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ABSTRACT: On highways, vehicles that swerve out of their lane due to sideslip can pose a serious threat to the safety of
autonomous vehicles.  To ensure their  safety,  predicting the sideslip  trajectories  of  such vehicles  is  crucial.  However,  the
scarcity of data on vehicle sideslip scenarios makes it challenging to apply data-driven methods for prediction. Hence, this
study uses a physical  model-based approach to predict  vehicle sideslip trajectories.  Nevertheless, the traditional  physical
model-based method relies on constant input assumption, making its long-term prediction accuracy poor. To address this
challenge,  this  study  presents  the  time-series  analysis  and  interacting  multiple  model-based  (IMM)  sideslip  trajectory
prediction  (TSIMMSTP)  method,  which  encompasses  time-series  analysis  and  multi-physical  model  fusion,  for  the
prediction  of  vehicle  sideslip  trajectories.  Firstly,  we  use  the  proposed  adaptive  quadratic  exponential  smoothing  method
with  damping  (AQESD)  in  the  time-series  analysis  module  to  predict  the  input  state  sequence  required  by  kinematic
models. Then, we employ an IMM approach to fuse the prediction results of various physical models. The implementation of
these  two  methods  allows  us  to  significantly  enhance  the  long-term  predictive  accuracy  and  reduce  the  uncertainty  of
sideslip trajectories. The proposed method is evaluated through numerical simulations in vehicle sideslip scenarios, and the
results  clearly  demonstrate  that  it  improves  the  long-term  prediction  accuracy  and  reduces  the  uncertainty  compared  to
other model-based methods.
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1    Introduction
When driving on a slippery highway,  a  vehicle  may experience a
sideslip  due  to  the  lateral  force  acting  upon  it  exceeding  the
adhesion  offered  by  the  road  surface.  This  phenomenon  may
cause  the  vehicle  to  drift  out  of  its  intended  lane,  thereby
jeopardizing  the  safety  of  other  vehicles  on  the  road.  Therefore,
self-driving  cars  must  be  equipped with  the  ability  to  predict  the
future  trajectory  (Eskandarian  et  al.,  2021)  of  sideslip  vehicles
around them to avoid collisions and ensure safety.

In  the  context  of  regular  driving  vehicles,  drivers  can  exert
normal control over the cars while adhering to traffic regulations.
There  are  commonalities  in  the  driving  behaviors  of  different
vehicles.  Therefore,  driving  behavior  patterns  of  vehicles  on
highways can be summarized from a large amount of naturalistic
driving data. For example, the lane-changing behavior of vehicles
can be modeled using a fifth-degree polynomial or trigonometric
functions, while the car-following behavior can be modeled using
a  first-order  Wiener  process  (Ghorai  et  al.,  2022; Huang  et  al.,
2022).  By  establishing  the  kinematic  and  behavioral  models  of
vehicles,  it  is  possible  to  predict  their  long-term  trajectories  with
relatively  high  accuracy.  However,  when  it  comes  to  sliding
vehicles,  drivers  are  unable  to  effectively  control  them,  and  their
trajectories  no  longer  conform  to  traffic  rules.  This  increases  the

randomness of the sliding vehicle trajectories, making it difficult to
summarize their sliding behaviors using a mathematical model.

Moreover,  with  the  advancement  of  deep  learning  techniques
and the availability of large-scale naturalistic driving datasets, data-
driven approaches can also be used to accurately predict the long-
term trajectories of normally operating vehicles. However, there is
currently  a  lack  of  datasets  specifically  focused  on  sliding  vehicle
trajectories.  In  the  absence  of  sufficient  data,  deep  learning
methods cannot fully capture all the features of sliding trajectories,
making it  challenging to use a  data-driven approach for  accurate
long-term prediction of sliding vehicle trajectories.

Given  the  aforementioned  differences,  the  methods  currently
used  for  general  trajectory  prediction  are  not  suitable  for
predicting  sliding  trajectories.  Despite  the  differences  between
sliding  and  general  trajectories,  they  both  adhere  to  the  vehicle’s
kinematic  model.  Therefore,  the  kinematic  model  can be utilized
to predict the sliding trajectories of vehicles. However, the simple
structure and constant input assumption of the vehicle kinematic
model  limit  its  accuracy  to  short-term  trajectory  prediction,
rendering  it  unsuitable  for  long-term  prediction  (Ammoun  and
Nashashibi, 2009; Schubert et al., 2008).

In  order  to  address  the  limitations  of  physical  model-based
methods,  which  often  rely  on  the  assumption  of  constant  inputs
that  limit  long-term  prediction  accuracy,  this  study  proposes  a
novel  method called  time-series  analysis  and interacting  multiple
model-based  (IMM)  sideslip  trajectory  prediction  (TSIMMSTP)
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for  predicting  vehicle  sideslip  trajectories.  The  proposed  method
utilizes  time-series  analysis  and  multi-physical  model  fusion  to
achieve  long-term  and  high-precision  prediction.  The  overall
architecture  of  the  method  is  shown  in Fig.  1.  The  time-series
analysis  module  utilizes  the  adaptive  quadratic  exponential
smoothing with damping (AQESD) to  online learn the historical
state  sequence  (e.g.,  acceleration,  angular  velocity)  of  the  sideslip
vehicle,  capture  its  motion  characteristics,  and  predict  its  future
state  sequence  for  input  to  the  physical  model.  Considering  that
the  driver  cannot  fully  control  the  vehicle  during  sideslip,  the
interaction  characteristics  of  the  sideslip  trajectory  are  weak,  and
hence  this  module  does  not  need  to  capture  the  interactive
characteristics  of  sideslip  vehicles.  In  the  sideslip  trajectory
prediction fusion module, the IMM is adopted to fuse the sideslip
trajectory prediction results of multiple physical models according
to the uncertainty of each physical model prediction result.
  

Sideslip vehicle historical state sequence

Time-series analysis-
based state prediction

Sideslip trajectory
prediction by model 1

Sideslip trajectory
prediction by model 2

Interacting multiple model-based
sideslip trajectory prediction

Future trajectory

Fig. 1    Architecture of vehicle sideslip trajectory prediction based on time-series
analysis and multi-physical model fusion.
 

Compared to  physical  model-based methods,  the  introduction
of  the  time-series  analysis  module  enables  the  physical  model  to
achieve  long-term  and  high-precision  prediction  of  the  sideslip
trajectory. Furthermore, the introduction of the sideslip trajectory
prediction  fusion  module  improves  the  accuracy  of  the  sideslip
trajectory  prediction and reduces  the  prediction uncertainty.  The
main contributions of this paper are two-fold:

1)  The  TSIMMSTP  sideslip  trajectory  prediction  method  is
proposed.  The  assumption  of  constant  inputs  in  the  physical
model leads to a decrease in the long-term prediction accuracy. To
address  this  issue,  a  time-series  analysis  module  is  designed  to
predict  the  inputs  of  the  physical  model,  thereby  improving  its
long-term  prediction  accuracy.  Additionally,  a  single  physical
model is inadequate to capture the characteristics of vehicle sliding
motion.  Hence,  the  Interacting Multiple  Model  (IMM) approach
is  employed  to  fuse  multiple  physical  models,  reducing  the
uncertainty in sliding trajectory prediction.

2)  A  novel  quadratic  exponential  smoothing  method  called
AQESD  is  proposed  for  vehicle  sideslip  conditions.  Traditional
QES methods are prone to over-prediction, leading to deteriorated
prediction results of the physical model. To address this issue, we
introduce damping coefficients in the QES and design an adaptive
computation  method  for  damping  coefficients  and  smoothing
coefficients  based  on  the  final  state  estimation.  This  allows  the
time-series  analysis  module  to  provide  more  accurate  input  state
sequences  for  the  physical  model,  thereby  improving  the
prediction accuracy of the physical model for sliding trajectories.

The  structure  of  this  paper  is  as  follows.  Section  2  provides  a
literature  review  of  model-based  and  deep  learning-based
trajectory  prediction.  Section  3  introduces  the  proposed  method

and  its  related  techniques.  In  Section  4,  the  application  of  the
method is described, and the results are discussed. Finally, Section
5 concludes this paper.

2    Related works
This  section presents  a  brief  overview of  the existing research on
trajectory prediction, including both model-based and data-driven
approaches.  For  a  more  comprehensive  review  of  these  research
areas,  please  refer  to  the  references  listed  in Gulzar  et  al.  (2021)
and Mozaffari et al. (2022).

Model-based  trajectory  prediction  methods  have  gained
significant  attention  from  researchers  due  to  their  flexibility,
reliability,  and  interpretability.  In  their  work, Ammoun  et  al.
(2009) proposed  a  Kalman  filter-based  trajectory  prediction
method  that  uses  information  from  GPS  and  communication
devices  to  assess  the  collision  risk  of  vehicles.  Another  model-
based approach for vehicle trajectory prediction was proposed by
Park  et  al.  (2015),  which  utilizes  the  Rapidly-Exploring  Random
Tree  (RRT)  with  Gaussian  Mixture  Model  (GMM)  method  for
stereo  camera  systems. Kim  et  al.  (2018) proposed  a  trajectory
prediction method based on cross-swing angular acceleration and
multi-rate  Kalman  filter  to  improve  the  control  performance  of
adaptive  cruise  control  (ACC).  It  is  worth  noting  that  these
methods are designed for in-vehicle sensor systems. On the other
hand,  other  scholars  have  proposed  more  general  trajectory
prediction  methods  by  incorporating  multi-model  fusion
techniques.  For  instance, Xie  et  al.  (2017) and Houenou  et  al.
(2013) proposed  a  fusion  of  physical  and  behavioral  model
prediction  results  to  improve  the  long-term  prediction
performance  of  physical  model-based  trajectory  prediction
methods. Similarly, Wissing et al. (2018) proposed a model-based
trajectory  prediction  method  that  incorporates  behavioral
classification  and  temporal  probability  estimation.  Finally,  to
enable  autonomous  vehicles  to  predict  the  trajectory  of  other
vehicles  in  any  environment, Schreier  et  al.  (2016) proposed  a
fused  long-term  trajectory  prediction  method  that  considers  all
vehicle behavioral and motion uncertainties.

The  aforementioned  studies  have  focused  on  improving
trajectory  prediction  accuracy  through  the  fusion  of  physical
models  with  other  models.  However,  they  do  not  incorporate
historical vehicle information into the physical model to enhance
the accuracy of physical model prediction results.

Deep learning-based trajectory prediction methods have gained
popularity  due  to  their  ability  to  model  interactions  between
vehicles  and  incorporate  vehicle  history  information. Alahi  et  al.
(2016) used  social  pooling  and  Long  Short-Term  Memory
(LSTM)  neural  networks  for  pedestrian  trajectory  prediction,
while Deo et al. (2018) improved social pooling using convolution
for vehicle trajectory prediction. Messaoud et al. (2019, 2021) have
proposed methods that simulate interactions between neighboring
vehicles  for  trajectory  prediction,  including  non-local  social
pooling-based  and  attention  mechanism-based  approaches.
Izquierdo et al. (2023) proposed a method that utilizes a bird’s-eye
view  and  convolutional  neural  networks  (CNNs)  for  predicting
vehicle  trajectories  in  highway  scenarios.  To  facilitate  the
development  of  low-cost  connected  automated  vehicle  systems,
Yao  et  al.  (2022) proposed  the  use  of  piecewise  Taylor  series
approximation  and  piecewise  Fourier  series  approximation
techniques to reduce computational  complexity,  minimize device
investment, and lower computational energy consumption. Other
studies  focus  on  the  integration  of  physical  constraints,  traffic
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rules, and environmental maps into deep learning-based trajectory
prediction  models.  For  example,  Lane  Graph  Convolutional
Network (LaneGCN) was proposed to capture complex topologies
and  dependencies  of  lane  graphs  (Liang  et  al.,  2020),  Trajectory
Proposal  Network  (TPNet)  was  proposed  to  integrate  physical
constraints  into  data-driven  trajectory  prediction  methods  (Fang
et al., 2020), and Prediction with Model-based Planning (PRIME)
(Song et al., 2022) was proposed to generate accurate and feasible
predictions  of  future  trajectories  (Song  et  al.,  2022). Yao  et  al.
(2023) proposed  a  physics-aware  learning  model  for  trajectory
prediction  in  congested  traffic  scenarios  within  the  context  of
vehicular networks.

Although  deep  learning-based  trajectory  prediction  methods
have  shown  promising  results  in  improving  prediction  accuracy,
recent  studies  have  pointed  out  their  limitations.  According  to
Zhang et al. (2022), adversarial prediction can result in an increase
in  prediction  error  by  more  than  150%  in  deep  learning-based
methods.  Similarly, Bahari  et  al.  (2022) discovered  that  deep
learning-based  methods  are  prone  to  prediction  failures  when
there  is  a  change  in  the  predicted  scenario  or  insufficient  data.
These findings suggest that the deep learning-based approach still
suffers  from shortcomings in adversarial  robustness  and scenario
generalization.  The sideslip  scenario  in  vehicles  is  a  rare  scenario
with limited data, making it challenging to predict the trajectory of
the  vehicle  using  existing  deep  learning-based  methods.  While
physical  model-based  methods  can  be  adapted  to  the  sideslip
scenario,  they  do  not  consider  the  historical  motion  information
of the vehicle, resulting in poor long-term prediction accuracy. To
address this issue,  this study proposes a vehicle sideslip trajectory
prediction  method  that  utilizes  time-series  analysis  and  multi-
physics  model  fusion.  Firstly,  the  historical  information  is
incorporated  into  multiple  physical  models  using  quadratic
adaptive exponential smoothing with damping, thereby improving
the  trajectory  prediction  accuracy.  Next,  the  trajectory  prediction
results  are  fused  using  IMM  to  further  enhance  the  prediction
accuracy.  This  method  effectively  overcomes  the  issue  of  poor
prediction accuracy of physical models for long time in the vehicle
sideslip scenario.

3    Methods
In this  paper,  several  coordinate  systems are  utilized and defined
in this section, which is illustrated in Fig. 2. The global coordinate
system  with  a  fixed  origin  is  referred  to  as  the  world  frame  and
denoted  as G.  The  ego  coordinate  system  is  located  at  the
geometric  center  of  the  ego  vehicle  and  aligned  with  its  velocity
vector.  It  is  represented by L and highlighted in orange in Fig.  2.
The  red  vehicle  denotes  the  ego  vehicle,  while  the  green  one
represents the observed sideslip vehicle.

This  section  presents  the  proposed  vehicle  sideslip  trajectory
prediction  method  architecture,  including  time-series  analysis-
based state prediction, physical model-based trajectory prediction,

and  IMM-based  trajectory  fusion.  The  assumption  is  made  that
the  self-driving  car  is  equipped  with  a  target  detection  and
tracking module and a high-precision map, which can observe the
motion  states  such  as  position,  attitude,  speed,  rotation  rate,  and
acceleration  of  surrounding  vehicles.  The  observed  historical
motion state information will be stored in the onboard computer
for time-series analysis.  It should be noted that this study focuses
on  the  prediction  method  of  sideslip  trajectories,  and  the
identification  of  sideslip  behavior  can  be  found  in Xiang  et  al.
(2022).

3.1    Physical model-based trajectory prediction

3.1.1    Vehicle kinematic model

The  constant  turning  and  acceleration  (CTRA)  and  the  constant
acceleration (CA) models  are  selected,  corresponding to  model  1
and  model  2  in Fig.  2,  for  predicting  the  sideslip  trajectory.  The
state space of the CTRA model can be expanded as Eq. (1):

X1 = ( x y v θ w a )T (1)

X1 (x, y)
θ

w v a

where  is the state space vector of the CTRA model.  is the
position and  is the rotation angle of the observed vehicle in the
global coordinate system. The variables , , and  represent the
angular velocity, velocity, and acceleration of the observed vehicle
in the ego coordinate system, respectively. The superscript T stands
for transpose.

The  discrete  state  transfer  equation  of  the  CTRA  model
(Schubert et al., 2008) can be formulated as Eq. (2):

X1
k+1 = X1

k + ΔX1
k+1 (2)

X1
k+1=



1
w2 (−wvsin (θ)− acos (θ) + acos (Tsw+ θ) + (Tswa+ wv) sin (Tsw+ θ))

1
w2 (wvcos (θ)− asin (θ) + asin (Tsw+ θ) + (−Tswa− wv) cos (Tsw+ θ))

Tsw
Tsa
0
0


,

Ts k
Ts

with

where  is  the  sampling  interval  time and  is  the time step,  in
this study  = 0.1 s.

The state space of the CA model can be expanded as Eq. (3):

X2 = ( x y vx vy ax ay )T (3)

X2 vx ax

vy ay

where  is the state space vector of the CA model.  and  are
the  velocity  and  acceleration  of  the  observed  vehicle  in  the x-
direction  at  the  global  coordinate,  and  and  are  the  velocity
and  acceleration  of  the  observed  vehicle  in  the y-direction  at  the
global coordinate, respectively.

The discrete state transfer equation of the CA model (Schubert
et al., 2008) can be formulated as Eq. (4):

X2
k+1 = AX2

k (4)

A =



1 0 Ts 0 0.5T2
s 0

0 1 0 Ts 0 0.5T2
s

0 0 1 0 Ts 0
0 0 0 1 0 Ts

0 0 0 0 1 0
0 0 0 0 0 1

with .

3.1.2    Uncertainty in trajectory prediction

To  account  for  the  errors  in  sensor  measurements  and  the
limitations  in  kinematic  modeling,  it  is  necessary  to  introduce
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Fig. 2    Coordinate frames applied throughout sideslip prediction.
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P̂

noise  in  order  to  represent  the  uncertainty  in  the  trajectory
prediction  process.  Filtering  algorithms  such  as  the  Extended
Kalman  Filter  (EKF)  and  Unscented  Kalman  Filter  (UKF)
(Arulampalam  et  al.,  2002)  can  be  utilized  to  estimate  the
uncertainty  of  the  predicted  trajectory.  In  this  work,  we  employ
the  EKF  to  estimate  the  uncertainty  of  the  predicted  trajectory,
which is described by the covariance matrix . The uncertainty of
the iterative prediction process of EKF can be expressed as Eq. (5):

P̂k+1 = FP̂kFT +Qk (5)

F Qwhere  is  the  coefficient  matrix  and  is  the  process  noise
matrix.

F = I+ J
(
ΔX1

k+1
)

Q = GGT G =

1
6σaT3

scos
(
θ + 0.5σwT2

s
)

1
6σaT3

ssin
(
θ + 0.5σwT2

s
)

0.5σwT2
s

0.5σaT2
s

σwTs

σaTs


J (·)

G σa σw

a w

For the CTRA model, ， ，

,  where  is  the  Jacobian

matrix;  is  the  process  noise  vector;  and  are  the
measurement noise of  and , respectively..

F = A Q = BωωTBT

B =



0.5T2
s 0

0 0.5T2
s

Ts 0
0 Ts

1 0
0 1

 ω

ax ay

For  the  CA  model, , ,

,  where  is  the  measurement  noise

vector of  and .

3.2    Time-series analysis-based state prediction
In  previous  studies,  when  using  the  vehicle  kinematic  model  to
predict the future motion trajectory of the vehicle, it was assumed
that the input state sequence of the model was a constant sequence
(Lefèvre et  al.,  2014).  This  assumption does not match the actual
situation.  Therefore,  the kinematic model  only has high accuracy
in the short-term prediction of vehicle trajectory.

In  this  study,  inspired  by  data-driven  methods,  a  time-series
analysis  module  was  introduced  before  trajectory  prediction  to
enable the kinematic model to maintain high prediction accuracy
over  a  longer  period.  The  module  leverages  historical  state
sequence  of  the  sideslip  vehicle  to  predict  future  state  sequence,
such  as  acceleration  or  angular  velocity.  The  predicted  state
sequence is then employed to replace the constant state sequence
for  trajectory  prediction  in  the  kinematic  model,  thus  enhancing
its  long-term  prediction  accuracy.  The  process  of  time-series
analysis-based  future  state  sequence  prediction  is  depicted  in
Fig. 3, which encompasses three main steps: Data pre-processing,
Calculation of adaptive coefficients, and Prediction of future state
sequence.

3.2.1    Data pre-processing

Before  conducting  a  time-series  analysis  on  the  historical  state
sequence  of  the  sideslip  vehicle,  it  is  necessary  to  pre-process  it,
which includes three steps:  Gaussian smoothing,  Trend sequence
extraction, and Trend sequence change feature extraction.

1)  Gaussian  smoothing:  Irregular  data  in  the  historical  state
sequence  is  smoothed  to  avoid  affecting  the  subsequent  trend
sequence extraction.

2)  Trend  sequence  extraction:  In  the  process  of  sideslip,  the
state  of  the  vehicle  is  constantly  changing,  so  it  is  necessary  to
extract  the nearest  trend sequence from the observation moment
to  avoid the  negative  influence  of  other  invalid  sequences  on the
prediction.

3) Trend sequence change feature extraction: the change feature
of trend sequence is expressed using the variance of its slope.

ssdh = diff (ssh) (6)

ssfdh = var (ssdh) (7)

ssh ssdh
diff (·) var (·)

ssfdh

where  is the historical state sequence,  is the extracted trend
sequence,  denotes  the  difference  operator,  denotes
the  variance  operator,  and  is  the  trend  sequence  change
characteristics.

3.2.2    Adaptive quadratic exponential smoothing with damping

φ
α

φ φ

In  this  section,  we  employ  the  quadratic  exponential  smoothing
(QES) technique of time-series analysis (Gardner, 1985) to acquire
knowledge on the historical trend sequence and forecast the future
state  sequence  of  sideslip  vehicles.  To  improve  the  forecasting
performance  of  the  QES  method,  we  incorporate  a  damping
coefficient  into  Eq.  (10)  and  propose  a  set  of  adaptive
calculation  methods  for  the  smoothing  coefficient  and  the
damping coefficient . The objective of adding  in the prediction
equation  is  to  penalize  and  restrict  excessively  rapid  changes  in
prediction  values,  thereby  avoiding  excessively  large  or  small
prediction  values  that  can  lead  to  poor  trajectory  prediction
results.  Moreover,  the  coefficient  can  also  introduce  nonlinear
trends  into  the  prediction  equation.  Consequently,  the  proposed
method  is  referred  to  as  the  Adaptive  Quadratic  Exponential
Smoothing  with  Damping  method.  The  AQESD  method
comprises  a  series  of  smoothing  equations  and  a  prediction
equation.  The  smoothing  equations  enable  online  learning  of
trend  sequences,  while  the  prediction  equation  facilitates  the
prediction  of  future  state  sequences  based  on  the  acquired
knowledge. The AQESD method is expressed in the following Eqs.
(8)–(10):

 

Sideslip vehicle historical
state sequence

Time-series analysis-based state 
sequence prediction

Data pre-processing

Calculation of
adaptive coefficients

AQESD

Prediction results of future
state sequence

Fig. 3    Process of time-series analysis-based state sequence prediction.
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where Eqs. (8) and (9) are the smoothing equations, and Eq. (10)
is the prediction equation. The time step is denoted as , , and

 are  the  primary  and  quadratic  exponential  smoothing  values
at time step , respectively.  is the input historical state at time ,

 is the predicted state at time , where  is the number
of  prediction  steps.  and 

 are the learning parameters.  Specifically,  represents the
level  estimate  at  time ,  while  represents  the  trend  estimate  at
time .

3.2.3    Calculation of adaptive coefficients

α φ

α
φ

To  achieve  better  prediction  results  in  the  quadratic  exponential
smoothing  method  with  damping,  different  smoothing
coefficients  and damping coefficients  need to  correspond to
different historical  state sequences with different variation trends.
In this section, we propose a method to adaptively calculate these
two parameters (Smoothing coefficient  and Damping coefficient

) for the CTRA model and CA model under sideslip conditions.
α α

α

ssfdh
ssfdh
α

ssfdh
α ssfdh α = αmin

ssfdh  κ α = αmax

α

1) Smoothing coefficient : If  is small (i.e., close to 0), more
weight is given to distant past observations. If  is large (i.e., close
to  1),  more  weight  is  given  to  recent  observations.  To  achieve
better prediction results, an adaptive method is proposed based on
the  extracted  trend  sequence  change  characteristics  ( )  for  the
CTRA model and CA model under side slip conditions. If  is
small,  indicating that  the  trend is  likely  to  remain,  a  smaller  is
used.  If  is  large,  indicating  that  the  trend  is  likely  to  change
rapidly,  a  larger  is  used.  When  is  0,  is  used,  and
when  is  greater  than  or  equal  to ,  is  used.  The
adaptive calculation of  is as Eq. (11):

α = (αmax − αmin)
min (ssfdh, κ)

κ + αmin (11)

min(·) κ

0 < αmin < αmax < 1
αmax αmin

where  is  the  minimum operator,  is  the  trend sequence
change  characteristic  threshold,  which  is  related  to  the  sequence
type and is usually obtained through testing. ,
with  typically set to 0.9 and  typically set to 0.3.

φ

a w

2)  Damping  coefficient :  It  is  assumed  that  the  driver  will
decelerate  the  sideslip  vehicle,  causing  the  centrifugal  force  to
decrease  during the  sideslip  process  due to  the  decrease  in  speed
and  increase  in  the  trajectory  radius,  as  depicted  by  the  green
vehicle in Fig. 2. This reduces the sideslip tendency of the vehicle,
with  the  limit  of  this  tendency  being  when  the  centrifugal  force
disappears and the vehicle returns to smooth operation. Once the
vehicle  regains  smoothness,  the  body no longer  rotates  when the
adhesion force provides all the braking force. The expressions for
states  and  are as Eqs. (12) and (13):

alim = −μg (12)

wlim = 0 (13)

lim g
μ

where  subscript  presents  the  limiting  state  and  is  the
acceleration  of  gravity.  is  the  road  adhesion  coefficient,  which
can be provided by an adhesion coefficient estimation system (Liu
et al., 1996).

ax ayFor states  and , the limits are as Eqs. (14) and (15):

axlim = −μgcos (λθs) (14)

aylim = −μgsin (λθs) (15)

 λ = −1.5 θs

θ
λ = 2 θs

θ
λ

For  lane  change  conditions,  and  is  the  maximum
rotation  angle  during  the  first  turn  of  the  vehicle  during  lane
change.  For  curve  road  conditions,  and  is  the  rotation
angle  of the vehicle when the sideslip is recognized. The setting
for  is determined based on tuning experience.

According to Eq. (10), φ is calculated as Eq. (16):

φ = log
(
limt − lt

rt

)
/logTp (16)

limt alim

wlim t
where  is the limiting estimate of the predicted state (i.e., 
or , etc.) at moment .

3.3    Interacting multiple model
As  there  is  no  single  model  that  can  fully  describe  the  vehicle's
motion  state  in  all  scenarios,  fusing  the  prediction  results  of
multiple models to describe the future trajectory of a vehicle is an
effective method that can significantly improve the accuracy of the
trajectory  prediction  results  of  sideslip  vehicles.  The  IMM
algorithm  (Xie  et  al.,  2017)  has  the  advantage  of  combining
multiple  models  and being able  to  adaptively  identify  and switch
between  models.  Therefore,  this  study  proposes  an  IMM-based
multi-physics  model  fusion  method,  TSIMMSTP,  for  predicting
the trajectory of sideslip vehicles.

i’
k X̂i

k P̂i
k X̂mi

k P̂mi
k

i’th k

k
uk um

k

k

X̂k+1 P̂k+1 uk+1

The  IMM  method  is  illustrated  in Fig.  4 and  consists  of  four
main  modules,  which  are  Input  Interaction  and  Mixing,
Prediction  by  Model,  Model  Probability  Update,  and  Fusion  of
Prediction. The mean and covariance of the  model at time step

 are represented by  and ,  respectively.  and  are the
mean and covariance of the  model at time step  after input
interaction  and  mixing,  respectively.  The  vector  of  weight
coefficients of the two models at prediction moment  is denoted
by , while  represents the vector of weight coefficients of the
two  models  at  prediction  moment  after  input  interaction  and
mixing.  The  mean,  variance,  and  weight  coefficient  vectors  after
the  one-step  prediction  are  represented  by , ,  and ,
respectively.

M1

M2 M
In this study, the predictions of the CTRA model ( ) and CA

model ( ) are fused by IMM. As a result,  the model set ( ) of
this  system  consists  of  discrete  models  and  can  be  expressed  as
Eq. (17):

M =
{
M1,M2} (17)
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Fig. 4    Process of the IMM method.
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In  this  dynamic  system,  the  prediction  of  the  model 
interacts according to the change of , where  and

 represents  the  probability  that  model  is  used  for
fusion  at  moment ,  where .  The  system  is  a  Markov
switching  system  with  model  transfer  probability  expressed  as
Eq. (18):

pij = p
(
Mj

k|M
i
k−1

)
(18)

1) Input interaction and mixing
The  input  interaction  process,  which  is  based  on  the

dynamically  changing  weight  coefficients  and  model  transfer
probabilities of each model, can be expressed as Eqs. (19) and (20):

c̄j =
∑
i=1,2

pijui
k (19)

ui|j
k =

1
c̄j
pijui

k (20)

c̄jwhere  is the normalization factor. The mean and covariance of
each model after Gaussian mixing can be expressed as Eq. (21):

X̂mj
k =

∑
i=1,2

ui|j
k X̂

i
k (21)

P̂mj
k =

∑
i=1,2

ui|j
k

[
P̂i
k +

(
X̂i

k − X̂mj
k

) (
X̂i

k − X̂mj
k

)T] (22)

2) Prediction by model
The  mean  and  covariance  after  mixing  are  fed  into  their

corresponding  prediction  models  for  the  next  step  of  mean  and
variance  prediction,  respectively.  The  prediction  process  for  each
model can be expressed as Eq. (23):(

X̂i
k+1, P̂i

k+1
)
= Predi

(
X̂mi

k , P̂mi
k
)

(23)

Predi (·) iwhere  denotes prediction model .
3) Model probability update
The model probabilities of the predicted outcomes are updated

using the maximum likelihood method. In this study, the designed
likelihood function is expressed as Eq. (24):

Λi
k+1 =

1
(sai

ce)
2 + (sbice)2

(24)
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where  is  the  maximum  eigenvalue  of  the
covariance  matrix  and  is  the  minimum
eigenvalue  of .  is  the  covariance  matrix  associated  with 
and  of  model ,  and  the  operators  and 
respectively represent the maximum and minimum eigenvalues.

The probability after each model update is Eq. (25):

ui
k+1 =

1
cΛ

i
k+1c̄i (25)

c =
∑
i=1,2

Λi
k+1c̄iwhere .

4) Fusion of prediction
Finally,  utilizing  the  updated  model  probabilities,  the

predictions  of  each  model  are  fused  to  obtain  the  mean  and
variance after fusion, expressed as Eqs. (26) and (27):
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(
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(
X̂i
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) (

X̂i
k+1 − X̂k+1

)T) (27)

4    Simulation
As reported  in Xiang  et  al.  (2022),  dangerous  sideslip  of  vehicles
on  highways  mainly  occurs  in  two  scenarios:  lane  change  and
curve road scenarios. In this section, the proposed vehicle sideslip
trajectory prediction method will  be employed in these scenarios.
To  evaluate  the  proposed  method,  different  conditions  are
designed for these scenarios. Various sideslip trajectory prediction
methods are applied to these conditions, and the prediction results
are compared and analyzed.

4.1    Simulation scheme design
Using the simulation software CARSIM, simulation scenarios are
designed  to  compare  and  analyze  the  performance  of  different
sideslip  trajectory  prediction  methods.  To  demonstrate  the
applicability  of  the  proposed  method  to  different  vehicles,  four
different  vehicle  models,  including  hatchback,  sedan,  etc.,  in
CARSIM are selected. According to the speed limit requirements
of  Chinese  highways,  we  have  set  the  initial  velocities  of  these
vehicles  to  be  90,  100,  110,  and  120  km/h,  respectively.  For  the
lane change scenario,  a  fifth-order polynomial  method is  used to
generate the trajectory, and the lane change time is set to 2 or 3 s
for  emergency  lane  change  (Shiller  and  Sundar,  1998).  For  the
curve road scenario, according to highway road design standards,
the  radius  is  set  to  300  or  650  m.  In  real-world  highways,  speed
limits are usually imposed on curves with smaller radii. Therefore,
for the scenario with a radius of 300 m, only two initial velocities,
90 km/h and 100 km/h, are considered. A total of 56 sub-scenarios
are  designed,  as  shown  in Table  1.  The  duration  of  the  sideslip
trajectory  in  all  sub-scenarios  is  between  3  and  5  s,  and  the
prediction time is from the beginning of the sideslip to the end.

4.2    Statistical analysis of sideslip trajectory prediction
The  performance  of  six  different  methods,  namely  CA,  CTRA,
and  CA  model  with  time-series  analysis  (TSCA),  CTRA  model
with  time-series  analysis  (TSCTRA),  Weight  Function  (WF)
method  (Houenou  et  al.,  2013),  and  TSIMMSTP,  for  predicting
vehicle  sideslip  trajectories  were  evaluated  in  all  the  56  sub-
scenarios  using  Final  Displacement  Error  (FDE)  and  Average
Displacement  Error  (ADE)  metrics  (Liu  et  al.,  2022).  The

 

Table 1    Simulation scenarios design

Scenario
Type of vehicle Initial velocity (km/h)

A class hatchback B class hatchback C class hatchback D class sedan 90 100 110 120
Lane change 2 s √ √ √ √ √ √ √ √
Lane change 3 s √ √ √ √ √ √ √ √

Curve road R300 √ √ √ √ √ √ — —
Curve road R650 √ √ √ √ √ √ √ √
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evaluation was  performed in  the  time domain from 1 s  until  the
end of the sideslip. The results are presented in Table 2. It can be
observed  that  all  five  methods  achieve  high  prediction  accuracy
within the first second in different driving scenarios. However, as
the  prediction  time  increases,  the  prediction  errors  of  CA  and
CTRA increase rapidly,  while those of  TSCA, TSCTRA, and WF
increase at a slower rate,  and the prediction error of TSIMMSTP
increases the slowest. At the end of the prediction, the TSIMMSTP
achieves  3–6  times  improvement  for  FDE  and  2.5–4  times
improvement  for  ADE  performance  indicators  compared  to  CA
and CTRA, respectively. This indicates that incorporating a time-
series  analysis  module  and an IMM-based fusion model  into  the
vehicle’s  trajectory  prediction  system  enables  more  accurate
prediction of the future position of sliding vehicles. This allows the
ego  vehicle,  located  in  an  adjacent  lane  to  the  sliding  vehicle,  to
make  more  informed  decisions  and  plans,  such  as  appropriate
braking  or  lane  changing,  thereby  reducing  the  probability  of
collision with the sliding vehicle.

4.3    Case study of the sideslip trajectory prediction
This  section  presents  a  detailed  analysis  and  comparison  of  the
TSIMMSTP  method  for  providing  high-precision  long-term
predictions  of  vehicle  sideslip  trajectories.  The  advantages  of
TSIMMSTP  over  the  WF  method,  as  shown  in Table  2,  have
already  been  established,  and  thus  the  WF  method  was  not

considered  for  subsequent  analysis.  Initially,  we  showcased  the
superiority  of  the  proposed  AQESD  method  over  QES  and
constant  sequences  (without  time-series  analysis)  through  a  case
study. Following that, we conducted a comparative analysis of the
predictive  performance  of  CA,  CTRA,  TSCA,  and  TSCTRA,
thereby  highlighting  the  benefits  of  the  TS  module.  Finally,  we
performed a detailed comparison of the predictive performance of
three  models,  namely,  TSCA,  TSCTRA,  and  TSIMMSTP,  to
demonstrate the advantages of introducing the IMM module.

4.3.1    Case study for AQESD

ax ay

ay ay

ay

ay

ax

Fig.  5 presents  a  comparison  of  different  time-series  analysis
methods  for  predicting  the  state  sequences  and  in  a  lane-
changing  sub-scenario  using  the  CA  model.  Real_seq  represents
the  true  sequence  to  be  predicted,  His_seq  is  the  historical
sequence,  AQESD  is  the  prediction  result  of  AQESD,  and  QES
(α = 0.3) and QES (α = 0.9) are the prediction results of QES with
smoothing coefficients of 0.3 and 0.9, respectively. Con_seq is the
constant  sequence. Fig.  5b compares  the  predicted  future
sequences of , where the trend of the historical sequence of  is
relatively  stable.  In  this  case,  both  AQESD  and  QES  can  predict
the future trend of the  sequence, with little difference between
them, while the sequence predicted by AQESD is superior to QES,
and  constant  sequences  cannot  reflect  the  future  trend  of .
Fig.  5a compares the predicted future sequences of ,  where the

 

Table 2    Evaluation and comparison of prediction results in terms of FDE/ADE (Unit: m)

Method
Scenario: Lane change 2 s

1 s 2 s 3 s 4 s End
CA 0.14/0.04 0.92/0.27 2.65/0.77 3.81/1.11 5.61/1.62

CTRA 0.11/0.04 0.65/0.20 1.74/0.54 2.41/0.75 3.41/1.06
TSCA 0.1/0.04 0.37/0.13 0.82/0.31 0.95/0.37 1.18/0.52

TSCTRA 0.1/0.04 0.36/0.13 0.98/0.34 1.41/0.42 2.12/0.62
WF 0.1/0.04 0.35/0.13 0.73/0.28 0.90/0.35 1.15/0.43

TSIMMSTP 0.1/0.04 0.35/0.13 0.62/0.25 0.82/0.31 1.03/0.40

Method
Scenario: Lane change 3 s

1 s 2 s 3 s 4 s End
CA 0.09/0.03 0.66/0.19 1.95/0.56 4.16/1.19 7.80/2.23

CTRA 0.07/0.03 0.51/0.15 1.46/0.43 2.97/0.88 5.31/1.59
TSCA 0.06/0.02 0.34/0.11 0.79/0.29 1.20/0.45 1.56/0.66

TSCTRA 0.06/0.02 0.31/0.10 0.77/0.27 1.67/0.50 3.43/0.93
WF 0.06/0.02 0.30/0.10 0.73/0.25 1.16/0.43 1.53/0.63

TSIMMSTP 0.06/0.02 0.30/0.10 0.72/0.24 1.12/0.42 1.51/0.62

Method
Scenario: Curve road R300

1 s 2 s 3 s 4 s End
CA 0.12/0.04 1.11/0.30 3.56/0.98 5.00/1.38 6.01/1.65

CTRA 0.09/0.03 0.86/0.23 2.68/0.74 3.73/1.04 4.40/1.23
TSCA 0.08/0.03 0.52/0.16 1.10/0.34 1.35/0.50 1.48/0.52

TSCTRA 0.07/0.03 0.50/0.15 1.32/0.36 1.72/0.55 2.39/0.63
WF 0.07/0.03 0.45/0.15 0.98/0.32 1.30/0.45 1.38/0.49

TSIMMSTP 0.07/0.03 0.45/0.15 0.89/0.31 1.20/0.40 1.28/0.44

Method
Scenario: Curve road R650

1 s 2 s 3 s 4 s End
CA 0.05/0.01 0.47/0.12 1.43/0.40 1.93/0.54 2.06/0.58

CTRA 0.05/0.01 0.41/0.11 1.21/0.34 1.61/0.46 1.71/0.49
TSCA 0.02/0.01 0.19/0.05 0.46/0.14 0.56/0.18 0.58/0.19

TSCTRA 0.02/0.01 0.15/0.04 0.54/0.15 0.78/0.19 0.82/0.20
WF 0.02/0.01 0.15/0.04 0.41/0.13 0.52/0.16 0.54/0.17

TSIMMSTP 0.02/0.01 0.15/0.04 0.39/0.12 0.50/0.15 0.52/0.16
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trend  of  the  historical  sequence  of  is  not  stable,  with  a  sharp
decline followed by a gradual slowing down. In this case, there is a
large  difference  between  the  prediction  results  of  AQESD  and
QES for .  In QES, if the smoothing coefficient is small,  such as
0.3,  the  predicted  sequence  trend  is  consistent  with  the  trend  of
distant  historical  data,  while  if  the  smoothing  coefficient  is  large,
such  as  0.9,  the  predicted  sequence  trend  is  consistent  with  the
trend of recent historical data. When the smoothing coefficient is
large,  the  predicted  results  to  be  closer  to  the  true  results,
indicating that a larger smoothing coefficient should be used when
the trend of the historical sequence is unstable. However, in QES,
since  there  is  no  punishment  or  limitation  for  the  changes  and
maximum  values  of  the  predicted  sequence,  the  predicted
sequence  quickly  deviates  from  the  true  sequence.  In  AQESD,
taking  and calculating the smoothing coefficient based on
Eq.  (11)  also  gives  a  value  of  0.9,  but  a  damping  coefficient  is
added  to  AQESD,  which  is  calculated  as  0.55  based  on  Eq.  (16).
This  punishes  the  growth  of  the  predicted  future  sequence  of 
and  limits  its  maximum  value,  ultimately  allowing  AQESD  to

ax

ax

produce  predictions  that  are  close  to  the  true  results  for .  The
constant  sequence  also  cannot  reflect  the  future  trend  of .  For
the CTRA model, AQESD plays the same role as described above,
and thus, we will not repeat it here.

The results  above indicate that  under the condition of  a  stable
trend in  the  historical  state  sequence,  QES can effectively  predict
the changing trend of future state sequences.  However,  when the
trend  in  the  historical  state  sequence  is  unstable,  the  predictive
performance  of  QES  for  future  state  sequences  deteriorates.  This
issue  can  be  effectively  addressed  by  utilizing  the  proposed
AQESD. It is worth noting that a constant sequence cannot reflect
the future trend of the state. Therefore, replacing the input of the
kinematic  model  with  the  predictive  results  of  AQESD  for  state
sequences  will  be  beneficial  for  improving  the  long-term
prediction  accuracy  of  the  kinematic  model  for  the  trajectory  of
the sideslip vehicle.

4.3.2    Case study for TSIMMSTP

In Fig. 6,  the red car is the observed sideslip vehicle. Figs.  6a and
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Fig. 5    Comparison of state sequence prediction results.
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Fig. 6    Sideslip trajectory prediction results of kinematic models with/without time-series analysis.

168 Cao L P, Luo Y G, Wang Y S, et al.

J Intell Connect Veh 2023, 6(3): 161−172
 



6b  show  the  comparison  of  the  predicted  sideslip  trajectories
between  the  TSCA  and  CA  models,  and  between  the  TSCTRA
and CTRA models, respectively, in the lane change scenario of 3 s.
Figs.  6c and  6d  show  the  comparison  of  the  predicted  sideslip
trajectories  between the  TSCA and CA models,  and between the
TSCTRA  and  CTRA  models,  respectively,  in  the  curve  road
scenario  of  R650. Figs.  7a–7d depict  the  corresponding
comparison  of  the  prediction  errors,  where  the  prediction  errors
are measured using the direct Euclidean distance between the real
trajectory  and  the  predicted  trajectory.  The  results  show  that  the
effect  of  introducing  a  time-series  analysis  module  on  the
prediction  error  within  1  s  is  not  significant  for  both  the  CTRA
and  CA  models.  However,  after  1  s,  the  prediction  error  of  the
physical  model  without  a  time-series  analysis  module  increases
rapidly, while that of the model with a time-series analysis module
increases slowly.  At the end of  the prediction,  in the lane change
sub-scenario,  the  final  errors  of  TSCA and TSCTRA are  5.6  and
1.3  m  smaller  than  those  of  CA  and  CTRA,  respectively.  In  the

curve  road  sub-scenario,  the  final  errors  of  TSCA  and  TSCTRA
are  1.3  and  0.8  m  smaller  than  those  of  CA  and  CTRA,
respectively. This indicates that the introduction of the TS module
can effectively enhance the accuracy of the ego vehicle’s prediction
of the trajectory of the sliding vehicle, both in straight and curved
road  scenarios.  The  ego  vehicle  can  more  accurately  determine
when and where the sliding vehicle will slide out of the lane, and
consequently  take  timely  safety  measures  to  avoid  collisions  with
the sliding vehicle.

Fig. 8 shows the comparison of the predicted sideslip trajectory
and uncertainty region of the TSCTRA, TSCA, and TSIMMSTP.
Figs.  9 and 10 show  the  corresponding  prediction  error
comparison  and  model  probability  transition.  It  can  be  observed
that at  the beginning,  the prediction error and uncertainty of  the
TSCTRA  model  are  small,  and  its  probability  is  close  to  1.  As  a
result,  the  fused  prediction  error  grows  consistently  with  the
TSCTRA  model’s  prediction  error.  As  time  progresses,  the
prediction  error  and  uncertainty  of  the  TSCTRA  model  become
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larger than that of the TSCA model. At this point, the probability
of the TSCA model approaches 1,  and the fused prediction error
transitions  from growing  consistently  with  the  TSCTRA model’s
prediction  error  to  growing  consistently  with  the  TSCA  model’s
prediction error trend. Since the fused prediction error is  smaller
than  the  TSCA  model’s  prediction  error  before  the  transition
occurs, the fused prediction error is the smallest at the end of the
prediction. At the end of the prediction, the final prediction error
of TSIMMSTP is less than 1 m in both sub-scenarios.

Table 3 compares the variation of prediction uncertainty before
and after the fusion of TSCTRA and TSCA models using IMM in
the  two  different  scenarios,  where  uncertainty  is  represented  by
the  average  three  times  standard  deviation  in  the  prediction
horizon. Table 3 and Fig. 8 show that the uncertainty after fusion
is  smaller  than  before,  indicating  that  TSIMMSTP  not  only
improves the accuracy of trajectory prediction but also reduces its
uncertainty.  The  aforementioned  findings  illustrate  that  the
integration  of  both  the  time-series  analysis  module  and  the
trajectory  fusion  module  into  the  vehicle’s  trajectory  prediction
system not only facilitates a more precise estimation of the sliding
vehicle’s  position  but  also  improves  the  dependability  of  the
prediction  outcomes.  Consequently,  the  ego  vehicle  can  operate

within  a  broader  feasible  driving  area  and  employ  more  flexible
obstacle  avoidance  strategies,  making  it  easier  to  avoid  collisions
with the sliding vehicle.

5    Conclusions
In  this  study,  we  proposed  a  novel  trajectory  prediction  method
for  vehicle  sideslip  trajectories  based  on  time-series  analysis  and
multi-physical  model  fusion.  The  method  enables  high-precision
and long-term prediction of vehicle sideslip trajectories.

This study draws the following conclusions. First, the proposed
AQESD method in the time-series analysis module can predict the
trend of future state sequences and provide more accurate inputs
for  physical  models,  thus  improving  the  long-term  prediction
accuracy  of  kinematic-based  methods.  Second,  the  proposed
TSIMMSTP can adaptively switch between kinematic models and
effectively  fuse  several  sideslip  trajectory  prediction  results  of
kinematic  models,  further  improving  the  long-term  prediction
accuracy of kinematic-based methods.

In  the  future,  we  plan  to  integrate  this  algorithm  into  the
decision and control module and validate the effectiveness of this
method  through  hardware-in-the-loop  or  real  vehicle
experiments.
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Table 3    Comparison of prediction uncertainty using three
times standard deviation (Unit: m)

Case Method 1 s 2 s 3 s 4 s End

Lane change
TSCA 0.72 1.06 1.32 1.54 1.72

TSCTRA 0.14 0.46 0.87 1.37 1.94
TSIMMSTP 0.13 0.45 0.86 1.17 1.39

Curve road
TSCA 0.53 0.79 0.98 1.14 1.17

TSCTRA 0.12 0.39 0.74 1.17 1.26
TSIMMSTP 0.11 0.38 0.72 0.92 0.95

170 Cao L P, Luo Y G, Wang Y S, et al.

J Intell Connect Veh 2023, 6(3): 161−172
 



References 

 Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Li, F. F., Savarese, S.,
2016. Social LSTM: Human trajectory prediction in crowded spaces.
In: 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 961–971.

 Ammoun, S., Nashashibi, F., 2009. Real time trajectory prediction for col-
lision risk  estimation  between  vehicles.  In:  2009  IEEE  5th  Interna-
tional  Conference  on  Intelligent  Computer  Communication  and
Processing, 417–422.

 Arulampalam, M. S.,  Maskell,  S.,  Gordon, N., Clapp, T.,  2002. A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian track-
ing. IEEE Trans Signal Process, 50, 174−188.

 Bahari,  M.,  Saadatnejad,  S.,  Rahimi,  A.,  Shaverdikondori,  M.,
Shahidzadeh, A. H., Moosavi-Dezfooli, S. M. et al., 2022. Vehicle tra-
jectory  prediction  works,  but  not  everywhere.  In:  2022  IEEE/CVF
Conference  on  Computer  Vision  and  Pattern  Recognition  (CVPR),
17102–17112.

 Deo,  N.,  Trivedi,  M.  M.,  2018.  Convolutional  social  pooling  for  vehicle
trajectory  prediction.  In:  2018  IEEE/CVF  Conference  on  Computer
Vision and Pattern Recognition Workshops (CVPRW), 1549–15498.

 Eskandarian, A.,  Wu,  C.,  Sun,  C.,  2021.  Research  advances  and  chal-
lenges  of  autonomous  and  connected  ground  vehicles.  IEEE  Trans
Intell Transp Syst, 22, 683−711.

 Fang, L., Jiang, Q., Shi, J., Zhou, B., 2020. TPNet: trajectory proposal net-
work  for  motion  prediction.  In:  2020  IEEE/CVF  Conference  on
Computer Vision and Pattern Recognition (CVPR), 6796–6805.

 Gardner, E. S., 1985. Exponential smoothing: The state of the art. J Fore-
cast, 4, 1−28.

 Ghorai, P., Eskandarian, A., Kim, Y. K., Mehr, G., 2022. State estimation
and  motion  prediction  of  vehicles  and  vulnerable  road  users  for
cooperative autonomous driving: A survey. IEEE Trans Intell Transp
Syst, 23, 16983−17002.

 Gulzar,  M.,  Muhammad, Y.,  Muhammad, N.,  2021. A survey on motion
prediction of pedestrians and vehicles for autonomous driving. IEEE
Access, 9, 137957−137969.

 Houenou, A., Bonnifait, P., Cherfaoui, V., Wen, Y., 2013. Vehicle trajec-
tory  prediction  based  on  motion  model  and  maneuver  recognition.
In:  2013  IEEE/RSJ  International  Conference  on  Intelligent  Robots
and Systems (IROS 2013), 4363–4369.

 Huang, Y., Du, J., Yang, Z., Zhou, Z., Zhang, L., Chen, H., 2022. A survey
on  trajectory-prediction  methods  for  autonomous  driving.  IEEE
Trans Intell Veh, 7, 652−674.

 Izquierdo,  R.,  Quintanar,  Á.,  Llorca,  D.  F.,  Daza,  I.  G.,  Hernández,  N.,
Parra, I., et al., 2023. Vehicle trajectory prediction on highways using
bird  eye  view  representations  and  deep  learning.  Appl  Intell,  53,
8370−8388.

 Kim, W., Kang, C. M., Son, Y. S., Lee, S. H., Chung, C. C., 2018. Vehicle
path  prediction  using  yaw  acceleration  for  adaptive  cruise  control.
IEEE Trans Intell Transp Syst, 19, 3818−3829.

 Lefèvre, S.,  Vasquez,  D.,  Laugier,  C.,  2014.  A  survey  on  motion  predic-
tion  and  risk  assessment  for  intelligent  vehicles.  ROBOMECH  J,  1,
1−14.

 Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., et al., 2020. Learn-
ing  lane  graph  representations  for  motion  forecasting.  Computer
Vision – ECCV  2020.  Cham:  Springer  International  Publishing,
541–556.

 Liu, C. S., Peng, H., 1996. Road friction coefficient estimation for vehicle
path prediction. Veh Syst Dyn, 25, 413−425.

 Liu, J.,  Luo,  Y.,  Zhong,  Z.,  Li,  K.,  Huang,  H.,  Xiong,  H.,  2022.  A proba-
bilistic  architecture  of  long-term  vehicle  trajectory  prediction  for
autonomous driving. Engineering, 19, 228−239.

 Messaoud,  K.,  Yahiaoui,  I.,  Verroust-Blondet,  A.,  Nashashibi,  F.,  2019.
Non-local  social  pooling  for  vehicle  trajectory  prediction.  In:  2019
IEEE Intelligent Vehicles Symposium (IV), 975–980.

 Messaoud,  K.,  Yahiaoui,  I.,  Verroust-Blondet,  A.,  Nashashibi,  F.,  2021.
Attention based vehicle trajectory prediction. IEEE Trans Intell Veh,
6, 175−185.

 Mozaffari,  S.,  Al-Jarrah,  O.  Y.,  Dianati,  M.,  Jennings,  P.,  Mouzakitis,  A.,
2022.  Deep  learning-based  vehicle  behavior  prediction  for
autonomous driving applications: A review. IEEE Trans Intell Transp
Syst, 23, 33−47.

 Park,  J.  H.,  Tai,  Y.  W.,  2015.  A  simulation  based  method  for  vehicle
motion prediction. Comput Vis Image Underst, 136, 79−91.

 Schreier,  M.,  Willert,  V.,  Adamy,  J.,  2016.  An  integrated  approach  to
maneuver-based  trajectory  prediction  and  criticality  assessment  in
arbitrary  road  environments.  IEEE  Trans  Intell  Transp  Syst,  17,
2751−2766.

 Schubert, R., Richter, E., Wanielik, G., 2008. Comparison and evaluation
of advanced motion models for vehicle tracking. In: 2008 11th Inter-
national Conference on Information Fusion, 1–6.

 Shiller,  Z.,  Sundar,  S.,  1998.  Emergency  lane-change  maneuvers  of
autonomous vehicles. J Dyn Syst Meas Contr, 120, 37−44.

 Song, H.,  Luan, D.,  Ding, W., Wang, M. Y.,  Chen, Q.,  2022. Learning to
Predict Vehicle  Trajectories  with  Model-based  Planning.  In:  Pro-
ceedings of the 5th Conference on Robot Learning, 1035–1045.

 Wissing, C.,  Nattermann,  T.,  Glander,  K.  H.,  Bertram,  T.,  2018.  Trajec-
tory  prediction  for  safety  critical  maneuvers  in  automated  highway
driving. In: 2018 21st International Conference on Intelligent Trans-
portation Systems (ITSC), 131–136.

 Xiang, Y., He, Y., Luo, Y., Bu, D., Kong, W., Chen, J.,  2022. Recognition
model of sideslip of surrounding vehicles based on perception infor-
mation of driverless vehicle. IEEE Intell Syst, 37, 79−91.

 Xie, G., Gao, H., Qian, L.,  Huang, B.,  Li,  K.,  Wang, J.,  2018. Vehicle tra-
jectory  prediction  by  integrating  physics-  and  maneuver-based
approaches using interactive multiple models.  IEEE Trans Ind Elec-
tron, 65, 5999−6008.

 Yao, H.,  Li,  Q.,  Li,  X.,  2022. Trajectory prediction dimensionality reduc-
tion  for  low-cost  connected  automated  vehicle  systems.  Transp  Res
Part D Transp Environ, 111, 103439.

 Yao, H., Li, X., Yang, X., 2023. Physics-aware learning-based vehicle tra-
jectory prediction  of  congested  traffic  in  a  connected  vehicle  envi-
ronment. IEEE Trans Veh Technol, 72, 102−112.

 Zhang, Q., Hu, S., Sun, J., Chen, Q. A., Mao, Z. M., 2022. On adversarial
robustness of trajectory prediction for autonomous vehicles. https://
arxiv.org/abs/2201.05057

 
 

Lipeng Cao received the B.S.  and M.S.  degrees
in  automotive  engineering  from  Chongqing
University,  Chongqing,  China,  in  2017  and
2020, respectively, where he is currently pursu-
ing  the  Ph.D.  degree  with  the  College  of
Mechanical and Vehicle Engineering. He is also
a  joint  student  of  the  State  Key  Laboratory  of
Automotive Safety  and  Energy,  Tsinghua  Uni-
versity,  Beijing,  China.  His  research  interests
include the safety  of  the intended functionality
(SOTIF)  and  vehicle  localization  and  control
technology.

 

Yugong  Luo (Member,  IEEE)  received  the  B.
Tech. and  M.S.  degrees  from  Chongqing  Uni-
versity,  Chongqing,  China,  in  1996  and  1999,
respectively,  and  the  Ph.D.  degree  from
Tsinghua  University,  Beijing,  China,  in  2003.
He  is  currently  a  Professor  with  the  School  of
Vehicle and Mobility, Tsinghua University. His
research  interests  include  intelligent  connected
electric vehicle dynamics and control and vehi-
cle noise control.

 

Vehicle sideslip trajectory prediction based on time-series analysis and multi-physical model fusion 171

https://doi.org/10.26599/JICV.2023.9210016
 



Yongsheng  Wang earned  the  Ph.D.  degree  in
vehicle engineering  from  the  China  Agricul-
tural  University,  Beijing,  China,  in  2022.  He  is
currently  a  Postdoctoral  Researcher  with  the
School of Vehicle and Mobility, Tsinghua Uni-
versity,  Beijing,  China.  His  research  interests
include  vehicle  dynamics  and  control  and  the
safety  of  the  intended  functionality  of  vehicle
localization systems.

 

Jian  Chen received  the  B.Tech.  degree  from
Hefei University of Technology, China, in 1993.
He  is  currently  pursuing  the  Ph.D.  degree  in
Tsinghua  University,  Beijing,  China.  His  main
interests  include  artificial  intelligence,  focusing
on theoretical and practical aspects of argumen-
tation-based reasoning.

 

Yansong  He received  the  B.Tech.,  M.S.,  and
Ph.D.  degrees  from  Chongqing  University,
Chongqing,  China,  in  1990,  1993,  and  2003,
respectively.  He  is  currently  a  Professor  with
the College  of  Mechanical  and  Vehicle  Engi-
neering,  Chongqing  University.  His  research
interests  include  autonomous  vehicles,  vehicle
dynamics, and vehicle noise control.

172 Cao L P, Luo Y G, Wang Y S, et al.

J Intell Connect Veh 2023, 6(3): 161−172
 


