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ABSTRACT: With  the  rapid  development  of  warehouse  robots  in  logistics  and  other  industries,  research  on  their  path
planning  has  become  increasingly  important.  Based  on  the  analysis  of  various  conflicts  that  occur  when  the  warehouse
robot  travels,  this  study  proposes  a  two-level  vehicle  path  planning  model  for  multi-warehouse  robots,  which  integrates
static and dynamic planning to improve operational efficiency and reduce operating costs. In the static phase, the blockage
factor  is  introduced  to  enhance  the  ant  colony  optimization  (ACO)  algorithm  as  a  negative  feedback  mechanism  to
effectively avoid the blockage nodes during movement. In the dynamic stage, a dynamic priority mechanism is designed to
adjust  the routing strategy in  real  time and give the optimal  path according to the real  situation.  To evaluate the model’s
effectiveness, simulations were performed under different operating environments and application strategies based on an
actual grid environment map. The simulation results confirm that the proposed model outperforms other methods in terms of
average running distance, number of  blocked nodes,  percentage of  replanned paths,  and average running time, showing
great potential in optimizing warehouse operations.
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1    Introduction
With  the  rise  of  E-commerce  industries,  warehouse  robots  have
gradually  replaced  manual  labor  as  operational  workers  in  the
logistics  environment  to  ensure  timely  responses  to  warehousing
operations  in  massive  cargo  scenarios  (Wang  et  al.,  2022).
Warehouse  robots  streamline  operations  by  equipping  their
bodies  with  sensors  and  motion  control  systems  to  automate
processes.  It  can  significantly  improve  the  efficiency  of  object
transportation  and  sorting,  reduce  labor  costs,  and  improve  the
space  utilization  of  the  warehouse  environment.  Leading
companies  in  the  E-commerce  industry,  such  as  Taobao  and
Jingdong, have independently developed a variety of autonomous
guided vehicles (AGVs) and robotic arms to handle large numbers
of orders efficiently (Huang et al., 2023; Lim et al., 2021; Yue et al.,
2022; Zhang and Yang,  2021; Zhu et  al.,  2022).  Amazon,  known
for  its  extensive  use  of  automation  in  warehouses,  has  also
developed a range of robots and drones to support its operations
(Chen et al., 2021). Overall, the development of warehouse robots
is  part  of  a  more  significant  trend  toward  automation  in  the
logistics industry. As robots become increasingly autonomous and
dependable, they possess the potential to revolutionize the storage,
transportation,  and  delivery  of  products,  resulting  in  faster  and
more efficient logistics operations.

Multi-warehouse  robotic  systems  distribute  control  of
individual  warehouse  robots  to  operate  independently,  reducing
coupling within the system and avoiding overall paralysis (Li et al.,

2023a, 2023b; Lian et al., 2022; Yin et al., 2023). This approach can
increase operational flexibility and fault tolerance. However, it also
creates  the  possibility  of  conflicts  between  robots  as  different
robots have different goals and priorities. Therefore, path planning
is a core problem for warehouse robot applications, which studies
how to allow multiple robots to move from a standby position to a
task point in an optimal path without collision for object pickup,
delivery,  and  classification  (Lv  et  al.,  2022; Qin  et  al.,  2023; Sun
et  al.,  2023; Yan,  2022; Yuan  et  al.,  2022).  In  practical  problems,
the  path  planning  solution  strategy  first  models  the  physical
environment  in  which  the  problem  is  located  and  then  searches
for  the  optimal  path  based  on  different  algorithms  (Li  et  al.,
2023a).  As  mobile  robots  are  increasingly  used in  transportation,
logistics,  and  manufacturing  industries,  there  are  many  research
results  on  algorithms  for  path  planning  (Li  et  al.,  2022a).
According  to  the  planning  operation  area,  the  current  path
planning  models  for  multi-warehouse  robot  systems  can  be
divided  into  global  path  planning  models  (Daddi  et  al.,  2022; Li
et  al.,  2022b; Psotka  et  al.,  2023)  and local  path  planning models
(Kobayashi and Motoi, 2022; Peralta et al., 2020). The global path
planning  models  concern  offline  planning  and  are  adequate  for
predictable tasks that do not change frequently. However, they are
unsuitable for tasks requiring real-time adaptability and flexibility.
On  the  other  hand,  local  path  planning  models  are  essentially
dynamic online planning, where the robot makes decisions in real
time  based  on  the  surrounding  environment  and  available
information. This approach is suitable for more complex tasks that
require  real-time  decisions  but  can  be  challenging  to  ensure  that
the robots do not collide with each other or with other obstacles.

According  to  the  existing  literature,  algorithms  used  in  robot
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path  planning  can  be  categorized  into  three  main  approaches:
classical,  metaheuristic,  and  hybrid  (Gul  et  al.,  2022).  For
comparison  and  analysis,  these  path  planning  algorithms  are
organized in Table 1. Classical methods include artificial potential
field algorithms (Chen et al., 2022; Hao et al., 2022; Ma et al., 2022;
Souza et al., 2022; Zhao et al., 2023), graph search algorithms (Jin
et al., 2023; Li et al., 2022c), and sampling algorithms (Dian et al.,
2022; Ding et al., 2023; Ma et al., 2023). With the development of
computational  techniques,  metaheuristic  optimization  algorithms
have  emerged  as  an  efficient  path  planning  method  for  high-
dimensional  complex  problems  based  on  genetic  evolution
mechanisms and cluster foraging migration mechanisms theories.
Common  metaheuristic  optimization  algorithms  include
evolutionary algorithm (EA),  particle  swarm optimization (PSO),
artificial  bee  colony  algorithm  (ABC),  cuckoo  search  (CS),  gray
wolf optimization (GWO), etc. (Cui et al., 2023; Larsen and Kim,
2021; Rajamoorthy et al., 2022; Shao et al., 2020; Song et al., 2021;
Tang et al., 2021; Xu et al., 2022). In addition to the models based
on  a  single  algorithm  and  a  single  objective  function,  studies  on
hybrid applications for  multi-objective function utilities  also exist
(Sahu et al., 2023).

As  a  cluster-based  algorithm,  ant  colony  optimization  (ACO)
simulates  the  pheromone  mechanism  in  the  foraging  process  of
ant colonies for path planning (Al-Amyal et al., 2023). Ants release
a specific concentration of pheromones while crawling, and other
ants search for optimal paths through indirect communication by
sniffing  the  pheromones.  Although  traditional  ACO  has  positive
feedback  and  self-organization  characteristics,  they  have
limitations  such  as  possible  stagnation  of  convergence  and  easily
falling into local optima (Dai et al., 2022; Qu et al., 2022; Tao et al.,
2021; Wang and Wu, 2023; Yang et al.,  2022). Therefore, various
variants  have  been  proposed  to  improve  this  algorithm's
effectiveness  and  convergence  speed.  For  instance, Wu  et  al.
(2023) proposed  a  modified  adaptive  ant  colony  optimization
algorithm  (MAACO),  which  introduced  a  new  heuristic
mechanism  with  directional  information  and  added  directional
guidance  in  the  iterative  process  to  improve  the  convergence
speed  of  the  algorithm  further.  To  address  the  problem  that  the
ACO  does  not  fully  utilize  the  historical  paths  explored  by  ants,
Hou et al. (2022) suggested a new ant communication mechanism
to accelerate the integration of historical paths and the exploration

of better paths through direct communication between individual
ants. Miao  et  al.  (2021) also  introduced  the  angle  guidance  and
obstacle  exclusion  factors  in  the  traditional  algorithm.  It  also
added  an  adaptive  adjustment  factor  and  volatile  factor  in  the
pheromone to balance the convergence and global search ability of
ACO.

Previous research on the path planning problem of warehouse
robots  has  limited  exploration  and  analysis  of  the  conflict  types
and  corresponding  strategies  among  robots.  Moreover,  the
existing models for path planning typically rely on either a single
global module or a single local module. In practical applications of
a warehouse environment, the traditional ACO heuristic function
only  considers  the  path  distance  factor,  which  can  result  in
blockage  at  the  path  intersection  nodes,  thereby  diminishing  the
efficiency  of  operations.  Additionally,  ACO  that  employs  only
positive feedback information is prone to local minimum. Hence,
this  study  incorporates  the  blockage  factor  as  negative  feedback
information  into  the  heuristic  function  to  enhance  the  global
performance  of  the  algorithm.  This  work  proposes  a  multi-
warehouse  robot  two-level  path  planning  model  based  on  the
analysis  of  various  conflict  accidents  that  occur  when  the
warehouse robot travels. The model integrates static planning with
dynamic  planning  and  implements  a  dynamic  prioritization
mechanism  to  improve  the  operational  efficiency  of  warehouse
robots and reduce operating costs. The contributions of this study
are as follows:

•  This  study  proposes  a  two-level  vehicle  path  planning
model, including static and dynamic stages. In the static path
planning stage,  an  improved ACO with  negative  feedback of
blockage factor  is  introduced,  realizing a  parallel  mechanism
of  positive  and  negative  feedback.  In  the  dynamic  planning
stage,  the  priority  of  the  warehouse  robot  is  adjusted  in  real
time,  and  the  conflict  resolution  strategy  is  selected
dynamically.

•  Based  on  a  grid  map  of  the  real  environment  in  the
MATLAB  platform,  the  model  performance  is  simulated
under  various  conditions,  including  different  combination
strategies,  robot  scales,  and  scenarios  with  and  without
conflicts. The superiority of the path planning performance of
the proposed model is verified as compared to other existing
models.

 

Table 1    Comparison of various methods

Ref. Method Advantages & limitations
Souza et al. (2022);
Zhao et al. (2023) Artificial potential field algorithms Providing obstacle avoidance, as well as eliminating local minimum problems and

oscillations in the influence threshold of repulsive fields
Jin et al. (2023);
Li et al. (2022c) Graph search algorithms Improving the search efficiency, effectively reducing the turning angle

Dian et al. (2022);
Ding et al. (2023) Sampling algorithms Being able to acquire the optimal path on the grid map; poor computational efficiency,

falling into a local minimum

Larsen and Kim (2021) Evolutionary algorithm Have revolutionized the field of optimization algorithms, effective path planning approaches
for high-dimensional complex conditions

Shao et al. (2020);
Song et al. (2021) Particle swarm optimization Updating each particle’s position and velocity; usually results in premature convergence

Cui et al. (2023) Artificial bee colony algorithm Outstanding exploration ability; poor exploitation capability, and low solution precision

Sahu et al. (2023) Cuckoo search Performing well for several problems such as nonlinear, multimodal, unconstrained, and
constrained; suffering from premature convergence

Wang and Wu (2023);
Yang et al. (2022) ACO Positive feedback and self-organization characteristics; possible convergence stagnation and

tendency to fall into local optima
Wu et al. (2023) Modified adaptive ACO Improving the convergence speed of the algorithm

This study Improved ACO Enhancing the global performance of the algorithm, improving the operational efficiency of
warehouse robots, and reducing operating costs
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2    Conflict and resolution strategy
In  the  operation  of  multi-warehouse  robots,  conflicts  between
robots  can  occasionally  arise,  resulting  in  temporal  or  spatial
conflicts  that  can  have  significant  negative  impacts  on
environmental  resources,  system  stability,  efficiency,  and
organization.  Therefore,  it  is  crucial  to  identify  and  implement
effective  measures  to  mitigate  these  conflicts  and  optimize
operational efficiency. A prerequisite for achieving this goal is the
classification and categorization of common types of disputes that
may  arise  within  the  environment,  which  can  then  inform
targeted  conflict  resolution  strategies  tailored  to  address  specific
conflicts.  This  approach  ensures  comprehensive  and  effective
resolution of conflicts, as opposed to applying generic strategies to

all  conflicts.  By  employing  targeted  and  differentiated  conflict
resolution  strategies,  greater  precision  and  efficiency  can  be
achieved in operating multi-warehouse robots.

2.1    Typical conflict types

R1 R2

During the driving process of a warehouse robot, the use of body-
mounted detection devices enables it to continuously monitor the
area around its body in real time for any potential collisions with
other  warehouse  robots.  Depending  on  the  state  of  the  conflict
when it occurs, it can be roughly divided into the following types.
A  graphical  representation  of  the  various  types  of  conflicts
between  the  two  robots,  and ,  and  the  corresponding  time
windows are shown in Fig. 1; t represents time, s.
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R1 R2Fig. 1    Typical  conflict  types  of  the  two  robots  and ,  and  the  corresponding  time  windows.  (a)  Head-on  conflict.  (b)  Crossing  conflict.  (c)  Catch-up  conflict.
(d) Occupancy conflict. i , j , and m indicate the nodes.
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● Head-on conflict
A head-on conflict is a frontal collision between two warehouse

robots  traveling in opposite  directions on a single-lane road.  The
road in this study is set to be a single lane in both directions, so it
is prone to such conflicts. Such conflicts can lead to road deadlock
and require external intervention to resolve.
● Crossing conflict
This  conflict  occurs  at  the  node  where  two  lanes  intersect.  It

happens  when  two  warehouse  robots  travel  from  different
directions and compete for space at an intersection, leading to side
collisions  between  warehouse  robots  and  blockage  of  the
intersection.
● Catch-up conflict
Catch-up conflict arises when a following robot tries to overtake

a slower front robot with a failure, deceleration, or load. Catch-up
and  crossing  conflicts  share  similar  time  windows  since  both
involve multiple robots occupying the same node.
● Occupancy conflict
An  occupancy  conflict  is  caused  when  a  robot  is  blocked  by

another  robot  stopping  at  a  node  due  to  operational  needs.,
blocking its normal travel route.
● Other conflicts
Others  mainly  include  warehouse  robot  failures  and  human

factors.  Their  failures  include  power  shortages,  communication
failure,  parts  damage,  etc.  The human factor  mainly  refers  to  the
situation  in  which  people  in  the  environment  carrying  out
maintenance work that  will  affect  the regular  work of  warehouse
robots.

2.2    Conflict resolution strategies
In  the  previous  section,  several  typical  types  of  conflicts  in  the
warehouse  environment  are  introduced.  Many  conflict
elimination strategies can be implemented to reduce the impact of
conflicts on warehouse robots, and the main strategies adopted in
this  study  include  the  waiting  strategy,  rerouting  strategy,  and
dynamic prioritization strategy.
● Waiting strategy
The  waiting  strategy  is  a  simple  and  easy-to-implement

strategy. When a robot detects through its sensors that there may
be a collision with another robot ahead, it stops and waits to avoid
conflict  until  other  robots  pass.  However,  this  strategy  consumes
more  time  resources,  and  waiting  for  too  long  may  lead  to
occupancy  conflict.  Therefore,  it  is  necessary  to  use  this  strategy
according to the actual situation.
● Rerouting strategy
Rerouting strategy means replanning the travel route of a robot.

After  the robot detects  a  possible  conflict,  in addition to the wait
strategy,  it  can  first  lock  the  conflict  point  and  then  replan  a
driving  route  to  the  target  point.  This  strategy  is  also  easy  to
implement,  but  it  may  still  cause  conflicts  with  other  robots  if
there are many robots in the operating environment. Therefore, a
conflict-free  path  needs  to  be  planned  in  conjunction  with  the
actual situation.
● Dynamic prioritization
When the warehouse robot in the system encounters a conflict

in  driving,  the  robot  with  lower  priority  should  make avoidance.
However,  only  a  single  waiting  strategy  may  result  in  a  lot  of
wasted  time,  thus  creating  occupancy  conflicts.  In  addition,  it  is
supposed to consider the distance driven by the robot during the
operation in real time. Warehouse robots should be given a higher
priority  when  they  are  far  from the  target  point.  Then  the  robot
can be dispatched as soon as possible, shortening the waiting time,

thus saving time cost.  Therefore,  the dynamic priority strategy in
this study mainly considers the waiting time of the robot and the
distance from the target point.

a
i

Since the planned routes and time windows of each warehouse
robot in the system before the operation are known, the dynamic
priority calculation expression for the warehouse robot  running
to the node  is

Tai =
tai
ta

+
sai
sa

(1)

Tai a i tai
i ta

sai
i sa

where  is the priority level of the robot  at the node ;  stands
for the time used by the robot to drive to the node  and  is the
total time taken by the robot to perform this task;  represents the
distance driven by the robot to node ; and  is the total distance
traveled to perform this task.

Combining  the  conflict  types  and  the  three  strategies
mentioned above to eliminate conflicts, this study considers three
cases:  head-on  conflict,  crossing  conflict,  and  occupancy  conflict.
By  amalgamating  the  conflict  types  and  the  aforementioned
strategies,  the  study  seeks  to  eliminate  conflicts  that  may  arise
from autonomous robot navigation. It is pertinent to note that this
study assumes the uniform speed of robots and does not account
for  external  factor  interference.  Consequently,  conflicts  such  as
catch-up  conflicts  and  others  are  not  within  the  purview  of  this
research.

3    Methodology
The  two-level  planning  model  is  grounded  on  a  key  principle,
wherein the initial path for each warehouse robot is planned in the
static planning phase, followed by the real-time adjustment of the
path in the dynamic planning phase in response to the changes in
the  surrounding  environment.  This  approach  amalgamates  the
static  and  dynamic  planning  phases  to  enable  effective  and  real-
time robot path planning.

Based on the real  grid environment map, the optimal path for
each robot is developed in the static path planning stage using an
improved ACO that considers lane blockage.  However,  the paths
generated during this phase only consider the fixed information of
the  environment  and  individual  robot.  In  the  actual  operating
environment,  conflicts  may  arise  between  multiple  warehouse
robots,  and  the  paths  planned  during  the  global  static  planning
phase  may  not  remain  optimal  under  the  current  circumstances.
Hence,  the  paths  planned  during  static  planning  must  be
dynamically adjusted based on operating conditions. The dynamic
planning  phase  first  ascertains  if  any  conflict  may  arise  between
warehouse robots, following which appropriate response strategies
are  developed  for  different  conflicts.  In  this  study,  conflicts
between  robots  are  resolved  by  adjusting  the  priority  strategy  of
warehouse robots in real time during the dynamic planning phase.
Subsequently,  the  next  step  for  the  warehouse  robot  is  chosen
based  on  whether  to  wait  or  replan  the  route,  thereby  ensuring
conflict-free navigation.

3.1    Static path planning based on improved ACO

3.1.1    Direction of algorithm improvement

Considering  the  actual  situation  of  the  warehouse  environment
and  multi-warehouse  robots,  we  improve  the  ACO  to  make  it
better  adapt  to  the  actual  situation  of  multi-warehouse  robot
research.  The  current  path  planning  algorithm  has  been
instrumental  in  increasing  operational  efficiency  in  intelligent
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warehouses.  However,  with  the  growing  scale  of  warehouse
robots,  blockages  at  hotspots  and  nodes  in  the  environment  are
more  likely  to  occur.  As  the  number  of  warehouse  robots
increases, the likelihood of blockage in the system rises, leading to
the  formation  of  more  blocked  sections  and  nodes. Fig.  2
illustrates  the  blockage  diagram  for  60  warehouse  robots,  with
congestion deepening as the blue color intensifies. It can be found
that  the  path  intersection  node  is  generally  more  susceptible  to
blockage. Failure to account for blockage factors in path planning
can  result  in  increasingly  severe  blockages,  significantly  reducing
overall warehouse efficiency. Thus, it is essential to incorporate the
blockage factor in the path planning of multi-warehouse robots to
overcome  potential  blockages  and  enhance  the  operational
efficiency.
 
 

Fig. 2    Blockage diagram of 60 warehouse robots.
 

The traditional ACO is applied in the warehouse environment,
and  only  the  path  distance  factor  is  concerned  in  the  heuristic
function without considering other aspects. Hence it will generate
blockage at  the path intersection nodes during the path planning
process  of  multi-warehouse  robots,  which  dramatically  reduces
the  efficiency  of  warehouse  operations.  Furthermore,  the
traditional  ACO  has  positive  feedback  characteristics  but  lacks
negative  feedback  information,  which  makes  the  algorithm
optimization easily fall into local minimum. In this section, based
on the actual warehouse environment, the blockage factor is added
to  the  heuristic  function  as  negative  feedback  information  to
improve  the  global  nature  of  the  algorithm.  The  specific
improvements are as Eqs. (2)–(5):

pni,j(t) =


[τi,j(t)]α

[
ηi,j(t)

]β[
ϕi,j(t)

]γ
∑

s⊂allowedi

[τi,s(t)]α
[
ηi,s(t)

]β[ϕi,j(t)
]γ , j ∈ allowedi

0, j /∈ allowedi

(2)

φi,j(t) = 1− θj(t) (3)

θj(t) =
r+ r′

r+ r′ + R (4)

Δτni,j(t) =
{
Q/Ln + P × ϕi,j, {i, j} ⊂

n
visitedt,q

0, others
(5)

φi,j(t) i j
t θj(t)

j t r j
R j

where  represents the probability that the grid  to  will not
produce  blockage  at  the  moment ;  denotes  the  blockage
probability of grid  at the time ;  is the number of time node 
that needs to be replanned;  is the number of time through grid ;

r’ Pstands  for  the  number  of  times  it  is  blocked  again;  and 
represents the blockage factor.

3.1.2    Example analysis

In this  study,  the improved ACO is  employed to incorporate the
blockage  factor  as  negative  feedback  information  in  the  heuristic
function  of  the  original  algorithm.  To  verify  the  performance  of
the  improved  ACO  in  avoiding  the  blockage  area,  simulation
experiments are conducted based on the same grid map using the
traditional  ACO  and  the  improved  ACO  of  this  study.  The
distribution of robot blockage in the hypothetical  environment is
shown in Fig. 3, where the green area represents the starting point
with coordinates of (0.5, 5.5), the red area is the target point with
coordinates of (11.5, 21.5), and the grid particle size is 1. The solid
red line depicts the planning result  of  the traditional  ACO, while
the green dashed line is the planning result of the improved ACO.
  

Fig. 3    Blockage verification simulation results.
 

According to Fig.  3,  it  can be seen that  the improved ACO in
this  study is  slightly  longer  than the traditional  ACO in terms of
path length. It is primarily due to the fact that the improved ACO
sacrifices  some  path  length  to  avoid  the  blockage  area  selection,
but  at  the  same  time,  greatly  reduces  the  probability  of  blockage
and prevents the robot from entering the highly congested area so
as  to  improve  the  operation  efficiency.  The  effectiveness  of  the
improved ACO for avoiding blocked areas is verified.

3.2    Dynamic  path  planning  based  on  real-time
adjustment strategy
The time window model can accurately calculate the travel time of
each  warehouse  robot  in  the  system  at  road  sections  and  nodes
during  the  offline  phase  of  the  task,  allowing  for  a  reasonable
allocation of  resources.  However,  due  to  the  constantly  changing
real  operating  environment,  warehouse  robots  must  receive  new
instructions  during  their  journeys.  As  the  scale  of  the  operation
increases,  numerous  uncertain  situations  may  occur,  including
frontal  and side collisions between robots  in the lane,  equipment
failure,  lane  congestion,  and  other  problems.  In  order  to  address
these issues, it is essential to adjust warehouse robots in real time
based on their current operation.

This  study  proposes  a  real-time  adjustment  strategy  to  enable
online  planning,  which  involves  adjusting  the  priority  of
warehouse  robots  and  implementing  the  conflict  elimination
strategies in real time. By employing this approach, the system can
effectively  address  uncertainties  and  minimize  delays,  ensuring
smooth and efficient operation.

3.2.1    Warehouse robot priority setting

Given that  the  requirements  of  each warehouse  system can vary,
the  approach  to  priority  setting  may  differ  depending  on  the
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context. Common techniques for assigning priority include setting
priorities based on the property of operation or the urgency level
of  the  task  at  hand.  In  this  study,  the  priority  levels  were
determined  based  on  the  operational  status  of  the  warehouse
robot  and the  timeframe for  cargo transportation,  tailored to  the
needs of warehousing and logistics enterprises. The priority levels
are assigned a numeric value starting from 0, with higher priority
levels  corresponding  to  larger  numerical  values.  A  detailed
description of the priority level settings is presented in Table 2.
 
 

Table 2    Initial priority setting

Operation status Priority level
Failure/need for charging Highest

Picking High
Delivering Low

 

3.2.2    Real-time adjustment strategy

The  main  conflict  resolution  strategies  among  robots  in  a
warehouse  system  are  waiting  for  strategies,  rerouting  strategies,
dynamic prioritization, and rate adjustment. Traditional solutions
generally  use  only  one  of  these  strategies,  which  may  lead  to
undesirable situations such as long waiting time, lane congestion,
and  area  deadlocks,  resulting  in  reduced  system  operational
efficiency. In this study, we integrate the dynamic priority, waiting
for strategy,  and rerouting strategy to plan the robot system. The
approach comprises the following steps:

① Utilize  the  improved  ACO  algorithm  to  perform  static
planning  and  derive  an  optimal  path  for  the  current  task.
Compute  the  corresponding  time  windows  for  the  paths  and
nodes to obtain the initial set of paths.

② Select  the  first  path  in  the  set  of  paths  and  calculate  its
corresponding time windows.

③ Check  for  the  time  window  conflicts  between  the  planned
path and the selected path. If a conflict exists, choose the next path
until  a  conflict-free  path  is  identified.  If  no  conflict-free  path  is
available, determine the type of conflict.

④ According  to  the  judged  conflict  type,  choose  different
collision  avoidance  strategies  from  the  waiting  and  rerouting

strategies,  combined  with  the  real-time  priority  strategy
simultaneously.

⑤ Based  on  the  conflict  types  in  the  previous  step,  calculate
and  compare  the  time  spent  on  different  strategies.  Choose  the
strategy  that  requires  less  time  to  resolve  the  conflict  between
robots, and finally furnish a conflict-free path.

4    Simulation results and discussions

4.1    Process of path planning algorithm
The  process  of  the  two-level  planning  model  for  the  warehouse
robot in this study is as follows, and the flow chart of the two-level
planning model is shown in Fig. 4.

① Environment  setting.  According  to  the  actual  warehouse
environment,  establish  the  grid  map,  set  task  priorities  in  the
system, and assign initial priority to the warehouse robot.

② Task  delegating.  Check  whether  there  is  a  free  warehouse
robot  in  the  environment,  and  if  so,  delegate  the  task  with  the
highest  priority  to  the  warehouse  robot  closest  to  the  starting
point.  Otherwise,  wait  for  a  free  robot  to  appear  in  the
environment.

③ Initial path planning. Utilize the improved ACO to plan the
optimal driving route for the warehouse robots that have accepted
the task to ensure the shortest total system running time.

④ Time window calculating and updating. The time windows
on the planned route for the warehouse robot are calculated and
updated.

⑤ Conflict  detecting and resoluting.  Determine whether there
is a time window conflict for the warehouse robots, and if there is,
determine  the  type  of  conflict  and  apply  the  conflict  elimination
strategy to the robots with low priority. Otherwise, go to step ⑦.

⑥ Real-time  priority  calculating.  The  real-time  priority  of  the
warehouse  robot  at  the  current  node  is  calculated.  Low-priority
robots  choose  the  least  time-consuming  conflict  avoidance
strategy  between  wait  and  rerouting  strategies,  and  the  system
returns to step ④.

⑦ Task completion checking. The system checks if all tasks in
the system are completed. If so, the job ends; otherwise, the system
returns to step ②.
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Fig. 4    Flow chart of the two-level planning model.
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In the previous work, a mathematical path planning model was
established for a multi-warehouse robot, and a two-level planning
model for a multi-warehouse robot was designed. In this section,
based  on  a  real  model  of  the  warehouse  operation  environment,
we  compared  the  proposed  path  planning  model  and  other
models,  and  then  experimented  on  the  MATLAB  simulation
platform  in  terms  of  different  task  scales.  At  last,  analyze  the
simulation  results  so  as  to  test  the  effectiveness  and  feasibility  of
the proposed model.

4.2    Simulation conditions
MATLAB  is  used  as  a  simulation  platform  for  multi-warehouse
robot  path  planning  here.  MATLAB  software,  as  an  advanced
development  software,  is  widely  used  in  computational  research,
data  analysis  visualization,  and statistical  analysis.  As  a  computer
language, MATLAB can adapt well to the multi-warehouse robot
simulation  environment.  It  has  powerful  data  processing
capabilities  and  can  visualize  the  calculation  results.  Other
hardware conditions are Windows 10 64-bit operating system and
2.4 GHz AMD-A10 CPU processor with 8 GB of RAM. To save
running time during the simulation, the model in this study omits
the smoothing operation. Simulation-related parameters are set as
in Tables 3 and 4.

4.3    Simulation example analysis

4.3.1    Conflict-free scenario simulation analysis

To  verify  the  performance  of  the  improved  ACO,  implement
simulation  with  the  different  number  of  warehouse  robots.  The
starting and ending points of the ten robots are shown in Table 5.
There  is  no  conflict  between  the  paths,  and  the  warehouse
simulation  environment  is  consistent  with  the  previous  section.
The  simulation  results  of  the  traditional  and  improved  ACO  at

different scales are shown in Tables 6 and 7.
According to the results of Tables 6 and 7, the average running

distance  and  average  running  time  of  a  single  warehouse  robot
applying the ACO before and after the improvement are plotted in
Fig. 5. As shown in Table 7 and Fig. 5, the total running distance
and total running time of warehouse robots in the system increase
to  different  degrees  as  the  scale  of  robot  number  increases.  In  a
conflict-free  scenario,  compared  with  the  traditional  ACO,  the
average distance traveled by a single robot is reduced by 2.36 and
2.66  m  for  5  and  10  robots,  and  the  average  running  time  is
reduced by 9.06 and 10.66 s, respectively. Therefore, the improved
ACO proposed in this study outperforms the traditional algorithm
in  terms  of  average  running  distance  and  movement  time  of  a
single  storage  robot,  which  reflects  the  effectiveness  and
advancement  of  the  improved  algorithm  in  a  conflict-free
environment.

 

Table 3    Environment and robot parameters settings

Parameter Indicator Value
Goods shelve number GN 21
Charging pile number PN 8
Picking table number PTN 2

Node interval NT 5 m
Robot length RL 0.5 m
Safe distance SD 2.5 m

Uniform driving speed US 1 m/s
Steering speed ET 0.5 m/s
Starting speed SS 0 m/s
Braking speed BS 0.7 m/s

Braking deceleration time BDT 0.5 m/s
Buffer time BT 0.4 s

Picking table dwell time DT 60 s

 

Table 4    Algorithm parameter settings

Parameter Indicator Value Parameter Indicator Value

Maximum number of robots Ncmax 100 Correction coefficient λ 5
Number of ants K 50 A constant u 20

Pheromone volatility coefficient ρ 0.3 Heuristic function η 0.5
Pheromone intensity Q 100 Weighting of factors x, y 1
Correction coefficient μ 1 Weighting of factors z 0
Correction coefficient ω 10 Pheromone concentration constant C 20
Height correction factor λ, σ 0 Advantage ant adjustment coefficient ε 20

Maximum pheromone concentration on the path τmax 40 Minimum value of total pheromones τmin 10
Pheromone expectation factor α 1 Heuristic expectation factor β 8

Clogging factor γ 2.5

 

Table 5    Warehouse robot task settings

Sequence Priority Starting point Target point
1 1 (8.5, 0.5) (11.5, 7.5)
2 2 (15.5, 0.5) (16.5, 7.5)
3 3 (21.5, 0.5) (24.5, 9.5)
4 4 (29.5, 0.5) (30.5, 9.5)
5 5 (35.5, 7.5) (34.5, 0.5)
6 6 (4.5, 39.5) (5.5, 34.5)
7 7 (8.5, 39.5) (10.5, 34.5)
8 8 (16.5, 32.5) (19.5, 39.5)
9 9 (30.5, 39.5) (20.5, 32.5)

10 10 (35.5, 34.5) (36.5, 39.5)
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4.3.2    Simulation analysis with conflict scenarios

For  the  different  number  of  warehouse  robots  (the  maximum
scale is 80) under the same experimental environment, utilize the
following three algorithms for 30 simulations each and take their
average  values  for  index  comparison.  The  information  related  to
each warehouse robot is set as shown in Table 8.
  

Table 8    Algorithm parameter settings

Sequence Priority Starting point Target point
1 1 (8.5, 0.5) (15.5, 12.5)
2 2 (15.5, 0.5) (24.5, 7.5)
3 3 (21.5, 0.5) (30.5, 9.5)

… … … …
79 79 (29.5, 37.5) (18.5, 29.5)
80 80 (35.5, 34.5) (36.5, 19.5)

 

• Traditional ACO + fixed priority waiting strategy.
• Traditional ACO + fixed priority rerouting strategy.
•  The algorithm of this  study (improved ACO + real-time

adjustment strategy).
1) Comparison of blocked nodes number
A  comparison  of  blocked  node  number  for  each  algorithm  at

different warehouse robot sizes is  shown in Fig.  6.  It  can be seen
that  as  the  number  of  robots  in  the  environment  increases,  the
number  of  blocked  nodes  generated  by  each  algorithm  also
increases. The red line in Fig. 6 represents the growing trend of the
blockage nodes generated by the traditional ACO combined with
the fixed priority waiting strategy, and it is evident that it generates
more  blockage  nodes  than  the  other  two  algorithms.  The
algorithm  utilized  in  this  study  is  more  effective  than  the
traditional  ACO  combined  with  the  fixed-priority  rerouting

strategy in reducing blockage, and the advantage is more apparent
when there are more robots. The main reason is that the improved
ACO  is  used  for  static  planning,  which  considers  the  blockage
factor,  thus  significantly  reducing  the  probability  of  blockage  in
the environment at the beginning. The traditional ACO combined
with  the  fixed  priority  rerouting  strategy  is  forced  to  choose  to
replan  the  path  after  encountering  blockage,  which  only  reduces
the probability of secondary blockage for the warehouse robots.
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Fig. 6    Comparison of blocked node number.
 

2) Comparison of blocked nodes number
The comparison graph of the rerouting percentage is shown in

Fig. 7. The traditional algorithm (traditional ACO + fixed priority
rerouting  strategy)  and  the  algorithm  in  this  study  (improved
ACO + real-time adjustment  strategy)  are  simulated respectively.

 

Table 6    Simulation results of traditional ACO

Scale Total running
distance (m)

Total running
time (s)

Average distance traveled by
a single warehouse robot (m)

Average running time of
a single warehouse robot (s)

5 493.21 543.45 98.64 108.69
10 1,012.92 1,126.41 101.29 112.64

 

Table 7    Simulation results of improved ACO

Scale Total running
distance (m)

Total running
time (s)

Average distance traveled by
a single warehouse robot (m)

Average running time of
a single warehouse robot (s)

5 481.41 498.15 96.28 99.63
10 986.32 1,019.83 98.63 101.98
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The number of  replanning of  the  original  path was  subsequently
calculated.  (after  the  first  rerouting  for  the  warehouse  robot,  the
path still needs to be planned again or more due to conflicts, and
multiple planning does not repeat the count). Fig. 7 indicates that
an  increase  in  the  number  of  warehouse  robots  results  in  a
corresponding  gradual  increase  in  the  percentage  of  paths
requiring  replanning  in  both  algorithms.  Compared  with  the
traditional  ACO  combined  with  the  fixed  priority  rerouting
strategy,  the  improved  ACO  combined  with  the  real-time
adjustment strategy is more effective in reducing the percentage of
replanned  paths.  Moreover,  the  algorithm used  in  this  study  can
maintain  a  high  percentage  of  unplanned  paths  even  with  the
expansion  of  the  robot  scale.  For  example,  when  the  size  of
warehouse robots in the environment is  45,  the algorithm in this
study reduces the percentage of path replanning from over 90% to
nearly  50%,  highlighting  the  superiority  of  the  proposed  model.
The advantage of this algorithm is that it can be obtained from the
first  static  planning  stage  when  there  is  no  need  for  rerouting,
which saves the resources of algorithmic operations and thus also
relieves  the  pressure  on  the  robot  system.  At  the  same  time,  the
proposed  algorithm  draws  dynamic  priority  into  the  dynamic
planning stage. It combines two strategies of waiting and rerouting
to  solve  the  robot  conflicts  in  the  environment.  and  chooses  the
less time-consuming way between the two strategies. This kind of
optimization  effectively  reduces  the  number  of  rerouting  in  the
system, thus reducing the percentage of rerouting and making the
performance of the two-level planning algorithm in this study fully
developed.

(3) Comparison of average running time
Using  the  three  different  algorithms  described  above,  we

summarize  the  running  time  of  warehouse  robots  at  different
scales,  and  the  comparison results  are  shown in Fig.  8.  As Fig.  8
shows, the average running time of each algorithm gets longer as
the  scale  of  the  warehouse  robot  expands.  In  contrast,  the  two-
level  planning algorithm used in  this  study has  a  shorter  average
running time than the others. The fluctuation of indexes in terms
of  each algorithm is  not  significant  when the  robot  size  is  10–40
robots,  but  when  50  and  more  warehouse  robots  start  working,
the  time  of  planning  by  the  two  traditional  algorithms  starts  to
increase significantly. The main reason is that either a single wait
strategy or a single rerouting strategy after exceeding a certain size
of  robots  in  the  environment  will  lead  to  more  time  consumed
waiting  or  running,  increasing  the  average  running  time.
Meanwhile,  the  algorithm  utilized  in  this  study  has  a  better
planning  effect  because  it  considers  the  blockage  factor  and
introduces  a  real-time  adjustment  strategy,  which  has  more  real-
time characteristics. For example, when the robot size is 50 and 60
robots,  the  algorithm  still  maintains  a  high  planning  efficiency,
outperforming the other two algorithms. As the number of robots

in the system reaches 70 or more, the average running time of the
proposed  algorithm  also  starts  to  increase  significantly.  This  is
because  most  of  the  path  resources  in  the  environment  are
occupied,  and  there  are  more  unstable  factors,  which  ultimately
leads to a decrease in the optimization effect.

In summary, the algorithm proposed in this study outperforms
other  algorithms  in  conflicting  scenarios.  The  main  features  are:
First,  the  algorithm  proposed  in  this  study  has  a  better  effect  on
reducing  blockage  compared  with  other  algorithms,  and  the
advantage  is  more  obvious  when  there  are  more  robots.  Second,
compared  with  other  algorithms,  the  improved  ACO  combined
with  the  real-time  adjustment  strategy  is  more  effective  in
reducing  the  proportion  of  replanned  paths,  and  the  algorithm
can  still  maintain  a  high  proportion  of  unplanned  paths  as  the
robot number increases. In addition, the algorithm can choose the
least time-consuming way and can effectively reduce the number
of  replanning  in  the  system,  thus  reducing  the  proportion  of
replanning. Finally, the improved algorithm has a shorter average
running  time  than  others.  At  the  same  time,  the  algorithm
proposed  in  this  study  has  stronger  real-time  performance  and
better  planning  effect  due  to  the  consideration  of  the  blockage
factor  and  the  introduction  of  real-time  adjustment  strategy.
Therefore, the improved ACO proposed in this study outperforms
other  algorithms  in  terms  of  the  number  of  blocked  nodes,  the
proportion of replanned paths, and the average movement time.

5    Conclusions and implications
In this study, we propose a vehicle path planning model for multi-
warehouse  robots  that  applies  a  two-level  planning approach.  To
begin  with,  our  analysis  of  common  types  of  conflicts  in
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warehouse  environments  informs  the  development  of  targeted
dissipation  strategies  to  decrease  the  probability  of  conflicts
occurring. The proposed model integrates both static and dynamic
planning phases to address various conflicts that may arise in these
complex environments. In the static phase, we enhance the ACO
algorithm  by  introducing  a  blockage  factor  to  generate  negative
feedback mechanisms and enable robots to avoid congested areas
during  travel.  In  the  dynamic  planning  phase,  a  real-time
adjustment  strategy  is  used  to  design  a  dynamic  prioritization
mechanism, which is combined with other strategies to help each
robot in the system to find the optimal path.

We verify our proposed vehicle path planning model for multi-
warehouse  robots  on  the  MATLAB  platform.  Our  simulation
results  demonstrate  the  effectiveness  of  the  conflict  resolution
strategy  employed  in  our  model.  Specifically,  our  model
outperforms the other two traditional models in terms of average
running  distance,  blocked  node  number,  rerouting  percentage,
and  average  running  time  for  different  sizes  of  conflict-free  or
conflicted  scenarios.  The  promising  results  suggest  that  with
further  development  and  refinement,  our  proposed  model  can
revolutionize  the  way  warehouse  operations  are  conducted.
Furthermore,  the  model  could  be  integrated  with  other
technologies, such as autonomous vehicles or drones.

As the study still has some limitations: the proposed model has
been tested  only  on the  MATLAB platform,  and the  model  only
addresses conflicts between robots. In our future work, we plan to
focus  on  several  potential  extensions  for  further  research.  Firstly,
we  will  consider  the  integration  of  human  operators  and  other
equipment in the warehouse system. Secondly,  we aim to further
develop and test the proposed path planning model in real-world
scenarios  to  validate  its  practicality  and  extend  its  application
beyond  multi-warehouse  robots.  These  extensions  will  not  only
enhance  the  effectiveness  of  the  warehouse  system  but  also
contribute  to  the  development  of  more  advanced  robotics  and
automation technologies.
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