensors and the complexity of recognition scenarios, we propose an end-to-end traffic light
status  recognition  method,  ResNeSt50-CBAM-DINO  (RC-DINO).  First,  we  performed  data  cleaning  on  the  Tsinghua–
Tencent  traffic  lights  (TTTL)  and fused it  with  the Shanghai  Jiao Tong University’s  traffic  light  dataset  (S2TLD) to  form a
Chinese  urban  traffic  light  dataset  (CUTLD).  Second,  we  combined  residual  network  with  split-attention  module-50
(ResNeSt50) and the convolutional block attention module (CBAM) to extract more significant traffic light features. Finally,
the proposed RC-DINO and mainstream recognition algorithms were trained and analyzed using CUTLD. The experimental
results show that, compared to the original DINO, RC-DINO improved the average precision (AP), AP at intersection over
union (IOU) = 0.5 (AP50), AP for small objects (APs), average recall (AR), and balanced F score (F1-Score) by 3.1%, 1.6%,
3.4%, 0.9%, and 0.9%, respectively, and had a certain capability to recognize the partially covered traffic light status. The
above  results  indicate  that  the  proposed  RC-DINO  improved  recognition  performance  and  robustness,  making  it  more
suitable for traffic light status recognition tasks.
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1    Introduction
As China’s  economy has  maintained  rapid  development  and the
continuous  construction  of  transportation  networks  (Liu  et  al.,
2021),  the  rapid  acquisition  and  efficient  utilization  of  traffic
scenario  information  has  emerged  as  the  pivotal  factor  for  the
advancement  of  intelligent  transportation  systems  (Lin  et  al.,
2023a; Liu  et  al.,  2022).  The  environmental  perception  system of
autonomous  vehicles  captures  and  analyzes  the  status  of  traffic
lights using onboard cameras, which provide reliable data support
for  the  decision-making  systems  of  autonomous  vehicles  (He
et al., 2023; Zong et al., 2022b). This enables autonomous vehicles
to  perform  reasonable  speed  optimization  when  approaching
signalized intersections and reduces potential collisions, which can
fully  improve  the  efficiency  and  safety  of  autonomous  vehicles
(Liu  et  al.,  2023; Zong  et  al.,  2022a).  However,  several  technical
difficulties exist in accurately recognizing the status of traffic lights.
Firstly,  the  traffic  light  images  captured  by  vision  sensors  are
susceptible to multiple factors, such as bad weather, exposure, and
obstructions, which affect the imaging quality. Secondly, nocturnal
interference  at  night  from similar  illuminants  such as  vehicle  tail
lights  and  streetlights.  Thirdly,  the  extremely  small  percentage  of
pixels  occupied  by  traffic  lights  in  an  image  poses  a  significant
challenge  for  the  traffic  light  status  recognition  algorithm  for
feature extraction.

Currently,  status-recognition  methods  for  traffic  lights  include
machine-learning  and  deep-learning-based  methods  (Zeng  et  al.,

2023). The former method achieves traffic light status recognition
by  manual  feature  segmentation  of  region  of  interest  (ROI)  and
combining  it  with  classifiers.  Although  these  methods
demonstrate high recognition rates in specific scenarios, they often
encounter  challenges  when applied to different  scenarios,  leading
to  poor  portability.  Deep-learning-based  traffic  light  status
recognition methods do not require manual feature design, which
can  significantly  improve  the  recognition  accuracy  and  inference
speed.  Nevertheless,  the  majority  of  current  traffic  light  status
recognition algorithms rely on foreign traffic light datasets, such as
laboratory for intelligent and safe automobiles (LISA) and la route
automatisée (LaRA). Few researchers have utilized domestic traffic
light datasets to develop traffic light status recognition algorithms
that align with the specific urban traffic characteristics in China. In
addition,  the  recognition  accuracy  in  complex  scenarios  is  not
high,  and  there  are  instances  of  false  and  missed  detections.
Furthermore,  they  lack  the  capability  to  solve  the  problem  of
identifying partially obscured lights.

Therefore,  we  propose  an  enhanced  algorithm  for  traffic  light
status recognition called RC-DINO based on DINO (Zhang et al.,
2022a), which uses ResNeSt50 (Zhang et al., 2022b) and combines
the  convolutional  block  attention  module  (CBAM)  (Woo  et  al.,
2018) to enhance the key information extraction capability of our
algorithm  (Mentasti  et  al.,  2023).  RC-DINO  eliminates  the
requirement  for  manually  designed  features,  such  as  non-
maximum  suppression,  enabling  the  direct  generation  of  object
bounding  boxes  and  category  labels.  We trained  RC-DINO with
mainstream  traffic  light  status  recognition  algorithms  on  the
Chinese  urban  traffic  light  dataset  (CUTLD).  The  comparison
experiments  indicated  that  the  RC-DINO  had  higher  average
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precision  (AP),  average  recall  (AR),  and  balanced  F  score  (F1-
Score).

Drawing on existing research, the primary contributions can be
summarized as follows:

1)  Data  cleaning  was  conducted  on  the  Tsinghua–Tencent
traffic  lights  (TTTL)  dataset  to  filter  out  instances  of  traffic  signs
and  relabel  instances  of  traffic  lights.  It  was  then  merged  and
filtered  with  the  Shanghai  Jiao  Tong  University’s  traffic  light
dataset  (S2TLD)  to  create  CUTLD,  which  is  suitable  for  focused
training of traffic light status recognition methods that align with
the characteristics of Chinese road traffic lights.

2)  An  improved  end-to-end  traffic  light  status  recognition
method,  RC-DINO,  is  proposed  based  on  DINO.  RC-DINO
replaces  the  original  backbone  with  ResNeSt50  and  incorporates
convolutional  block  attention  module  (CBAM)  to  improve  the
capability of the algorithm for feature information extraction.

AP50

3)  Mainstream  object  detection  models  such  as  faster  regions
with  CNN  features  (FRCNN)  and  you  only  look  once-v8
(YOLOv8)  were  chosen  for  comparative  analysis  alongside  the
original  DINO.  These  models  were  trained  and  evaluated  based
on the CUTLD. When all  models  achieved their  optimal fits,  the
DINO  model  demonstrated  exceptional  performance  with  all
common objects  in context  (COCO) evaluation metrics  reaching
their  peaks,  notably  achieving  an  AP  of  67.9%  and  an  of
95.9%,  proving  that  the  DINO  model  has  more  advantages  in
traffic light status recognition tasks than traditional one-stage and
two-stage object detection models.

AP50 APS

4) The enhanced RC-DINO was trained based on the CUTLD
and  subsequently  compared  and  validated  against  the  first  three
methods,  which  exhibited  superior  performance  in  the  DINO
analysis  experiments  using  various  metrics.  The  experimental
results clearly demonstrate RC-DINO’s superiority, which has the
highest  AP,  AR,  and  F1-Score.  Compared  to  the  original  DINO,
RC-DINO  improved  the  AP, , ,  AR,  and  F1-Score  by
3.1%,  1.6%,  3.4%,  0.9%,  and  0.9%,  respectively.  Furthermore,  we
performed  a  horizontal  comparison  between  the  RC-DINO  and
the traffic light status recognition methods proposed by Chen et al.
(2021) and Sathiya et al. (2015). The RC-DINO has the advantages
of  recognizing  more  statutes,  higher  recognition  accuracy,  and  a
certain  capability  to  recognize  a  partially  covered  traffic  light
status. In summary, the RC-DINO is more suitable for the task of
traffic light status recognition.

2    Related works
In machine learning-based methods,  the initial  step involves pre-
segmenting  the  ROI  of  traffic  lights  (Reddy  et  al.,  2023).
Subsequently,  various  features  such  as  signal  color,  morphology,
histogram of oriented gradient (HOG), and scale invariant feature
transform (SIFT) were extracted from the ROI. Finally,  classifiers
such as support vector machine (SVM) and decision tree (DT) are
adopted  for  traffic  light  status  recognition. Lee  et  al.  (2018)
adopted  an  approach  involving  threshold  segmentation  and
morphologic  manipulation  to  extract  potential  regions.
Subsequently, an SVM was employed to recognize red and green
lights.  Although  this  method  effectively  mitigates  the  effects  of
light  color  variations,  it  suffers  from  low  detection  accuracy  and
slow  processing  speed. Gong  et  al.  (2010) classified  and  tracked
traffic lights by segmenting an acquired HSV space using machine
learning  and  CAMSHIFT  method.  However,  this  method  is
susceptible  to  changes  in  lighting  conditions,  which  can
significantly  affect  its  performance. Omachi  and  Omachi  (2009)

normalized  the  color  space  and  extracted  an  ROI.  They  then
combined Sobel edge detection and Hough transform (Chen et al.,
2021)  to  detect  circular  traffic  lights.  However,  this  method  is
susceptible  to  color  variations. Sathiya  et  al.  (2015) utilized  color
threshold segmentation to extract the ROI for recognizing red and
green traffic lights. They achieved this by comparing the counts of
red and green pixels.  Although this  approach demonstrated high
recognition accuracy, it suffered from a long inference time.

Machine learning-based traffic light status recognition methods
primarily rely on human knowledge to extract relevant traffic light
features  and  recognize  their  status.  These  methods  demonstrate
greater  robustness  in  completing  recognition  tasks  in  specific
scenarios.  However,  they  are  often  unsuitable  for  other  scenarios
and suffer from poor real-time performance.  Moreover,  methods
utilizing manual feature design tend to exhibit a lower recognition
effect  and  a  higher  rate  of  leakage  (Fang  et  al.,  2023).  With  the
development of  hardware and software technologies,  deep neural
networks  are  progressively  being  used  in  the  transportation  field
owing  to  their  high  reliability,  applicability,  and  robustness  (Lin
et al., 2023b; Wang et al., 2023).

Numerous researchers have utilized deep learning methods for
traffic  light  status  recognition tasks. Saini  et  al.  (2017) used color
space  transformation  to  segment  the  image  and  position  the
candidate  region,  after  which  an  8-layer  convolutional  neural
network  (CNN)  was  adopted  to  output  the  status.  This  method
performed well in different lighting environments; however, there
were cases of misrecognition of vehicle taillights. John et al. (2014)
extracted texture, color, and shape features from candidate regions
and  employed  a  multilayer  perceptron  (MLP)  for  traffic  light
status  recognition. Müller  and Dietmayer  (2018) proposed a  TL-
SSD method that utilizes Inception v3 as the base network for the
SSD  approach.  It  achieved  95%  accuracy  on  a  custom  dataset.
However, this method cannot ensure real-time performance. Qian
et  al.  (2019) utilized  an  improved  version  of  the  YOLOv2
algorithm for traffic light status recognition and obtanied an mAP
of  96.08%  and  a  missing  detection  rate  of  2.87%. Wang  et  al.
(2021) improved the YOLOv4 algorithm and achieved an mAP of
82.15%  on  the  LISA  dataset,  which  was  a  2.86%  improvement
over the original YOLOv4.

From existing research, it  can be observed that the majority of
recognition  algorithms  utilize  foreign  traffic  signal  datasets,  such
as  LaRA  and  LISA,  whereas  there  is  limited  research  using
domestic  datasets.  Furthermore,  deep  learning-based  methods
have  significantly  improved  recognition  accuracy  and  speed.
However,  they  are  susceptible  to  environmental  factors  such  as
vehicle  obstacles,  streetlights,  and  taillights,  which  can  lead  to
certain  levels  of  false  and  missed  detections.  Therefore,  it  is
necessary  to  further  enhance  the  recognition  accuracy  and
complex  scenario  adaptability  of  traffic  light  status  recognition
algorithms. To overcome these problems, we constructed CUTLD
and  proposed  an  end-to-end  traffic  light  status  recognition
algorithm called RC-DINO.

3    Chinese urban traffic light dataset
We  cleaned  and  refused  the  domestic  open-source  traffic  light
dataset  TTTL  with  S2TLD:  (1)  we  filtered  the  traffic  signal
instances  from  the  JSON  file  and  deleted  empty  images;  (2)  we
reannotated  the  traffic  light  instances  with  the  category “Red  left
turn” and “Green  forward” as “Red” and “Green”,  respectively;
(3)  the  TTTL dataset  was  fused with  S2TLD to  form CUTLD in
COCO  format  with  the  characteristics  of  Chinese  urban  traffic
light.
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CUTLD has 10,762 images with over 30,000 labeled-instances,
including  four  traffic  light  status  categories: “red”, “yellow”,
“green”,  and “off”.  It  covers  traffic  light  scenarios,  such  as  dense
start-stop  traffic,  complex  light  interference,  and  low  visibility.
Traffic light scenarios in the CUTLD are shown in Fig. 1.

4    ResNeSt50-CBAM-DINO
RC-DINO  is  an  end-to-end  pipeline  built  on  the  DINO
framework and comprises four main parts (Vaswani et al.,  2017).
The integrated architecture of the RC-DINO is depicted in Fig. 2.
The  backbone  extracts  important  features  from  the  traffic  light
images,  which are then combined with their respective positional
encodings.  We employ  a  6-layer  transformer  encoder  for  feature
enhancement.  Subsequently,  we  selected  position-related
information  from  the  top-K (K stands  for  an  integer  value)
features to set up the position queries (Zhang et al., 2022a). Then,
multi-scale  deformable  attention  was  used  to  merge  the  output
features of the encoder and perform layer-wise updates. Finally, an
feedforward  neural  network  (FFN)  is  utilized  to  output  the
predicted positions of traffic lights and their corresponding status
classification  results.  Subsequently,  multi-scale  deformable
attention  was  used  to  merge  the  encoder  output  features  and
perform layer-by-layer updates. Finally, the traffic light prediction
object  frame  location  and  status  classification  results  are  output
using FFN.

4.1    Backbone
ResNeSt  is  an  improved  version  of  the  ResNet  (He  et  al.,  2016)
that  can  be  directly  applied  to  downstream  vision  tasks  and
exhibits  superior  performance  compared  with  ResNet.  ResNeSt
retains the basic architecture of ResNet while incorporating a split
attention module that performs attention across groups of feature
maps  and  assigns  higher  weights  to  important  regions  in  the
feature map. Therefore,  the backbone network was replaced with
ResNeSt50.

i ∈ [1, r] j ∈ [1, k]

The  ResNeSt50  Block  is  depicted  in Fig.  3,  where h, w,  and c
represent the number of channels in different feature maps. c' and
c''  are  the  number  of  channels  for  the  intermediate  features.

 represents  the i-th  branch  for  splitting,  and 
represents the j-th group. Position swapping of different modules
in the ResNeSt50 Block did not affect the results. In other words,
for  the  same  value  of r,  the  attention  formation  for  different k
values is the same. The radix-major approach was implemented in
the  experiments,  which  allowed  for  modular  accelerated  training
using standard CNN operators.

F ∈ RC×H×W

Additionally,  CBAM  was  added  to  ResNeSt50  to  further
facilitate  information  interaction  between  the  feature  maps.  For
the specific feature map , where C, W, and H represent
the number of channels in the different feature maps, it calculates
weights  along  both  the  channel  and  spatial  dimensions
independently.  These  weights  were  then  multiplied  by F to
dramatically  modify  the  feature  map  and  efficiently  restrain
unrelated  features.  Consequently,  CBAM  achieves  better
performance  than  SENet,  which  focuses  solely  on  the  channel

 

(a) Normal scenario

(b) Night scenario

(c) Low visibility 
Fig. 1    Partly traffic  light scenarios in CUTLD: (a) normal scenarios,  (b) night
scenarios, and (c) low visibility scenario.
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attention mechanism. Fig. 4 shows the architecture of CBAM.
F ∈ RH×W×C

1×1×C

Mc Mc

F F′ F′

H×W×1

Ms F′′

Ms F′

The  initial  undergoes  global  pooling  operations
along the width and height dimensions (Jiang and Huang, 2023),
and we obtain two  matrices. These two matrices were then
input  into  MLP.  Subsequently,  the  outputs  of  the  MLP  are
combined with the obtained matrices  to generate .  is  then
combined with  to produce . Afterward,  undergoes channel-
based  global  pooling  operations,  resulting  in  two 
matrices.  The  two  matrices  obtained  were  merged  along  the
channel dimension. Subsequently, convolutional operations and a
sigmoid  function  are  applied  to  obtain  spatial  attention  feature
( ).  Finally,  the final  output of CBAM  is  obtained based on

 and  (Qi  et  al.,  2023).  The  specific  process  is  described  by
Eqs. (1)–(4):

Mc (F) = σ (MLP (AvgPool (F)) +MLP (MaxPool (F)))
(1)

F′ = Mc (F)⊗ F (2)

Ms (F′) = σ
[
f 7×7 (AvgPool (F′)) ; (MaxPool( F′ ))

]
(3)

F′′ = Ms (F′)⊗ F′ (4)

4.2    Transformer architecture of RC-DINO
The SOTA results obtained by DINO in the COCO2017 (Lin et al.,
2014) demonstrate that the DETR-like end-to-end concise pipeline
performed well  in computer vision tasks.  As shown in Fig.  5,  the

 

Cardinal 1 Cardinal k Cardinal 1 Cardinal k
Split 1

Global pooling

Dense c'', group = k

Dense c'r, group = k

r-softmax

…

…

… …

(h,w,c')(h,w,c')

(h,w,c')

(h,w,c')

c',

c″,

c'r,

(h,w,c)

c',

Conv,1x1,c

Concatenate Concatenate

Split r

Input

Input

Conv,1×1,
c'/k/r

Conv,3×3,
c'/k

Conv,3×3,
c'/k

Conv,3×3,
c'/k

Conv,3×3,
c'/k

Conv,1×1,
c'/k/r

Conv,1×1,
c'/k/r

Conv,1×1,
c'/k/r

Fig. 3    ResNeSt50 block.
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architecture of RC-DINO is consistent with that of DINO.
In  this  study,  the  encoder  consists  of N =  6  identical  encoder

layers.  A  1×1  CNN  was  used  to  dimension  the  output  from  the

backbone into a one-dimensional representation, which was then
combined  with  spatial  position  encodings  and  input  into  the
encoder.  Each  encoder  layer  is  composed  of  two  sub-layers.  The

 

F
(H,W,C)

MaxPool

AvgPool Shared MLP

Channel attention module

[MaxPool, AvgPool]

Convolution layer

Spatial attention module

Mc(F)

Ms(F')F' F''

 
Fig. 4    Channel attention and spatial attention of CBAM.

 

Add & Norm

FFN

Add & Norm

MS deformable self attention

Image features

V K Q

Add & Norm

Transformer self attention

V K Q

6

Add & Norm

FFN

Add & Norm

MS  deformable cross attention

V K Q

Spatial positional
encoding

Object queries

Encoder

6
Decoder

FFN FFN

Cls Bounding box

Fig. 5    Transformer architecture of DINO.

A deep learning method for traffic light status recognition 177

https://doi.org/10.26599/JICV.2023.9210022
 



decoder consists of M = 6 identical decoder layers.  The inputs of
the decoder include spatial position encoding, object queries, and
the  encoder’s  outputs,  where  the  content  query  is  set  to  be
learnable  and  the  position  queries  are  initialized  with  position-
related  information  from  the  selected  top-K features.  Each
decoding  layer  consists  of  three  sub-layers.  Residual  connections
were  applied  between  every  two  sub-layers  and  layer
normalization was performed.

5    Experiments and results

5.1    Training details
The  specific  hardware  and  software  configurations  used  in  these
experiments  are  listed  in Table  1.  The  CPU  was  an  i9-12900KF,
the GPU was an NVIDIA GeForce RTX 3090 Ti, the CUTLD was
divided  in  a  ratio  of  8:1:1,  and  the  starting  learning  rate  was
0.0001.  In  addition,  the  pre-trained  weights  of  ResNeSt50  were
used.

5.2    Comparative experiments of DINO
We  compared  the  original  DINO  with  seven  mainstream
algorithms:  YOLOv7,  YOLOv8,  Faster-RCNN  (Ren  et  al.,  2015),
and  DETR-like  models  (Carion  et  al.,  2020).  In  our  experiment,
we  replaced  the  backbone  of  these  networks  with  ResNet50  and
used  several  metrics  to  compare  the  performance  of  each
algorithm.

AP50

↑
↑

As shown in Table 2, all types of AP (the AP mentioned in this
paper are all mean average precisions) of DAB-DETR, DN-DETR,
and DINO are substantially higher than the rest of the algorithms,
which  can  be  achieved  better  than  the  DETR  and  YOLO  series
algorithms by training for only a few epochs. DINO required only
36  epochs  to  achieve  optimal  results,  which  reached  95.9% 
and was considerably higher than those of Faster-RCNN ( 5.7%)
and YOLOv7 ( 3.2%). Therefore, DINO was selected as the basic
framework for the RC-DINO.

5.3    Comparative experiments of RC-DINO

AP50

To  further  illustrate  the  validity  of  the  presented  algorithm  and
showcase  the  intuitive  experimental  results,  we  compared  the
overall performances of DAB-DETR, DN-DETR, and DINO with
that  of  RC-DINO.  As  illustrated  in Fig.  6,  RC-DINO  exhibits
higher  precision  at  different  recall  rates,  with  its  PR  curve
completely  encompassing  those  of  the  other  algorithms.
Moreover,  DINO  and  RC-DINO  showed  a  stable  AP  (in Fig.  6,
AP  denotes )  after  the  twelfth  epoch,  with  RC-DINO
converging  to  a  significantly  higher  AP  of  97.5%  than  with  the
other  algorithms.  Based  on these  findings,  we  conclude  that  RC-
DINO  exhibits  the  best  performance  and  is  the  most  suitable
algorithm for traffic light status-recognition tasks.

AP50 APS

To quantitatively analyze the superiority of the RC-DINO from
multiple  perspectives,  we  selected , ,  AR,  FPS,  and  F1-
Score  as  the  main  evaluation  metrics.  As  shown  in Table  3,

 

Table 1    Experiment environment configuration

Configuration Parameter

Operating system Win 10

Central processing unit i9-12900KF

Graphics processing unit NVIDIA GeForce RTX 3090 Ti

CUDA V11.1.105

CUDNN V8.6.0

Initial learning rate 0.0001

Batch size 2

Weight decay 0.0001

 

Table 2    Comparison of different algorithms in COCO evaluation metrics

Method Epoch AP AP50 AP75 APS APM APL
Faster-RCNN 20 62.4% 90.2% 76.6% 58.2% 69.3% 73.7%

YOLOv7 300 58.4% 92.7% 65.0% 52.4% 65.6% 73.9%
YOLOv8 100 52.4% 86.3% 57.0% 42.0% 67.5% 72.0%

DETR 500 54.1% 84.5% 63.0% 44.8% 63.5% 68.4%
Deformable-DETR 50 59.9% 93.0% 70.6% 50.7% 69.4% 69.4%

DAB-DETR 50 64.9% 94.2% 78.5% 58.6% 72.5% 75.8%
DN-DETR 50 67.4% 95.5% 80.3% 61.0% 74.4% 78.3%

DINO 36 67.9% 95.9% 82.5% 61.3% 75.1% 77.5%
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Fig. 6    PR curves and AP curves of different algorithms.
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AP AP50 APS

compared  with  other  algorithms,  RC-DINO  demonstrated
improved evaluation metrics across all categories while exhibiting
only a minor reduction of 1 FPS. As shown in Table 4, compared
with  DINO,  the  parameter  and  calculation  quantities  of  RC-
DINO only increased by 1.9 M and 10.5 G, respectively. However,
the , , ,  AR,  and  F1-Score  increased  by  3.1%,  1.6%,
3.4%,  0.9%,  and  0.9%,  respectively.  Thus,  we  conclude  that  the
incorporation of ResNeSt50 and CBAM can significantly enhance
the  traffic  light  status  recognition  capability  of  RC-DINO,  with
only a minimal increase in computational overhead.

AP50We  chose  AP, ,  AR,  FPS,  and  F1-Score  as  the  main
evaluation  metrics  to  draw  the  radar  map.  As  shown  in Fig.  7,
owning  to  the  increase  in  the  number  of  model  parameters  and
computational workload, the FPS of RC-DINO was slightly lower
than  those  of  DAB-DETR  and  DN-DETR,  whereas  other
performance metrics exhibited significant improvements. In terms
of the entire area of the radar map, the RC-DINO had the largest
area,  indicating  that  the  comprehensive  performance  of  the  RC-
DINO is the best.

5.4    Visual analysis of recognition results
Furthermore,  we  employed  DINO  and  RC-DINO  to  generate
visual results for complex traffic light scenarios beyond the scope
of CUTLD. As shown in Figs.  8–10,  in the daytime scenario,  the
DINO had redundant object boxes. R-DINO correctly recognized
the  green  light,  but  the  positioning  accuracy  of  the  traffic  light

background panel was not high. RC-DINO can correctly identify
the  traffic  light  status  and  position  it  accurately.  In  the  low-
visibility  scenario,  DINO  and  R-DINO  could  not  recognize  the
red traffic  light  at  the  visual  boundary,  whereas  RC-DINO could
recognize  it.  In  the  nighttime  scenario,  although  all  of  the
algorithms  demonstrated  superior  recognition  capabilities,  RC-
DINO achieved the highest confidence level for recognizing green
lights.

As shown in Fig. 11, the three models can recognize the green
light  covered  by  clutter  telecommunications,  but  RC-DINO  has
the highest  recognition confidence.  As shown in Figs.  12 and 13,
only  the  improved  DINO  model  could  recognize  the  green  light
partially  covered  by  leaves  in  the  images,  and  the  recognition
confidence of RC-DINO was higher. The visualization recognition
results  intuitively  show  that  RC-DINO  outperforms  DINO  in
complex scenarios  and exhibits  the  ability  to  recognize  the  status

 

Table 3    Results of different algorithms under the main evaluation metrics

Method Epoch AP AP50 APS AR FPS F1-Score
DAB-DETR 50 64.9% 94.2% 58.6% 75.7% 14 96.2%
DN-DETR 50 67.4% 95.5% 61.0% 78.0% 14 96.8%

DINO 36 67.9% 95.9% 61.3% 78.7% 13 97.3%
R-DINO 36 68.7% 96.7% 62.2% 79.0% 13 97.8%

RC-DINO 36 71.0% 97.5% 64.7% 79.6% 13 98.2%

 

Table 4    Parameter quantities and calculation quantities of different algorithms

Method Parameter FLOP
DINO 45.2 M 119.0 G

R-DINO 47.1 M 129.5 G
RC-DINO 47.1 M 129.5 G
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Fig. 7    Comparison radar map of different algorithms.

 

(a) DINO (b) R-DINO (c) RC-DINO
Fig. 8    Recognition results of different algorithms in daytime scenario.

 

(a) DINO (b) R-DINO (c) RC-DINO
Fig. 9    Recognition results of different algorithms in low-visibility scenario.
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of covered traffic lights. In addition, it should be noted that there
was no image data of covered traffic lights in the CUTLD used to
train  the  algorithms.  However,  the  RC-DINO  has  a  certain
capability  to  recognize  the  partially  covered  traffic  light  status,
which  verifies  the  superior  generalization  of  the  algorithm
proposed in this study.

5.5    Horizontal comparison of RC-DINO
To further  demonstrate  the  superiority  of  our  proposed method,
we compared RC-DINO with the methods proposed by Chen et al.
(2021) and Sathiya et al.  (2015). As shown in Table 5, RC-DINO
can recognize four statuses: green, red, yellow, and off. In contrast,
Chen  et  al.  (2021) and Sathiya  et  al.  (2015)’s methods  can  only
identify  regular  colors  without  determining  whether  the  traffic
light is off. Additionally, Sathiya et al. (2015)’s method is limited to
recognizing  static  images  rather  than  analyzing  dynamic  video
streams.  Furthermore,  it  can  only  recognize  the  status  under
favorable  weather  conditions.  On  the  other  hand,  our  proposed
method  excels  in  recognizing  the  status  in  continuous  dynamic

scenarios under various weather conditions. Compared to Sathiya
et al.  (2015)’s method, our algorithm exhibits a shorter execution
time  while  achieving  higher  recognition  accuracy.  Although  the
execution time of our algorithm was similar to that of Chen et al.
(2021)’s method,  its  recognition  accuracy  improved  by
approximately 5%. Overall, the RC-DINO performed better.
 
 

Table 5    Traffic light recognition algorithm comparison

Metric This study Chen et al. (2021) Sathiya et al. (2015)
Kinds of status GRY+Off GRY GRY

Dynamic identification √ √ ×
Weather condition Variety Variety Fine day

AP 97.5% 92.76% 96%
Avg. exec time (ms) 76 67.35 > 2,000

6    Conclusions
In this study, we constructed a Chinese urban traffic light dataset.

 

(a) DINO (b) R-DINO (c) RC-DINO
Fig. 10    Recognition results of different algorithms in nighttime scenario.

 

(a) DINO (b) R-DINO (c) RC-DINO
Fig. 11    Recognition results of different algorithms in covered scenario.

 

(a) DINO (b) R-DINO (c) RC-DINO
Fig. 12    Recognition results of different algorithms in covered scenario.

 

(a) DINO (b) R-DINO (c) RC-DINO
Fig. 13    Recognition results of different algorithms in covered scenario.
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Subsequently,  an  end-to-end  traffic  light  status  recognition
algorithm  called  RC-DINO  was  proposed  based  on  DINO.  It
replaces the original DINO backbone with ResNet50 and accesses
the CBAM to enhance the feature information extraction ability of
the  backbone  for  traffic  lights.  Lastly,  we  conducted  numerous
comparative  experiments  to  confirm  that  the  RC-DINO
demonstrates  superior  comprehensive  performance  and
robustness for the recognition of traffic light status. Furthermore,
it  exhibits  a  certain  capability  to  recognize  the  partially  covered
traffic  light status.  Owing to the large number of  parameters and
computational  requirements  of  deep  learning  algorithms,  along
with the requirement for certain hardware equipment, the FPS of
these algorithms may be lower than that of lightweight recognition
algorithms.  In  future  research,  we  will  focus  on  lightweight
algorithms  that  can  significantly  improve  the  FPS  of  the  model
without reducing the accuracy,  enabling its  successful  application
to vehicles. In addition, high-precision maps will  be incorporated
to  achieve  lane-level  traffic  light  status  recognition  and  better
guide the safe driving of autonomous vehicles.

Replication and data sharing
Tsinghua–Tencent  traffic  lights  (TTTL)  is  available  at
https://cg.cs.tsinghua.edu.cn/traffic-light.  Shanghai  Jiao  Tong
University’s  traffic  light  dataset  (S2TLD)  is  available  at
https://github.com/Thinklab-SJTU/S2TLD.
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