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ABSTRACT: Transit  electrification  has  emerged  as  an  unstoppable  force,  driven  by  the  considerable  environmental
benefits it offers. However, the adoption of battery electric buses is still impeded by their limited flexibility, a constraint that
necessitates adjustments to  current  bus scheduling plans.  Consequently,  this  study aspires to  offer  a  thorough review of
articles focused on battery electric bus scheduling. Moreover, we provide a comprehensive review of 42 papers on electric
bus  scheduling  and  related  studies,  with  a  focus  on  the  most  recent  developments  and  trends  in  this  research  domain.
Despite this extensive review, our findings reveal a paucity of research that takes into account the robustness of electric bus
scheduling.  Furthermore,  we highlight  the critical  areas of  considering diverse charging modes in  electric  bus scheduling
and integrated planning of electric buses, which have not been adequately explored but hold the potential to greatly boost
the  effectiveness  of  electric  bus  systems.  Through  this  synthesis,  we  hope  that  readers  could  acquire  a  thorough
comprehension  of  the  studies  in  this  field  and  be  motivated  to  address  the  identified  research  gaps,  thus  propelling  the
progress of transit electrification.
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1    Introduction
Battery  electric  buses  (BEBs),  renowned  for  producing  zero
tailpipe  emissions  and  minimal  noise  pollution,  have  been
recognized as a significant component of future sustainable transit
systems (Qu et al., 2022). In recent years, governments across the
global  have  been  promoting  the  transition  of  public  transit  from
conventional bus fleets to BEBs to reduce reliance on oil. Over the
past  decade,  the  market  share  of  BEBs  has  rapidly  grown,  with
global  sales  surpassing  $40.1  billion  in  2021,  and  further  growth
with an expected annual rate of 13.5% from 2022 to 2030 (Grand
View  Research,  2022).  China  has  been  at  the  forefront  of  transit
electrification,  with  a  71%  market  share  for  new  energy  buses  in
2021  (Fig.  1),  where  BEBs  play  a  leading  role  in  that.  However,

despite their advantages, BEBs face certain drawbacks, such as the
limited  flexibility  stemming  from  their  shorter  range  and  longer
recharging  times  compared  to  traditional  diesel  buses.  In
Guangdong  Province,  China,  BEBs  have  been  experiencing
frequent breakdowns during routes, further emphasizing the need
for research and development in planning and scheduling electric
bus fleets (Shu, 2023).

Introducing electric buses into a transit system requires decision-
making across multiple levels, spanning strategic planning for the
long-term,  tactical  planning  for  the  short-term,  and  real-time
operational control, as illustrated in Fig. 2 (Perumal et al., 2022)②.
Effective planning across these levels is essential and indispensable
to  ensure  the  smooth  and  effective  operations  of  BEBs.  Strategic
planning, which remains unchanged for years, involves designing
the  transit  network  and  deploying  the  necessary  charging
infrastructure.  Transit  network  design  entails  determining  the
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Fig. 1    Overview of public buses in China from 2013 to 2021①.

 

① The data of years 2013–2018 is from Li and Yao (2020); the data
of years 2019, 2020, and 2021 is from Institute for Transportation &
Development  Policy  (ITDP)  (2020),  Xinhua  (2021),  and
Tonghuashun (2022), respectively. 

② It  is  worth  to  note  that  our  paper  aims  at  providing  a
comprehensive  review  on  electric  bus  scheduling.  As  we  delve  into
this realm, we find that certain electric bus scheduling problems are
intertwined with broader strategic planning problems (as expounded
upon  in  Section  3.2.3)  and  intermingled  with  real-time  control
mechanisms (as discussed in Section 3.2.2). Consequently, Section 1
encompasses  a  broader  scope,  encompassing  both  long-term
strategic planning and real-time operational control within the realm
of electric transit decision-making.
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arrangement of the transit system, such as bus line configurations,
the  mode  of  transit  (e.g.,  local  bus  or  express  bus,  bimodal  or
single-mode  transit,  ring-radial  or  grid  transit  network),  and  bus
stop  locations  along  each  line  (Tong  et  al.,  2021b).  The
quintessential aim of the transit network design problem lies in the
minimization  of  the  generalized  cost  across  the  transit  system,
including  the  average  agency  cost  per  trip  and  average  patron’s
travel cost. Another type of optimization problem at the long-term
strategic level,  denoted as the charging infrastructure deployment
problem,  strives  to  optimize  the  location,  number,  and  mode  of
chargers  at  each  charging  station,  which  could  include  normal
charging,  fast  charging,  or  battery  swapping  (Zeng  et  al.,  2023;
Zeng and Qu, 2023). Table 1 presents a succinct summary of the
salient  characteristics  associated  with  each  charging  mode.  In
optimizing  the  deployment  of  charging  infrastructure,  the  aim  is
to  minimize  the  joint  cost  incurred  by  the  construction  of
charging stations and the operation of BEBs, while considering the
benefits and limitations of distinct charging modes.

At  the  tactical  level,  transit  system  decision-making  involves
timetabling,  bus  scheduling,  and crew scheduling,  as  indicated in
Fig.  2.  Timetabling  seeks  to  optimize  bus  service  frequency  and
determine  the  most  efficient  departure  times  of  buses  based  on
anticipated  passenger  demand  for  each  bus  stop.  The  vehicle
scheduling  problem  entails  allocating  buses  to  carry  out  a
predetermined  set  of  scheduled  trips  with  the  minimal  possible
operation cost for BEB fleets. Given the limited driving distance of
BEBs, it is crucial to simultaneously consider charging needs while
addressing  the  BEB  scheduling  problem  (Zeng  and  Qu,  2023).
Lastly, crew scheduling aims to establish the optimal duties of bus
drivers to cover all scheduled bus trips with minimal total wages to

be  paid,  subject  to  various  labor  union  rules  and  regulations.
These  tactical-level  decisions  play  a  vital  role  in  the  effective
implementation of electric bus service.

Real-life scenarios often involve uncertainty in traffic conditions
and passenger demand, leading to deviations from BEB schedules.
Any delay in a trip can have a cascading effect on the subsequent
trips,  even causing bus bunching in severe cases.  Operators must
therefore  exert  real-time  control  over  BEBs  to  enhance
punctuality,  particularly  in  cases  of  unexpected  delays.
Furthermore,  the  original  charging  plan  may  become  unfeasible
due  to  the  inaccurate  estimation  on  energy  consumption  that  is
highly related to traffic conditions. Thus, real-time control of BEBs
at  the  operational  level  can  also  help  to  prevent  on-route
breakdowns.  The  unpredictable  nature  of  transit  operations
necessitates a responsive and adaptable approach to control buses,
which  includes  real-time  decision-making  and  agile  response  to
changes in traffic and demand.

In  this  review,  we  aim  to  examine  the  current  state  of
knowledge in the field of BEB scheduling on tactical level. To this
end,  we  conduct  a  literature  search  using  keywords  such  as
“vehicle  scheduling”, “bus  scheduling”,  and “electric  bus”,  and
analyze  the  selected  articles  with  a  focus  on  the  modeling
techniques  and  solution  approaches  used  in  these  studies.  As
electric bus scheduling is  often considered as part of  the strategic
planning problem, such as the line design and the deployment of
charging infrastructure, we also review related studies in this area.
Meanwhile, the electric bus scheduling problem is a special type of
vehicle  scheduling problem. Interestingly,  many of  the modelling
techniques and solution approaches employed in tackling electric
bus  scheduling  derive  from  their  traditional  diesel-powered
counterparts.  Recognizing  this  interconnectedness,  we  provide  a
concise  overview  of  the  diesel  bus  scheduling  problem  as  well.
Through our thorough analysis of 42 papers published in leading
transportation  journals,  including  7  articles  related  to  diesel  bus
scheduling and 35 articles  on electric  bus  scheduling,  we identify
prevailing  research  orientations,  advanced  algorithms,  and
potential  research  directions.  Except  for  a  regular  update  of
reference, our review differentiates itself from previous ones with a
focus  on  the  key  setups  and  assumptions  of  reviewed  studies.
Specifically,  we  delve  into  crucial  aspects  such  as  the  charging
patterns,  electricity  pricing,  and  charging  station  capacities.
Table  2 provides  a  summary  of  the  studies  that  are  taken  into
account  in  this  paper.  Our  aim  is  to  furnish  readers  with  a
comprehensive grasp of the most recent advancements and trends
in this area through this study. We also hope that it will encourage
researchers  to  address  the  identified  research  gaps,  thereby
hastening the development of transit electrification.

In  the  subsequent  sections,  this  paper  is  structured  as  follows.
The selected studies on the scheduling problem of diesel buses are
reviewed in Section 2, addressing both the single-depot and multi-
depot  vehicle  scheduling  issue.  Section  3  reviews  the  numerous
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Fig. 2    Electric transit decision process.

 

Table 1    Features of different charging modes (Xue et al., 2019)

Charging mode Charging rate, C Location Advantage Disadvantage

Normal charging < 3C Bus depot Prolonging battery lifetime slight
effect on electricity grid

Long recharging time requiring
large battery packs

Fast charging ≥ 3C Bus stops Short recharging time requiring
small battery packs

Accelerating battery capacity
loss large effect on electricity grid

Battery swapping < 3C Specific spots Short swapping time prolonging
battery lifetime

Requiring a large area, high construction
cost requiring a large number of batteries
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studies  on  the  scheduling  problem  of  BEBs  with  explicit
consideration  of  BEBs’ features.  Lastly,  Section  4  outlines
forthcoming research avenues and summarizes the paper.

2    Diesel bus scheduling problem

O
(
n3
)

n

Studies  on  vehicle  scheduling  problems  began  with  the
optimization  of  schedules  for  vehicles  departing  from  a  single
depot  (Freling  et  al.,  2001; Paixão  and  Branco,  1987).  The  term
used  to  describe  this  issue  is  the  single-depot  vehicle  scheduling
problem (SDVSP). In SDVSP, the buses start from the depot and
consecutively cater to a series of  trips throughout the operational
period  of  the  day.  A  sequence  of  trip  services  completed  by  a
single  bus is  denoted as  a  trip chain,  where the sequence of  trips
within a given trip chain is organized in an ascending order based
on their departure time. If the ending station and starting station
of  two adjacent  trips  do  not  overlap,  the  bus  may  move  without
passengers, referred to as deadheads. The feasibility of a trip chain
is  determined  by  whether  all  included  trips  can  be  completed
punctually.  The  cost  of  a  trip  chain  usually  comprises  of  a  fixed
cost term as well as a variable one that is correlated with the travel
distance. Hence, the objective of SDVSP is to find the optimal bus-
to-trip  assignments  with  the  least  cost  of  all  selected  trip  chains,
satisfying  that  a  set  of  predefined  trips  are  served  on  time.
Conventional SDVSP has been proven to be polynomially solvable
with  complexities  of ,  where  the  number  of  trips  to  be
covered  is  denoted  as .  Since  then,  a  variety  of  SDVSP  models
and  specified  polynomial-time  algorithms  have  been  created.
These  include  the  network  flow  model,  transportation  model,
assignment model and the minimal decomposition model.

The  transit  operators  often  face  the  challenge  of  managing
some  vehicles  departing  from  multiple  depots,  giving  rise  to  the
multi-depot  vehicle  scheduling  problem,  referred  as  MDVSP  for
short  (Desaulniers  et  al.,  1998).  The  MDVSP  is  inherently  more
complex  than  the  SDVSP  because  it  mandates  that  each  vehicle
initiates and terminates at the same depot. Notably, the complexity
of  MDVSP  has  been  proven  to  be  of  the  non-deterministic
polynomial-time  hard  (NP-hard)  classification  (Bertossi  et  al.,
1987).  Researchers  have  suggested  various  solution  methods  to
tackle  the  MDVSP,  encompassing  both  heuristic  and  exact
algorithms. Interested readers can find a comprehensive review of
vehicle scheduling problem, including both SDVSP and MDVSP,
in the works of Ibarra-Rojas et  al.  (2015) and Bunte and Kliewer
(2009).

V R
K

As  demonstrated  in  previous  studies,  the  multi-depot  vehicle
scheduling  problem  is  often  expressed  as  a  set  partitioning
problem (Hadjar et al.,  2006).  In the subsequent sections,  we will
delve  into  the  details  of  the  set  partitioning  model,  which  would
facilitate  the  introduction  of  some  research  on  electric  bus
scheduling problem. We define  as the set of timetabled trips, 
as  the  set  of  trip  chains,  and  as  the  set  of  bus  depots.  The
formulation of the set partitioning model is presented as Eq. (1):

min J =
∑

r∈R
crλr (1a)

subject to

∑
r∈R

Ar
iλr = 1,∀i ∈ V (1b)

∑
r∈R

Ur
kλr ≤ vk, ∀k ∈ K (1c)

λr ∈ {0,1} , ∀r ∈ R (1d)

λr r ∈ R
cr

r ∈ R cr

i ∈ V Ar
i

i r ∈ R

vk
k ∈ K Ur

k

r ∈ R
k ∈ K

λr r ∈ R

The  objective  function  of  set  partitioning  model  (1a)  is  to
minimize  the  overall  cost  of  the  selected  trip  chains,  where  the
binary variable  is equal to one if trip chain  is chosen (i.e.,
served by a bus).  Here, the parameter  indicates the cost of trip
chain .  Note that  the cost  components  of  depend on the
objective  of  studied  MDVSP.  It  may  include  the  operation  and
maintenance cost of buses. Meanwhile, the shift time between two
adjacent  trips  can  also  be  taken  into  account  depending  on  the
problem  setting.  Constraints  (1b)  ensure  each  scheduled  trip

 must  be  served  once,  and  is  a  binary  parameter  that
equals one if and only if trip  is covered by trip chain . The
number  of  vehicles  departing  from  each  depot  is  restrained  by
constraints  (1c),  where  denotes  the  upper  bound  on  the
number of vehicles at depot ;  is a binary parameter that
equals  one  if  the  bus  serving  trip  chain  belongs  to  depot

,  and  zero  otherwise.  The  domain  of  the  binary  decision
variables  ( ) is defined in constraints (1d).

The  formulation  of  the  set  partitioning  model,  is  presented  in
the form of mixed-integer linear programming. However, it would
become intractable for commercial solvers like CPLEX due to the
vast  number  of  feasible  trip  chains,  even  for  small  problems.  To
address this issue, column generation is commonly used. First, the
models (1a)–(1d) is decomposed into a pricing subproblem as well
as  a  restricted  master  problem  (RMP)  by  relaxing  the  integrality
constraints  (1d).  In  RMP,  only  a  subset  of  trip  chains  are
considered,  enabling  commercial  solvers  to  directly  solve  the
RMP. The pricing subproblem generates new trip chains that can
reduce  the  objective  value  of  RMP  and  are  not  yet  part  of  the
RMP.  The  shortest  path  problem  is  formulated  for  the  pricing
subproblem  of  each  depot.  The  termination  of  the  column
generation  procedure  occurs  when  there  are  no  additional  trip
chains to be incorporated.

Meanwhile,  in order to ensure the acquisition of viable integer
solutions,  it  is  commonplace  to  integrate  the  column  generation
technique into a branch-and-price methodology. To be specific, if
the solution obtained by the column generation procedure is  not
integer,  a  branch-and-bound  procedure  is  used  to  branch  the
fractional node into two child nodes in the branch-and-bound tree
according  to  the  predefined  branching  strategy.  Then  for  the
minimization  problem,  update  the  upper  bound  of  the  original
problem and prune the node whose optimal value is no less than
the  newly  updated  upper  bound.  The  branch-and-bound
procedure terminates if there is no node can be further branched
in the tree. For more details on the branch-and-price framework,
readers can refer to Xu and Meng (2019) and Zhang et al. (2021a).

3    Battery electric bus scheduling problem
Our  attention  turns  to  the  scheduling  problem  of  BEBs,  which
represents  an  expansion  of  the  conventional  vehicle  scheduling

 

Table 2    Number of papers reviewed for different types of bus scheduling

Category No. Problem type No. of reviewed papers Time span (year)
1 Diesel bus scheduling problem 7 1987–2015
2 Electric bus scheduling problem 35 2013–2023
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problem. The BEB scheduling problem is a special type of vehicle
scheduling  problem  (VSP),  where  the  BEBs’ limited  range  and
charging requirements are explicitly modeled. Research studies in
this  area  may  be  categorized  into  two  types,  namely  mixed-fleet
bus  scheduling  problem  and  pure  electric-fleet  bus  scheduling
problem.  The  former  and  latter  categories  will  be  reviewed  in
Sections  3.1  and  3.2,  respectively.  Additionally,  to  enhance  the
readers’ experience,  we  have  presented  a  summary  of  the
modeling  features  and  solution  approaches  of  selected  BEB
scheduling studies in Table 3.

3.1    Mixed-fleet bus scheduling problem
The  gradual  shift  towards  electrification  in  transit  has  prompted
numerous studies on scheduling strategies for mixed fleets during
this  transitional  phase.  These  studies  typically  predefine  the
composition  of  the  bus  fleet,  comprising  the  quantity  and
categories of  vehicles,  thereby neglecting the optimization of  fleet
size.  The  goal  is  generally  to  minimize  the  overall  expenses  of
operations  as  well  as  external  emissions. Rinaldi  et  al.  (2020)
conducted a significant study on optimal scheduling problem for
mixed bus fleet with a single terminal, where all trips that need to
be serviced commence and end at the same terminal.  To address
this  challenge,  the  researchers  created  a  mixed-integer  linear
program combined  with  a  customized  decomposition  scheme  to
decrease  the  model’s  intricacy.  The  efficiency  of  the  proposed
approach  was  then  tested  in  two  case  studies  from  Luxembourg
city. It was verified that the implementation of this solution could
significantly contribute to the development of innovative decision-
making  systems  aimed  at  supporting  policymakers  in  addressing
the  ongoing  transition  from  traditional  bus  fleets  to  more

environmentally  friendly  ones.  Another  study  by Zhou  et  al.
(2020) extended this research by considering multiple terminals in
the transit network and explicitly accounting for deadheading trips
between  different  terminals  in  vehicle  scheduling.  A  bi-level
programming  approach  was  utilized  in  this  study,  where  the
charging  strategy  and  service  scheduling  were  optimized  on  the
lower and upper levels, respectively.

In  contrast  to  the  aforementioned  problems, Li  et  al.  (2018)
jointly  optimized  fleet  size  and  composition  while  considering
budgetary  constraints.  To  address  this  mixed  fleet  management
problem, the researchers suggested a new method named the new
life additional benefit-cost analysis. Similarly, Pelletier et al. (2019)
presented  a  problem  regarding  the  transition  of  diesel  buses
towards  electric  buses  subject  to  budget  constraint,  with  the
objective  of  establishing  replacement  plans  for  transport
companies  that  were  cost-effective  and  helped  meet  their
electrification  goals.  This  review  elucidated  a  progressive  plan  to
substitute  the  existing  bus  fleet  with  a  purely  electric  one,
highlighting  the  crucial  role  of  proper  fleet  management  in  the
transition towards electrification.

3.2    Electric-fleet bus scheduling problem
The optimization of  electric-fleet  bus scheduling can be classified
into three types, depending on the decisions made. The first type
focuses  solely  on  optimizing  charging  scheduling,  while  service
scheduling  for  BEBs  is  predetermined  or  ignored  (Ding  et  al.,
2022; Liu  et  al.,  2022; Zhang  et  al.,  2021c; Zheng  et  al.,  2023).
Usually,  the  optimization  of  the  charging  strategy  aims  to
minimize  the  overall  charging  cost  and/or  the  cost  brought  by
battery  capacity  fading,  while  fully  considering  charging  station

 

Table 3    Selected studies on BEB scheduling optimization

Ref. Problem type Objective Charging mode Problem feature Solution approach

Li (2014) SDVSP Minimize total
operating cost

Battery swapping,
Plug-in charging

Full charging,
Limited chargers Branch-and-price

Wang et al. (2017) SDVSP Minimize total
operating cost Plug-in charging Fixed charging time,

Limited chargers CPLEX

Yang et al. (2018) Single bus line Minimize charging
cost Wireless charging Partial charging,

Time-of-use Electricity price Two-step heuristic method

Tang et al. (2019) SDVSP Minimize total
operating cost

Battery swapping,
Plug-in charging

Full charging,
Limited chargers Branch-and-price

Rinaldi et al. (2020) SDVSP Minimize total
operating cost Plug-in charging Full charging,

Limited chargers
Time-based decomposition
method

Liu and Ceder (2020) MDVSP Minimize fleet size and
number of chargers Plug-in charging Partial charging,

Limited charges Heuristic method

He et al. (2020) SDVSP Minimize charging
cost Plug-in charging

Partial charging,
Time-of-use,
Electricity price

Solver CPLEX

Zhang et al. (2021a) SDVSP Minimize total
operating cost Plug-in charging

Full charging,
Limited chargers,
Battery management,
Non-linear charging profile

Branch-and-price

Yıldırım and Yıldız (2021) MDVSP Minimize total
operating cost

Plug-in charging,
Wireless charging Partial charging Dynamic programming

Zeng et al. (2022) SDVSP Minimize total charging
cost and wear cost Plug-in charging

Partial charging,
Battery management,
Time-of-use electricity price

Solver GAMS

Zhou et al. (2022) Single bus line Minimize total
operating cost Plug-in charging

Partial charging,
Battery management,
Non-linear charging profile

Linearization and
approximation techniques

Brinkel et al. (2023) MDVSP Minimize total
charging cost Plug-in charging Partial charging,

Time-of-use Electricity price Simulation

Xie et al. (2023) Single bus line Minimize total operating
cost and driver salary

Plug-in charging,
Battery swapping

Partial charging
Multiple charging modes Two-stage solution algorithm
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capacity,  time-varying  electricity  prices,  and/or  battery  capacity
fading  mechanisms.  The  second  type  involves  the  joint
optimization of charging and vehicle scheduling (Li, 2014; Zhang,
et  al.,  2021a).  In  this  problem,  bus-to-trip  assignments  are
optimized  to  achieve  the  minimal  operating  cost,  with  explicit
consideration of the BEBs’ charging requirements simultaneously.
The  third  type  is  the  integrated  electric  bus  planning,  which
incorporates  BEB  scheduling  into  other  high-level  planning
problems,  such as  the deployment of  charging infrastructure and
line planning (An, 2020; He et  al.,  2023; Liu et  al.,  2023a, 2023b).
This type of planning takes a holistic approach to address electric
bus  scheduling  problems  and  considers  the  interdependence  of
various  planning  factors.  Subsequently,  we  shall  delve  into  a
detailed  review  of  the  three  types  of  studies,  one  by  one,  as
presented in Sections 3.2.1–3.2.3 respectively.

3.2.1    Solely optimizing charging schedule

Regarding  studies  that  solely  optimize  charging  scheduling,  one
remarkable  paper  by He  et  al.  (2020) addressed  the  optimal
schedules  of  BEBs’ charging  activities  under  fast  charging  mode,
with  the  aim  of  minimizing  the  overall  charging  expenses.  This
research  considered  a  partial  charging  policy  and  varying
electricity  prices  over  time  to  ensure  the  economic  advantage  of
BEBs,  given  that  on-route  fast  charging  during  on-peak  periods
may lead to  an increase  in  electricity  energy charges.  The cost  of
charging  a  BEB  depends  greatly  on  the  charging  time  since  the
unit  price  of  electricity  varies  largely  over  the  time.  It  is  worth
noting that the price charged during peak-demand periods can be
3–4  times  that  in  off-peak  periods.  Meanwhile,  the  increasingly
popular electric vehicles impose an ever-growing load pressure on
the  power  grid.  Without  efficient  coordination,  the  electric
vehicles’ charging  activities  may  largely  overlap  with  the  peak
periods of the daily load curve. To address this issue, the authors
proposed  a  nonlinear  nonconvex  programming  model  that
determined  the  optimal  charging  schedules  and  charging  power.
The  model  was  then  linearized  using  discretization  techniques,
making it easily solvable by commercial solvers. A real-world case
study  was  used  to  demonstrate  the  proposed  model.  Results
shown that  by  carefully  modelling  the  charging  decision  process,
the  total  charging  cost  could  be  reduced  by  up  to  47.8%,  from
767.0  to  400.6.  It  is  important  to  note  that,  the  model  disregards
charging station capacity and BEB-to-trip assignment for the sake
of  simplicity.  Similarly, Liu  et  al.  (2022) developed  a  model  to
optimize  the  charging  schedules  of  BEBs  with  explicit
consideration  the  variation  of  electricity  tariffs  over  the  time.
Meanwhile,  the  stochasticity  in  travel  time  is  also  considered  in
their  model,  thereby  enhancing  the  practicality  and  efficacy  of
their  recommended charging  plans.  Later,  studies  in  the  area  are
further  improved  by He  et  al.  (2023).  They  made  a  significant

contribution  by  creating  an  estimation  method  that  provides
highly  accurate  energy  consumption  values,  enabling  a  more
realistic optimization of the charging strategy.

Besides the time-of-use electricity price, battery management is
another  nonnegligible  factor  in  optimizing  the  charging  plans  of
BEBs (Guillot et al.,  2022; Tong et al.,  2021a). Managing batteries
is crucial in BEB scheduling and management. Usually, the initial
investment required for BEBs is higher than that for conventional
diesel buses due to the significant cost associated with the battery
packs.  Furthermore,  the  capacity  of  batteries  in  BEBs  typically
reduces  over  time  as  a  result  of  charge  and  discharge  cycling,
leading  to  a  decline  in  battery  performance  (Zhang  et  al.,  2019).
Reaching the end of life is a common occurrence when the battery’
s  capacity  has  fallen  by  20%–30% of  the  initial  value.  Hence,  the
BEBs’ batteries  need  be  replaced  periodically.  A  simple
summarization of studies on battery capacity fading mechanism is
presented  in Table  4.  To  address  the  issue, Zhang  et  al.  (2021b)
proffered  an  innovative  approach  to  electric  fleet  management,
one that takes into account the real-world phenomenon of battery
capacity  loss  stemming  from  the  recurring  charge  and  discharge
cycling  over  the  extended  period.  The  researchers’ empirical
inquiry  uncovered  that  adopting  a  battery  state-of-charge  regime
that hovers within a low and tightly defined threshold can afford a
lifespan extension of up to three years and a sizeable reduction in
the  overall  cost  of  running  an  electric  bus  fleet,  amounting  to
24.7%.

3.2.2    Jointly optimizing charging and vehicle schedule

Joint  optimization of  vehicle  and charging scheduling for  electric
transit  systems  constitutes  a  complex  task  with  multiple
dimensions,  but  it  is  ultimately  more  cost-effective  and
comprehensive  than  sole  optimization  of  charging  scheduling.
Notwithstanding its concomitant complexities, most studies in the
field  of  BEB  scheduling  focus  on  the  combined  optimization  of
charging and vehicle scheduling. One notable example is the work
by Li  (2014).  This  paper  examined  the  optimal  service  and
charging  scheduling  of  BEBs  from  a  single  depot  with  a  fixed
charging time,  which can be  applied to  fast  charging and battery
swapping.  Its  goal  is  to  minimize  the  operational  expense  while
adhering  to  a  given  set  of  trips.  The  approach  started  with  the
construction of a directed multigraph that represented each trip as
a node in the graph, along with trip starting and ending times, as
well  as  distance.  Meanwhile,  the  charging  station  was  also
represented  by  a  node  in  the  graph,  associated  with  station
capacity.  A  discretization  approach  was  used  to  convert  the
capacity constraint into a set of discrete nodes known as “the time-
expanded  nodes”,  and  arcs  were  generated  that  satisfied  the
maximum  travel  range  constraint.  The  problem  was  formulated
using  an  arc-based  approach,  which  can  be  solved  using  a

 

Table 4    Selected studies on battery capacity fading mechanism

Ref. Influence factor Aging type Battery type Model output

Hoke et al. (2011)
Depth of discharge,
state of charge,
temperature, time

Cycle aging,
Calendar aging Li(NiCoAl)O2 Cots brought by battery capacity loss

Lam and Bauer (2013) State of charge,
current rate, temperature Cycle aging LiFePO4 Remaining battery capacity

Omar et al. (2014) Depth of discharge,
current rate, temperature Cycle aging LiFePO4 Remaining cycle number

Sarasketa et al. (2014) State of charge,
temperature, time Calendar aging LiFePO4 Remaining battery capacity

Zhang et al. (2019) Depth of discharge
state of charge Cycle aging Li(NiCoAl)O2 Remaining battery capacity
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commercial solver. Additionally, the problem was reformulated as
a  set  partitioning  model  (see  that  in  Section  2),  where  the
maximum  travel  range  constraint  was  considered  in  the  pricing
subproblem  when  newly  generating  feasible  trip  chains.  To  be
specific,  the  cost  of  trip  chain  included  fixed  vehicle
maintenance,  travel  and  deadheading  costs,  and  charging  and
waiting  costs  at  the  charging  station.  In  addition  to  the  existing
constraints  (1b)–(1d),  a  capacity  constraint  for  the  charging
station  was  incorporated  to  guarantee  the  number  of  charging
facilities being utilized is within the station’s capacity at any given
time. To solve the model, the authors also designed a customized
column  generation  algorithm.  In  this  algorithm,  a  multi-label
correcting  method  was  used  to  identify  trip  chains  that  had  the
least  cost  while  meeting  the  maximum travel  range  constraint  in
the  pricing  subproblem.  The  study’s  numerical  experiments
confirmed  that  the  column-generation-based  approach
outperformed the commercial solver by a significant margin.

cr

In the realm of BEB scheduling, recent studies have broadened
the scope of research by incorporating realistic operating features,
such as battery degradation (Zhang et al., 2021b; Zeng et al., 2022;
Zhou  et  al.,  2022),  the  time-varying  electricity  tariffs  (He  et  al.,
2022; Yang  et  al.,  2018; Zeng  et  al.,  2022),  nonlinear-charging
profiles  (Zhang  et  al.,  2021a; Zhou  et  al.,  2022),  partial  charging
policies (Liu and (Avi) Ceder, 2020; Zhou et al., 2022), and limited
charger  availability  (Wang  et  al.,  2017).  We  now  highlight  some
selected  studies  that  embody  the  innovative  approaches  and
noteworthy  discoveries  in  this  field.  Regarding  battery
management, Zhang  et  al.  (2021a) aimed  at  minimizing  the
overall  operational  cost  of  BEB  fleet  by  determining  the  bus
service and charging plans, while simultaneously incorporating the
expense  incurred  by  battery  degradation.  The  problem  was
formulated  as  a  set  partitioning  model  (see  that  in  Section  2),
where the unique features of battery capacity loss were considered
in the pricing subproblem. Within their  model,  the evaluation of
the trip chain  was subject  to the inclusion of  a  fixed cost  term
pertaining  to  the  acquisition and maintenance  of  the  vehicle,  the
expenditure  associated  with  charging,  and  the  expenses  incurred
as  a  result  of  battery  capacity  loss.  The  objective  function  also
considered  the  vehicle  acquisition  cost  term,  enabling  the
optimization of the fleet size of the BEB fleet. The findings of this
review  indicated  that  integrating  battery  health  factors  into  the
BEB scheduling model can result in cost savings of 10.1%–27.3%
and  extend  battery  lifespan  by  an  additional  47.2%–96.1%.  In  a
subsequent scholarly contribution, Zhou et al.  (2022) imbued the
research  with  greater  nuance  by  explicitly  taking  into  account  a
partial  charging  policy.  Employing  a  mixed-integer  nonlinear
programming  model,  the  authors  advanced  a  sophisticated
framework  for  the  studied  problem  and  leveraged  linearization
and approximation techniques to arrive at a global solution. This
work demonstrated the considerable influence of both battery size
and initial state of charge of BEBs on the overall cost of the transit
system.

Apart  from  battery  capacity  loss,  the  time-of-use  electricity
price  is  also  a  crucial  factor  in  BEB  scheduling  as  we  previous
explained in Section 3.2.1. To this end, Yang et al. (2018) modeled
the time-varying electricity scheme carefully in the BEB scheduling
optimization  framework,  ensuring  that  BEBs  were  directed  to
charge during off-peak periods to achieve a cost-effective and grid-
friendly  BEB  schedule. Brinkel  et  al.  (2023) conceived  an
innovative  framework  aimed  at  scrutinizing  the  pecuniary
implications  and  power  grid  repercussions  of  various  charging
strategies.  According  to Brinkel  et  al.  (2023),  using  only  the

charging-on-arrival  strategy  for  BEBs  would  cause  high  demand
peaks  for  charging,  while  the  mitigation  of  these  peaks  can  be
achieved by adopting day-ahead charging strategies.

In the context of BEB scheduling, stochastic traffic condition is
another factor that cannot be ignored. Bie et al. (2021) tackled this
challenge  by  incorporating  the  stochastic  volatilities  in  trip  travel
time and energy consumption in BEB scheduling.  They included
the expectation of  delays  in  trip  departure  time in their  objective
function to enhance the on-time performance.  In addition to the
conventional  static  scheduling  framework,  researchers  have  also
sought  to  investigate  the  dynamic  scheduling  of  BEBs  to  address
the model uncertainty. In particular, Tang et al. (2019), introduced
a novel  scheduling approach for  BEBs under  fast-charging mode
that  accounted  for  stochastic  traffic  conditions.  The  proposed
strategy involved a combination of static and dynamic scheduling
plans. To be specific,  the static scheduling plan was optimized by
incorporating a buffer distance into the vehicle scheduling model
to handle the variability in trip time and energy consumption. The
dynamic scheduling stage adjusted the plan obtained in the static
stage periodically based on the current traffic conditions. Both the
static  and  dynamic  models  were  shown  to  be  NP-hard.  The
authors  reformulated  the  models  into  path-based  forms  and
developed  a  specialized  branch-and-price  framework  to  address
them.  The  proposed  scheduling  strategies  were  demonstrated
through numerical cases based on a 15-day dataset extracted from
the  automatic  vehicle  location  system  in  Beijing.  The  Results
shown that as the buffer distance increase, the scheduled cost and
fleet  size  increased  as  well.  However,  the  realized  total  costs
obtained  through  simulations  did  not  necessarily  rise  as  the
breakdown  rate  significantly  decreased.  Therefore,  the  robust
scheduling  strategy  proposed  in  this  paper  could  reduce  the  on-
route  breakdown  rate  while  maintaining  the  economic
attractiveness of BEBs.

In spite of the extensive research on BEB scheduling, the studies
on dynamic scheduling and the corresponding recovery strategies
are  very  limited.  Moreover,  these  studies  usually  rely  on
oversimplified  assumptions.  For  example, Tang  et  al.  (2019)
neglected  the  time-varying  electricity  price.  This  would  incur
additional  recharging  costs  and  exert  high  load  pressure  on  the
power  grid,  given that  the  fast  charging  mode was  considered in
Tang  et  al.  (2019).  Consequently,  the  further  advancement  of
dynamic  scheduling  and  recovery  policy  of  BEBs  could  be  a
promising area for future research.

3.2.3    Integrated electric bus planning

The  optimization  of  BEB  scheduling  has  been  a  topic  of  interest
within the broader fleet management and charging infrastructure
planning problems, as demonstrated by recent studies (An, 2020;
Li et al., 2018; Wang et al., 2017; Xu et al., 2018, 2023; Zhang et al.,
2022; Zhou  et  al.,  2023).  In  particular,  a  mixed-integer  linear
programming  technique  was  presented  by Wang  et  al.  (2017) to
optimize the charging schedule of BEBs and to determine the ideal
capacity and location of fast charging stations in a transit network
with  a  single  depot.  Their  aim  was  to  minimize  the  overall
operating cost of the transit system, which encompassed the BEBs’
travel,  charging,  and  waiting  expenses,  as  well  as  the  cost  of
constructing  charging  stations.  The  model  assumed  that  the
recharging  duration  was  fixed  and  that  the  amount  of  energy
recharged was a linear function of the recharging time. To simplify
the  optimization  model,  the  BEB-to-trip  assignment  was
predefined. The CPLEX solver was used to solve the model, and a
case  study  was  conducted  in  Davis,  California,  using  the  transit
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network  to  demonstrate  the  model’s  effectiveness.  The  Results
shown that the replacement of diesel buses with BEBs could save
about $500,000 in total social costs and $1,300,000 in travel costs.
These  findings  offer  further  evidence  that  BEBs  are  a  more  cost-
effective  and environmentally  friendly  option  compared  to  diesel
buses.  In  a  more  recent  study  by An  (2020),  a  more  realistic
formulation  was  adopted.  A  stochastic  integer  program  was
developed  in  this  study  to  optimize  the  fleet  size  as  well  as  the
charging  station  locations,  taking  into  account  time-varying
electricity  tariffs  and  random  bus  recharging  demand.  Then,  the
model  developed  in  this  study  was  applied  to  the  south–east
region  of  Melbourne,  Australia  to  demonstrate  its  practical  use.
The  results  showed  that  the  adoption  of  fast  charging  could
diminish the  fleet  size,  as  BEBs can be  charged in  a  shorter  time
using  chargers  with  high  charging  power. Zhang  et  al.  (2022)
formulated  the  integrated  electric  bus  planning  problem  as  a  bi-
level model, where the lower level model is to optimize the vehicle
scheduling  based  upon given design  of  charging  stations,  see  Eq.
(2). The notations  and  denote the set of decision variables on
the  tactical  (i.e.,  lower)  level  and  strategic  (i.e.,  upper)  level
respectively. The upper level model aims at optimizing the design
of charging station to minimize the total  system cost,  see Eq. (3).
The system cost includes the construction cost of charging station,
denoted  as ,  and  the  optimal  operational  cost  optimized
by model (2), denoted as .
Lower-level problem: Optimal scheduling of BEB fleet

min
Φ

flower(Φ|Γ) (2)

subject to: constraints on tactical level.
Upper-level problem: Optimal design of charging station

min
Γ

f(Γ) = fupper(Γ) + f∗lower(Φ*|Γ) (3)

subject to: constraints on strategic level.
In the annals of prior research, BEB scheduling conundrum has

also been inextricably intertwined with bus timetable problem. A
pertinent  case  in  point  is  offered  by Xu  et  al.  (2023),  whose
innovative  study  on  the  integrated  electric  bus  timetabling  and
scheduling  conundrums  involved  deploying  a  multi-commodity
network  flow  mode  that  was  seamlessly  embedded  into  a
time–space  network-based  framework.  To  navigate  this  complex
model,  a  Lagrangian  relaxation  heuristic  was  deftly  crafted.
Impressively,  the  experimental  results  obtained  from  this  study
showed  that  the  profit  of  electric  transit  system  could  be
fortuitously  augmented  by  anywhere  from  5.29%  to  20.28%  via
the proposed integrated method.

Currently,  most  studies  on  integrated  electric  bus  scheduling
only  consider  one  type  of  strategic  planning  problem.
Nevertheless,  it  is  undeniable  that  integrating  multiple  planning
problems in BEB scheduling could enhance the efficiency of BEB
systems,  given  their  interdependent  nature.  Of  course,  this  may
result in additional computational complexity, which could be the
reason for  the paucity  of  related studies.  On the other  hand,  it  is
noteworthy that the integrated planning problem has been studied
under  over-simplified  assumptions  or  heuristic  solution
approaches.  For  instance, Wang  et  al.  (2017) and An  (2020)
predefine  the  BEB-to-trip  assignment,  while Xu et  al.  (2023) rely
on  a  heuristic  algorithm.  To  enhance  the  performance  of  the
integrated planning problem that has been studied, it is crucial to
alleviate  the  simplified  assumptions  or  devise  precise  solution
algorithms.  However,  achieving  this  goal  demands  more
sophisticated modeling techniques and solution approaches.

4    Conclusions and discussions
In this paper, we offer an exhaustive review of the current state of
electric  bus  scheduling,  with  a  specific  focus  on  cutting-edge
advancements and emerging trends in this field. The literature on
BEB scheduling  reviewed  here  can  be  broadly  classified  into  two
categories:  mixed-fleet  bus  scheduling  and  electric-fleet  bus
scheduling,  the  former  of  which  deals  with  the  gradual  shift
towards  full  electrification  while  the  latter  deals  with  complete
electrification.  We  briefly  discussed  the  development  of  the  BEB
scheduling  literature  and  the  unique  features  of  their  solution
approach. We find that prior research on BEB scheduling tends to
simplify the model by ignoring some crucial operational features,
such  as  battery  capacity  loss,  time-of-use  electricity  pricing,  and
partial  charging policies.  In subsequent studies,  we see a growing
trend  toward  considering  more  realistic  operational  features  in
BEB  scheduling  models,  utilizing  more  advanced  modeling
techniques and solution methods.

However,  despite  the  ever-growing body of  research papers  in
this  field,  a  research  gap  in  BEB  scheduling  still  exists.  After
reviewing  existing  studies,  we  have  identified  the  following
research gaps:

1) There is a significant lack of research that takes into account
the robustness of  BEB scheduling.  The operation of  BEBs can be
affected  by  unexpected  uncertainties  that  may  cause  deviations
from  the  scheduled  plan.  Current  studies  tend  to  use  simplified
assumptions,  which  may  not  accurately  reflect  the  real-world
environment  and  could  impact  the  effectiveness  of  proposed
strategies.  To  address  this,  future  research  should  focus  on
developing dynamic scheduling techniques and the corresponding
recovery  strategies  to  support  the  practical  application  of  BEBs
(Han et al., 2023) .

2)  Existing  research  neglects  the  optimization  of  charging
modes  for  BEBs.  Each  charging  mode  has  its  own  unique
advantages  and  disadvantages,  and  with  the  growth  of  charging
infrastructure, there will be more options available. Integrating the
selection  of  charging  modes  into  BEB  scheduling  presents  a
promising area for future research.

3) In the realm of electric bus systems, integrated planning is a
pivotal  yet  under-researched area.  This  involves tackling multiple
planning  challenges  simultaneously,  resulting  in  higher
computational  complexity.  Nevertheless,  it  is  imperative  for
researchers to address this challenge head-on to further boost the
effectiveness  and  efficiency  of  BEB  systems.  Meanwhile,  further
extensions also involve the scheduling of  BEBs considering some
social and physical features (Chen et al., 2022; Gan et al., 2022).
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