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ABSTRACT: Potential field theory, as a theory that can also be applied to vehicle control, is an emerging risk quantification
approach to accommodate the connected and self-driving vehicle environment. Vehicles have different risk impact effects
on other road participants in each direction under the influence of road rules. This variability exhibited by vehicles in each
direction is not considered in the previous potential field model. Therefore, this paper proposed a potential field model that
takes the anisotropy of vehicle impact into account: (1) introducing equivalent distances to separate the potential field area
in the different directions before and after the vehicle; (2) introducing co-virtual forces to characterize the effect of the side-
by-side travel phenomenon on vehicle car-following travel; (3) introducing target forces and lane resistance, which regress
the control of desired speed to control the acceptable risk of drivers. The Next Generation Simulation (NGSIM) dataset is
used  in  this  study  to  create  the  model's  initial  parameter  values  based  on  the  artificial  swarm  algorithm.  The  simulation
findings indicate that when the vehicle is given the capacity to perceive the surrounding traffic environment, the suggested
the anisotropic safety potential field model (ASPFM) performs better in terms of driving safety.
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1    Introduction
Intelligent  information  interaction  between  vehicles  and  X
(vehicles, people, clouds, roads, etc.) may be achieved by outfitting
powerful  actuators,  onboard  sensors,  computing  system,
controllers,  and  other  devices  as  well  as  incorporating
contemporary communication and network technology (Xu et al.,
2022).  The car  can drive in a  way that  is  "safe,  efficient,  pleasant,
and  energy-saving"  because  of  its  sophisticated  environment
awareness,  intelligent  decision-making,  collaborative  control,  and
other  features  (Yuan et  al.,  2022; Zhu et  al.,  2022).  Scientific  risk
quantification  is  a  key  building  block  for  the  development  of
intelligent  and  connected  cars  to  improve  safety.  As  a  basic
microscopic  behavior,  the  car-following  process  accounts  for  the
highest  percentage  of  vehicle  movements.  Previous  car-following
models  aim  to  increase  forecast  accuracy  and  clarify  its
mechanism. These models blamed the leading car for the objective
vehicle's acceleration, which led to poor performance in balancing
comfort and safety (Gipps, 1981; Jiang et al., 2001).

The potential field model is distinctive because it measures risk.
Additionally,  the potential  field model may take into account the
effects  of  several  vehicles  at  once  by  integrating  field  theory  into
the  microscopic  behavior  modeling  of  cars.  Fortunately,  the
potential  field  method  is  still  gaining  attention  and  used  by
academics  in  the  microscopic  control  of  vehicles,  robot  path
planning, and navigation (Mac et al.,  2016). Potential field theory
was first  introduced to other disciplines  and excels  in controlling

mobile  robots  to  avoid  obstacles  in  real  time  (Khatib,  1986).
Currently,  potential  field  theory  is  receiving a  significant  amount
of  attention  from  academics  in  the  subject  of  transportation,
which can provide a more realistic picture of a wide range of risk
quantification methods.  What is  more,  academics also model  the
potential  field  of  an  obstacle  for  controlling  an  entity  to  avoid
obstacles  and  perform  the  normal  motion. Yu  and  Lu  (2021)
considered the effect of speed on safety and defined the potential
field  as  ellipsoidal  whose  long axis  always  aligned with  the  speed
direction to enhance the safety of the UAV against obstacles in the
direction  of  motion.  Similarly, Li  et  al.  (2022) suggested  an  car-
following model  by  introducing potential  field  theory,  which can
effectively reproduce the actual following process of the cars. Due
to the use of the car-following pair,  the car-following model they
developed  only  verified  the  accuracy  of  the  obstacle  vehicle’s
impact  on  the  rear  objective  vehicle,  while  the  effect  in  other
directions  lacked  verification.  The  artificial  potential  field  (APF)
fine-grained  resistance  approach  was  the  foundation  for  the
architecture. Huang  et  al.  (2020) proposed  a  framework  for
motion  planning  and  tracking  in  autonomous  vehicles  that
involved  dividing  the  driving  area  into  a  grid  and  assigning
resistance  values  to  each  edge.  The  resulting  travel  path  was
determined based  on these  resistance  values.  The  effectiveness  of
this framework was then verified through simulation experiments
conducted  using  CarSim  software. Liu  et  al.  (2022) used  a
conditional variance autoencoder to provide candidate trajectories
with  probabilities  based  on  driving  risk  maps  and  motion
uncertainty  trajectories,  and  used  another  module  for  accurate
trajectory  prediction.  They  constructed  the  vehicle  driving  risk
maps,  rather  than  measures  of  vehicles’ impact  on  other  road
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participants.  In  summary,  potential  field  theory  has  received  a
wide range of applications in traffic flow theory and has illustrated
prominent  advantages  in  continuously  characterizing  the  road
operating  environment.  The  impact  of  yield  rules,  however,  has
been  less  considered  in  current  research,  making  it  difficult  for
models to accurately characterize realistic traffic phenomena.

The  influence  of  conditions,  such  as  yield  rules  and  the
operational status of vehicles in adjacent lanes on vehicles, causes
vehicles  to  exhibit  different  effects  on  traffic  elements  in  each
direction.  For  example,  when  driving  on  the  freeway,  the  high
velocity  of  the  vehicles  causes  small  directional  shifts  to  be
accompanied  by  dramatic  changes  in  trajectory.  The  air  currents
generated  around  the  vehicles  would  interact  with  each  other,
further increasing the risk of accidents when traveling side-by-side
(Fu and Fu, 2005). Not only the direct effect caused by the airflow,
but  prolonged  side-by-side  driving  without  implementing  the
appropriate  acceleration  and  deceleration  adversely  affects  the
intention  to  overtake  (Gunay,  2007).  However,  this  is  not
considered  in  traditional  potential  field  models,  which  only
identify  side-by-side  vehicles  as  an  essential  influence  factor  in
preventing  lane  changes.  Although  potential  field  models  are  a
good  representation  of  the  interaction  between  vehicles  traveling
side  by  side,  current  potential  field  models  do  not  extend  this
influence to the car-following process. This requires a model that
can  take  into  account  multiple  surrounding  traffic  elements
simultaneously,  rather  than  just  the  vehicles  in  front,  for
controlling the vehicles to move more safely.

In  summary,  there  are  still  two  important  limitations  of  the
existing  car-following  model:  First,  preceding  potential  field
models  failed  to  account  for  the  simultaneous  effects  of  multiple
obstacle  vehicles  (in  this  paper,  vehicles  around  the  objective
vehicle  that  prevent  it  from  driving  in  a  free-flowing  state  are
referred to as obstacle vehicles). Despite its potential to explain the
concurrent impact of multiple cars, prior potential models did not
account for the impact of vehicles other than the leading vehicles.
Secondly, extant models have failed to account for the anisotropic
nature of vehicle impact, which arises from the interplay between
yield  rule  and  speed.  The  aforementioned  attributions  of  these
models  impair  their  capacity  to  deliver  a  precise  delineation  of
risk, thereby constituting a potential jeopardy to the realm of road
safety.  In  this  paper,  we  assume  that  all  traffic  elements  can  be
detected in real time in the intelligent and connected environment.
Therefore,  we  construct  a  model  that  can  contain  information
about  the  operational  status  of  multiple  obstacle  vehicles  as
required  (the  detailed  description  can  be  found  in  Section  4)  to
control  the  car-following  process.  This  paper  innovatively
proposed  the  concept  of  co-virtual  forces  to  characterize  and
describe  the  tendency  of  acceleration  and  deceleration  arising
from  the  state  of  vehicles  in  adjacent  lanes.  The  created  car-
following model's parameters are calibrated using the artificial bee
colony  algorithm  and  real  trajectory  data  from  the  Next
Generation  Simulation  (NGSIM).  Finally,  the  efficiency  of  the
model in assuring driving safety is evaluated by comparing it with
other typical models, such as the IDM.

The  remaining  content  is  arranged  as  follows:  A  review  of
earlier  studies  is  provided  in  Section  2.  The  anisotropic  safety
potential  field  is  developed based on the car-following process  in
Section 3. In Section 4, the suggested model is calibrated using the
NGSIM  dataset  and  used  to  the  trajectory  estimation  validation.
Finally, Section 5 contains the findings.

2    Literature review
Numerous  efforts  have  been  devoted  to  quantifying  the  risk,

primarily using two vastly different approaches. A large number of
academics  have  adopted  a  number  of  numerical  indicators  to
describe driving risk as a cornerstone of mobile vehicles. Although
the  assessment  of  risk  varies  slightly  in  different  scenarios,  the
widely  used  safety  metrics  currently  include  the  following  two
categories:  evaluation  based  on  spatial  distance  (gap  distance
involving neighboring vehicles) (Kometani and Sasaki, 1959; Yang
et al., 2019); evaluation of vehicle travel safety based on speed and
time (the  most  widely  used  one  is  time to  collision  (TTC))  (Lee,
1976). It  is followed by various variants formed by improving on
TTC,  such  as  CSC  (−1/TTC)  (Jiao  et  al.,  2021).  However,  these
metrics  are  usually  difficult  to  systematically  evaluate  the  hazard
level  of  two-dimensional  scenarios.  Furthermore,  academics  have
come  to  the  conclusion  that  accident  incidence  is  a  complicated
system driven by a number of contributing elements, regardless of
the method employed (Khattak et al., 2021; Zhao and Rao, 2021).
Due to the non-directly observable nature of risk, some academics
have built discrete choice models using data on traffic accidents or
conflicts  to  verify  the  logic  of  risk  measurement  (Cheng  et  al.,
2022; Wang  et  al.,  2019).  The  application  of  such  approaches  is
further constrained by the potential  absence of  crash data caused
by  the  improvement  in  safety  enhanced  by  connected  and
autonomous vehicles (Kim et al., 2020).

Along with high precision and a large sample of vehicle driving
data, the 1990s saw the advent of data-driven vehicle microscopic
control models (Li and Chen, 2017). In order to swiftly create the
autonomous  driving  judgments, Masmoudi  et  al.  (2021) initially
employed  YOLOv3  identification  detection  and  then  applied  Q-
learning  and  Deep  Q-learning.  To  increase  the  accuracy  and
stability  of  the  car-following  model, Xing  and  Liu  (2022)
abstracted the vehicle following process as graph information and
utilized  graph  neural  networks  to  describe  the  game  process
between the  intended driving status  of  the  vehicle  and the  actual
traffic state. Some academics have also developed simulation of the
car-following  model  to  map  the  following  vehicle’s  acceleration
from  its  speed,  the  vehicle  headway,  and  the  relative  speed  in  a
human-like  manner  in  order  to  achieve  homogeneity  based  on
deep  reinforcement  learning  (Zhu  et  al.,  2018).  To  forecast  the
chance  of  making  different  decisions,  these  researches,  however,
did not take the relationship between risk perception and decision-
making into consideration and instead simply searched for a few
behavioral  patterns that arose from a significant quantity of  data.
Further reducing the heterogeneity of mixed traffic flows requires
the  construction  of  models  from  human  behavioral  mechanisms
(Lyu et al., 2022; Xu et al., 2022).

In order to endow vehicles with the ability to evaluate risk based
on  environmental  cues,  the  potential  field  theory  is  frequently
adopted as a cornerstone for decision-making (Zheng et al., 2018).
Drivers  make  judgments  about  their  conduct  based  on  driving
needs  as  they  plot  their  trajectory  and  mobility,  taking  into
account  environmental  limits  and  collision  hazards  in  real  time
(Zhao  et  al.,  2020).  Several  academics,  therefore,  have  presented
vehicle control models that are typically based on field theory and
validated  using  real  trajectory  data.  The  assistance  system
presented by Noto et al. (2012) is based on a customized map that
is  thought  to  represent  the  driver's  perception  of  environmental
danger  and  was  trained  using  naturalistic  driving  data  to  avoid
obstacles.  By using potential  field values as a penalty function for
vehicle  path  planning,  some  academics  developed  a  vehicle
controller  that  plans  an  optimal  trajectory  (Rasekhipour  et  al.,
2017; Wang et al., 2019). On the basis of their previous research, Li
et  al.  (2020a) proposed  a  unique  approach  to  perceive  risk  and
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provide  warning  strategy  that  can  more  precisely  depict  the  real
driving danger experienced by automobiles under various vehicle
motion  states.  Taking  into  account  the  differences  between
scenario-based  models  and  field  theory-based  models,  a  model
that  combines  the  properties  of  both  types  of  models  is  created,
and  ten  instances  are  chosen  from  Next  Generation  Simulation
(NGSIM)  for  validating  model  (Tan  et  al.,  2022).  Similarly,
potential fields have also been used to control ships, for example,
Perera  and  Soares  (2015) presented  a  vessel  control  model  by
vector  dot  and  fork  product  under  the  condition  of  considering
the randomness of the vessel and evaluated its effectiveness by the
trajectory. The risk potential field theory-based microscopic traffic
flow  model  may  effectively  describe  the  risk  while  driving,
particularly  in  the  intelligent  and  connected  environment  where
motion  states  information  of  possible  vehicles  can  be  collected
(Li et al., 2020b).

Despite the fact that the intensity of an obstacle vehicle's impact
changes  in  all  directions  due  to  the  speed  attribute  of  vehicles,  a
limited  quantity  of  academics  worked  on  risk  modeling  for  the
anisotropy  of  vehicle  impact.  For  example, Arun  et  al.  (2023)
created a framework based on the idea that the potential fields in
each direction assume distinct values and include accident severity
and occurrence  risk.  A limited  quantity  of  academics  worked on
risk  modeling  for  the  anisotropy  of  vehicle  impact,  although
established vehicle  control  approaches  generally  simplify  this  risk
feature.  Besides,  in  previous  studies,  potential  field  theory  was
applied  in  the  form  of  "car-following  pairs",  which  makes  it
impossible  to  measure  the  risk  impact  of  multiple  vehicles
simultaneously. Hence, this paper focuses on the measurement of
how road vehicle affects other vehicles and proposes a model that
takes into account the anisotropy of multiple vehicles’ impact.

3    Methodology
Anisotropy  is  a  characteristic  that  causes  traffic  components
moving in various directions to affect cars in different ways when
governed  by  traffic  laws.  It  is  a  property  where  traffic  elements
have  different  degrees  of  influence  on  vehicles  in  different
directions even at equal distances. Although the potential field of a
stationary obstacle is theoretically supposed to be a circle centered
on itself, the effect of relative speed makes the degree of risk vary
in  different  directions.  That  is,  anisotropy  is  a  figurative
representation  of  the  rules  of  the  road  on  the  driver's  driving
decisions.

This study illustrates the car-following process using the safety
potential  field  and  virtual  forces.  It  is  assumed  that  the  road  on
which  vehicles  travel  is  perfectly  horizontal  without  any  height
fluctuations. The direction from the outer lane to the inner lane is
taken  as  the  positive y-axis  direction,  while  the  vehicle  moving
direction  is  taken  as  the  positive x-axis  direction,  and  thus  the
coordinate  system  of  this  paper  is  determined.  The  coordinate
system that  serves  as  the  foundation  for  this  research  is  depicted
schematically  in Fig.  1.  Additionally,  the  coordinate  origin  is  not
only as exhibited in Fig. 1.

3.1    Anisotropy safety potential field
As previously mentioned, anisotropy is a characteristic that can be
observed  in  the  coordinate  system  as  distinct  effects  that  occur
along four directions. These effects include unequal impacts along
the direction of  vehicle  travel  and the  lateral  tangential  direction,
as well as asymmetric effects along the front and rear directions of
vehicle  travel.  Moreover,  when  vehicles  travel  side-by-side,  an
additional variation in anisotropy can be observed, whereby those

on  the  inside  of  the  road  should  accelerate,  while  those  on  the
outside should decelerate.

3.1.1    Vehicle properties

ς is  the  virtual  inertia,  which  is  essentially  a  measure  of  how  a
vehicle affects other vehicles on the road. It is a measure of vehicle
externality (Wang et al., 2015, 2016):

ς = m ×
(
1.566 × 10−14 × v6.687 + 0.03345

)
(1)

mwhere  is  the  vehicle  mass  (throughout  this  paper,  the  two-
dimensional  (2D)  projected  area  of  the  vehicle  is  used  instead),
and v is  the  velocity  of  vehicle.  However,  due  to  the  difficulty  of
obtaining  this  parameter  of  vehicle  mass,  the  area  of  the  vehicle
obtained  from  the  vehicle's  length  and  width  is  used  as  an
alternative metric to characterize the effect of mass m.

The vehicle risk mass, denoted as τ,  is defined as a measure of
the impact caused by other elements in the road environment on
the  decision-making  of  the  vehicle.  Specifically, τ is  oriented
perpendicular  to  the  plane  of  travel  and  directed  vertically
upwards.  By  quantifying  the  potential  risks  associated  with  the
surrounding  environment, τ can  serve  as  a  valuable  metric  for
enhancing  the  safety  and  efficiency  of  vehicular  travel.  In  other
words, the vehicle risk mass is a measure of how much the vehicle
is affected by external influences.

|τ| = meηv (2)

where η is the undetermined coefficient. The length and direction
of τ will be used to solve for the magnitude of the virtual force and
the direction of the co-virtual force, respectively, as detailed in the
following two sections.

3.1.2    Vehicle potential field

It is worth stating additionally that all objects generating potential
fields  are  obstacles  relative  to  the  objective  vehicle,  which  means
that  subjects  of  the  vehicle  potential  fields  are  obstacle  vehicles.
The vehicle potential field is a model for measuring the impact of
obstacle  vehicles.  This  model  uses  equivalent  distances  (Li  et  al.,
2022) to provide a measure of the variability in vehicle direction of
travel and tangential effects:

|k| =

√(
x− x0
g (v)

)2

+ (y− y0)4 (3)

where g(v)  denotes  a  function, v represents  the  speed  of  obstacle
vehicle,  and x0 and y0 are  the  coordinates  of  objective  vehicle.
Furthermore,  there  are  cases  in  real-world  scenarios  where  the
impact of the preceding vehicle has a much greater influence than
that of the following vehicle. Additionally, there is an imbalance of
usefulness in the vertical direction. For instance, traffic regulations
dictate  that  a  stationary  vehicle  only  affects  the  vehicle
approaching  from  behind,  but  not  the  vehicle  that  has  already
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Fig. 1    Coordinate system when the origin is outside the road.
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passed  it.  This  property  is  also  dependent  on  the  speed  of  the
obstacle  vehicle:  as  the  speed of  the  obstacle  vehicle  increases,  its
impact on vehicles in the negative direction of the x-axis decreases,
while its effect on objective vehicle in the positive direction of the x-
axis increases significantly.

To  characterize  this  property,  the  equivalent  distances  in  the
front  and  rear  directions  of  vehicle  travel  are  distinguished.
Specifically,  two  discount  factors  are  introduced  and  the  model
hyperparameter is set to the road speed limit vm: the potential field
in  the x-positive  axis  direction  of  obstacle  vehicle  grows  with
increasing the vehicle  speed.  In contrast,  the  potential  field  along
the x-negative axis direction diminishes as the speed of the vehicle
rises. The equivalent distance becomes

|k| =



√[
(x− x0) δ1

vm − |v|

]2

+ (y− y0)4, x < x0√[
(x− x0) δ2

|v|

]2

+ (y− y0)4, x ⩾ x0

(4)

where δ1 and δ2 are the undetermined coefficients.  The δ1 and δ2
have  significant  implications  for  the  potential  field,  and  it  is
important to recognize that their range of applicability is limited to
one-directional  road  conditions.  Other  scenarios  may  require
different  values,  as  the  directional  nature  of  the  road  results  in
differing  impacts  of  the  obstacle  vehicle  on  the  front  and  rear
directions.  The  distinct  impacts  are  reflected  by  the  use  of  two
disparate functions.

|EV| = r1ς
er2acosθ
|k|2

(5)

where r1 and r2 are  the  undetermined  coefficients  and θ is  the
angle between the line connecting the two vehicles’ center points
and x-positive  axis. EV is  oriented  from  the  center  point  of  the
obstacle vehicle to the center point of the objective vehicle. Let the
x-axis component be EVx and the y-axis component be EVy.

Fig. 2 indicates the vehicle potential field generated as a result of
this study. Fig. 2a showcases the rapid decay of the obstacle vehicle’s
impact  on  the  objective  vehicle  in  front  as  the  distance  between
the two vehicles increases, particularly when the obstacle vehicle is
moving  at  a  low  and  uniform  speed.  In  contrast,  the  obstacle
vehicle’s  influence  on  the  objective  vehicle  on  the  trailing  side
remains  significant. Fig.  2c displays  a  substantial  increase  in  the
overall  potential  field  size  at  high  speeds  due  to  the  obstacle
vehicle’s  higher  velocity.  Additionally, Figs.  2b and 2d reveal  the
substantial  impact  of  acceleration  and  deceleration,  respectively,
on the potential field in the direction of travel.  Given a risk mass
of τ for  the  objective  vehicle  and  its  corresponding  vehicle  risk
potential  field  EV,  the  resulting  virtual  force  can  be  expressed  as
Eq. (6):

F0 =
∑

EV × | τ| (6)

where F0 is  the  virtual  force  assumed  by  the  objective  vehicle.
Equation  (6)  describes  the  virtual  force  acting  on  the  objective
vehicle  in  the  presence  of  an  obstacle  vehicle,  disregarding  the
impact  of  the  yield  rule.  The  direction  of  the  virtual  force  is
determined by  the  obstacle  vehicle  screening  rules  taken and the
state  of  obstacle  vehicles,  while  its  magnitude  is  determined  by
both the obstacle vehicles and the objective vehicle.

3.1.3    Co-virtual force

In  addition  to  the  inhomogeneity  of  the  effects  in  the  front-to-
back  direction,  the  actual  driving  risk  of  the  vehicle  varies  in  the
left and right directions to avoid side-by-side driving and achieve
the generation of  overtaking intentions.  Therefore,  in addition to
the  virtual  repulsive  force  obtained  by  multiplying  each  field
strength by |τ| to obtain the virtual repulsive force to applied to the
vehicle,  each  field  strength  introduced  an  additional  generated
second virtual force, named the co-virtual force.

Decomposed into the x-axis and y-axis directions, F0 produced
by the vehicle potential field is merged into two virtual forces, Fx0
and Fy0, which are applied to the vehicle in different directions. To
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Fig. 2    Schematic diagram of vehicle potential field under four typical driving conditions (the numerical values presented in the figure are intended solely as a reference,
with the exact values to be determined by the experimental section.): (a) when driving at low speed and a = 0; (b) when driving at low speed and a > 0; (c) when driving at
a speed close to vm and a = 0; (d) when driving at a speed close to vm and a < 0.
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assess  the  impact  of  the  virtual  force  that  propels  a  vehicle  to
accelerate or decelerate to avoid a potential obstacle, an avoidance
coefficient β (β > 0) is introduced. The co-virtual force then can be
computed as Eq. (7):

F′
y0 = βFy0 ×

τ
|τ| (7)

where  ×  represents  the  fork  product  of  vectors.  Eq.  (7)  can
characterize  the  vehicle's  propensity  to  decelerate  in  the  presence
of vehicles in the inside lane and to accelerate for overtaking in the
presence of vehicles in the outside lane.

As  shown  in Fig.  3,  the  co-virtual  force  that  results  from
applying a positive virtual force in the direction of the y-axis leads
the vehicle  to  have a  propensity  to  accelerate  and vice  versa.  Co-
virtual forces are also a reflection of how the vehicles is affected by
the  yield  rules  of  the  road.  The  co-virtual  force  generated  by  the
virtual force applied in the y-axis direction is essentially a courtesy
factor.  It  can  be  used  as  a  safety  redundancy  parameter  to
characterize  the  degree  of  driver  risk  avoidance  for  side-by-side
driving  in  the  future  intelligent  and  connected  vehicle
environment.  Side-by-side  driving  can  be  further  avoided  by
increasing the value of avoidance coefficient β.
 
 

F′y0 F′y0

Fy0

Fy0

(a) (b)

Fig. 3    (a)  Synergistic  virtual  force  generated  when  the y-axis  resultant  virtual
force is positive; (b) synergistic virtual force generated when the y-axis resultant
virtual force is negative.
 

The avoidance factor β is displayed in Fig. 4 when the vehicle is
only  influenced  by  a  vehicle  in  the  adjacent  lane  and  no  other
traffic  elements  are  influencing  it.  When  the  adjacent  vehicle
travels  to  the  orange  area,  the  potential  field  influence  causes  a
tendency to slow down this vehicle. In contrast, when it travels to
the  green  area,  the  potential  field  influence  causes  a  tendency  to
accelerate  this  vehicle.  In  other  words,  the  avoidance  coefficient
enlarges  the  area  of  arctanβ,  enabling  vehicles  to  anticipate
whether to decelerate and yield or accelerate and overtake, thereby
mitigating the hazards associated with side-by-side driving.
 
 

y

arctan β

arctan β

Fig. 4    Avoidance coefficient effect display.
 

3.2    Application in car-following process
The  driver  makes  a  decision  to  accelerate  (decelerate),  in  a  way
that  the  acceptable  risk  is  greater  (less)  than  the  risk  currently

assumed. In other words, acceleration is the dependable factor that
must  be  verified  to  confirm  the  accuracy  of  risk  quantification.
The vehicle potential field, however, is not enough to be the entire
constraint of vehicle travel, because the risk generated by obstacle
vehicles  is  not  all  the  elements  considered  by  the  driver,  and  the
model proposed in this paper needs to be complemented by other
elements.

3.2.1    Goal force and lane resistance

To  make  it  possible  to  start  the  vehicle  from  rest  in  potential
field/virtual  force  theory,  the  goal  force  |Fg|  = f(dg, tg,  ...)  is
introduced,  where Fg is  oriented  in x-positive  axis, dg is  the
distance  to  the  goal,  and tg is  the  desired  time  to  reach  the  goal.
Except for the final short distance near the destination, the target
force Fg can be thought of  as  a  constant  throughout the journey.
The degree to which the connected and autonomous vehicle  will
tolerate  danger  is  another  way  to  describe  the  goal  force.  The
travel  time  and  distance  chosen  by  the  user  determines  the
acceptable  level  of  risk.  The  vehicle  decelerates  when  the  risk  is
lower than the acceptable risk and vice versa.

The lane resistance ξi is introduced and given by∣∣ξi∣∣ = λim0.25v+ ζ i (8)

where λi and ζi are the undetermined coefficients: λi represents the
mapping of lane resistance as a function of speed, and ζi represents
the constant lane resistance field from the outer to the inner lane i.
The  direction  of  lane  resistance  is  the  negative  direction  of  the
x-axis.  This  function  can  characterize  the  same  mass  case,  the
greater  the  speed,  the  greater  the  lane  resistance.  The  objective
vehicle  has  a  greater  acceleration  at  low  speeds,  while  the
acceleration  tends  to  zero  as  it  approaches  the  desired  velocity.
Besides,  the  resistance  that  an  objective  vehicle  encounters  in  its
lane  at  a  given  speed  is  directly  proportional  to  its  mass.  Stated
differently, a small vehicle can achieve a higher speed than a larger
vehicle  if  both  experience  an  equal  magnitude  of  lane  resistance.
Furthermore,  as i increases, λi decreases  and ζi increases,  which
can  characterize  the  lower  speed  cases  where  the  vehicle  is
subjected to less resistance in the outer lane, and at higher speeds
where the vehicle  is  subjected to less  resistance in the inner lane.
This expression is used to characterize and distinguish the desired
velocity of different lanes.

The  lane  line  constraint  field  strength Eψ is  introduced,  with
each  lane  sharing  the  same  field  strength Eψ in  the  negative
direction of the y-axis. Since the field strength that essentially acts
as a  constraint  is  the difference in field strength between the two
adjacent lanes, the outermost lane is made to have a field strength
of  0,  i.e., Eψ =  0.  The  constrained  virtual  force  of  the  lane  line  is
ψ = |τ|∙Eψ.  One  should  note  that  since  the  lane  line  acts  as  a
constraint on its decision to change lanes or not, the constraining
virtual force does not act on the vehicle.

3.2.2    Transforming risk into acceleration

The  virtual  forces  and  co-virtual  forces  are  combined  again  and
then  decomposed  on  the  coordinate  axes  to  obtain  the  virtual
force Fx, Fy applied in the objective vehicle.

The  acceleration  of  the  objective  vehicle  (ax)  is  determined
when there is only interaction between different vehicles:

ax =
Fx

m =

[∑(
EVx + βEVy ×

τ
|τ|

)]
eηv + Fg + ξi

m (9)

As can be seen from Eq. (9), the lane resistance constant ζi only
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measures  the  difference  between  adjacent  lanes,  but  not  the  lane
resistance itself. Hence, the lane resistance constant ζi is assigned a
value  of  0  when  considering  a  particular  lane i in  isolation,  as
opposed  to  comparing  multiple  lanes.  The  Anisotropic  Safety
Potential Field Model (ASPFM) presented in this study comprises
all of the aforementioned equations combined.

4    Model validation

4.1    Parameter calibration

4.1.1    Data preparation

A connected and autonomous vehicle can make rational decisions
even when it is challenging for a human driver to pay attention to
the status of all the obstacle vehicles at once. This leads to the fact
that  human  driver  data  is  not  well  suitable  to  be  interpreted  by
ASPFM. It should be emphasized, nevertheless, that ASPFM has a
lot  of  latitudes  to  further  tailor  the  anisotropic  potential  field’s
properties to the needs. Therefore, to make the initial values of the
parameters  reasonable,  this  paper  uses  actual  data  for  the  initial
values  of  the  parameter  calibration  of  the  model.  The  NGSIM
dataset  was  selected  with  4  lanes  in  both  directions.  Vehicle  data
from  the  outermost  lane  (lane  5)  was  utilized  for  parameter
calibration.

As  in  the  real  scenario,  the  driver  travels  concerning  the
approaching  vehicle  and  is  not  sensitive  to  vehicles  obscured  by
the obscuring approaching vehicle. For parameter calibration, the
driving  states  of  the  objective  vehicle  as  well  as  the  obstacle
vehicles in a total of 5 vehicles during the vehicle travel are selected
as a model parameter input node in this study (Fig. 5). Specifically,
data with the objective vehicle in lane 5 and the presence of four
obstructed  vehicles  around  it  are  filtered  out.  The  dataset  was
sliced  every  3  frames,  i.e.,  0.12  s,  and  the  acceleration  was
predicted for the next slice for each of the different car-following
models.  All  data  were  sliced  at  0.12  s  intervals,  and  a  total  of  5
vehicles at each moment are used as an input node. Finally, 8,641
pieces  of  data  that  could  be  used  for  parameter  calibration  were
selected.  Each  state  parameter  of  the  objective  vehicle  and  the
obstacle  vehicles  is  input,  including  global  coordinates,  speed,
acceleration  and  2D  projected  area  of  vehicles.  If  an  adjacent
vehicle  still  exceeds  the  distance  determination  threshold,  it  is
expected that the obstacle vehicle will not have a significant impact
on the objective vehicle.
 
 

Fig. 5    Vehicle status corresponding to an input node, in which the red car is an
objective vehicle and the black cars are obstacle vehicles.
 

Although  measurements  of  acceleration  are  provided  in  the
dataset,  the  principle  of  video  data  extraction  results  in
acceleration not being a directly measured variable.  Furthermore,
due to the validity of  two decimal places,  the acceleration takes a
high proportion of error float and is therefore only used as one of
the variables in the potential field modeling.

4.1.2    Calibration algorithm

This study calibrates the parameters using the artificial bee colony
algorithm. In Fig. 6, the processes involved in putting the artificial
bee colony algorithm into practice are shown.
 
 

Start

Initialize population

Document the best food sources

Whether the
maximum number
of iterations has
been reached

Employed bee phase:
evaluate food source quality;

search for new food sources nearby;
update position if quality improves

Yes

No

Onlooker bee phase:
select food source based on quality;
search for new food sources nearby;

update position if quality improves

Scout bee phase:
abandon food source if stagnant;

search for new food sources randomly

Output the optimal solution

End

Fig. 6    Artificial bee colony algorithm flowchart.
 

Even  with  the  drawbacks  of  poor  population  diversity  in  the
late  stages  of  evolution,  low  convergence  accuracy,  slow
convergence,  and  the  propensity  to  settle  into  local  optimum
solutions,  the  artificial  bee  colony  algorithm,  with  few  control
parameters,  is  simple to implement and computationally concise.
The artificial bee colony algorithm plays an important role in the
swarm intelligence algorithm for solving continuum parameters.

4.1.3    Parameter calibration results

Python  3.10  was  selected  as  the  version  to  utilize  in  this
investigation, and an i5-11300 computer processor was employed.
Root  mean square  error  (RMSE) is  selected to  be  the assessment
and validation index for the parameter calibration and its specific
expression is

RMSE =

√∑n

i=1
(xi − x̂i)

2

n (10)

Table 1 displays the calibration results  of  model  parameters  in
this  study.  The  results  of  the  parameter  calibration  for  the  other
models are shown in Table 2.

To compare the models,  the  Optimal  Velocity  Model  (OVM),
Full  Velocity  Difference  Model  (FVD),  Intelligent  Driver  Model
(IDM),  and  Driving  Risk  Potential  Field  Model  (DRPFM, Li

84 Ma H Z, An B C, Li L H, et al.

J Intell Connect Veh 2023, 6(2): 79−90
 



et  al.,  2022)  were  selected  for  parameter  calibration  under  the
same dataset  and the calibration results  were compared.  The size
of the RMSE values could reveal a model’s level of accuracy. The
RMSE results for the five different models are as follows: ASPFM
model  0.004177,  OVM  model  0.003127,  FVD  model  0.002952,
IDM  model  0.004738,  and  DRPFM  model  0.003593.  The  RMSE
findings show that each model's mistakes are minimal. Among the
five  models,  the  IDM  has  the  largest  error,  followed  closely  by
ASPFM. The errors of all models calibrated in this study, however,
are  both  controlled  within  a  small  range.  It  is  clear  that  ASPFM
retains high accuracy when taking into consideration the effects of
multi-vehicle  interactions,  which  are  challenging  for  human
drivers to assess.

The  accuracy  of  the  separate  models  appears  to  have  been
shown by the RMSE as an indicator;  however,  this is  not reliable
enough.  The  discrepancy  between  real  trajectory  estimation  and
model-based  trajectory  estimation  arises  from  the  fact  that  the
output of the model’s prediction must be utilized as input for the
subsequent instant. Therefore, the model’s predictive efficacy must
be  evaluated  based  on  the  accuracy  of  continuous  prediction  in
trajectory  estimation.  During  calibration,  the  total  single-step
prediction  errors  of  each  model  are  determined  through

parameter  adjustment.  However,  this  difference  between  the
trajectory  estimation  and  the  calibration  process  presents  a
significant challenge: a model may exhibit high accuracy in single-
step  prediction,  yet  produce  prediction  outputs  during  trajectory
estimation  that  deviate  significantly  from  the  actual  value
(continuous prediction). Therefore, while a model’s accuracy may
be  judged  by  its  low  RMSE,  this  metric  is  inadequate  for  cross-
sectional comparison of the accuracy of multiple models.

4.2    Trajectory estimation
We  calculated  all  of  the  trajectories  in  NGSIM  by  vehicle  ID  to
obtain  a  fair  assessment  of  the  trajectory  estimation  accuracy  of
various  models.  Over  time,  the  disparity  between  each  model’s
trajectory simulation and the actual scenario increases. Specifically,
the  inaccuracy  in  trajectory  estimation  steadily  grows  as  the
estimation  period  lengthens.  Although  the  RMSE  values  of
different models may be comparable during calibration, significant
differences  in  errors  emerge  when  predicting  trajectories
cumulatively  over  an  extensive  time  period.  The  trajectories
associated  with  various  objective  vehicles  often  have  varying
lengths due to the specification of an input node as 5 vehicles. To
ensure that the accuracy evaluation of models is not influenced by
the  forecast  duration  of  the  trajectories,  the  final  displacement
error  rate  (FDER)  and  mean  absolute  error  rate  (MAER)  are
defined, respectively:

FDER =
FDE
t (11)

MAER =
1
n

n∑
i=1

FDERi (12)

where  FDERi stands  for  the  FDER of  the ith  vehicle  and FDE is
the final displacement error, which is the expected deviation of the
trajectory  at  the  last  instant  (the  moment  of  collision  is  the  final
moment if it coincides with the coordinates of the leading and rear
vehicles in the actual  trajectory).  To counteract  the impact of  the
forecast  length,  FDER  is  averaged  across  the  time  of  FDE.
Additionally,  the  MAER is  an  average  over  the  FDER of  various
trajectories Additionally, both measurements have the same units
(m·s−1 for velocity), which represents the average forecast error per
unit of time. All trajectories with a duration longer than 20 s and
maximum  acceleration  of  the  objective  vehicle  exceeding  1  m·s−2

are  selected  as  candidate  trajectories  for  the  trajectory  estimation
in this paper.

As depicted in Fig.  7,  when several  models  are  utilized for  the
estimate  of  the  specified  trajectories,  OVM  performs  the  poorest
while  ASPFM  performs  the  best.  Different  models  deviate
differently while forecasting the same trajectory. FVD predicts well
overall  but  performs  worse  on  some  specific  trajectories.  When
estimating trajectory, the maximum FDER values of OVM, FVD,
IDM, and DRPFM are all beyond the interval of [3 m·s−1, −3 m·s−1].
The smoothest trajectory estimate was demonstrated by the FDER
of the ASPFM, which is entirely regulated to [2 m·s−1, −2 m·s−1].

The mean absolute error rate (MAER) of each model is derived
by averaging the FDER of different models,  as shown in Table 3.
With  an  average  estimation  bias  for  the  trajectory  of  roughly
0.9  m·s−1,  it  is  clear  from  this  statistic  that  OVM  and  DRPFM
perform the poorest. The MAER of ASPFM is comparable to that
of FVD and IDM, both of which hover around 0.5 m·s−1. ASPFM,
however, still has a minor edge in this area, lowering the error rate
by roughly 7% in comparison to FVD which came in second. This
is  mostly  because  the  front  and  rear  cars  in  the  trajectory
prediction  tests  are  using  actual  data  instead  of  interacting  with

 

Table 1    Parameter calibration results of ASPFM

Parameter Value
η 0.283
λi 0.755
δ1 6.125
δ2 13.216
r1 4.030
r2 0.664

|Fg| 15.095
β 6.001

 

Table 2    Parameter calibration results of OVM, FVD, IDM, and DRPFM

Model Parameter Value

OVM

αOVM 0.016
vmax 25.369
hc 11.316

FVD

V1 14.282
V2 21.097
C1 0.971
C2 8.527
λ 0.161
κ 0.006

IDM

vfree 23.328
a 1.001
b 6.458
s0 3.283
T 0.300

DRPFM

v0
α 28.487

δ 6.520
amax 0.877

λ 0.240
αDRPFM –0.488

β1 –0.280
β2 0.040
τ 4.001
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one another. Consequently, there is a possibility of “collision”. The
full-length trajectory estimate is more favorable for the model that
can finish it since the FDER is the average of the deviation of the

trajectory endpoints versus time. The schematic representation of
the chosen typical trajectory is shown in Figs. 8–11.

OVM  and  DRPFM  performed  the  worst  in  trajectory
estimation for the vehicle with ID 1440 (the estimation results are
depicted  in Fig.  8).  They  were  unable  to  create  the  proper
following  spacing  in  accordance  with  the  status  of  the  leading
vehicle, resulting in "collisions" with the rear vehicle at about 10 s.
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Table 3    MAER of different models

Model ASPFM OVM FVD IDM DRPFM
MAER (m·s–1) 0.440 0 0.914 4 0.474 1 0.523 4 0.843 8
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This  also  contributed  to  both  of  them  having  high  FDER.  In
contrast,  the  improved  trajectory  estimate  was  demonstrated  by
ASPFM,  FVD,  and  IDM.  It  is  evident  that  ASPFM  and  IDM
perform  in  a  somewhat  comparable  manner,  which  is  also
consistent with the performance shown in Fig. 7. Similar trajectory
estimation  capabilities  and  results  are  displayed  for  the  identical
vehicles by ASPFM and IDM.

As illustrated in Fig.  9,  ASPFM and IDM continue to  provide

accurate trajectory estimates for ID 1876. In contrast, after around
8 s, the leading car was struck by both OVM and DRPFM. Similar
to this, FVD did not slow down enough and “struck” the leading
car at around 12 s.

Fig.  10 highlights a key distinction between ASPFM and other
control  strategies  implemented  in  the  models.  In  the  trajectory
estimation for ID 1888, all  other models failed to maintain a safe
following  distance  and  subsequently  collided  with  the  cut-in
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vehicle. In contrast, ASPFM demonstrated superior risk analysis in
the adjacent lane, ensuring a safe distance from the leading vehicle.
Furthermore,  ASPFM  executed  suitable  deceleration  and
autonomously  completed  the  entire  trajectory  estimation  process
after the adjacent lane vehicles had cut in.

The trajectory of ID 380 (Fig. 11) demonstrates that all models
give  a  more  precise  estimate  of  the  trajectory  in  a  more  relaxed
environment. However, at this point, ASPFM produces a relatively
slight deceleration at the final moment because it perceives a lower
risk  to  the  rear.  For  ID  1061,  ASPFM  has  the  lowest  trajectory
estimate accuracy compared to the other models.

In  conclusion,  ASPFM  has  a  good  performance  in  long-
distance  trajectory  estimation.  OVM  and  DRPFM  have
insufficient  control  over  the  following  distance  and  are  not
sensitive  enough to  the  state  of  the  leading  vehicle,  which  causes
an  average  trajectory  variation  of  more  than  0.84  m/s.
Comparatively,  the  following  trajectory  can  be  accurately
reproduced  by  FVD,  IDM,  and  ASPFM.  In  terms  of  trajectory
estimation,  ASPFM  performs  similarly  to  IDM,  however,  when
comparing  the  accuracy  of  all  trajectories  combined,  ASPFM's
MAER is around 16% less accurate than that of IDM.

5    Conclusions
This  study suggests  a  vehicle  control  approach for  the connected
and automated vehicle environment that  is  validated by applying
it in the car-following process. When there are moving vehicles in
the  adjacent  lane,  it  can  rationally  estimate  the  acceleration  of
objective vehicle in the car-following process. As demonstrated in
the  results,  the  ASPFM  developed  in  this  paper  may  accomplish
comparably  reasonable  risk  quantification  and  be  competent  for
directing  vehicles  in  car-following  processes.  The  initial  values  of
ASPFM  parameters  are  calibrated  and  validated  based  on  the
NGSIM  dataset.  When  only  the  influence  of  the  front  vehicle  is
taken into account, the accuracy of some models performs better
than  ASPFM.  However,  also  based  on  the  NGSIM  dataset  for

parameter calibration, other models can even experience collisions
with  the  vehicle  in  front.  ASPFM  can  make  a  comprehensive
decision  on  whether  to  adjust  the  speed  to  drive  on  the  path  of
least  risk  based  on  the  state  of  surrounding  cars.  As  a  result,  the
unanticipated circumstance of  rear-end pursuing can be avoided.
This paper introduces avoidance coefficients that can characterize
the  tendency  for  the  outside  lane  to  avoid  and the  inside  lane  to
accelerate  when  driving  alongside  each  other.  We  also  proposed
goal force and lane resistance to allow vehicles to start from rest in
the theoretical system of potential field virtual forces.

vm

By calibrating with a  substantial  amount  of  data  from a single
driver,  ASPFM  is  capable  of  exhibiting  similar  characteristics  as
that  of  the  driver,  which  enables  it  to  better  meet  the  driver’s
requirements  by  aligning  with  their  driving  habits.  The  potential
field  model  in  this  research  can  describe  the  effect  of  special
vehicles  because  it  can reflect  the  anisotropy of  vehicle  influence.
To achieve an amplified effect  from special  vehicles,  for  instance,
the bulk of vehicles such as police vehicles and ambulances can be
increased.  When  calculating  the  impact  of  the  special  vehicle  on
ordinary  vehicles  using  this  model,  lower  the  of  the  special
vehicle  to  increase  its x-axis  positive  influence  to  accomplish  the
effect of the special vehicle causing the vehicle ahead to speed up
the  lane  or  avoid  it.  In  the  future,  connected  and  automated
vehicles will be capable of modeling the entire traffic environment,
serving  as  a  foundation  for  the  vehicle’s  acceleration
determination.  The  potential  field  model  used  in  this  study
assumes  uniformity  of  the  entire  traffic  environment  and  all
characteristics  analyzed  are  in  global  coordinate  systems.  The
model  is  effective  in  representing  possible  new  traffic
environments and evaluating their impact on the objective vehicle,
particularly  in  complex  traffic  scenarios.  The  fundamental  idea
behind  the  concept  is  that,  by  utilizing  vehicle  following  as  a
benchmark,  the  effect  of  a  new  transportation  element  could  be
translated  and  reduced  to  a  separate “leading  vehicle” with  a
varied  range,  size,  and  principle  of  action.  In  other  words,  the
complexity of modeling environmental elements can be effectively
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reduced,  and long-tail  scenarios  can be  effectively  solved,  by  first
using the potential field to describe a conventional scene and then
modeling the actual effect of the potential field on complex traffic
environment elements.

Nevertheless,  ASPFM  has  some  significant  flaws  that  need
further  work.  First,  ASPFM  does  not  take  into  account  the  fact
that human-like driving behavior has been the subject of scholarly
attention  (Huang  et  al.,  2022).  A  feature  of  human-like  driving
research is  that  diverse road users communicate with each other.
From  this  perspective,  the  model  put  out  in  this  research  wastes
the  ability  of  linked  smart  vehicles  to  communicate  and  make
decisions. Even though this work employs multiple vehicles in the
same lane for parameter calibration,  a significant amount of  data
from the  same driver  is  required to  correctly  calibrate  the  model
parameters.  A  data  collection  experiment  should  be  planned  to
make the parameter values of ASPFM more realistic. The driver in
this  experiment  is  constantly  informed of  the  state  of  the  nearby
obstacle vehicles and able to perceive risk appropriately and make
decisions  based  on  these  conditions.  The  vehicle  control  model
proposed in this paper can only be fully sensible and even human-
like in this way.

Replication and data sharing
Next  Generation  Simulation  (NGSIM)  is  available  at: https://
ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
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