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ABSTRACT: Global  Navigation  Satellite  System  (GNSS)  data  is  an  inexpensive  and  ubiquitous  source  of  activity  data.
Global  Positioning  System (GPS)  is  an  example  of  such  data.  Although  there  have  been  several  studies  about  inferring
device activity using GPS data from a consumer device, freight GPS data presents unique challenges for example having
low  and  variable  frequency,  long  transmission  gaps,  and  frequent  and  unpredictable  device  ID  resetting  for  preserving
privacy.  This  study  aims  to  provide  an  end-to-end,  generic  data  analytical  framework  to  infer  multiple  aspects  of  truck
activity  such  as  stops,  trips,  and  tours.  We  use  popular  existing  methods  to  construct  the  data  processing  pipeline  and
provide insights into their practical usage. We also propose improved data filters to different aspects of the data processing
pipeline to address challenges found in privacy-preserving freight GPS data. We use freight data across four weeks from
the greater Philadelphia region with variable transmission frequency ranging from one second to several hours to perform
experiments and validate our methods. Our findings indicate that auxiliary information such as land use can be helpful  in
fine tuning stop inference,  but  spatio-temporal  information contained in timestamped GPS pings is  still  the most  powerful
source  of  false  stop  identification.  We also  find  that  a  combination  of  simple  clustering  techniques  can  provide  a  way  to
perform fast and reasonable clustering of the same stop.
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1    Introduction
$12.6 trillion dollars, or 63.55% of the total value, worth of freight
in  USA  is  estimated  to  be  moved  using  trucks  in  the  year  2022
(U.S.  Department  of  Transportation,  Bureau  of  Transportation
Statistics,  2022).  Trucking  also  accounts  for  the  highest  share  of
sub-1,000 mile  freight  movements.  Understanding  truck  freight
movements  can  thus  lead  to  very  high  impact  interventions.
Traditionally,  truck  activity  has  been  studied  using  logbooks  and
travel  diaries.  The  increasing  deployment  of  intelligent
transportation  technologies  can  provide  many  advantages  over
traditional  methods such as  being inexpensive  to  process  at  scale
(Choudhry, 2022).

Global  Navigation  Satellite  System  (GNSS)  data  is  an
inexpensive  and  ubiquitous  source  of  activity  data.  Global
Positioning System (GPS) is  an example of  such data.  Despite its
wide  availability,  public  agencies  use  it  in  limited  ways  (Taghavi
et  al.,  2019).  The  lack  in  adoption  may  be  attributed  to  the
confidentiality  issues  restricting  the  acquisition  of  data  from
commercial  vehicles  (De  Jong  et  al.,  2004).  In  some  cases,  the
device  ID  associated  with  a  particular  truck  may  be  reset,  which
can  cause  long  term  activity  trends  to  be  lost.  This  can  limit  the
ability of researchers and public agencies to learn about long term
trends  in  truck  activity  from  anonymized  data.  To  address  this
issue,  we  propose  the  use  of  a  device  matching  algorithm.  This
algorithm would be able to reconstruct long term activity trends in
data  by  linking  together  data  from  different  devices  that  are

associated  with  the  same truck,  even if  the  device  IDs  have  been
reset.  By  doing  this,  the  algorithm  can  provide  valuable  insights
into  truck  activity  without  requiring  explicit  identification
information such as registration numbers. As a result, the utility of
GPS data for public agencies could be increased.

In  addition,  issues  from  hardware  or  operating  conditions  in
urban  environments  such  as  inexact  transmission  frequency  or
jitter  make  the  widespread  usage  of  GPS  data  from  multiple
source  challenging.  The  combination  of  these  factors  leads  to
problems  with  applying  methods  developed  for  personal  mobile
GPS  to  freight  GPS  trajectories.  Using  truck  GPS  data  with
inaccuracies,  such  as  device  resetting,  jitter,  and  variable
transmission frequency, in a logistic delivery system that includes
both trucks and drones could hinder the coordination between the
two  modes  of  transportation  and  negatively  impact  the  overall
efficiency  and  effectiveness  of  the  system  (Qu  et  al.,  2022a).
Moreover, improved truck GPS inference could be useful for more
accurately  modeling  the  energy  consumption  of  EVs  during
deliveries,  which  would  allow  for  better  understanding  of  the
energy  impact  of  using  EVs  in  transportation.  This  information
could  be  valuable  in  optimizing  the  use  of  EVs  in  delivery
operations  and  assessing  their  potential  for  reducing  emissions
and  other  environmental  impacts  (Liu  et  al.,  2021; Qu  et  al.,
2022b).

Several  studies  on  freight  GPS  data  processing  focus  on
individual  aspects  of  the  entire  pipeline  and  may  not  utilize
multiple  simple  approaches  to  get  the  result.  Moreover,  studying
the effect of the aforementioned challenges on popular freight GPS
processing algorithms is also an open research area. We study the
effect of the challenges either created artificially by data providers
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or  occurring  naturally  due  to  the  nature  of  GPS  data  collection
devices  throughout  the  entire  GPS  processing  pipeline.  We  then
propose  methods  and  provide  practical  guidance  in  navigating
those  issues  and  provide  robust  truck  activity  inference  on  such
real-world  GPS  datasets.  Consequentially,  we  provide  a  modular
framework  of  GPS  processing  which  is  not  predicated  on
availability of auxiliary information, such as land use, to be useful.
If  such  information  is  available,  it  can  be  used  within  our
framework, if it is not, the rest of it still works.

The rest of the paper is organized as follows. Section 2 provides
an overview of existing work in the area of truck activity inference
covering  the  areas  of  working  specifically  with  anonymized  GPS
device  data  and  truck  activity  inference.  Section  3 describes  the
proposed  device  matching  algorithm  and  the  truck  activity
inference  procedure.  Section  4  describes  the  data  that  is  used  in
this  project.  Section  5  contains  the  experiments  carried  out,  and
the results  of  applying the truck activity  inference process  on the
dataset.  And  finally,  Section  6  summarizes  the  learnings  and
provides directions further analysis and experimentation.

2    Literature review

2.1    Device matching
To the best of our knowledge, device matching is a novel research
area  which  can  help  transportation  practitioners  extend  their
inference  capabilities  from  GPS  data  while  requiring  very
minimum change from data vendors to still  collect  data with the
same privacy-preserving principles that they have been using. We
employ  trajectory  and  device-based  features  to  perform  the
matching.  This  choice  was  inspired  by  work  on  truck  activity
inference.

2.2    Stop inference
The  literature  on  truck  activity  inference,  particularly  stop
detection,  has  focused  on  various  methods  including  threshold-
based  techniques  and  machine  learning  algorithms.  Threshold-
based  methods  often  use  vehicle  speed,  stop  duration,  or
acceleration  to  identify  potential  stop  locations,  while  machine
learning  approaches  utilize  a  variety  of  features  to  classify  stops.
While  both  types  of  methods  have  their  advantages  and

limitations,  there  is  a  trend  towards  more  generalizable
approaches that can be applied universally and are less sensitive to
contextual  factors  such  as  network  topology  and  device
characteristics.  In  this  review,  we  will  examine  the  existing
literature  on  truck  activity  inference,  highlighting  the  various
methods and techniques that have been proposed and discussing
their strengths and weaknesses.

Most  of  the  work on truck activity  inference  is  related  to  stop
detection.  Stop  detection  often  involves  finding  the  GPS  ping(s)
associated  with  a  stop  (Table  1),  filtering  stops  to  remove  false
positives  (Table  2),  merging  stops  (Table  3),  and  optionally,
inferring  the  location  of  the  representative  stop.  Different  papers
may do one or several of these operations using different methods.
The  most  common  method  of  stop  detection  is  based  on  using
simple  thresholds  on  different  aspects  of  truck  operation  such as
vehicle speed, stop duration, or even acceleration.

Inferred  speed  thresholds  are  commonly  used  to  identify
potential  stop  locations  (Akter  et  al.,  2018; Aziz  et  al.,  2016;
Camargo et al., 2017; Kuppam et al., 2014; Yang et al., 2014; Yang
et  al.,  2022a).  The  speeds  are  inferred  using  distance  and  time
calculation  from  consecutive  GPS  pings.  Some  datasets  have
access to instantaneous or spot speeds and then the thresholds can
be set on spot speeds to find stop locations (Siripirote et al., 2020; Thakur
et  al.,  2015).  The  closely  related  are  works  which  utilize  a
combination  of  distance  and  time  thresholds  to  find  stops
(Gingerich  et  al.,  2016; Chankaew et  al.,  2018).  This  is  because  a
threshold  based  on  a  combination  of  distance  and  time  may  be
argued  to  create  essentially  a  speed  threshold.  Another  more
recent  threshold-based  technique  includes  both  speed  and
acceleration (Holguin-Veras et al., 2020).

Speed  based  thresholds  seem  to  be  popular  because  they
directly  lend  themselves  to  the  idea  of  a  truck  being  stopped  at
speed  zero.  Speed  thresholds  used  in  the  literature  above  vary
from 3 to 8.5 mph. Thresholds may also be used to filter out stops,
through using dwell time thresholds (Akter et al., 2018; Aziz et al.,
2016; Camargo et al., 2017; Chankaew et al., 2018; Holguin-Veras
et al., 2020; Hwang et al., 2017; Kuppam et al., 2014; Thakur et al.,
2015; Yang  et  al.,  2022a; Yang  et  al.,  2022b; You  and  Ritchie,
2018), or through trip distance thresholds (Chankaew et al., 2018;
Thakur  et  al.,  2015).  And finally,  thresholds  may  also  be  used  to
merge stops together. Luo et al. (2017), Siripirote et al. (2020), and

 

Table 1    Summary of different approaches on stop detection/identification

Reference DBSCAN Threshold Histogram KDE HMM
Luo et al. (2017) √
Yang et al. (2014) √
Aziz et al. (2016) √ √
Hwang et al. (2017) √
Thierry et al. (2013) √
Gingerich et al. (2016) √
Taghavi et al. (2019) √
Karam et al. (2020) √
Siripirote et al. (2020) √
Akter et al. (2018) √
Camargo et al. (2017) √
Holguin-Veras et al. (2020) √
Chankaew et al. (2018) √
Thakur et al. (2015) √
Yang et al. (2022a) √ √
Kuppam et al. (2014) √

Inferring truck activities using privacy-preserving truck trajectories data 17

https://doi.org/10.26599/JICV.2023.9210002
 



Camargo  et  al.  (2017) use  some  combination  of  distance  and/or
time thresholds to merge identified stopping locations together.

Threshold  based  methods,  as  we  shall  discover  in  this  project,
are susceptible to under-fitting the data. That means that a single
value of  threshold may not  work in all  situations.  Also,  since the
speeds  in  most  cases  are  inferred,  large  gaps  in  data  may  make
accurate quantification of quantities like speed hard. So the quality
of  the  method  may  even  depend  on  factors  outside  of  any
methodology used in setting the thresholds.  Setting the threshold
itself may be an art and is subjective to the specific combination of
data frequency and network topology.

Some  interesting  anecdotes  from  setting  thresholds  can  be
found  in  the  literature. Camargo  et  al.  (2017) and Akter  et  al.
(2018) use  threshold  values  without  and  change,  directly  citing
previous  literature. Yang  et  al.  (2014) and Kuppam  et  al.  (2014)
posit  that  the  speed  threshold  chosen  can  solve  contextual
problems such as wind canyons and GPS jitter. Aziz et al.  (2016)
sets  the  speed  threshold  on  the  basis  of  the  device  transmission
frequency.  More  recently  there  is  a  shift  to  create  more  general
methods  of  determining  speed  thresholds  such  as  in Yang  et  al.
(2022a), a histogram of average speeds between GPS events is used
to determine the value of the speed threshold. This paper seeks to
continue  work  in  that  direction  by  proposing  metrics  of  interest
which can be applied universally irrespective of network topology
or device characteristics.

The next set of algorithms that are used to infer stops belong to
a  general  class  of  machine  learning  algorithms.  These  have  the
benefit  of  being  more  generally  applicable  such  as  having  the
ability to provide dynamic decisions based on a variety of factors
as  opposed to  a  simple  threshold  stacking  approach (Yang et  al.,

2014; Taghavi  et  al.,  2019).  However,  the  flexibility  comes  at  the
cost  of  complexity.  A  more  complex  model  yields  more
parameters  that  need  to  be  tuned,  sometimes  manually.  The
parameters  may  require  large  numbers  of  labeled  data  points  in
order  to  be  tuned  and  validated  with  a  reasonable  degree  of
confidence.

The  most  commonly  used  machine  learning  algorithm  is  the
density-based  clustering  algorithm,  DBSCAN  (Ester  et  al.,  1996).
Studies by Luo et al. (2017), Hwang et al. (2017), Aziz et al. (2016),
and Karam et al. (2020) use DBSCAN to designate areas of higher
density of potential stops as actual stops. Due to its procedure, the
cluster  of  stops  found  by  DBSCAN  can  easily  be  merged  into  a
singular  stop.  While  DBSCAN  is  extremely  good  at  finding
clusters of points of unique shapes, it cannot find clusters with no
separation between them. This may lead to a situation that all the
stops  in  an  urban  area  are  classified  as  one  stop.  Hierarchical
clustering using Ward's  linkage is  another  cluster  algorithm used
to merge potential  stops (Sharman and Roorda,  2011).  However,
Ward's  method  does  not  work  as  well  on  non-spherical  clusters
and can lead to very large cluster sizes.

Another instance of a machine learning algorithm is using the
Support  Vector  Machine  (SVM  (Boser  et  al.,  1992))  for  stop
filtering.  Yang  et  al.  (2014) use  an  SVM  to  characterize  stops  as
either  delivery  or  non-delivery  stops. Thierry  et  al.  (2013) use
Kernel  Density  Estimation  (KDE)  as  a  general  non-parametric
way  of  determining  stops  by  learning  stop  densities  in  space.
Entropy of carriers visiting a potential  stop has also been used to
characterize stops as primary (freight related) or secondary (non-
freight  related)  (Gingerich  et  al.,  2016).  Hidden  Markov  Models
(HMMs  (Rabiner  and  Juang,  1986))  have  also  been  used  to  find
traffic  stops,  activity  stops,  and non-activity  stops  (Taghavi  et  al.,
2019).

While  geospatial  information  such  as  land  use  is  not  used
directly  to find stops,  it  is  used to filter  or  merge them. You and
Ritchie (2018) geocode stops into TACs which are dis-aggregated
versions  of  TAZs  and  then  these  TACs  are  clustered  using
Mahalanobis  distance.  Land  use  has  been  used  to  inform  the
purpose  of  stops  in Karam  et  al.  (2020)  and  consequently  filter
them  out  (Thakur  et  al.,  2015).  Yang  et  al.  (2022a) propose
filtering out stops using freight POI and urban road network data.
Sharman  and  Roorda  (2011) propose  combining  clusters  whose
medians lie in the same parcel boundary.  Yang et al. (2022b) use
Voronoi  diagrams  constructed  using  geocoded  freight  POIs,  and
use that to filter out stops (as many as 73.2%).

2.3    Trip and tour inference
In contrast to the more prevalent work on identifying trip ends or
stops,  research  on  identifying  trips  is  less  common.  Some
approaches  to  finding  trips  involve  using  filters  based  on  speed
and  location,  characterizing  trips  as  occurring  between  internal
and  external  zones,  introducing  time-based  thresholds,  or  using
criteria based on the circuitousness of trajectories. Inferring tours,
or collections of trips, is even less common and is often done as a
step  towards  developing  truck  tour  models.  One  approach  to
identifying  tours  involves  the  concept  of  closed  tours,  which  are
collections  of  trips  that  depart  from  and  return  to  a  depot,  and
open tours,  which do not  return to  the  depot.  In  this  review,  we
will  examine  the  existing  literature  on  inferring  trips  and  tours,
highlighting  the  various  methods  and  techniques  that  have  been
proposed and discussing their strengths and weaknesses.

As  compared  to  work  on  finding  trip  ends  or  stops,  work  on
finding  trips  is  not  so  prevalent. Hwang  et  al.  (2017), You  and
Ritchie (2018), Akter et al. (2018), Thakur et al. (2015), Yang et al.

 

Table 2    Summary  of  different  approaches  on  stop  filtering.  This  does  not
include  DBSCAN  where  stops  not  in  a  cluster  get  filtered  out  in  the
identification step itself

Reference Threshold SVM Geo-data Entropy HMM
Yang et al. (2014) √
Aziz et al. (2016) √
Hwang et al. (2017) √
Gingerich et al. (2016) √
Taghavi et al. (2019) √
You and Ritchie (2018) √
Akter et al. (2018) √
Camargo et al. (2017) √
Holguin-Veras et al. (2020) √
Chankaew et al. (2018) √
Thakur et al. (2015) √ √
Yang et al. (2022b) √ √
Yang et al. (2022a) √ √
Kuppam et al. (2014) √

Note:  DBSCAN  represents  the  density-based  spatial  clustering  of
applications with noise.

 

Table 3    Summary  of  different  approaches  on  stop  merging.  This  does  not
include DBSCAN where stops in a cluster are considered merged implicitly

Reference Threshold Geo-data Ward linkage
Luo et al. (2017) √
You and Ritchie (2018) √
Siripirote et al. (2020) √
Camargo et al. (2017) √
Sharman and Roorda (2011) √ √
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(2022a), and Kuppam et al. (2014) contain examples of trips found
between  two  freight  related  stops. You  and  Ritchie  (2018) use  a
speed  and  location  filter  to  filter  out  trips. Akter  et  al.  (2018)
suggest  characterizing  trips  as  not  between  stops  but  between
internal/external  zones.  This  may  make  sense  depending  on  the
scope  of  analysis  and  provide  for  more  flexibility  in  terms  of
accuracy needed if the scale of analysis is coarser than the scale at
which  stops  are  found. Thakur  et  al.  (2015) and Kuppam  et  al.
(2014) introduce a time-based threshold to break trips. Yang et al.
(2022a) use  a  criteria  based  on  circuitousness  of  trajectories.  It
basically  tries  to  ensure  that  a  segement  of  the  GPS  trajctory  is
deemed to be a trip only if the truck travelled between the two trip
ends  directly. Ma  et  al.  (2016) study  the  trip  characteristics  of
freight truck such as average trip chains, average trip stops per trip
chain, average dwell time, and average trip distance.

Inferring tours, which are collections of trips, of a truck as part
of its activity is uncommon and mostly done as a step to prepare
input  for  truck  tour  models  (You  and  Ritchie,  2018; Kuppam
et al.,  2014). You and Ritchie (2018) introduce the idea of  closed
tours as a collection of trips departing from a depot and returning
to the same location. An open tour on the other hand seems to be
just  one  that  does  not  return  to  the  depot.  They  also  reset  tour
numbers when the truck has been waiting for more than 3 h. The
authors  assume that  the  depot  is  the  location where  a  truck is  at
the  end  of  the  day.  We  present  instead  a  more  data-driven
framework  of  inferring  the  location  of  the  depot  involving
topographical and trajectory characteristics.

The  novel  contributions  of  this  project  can  be  summarized  as
follows:

·  We introduce a method to perform a novel type of inference
on GPS data, device matching.

· We suggest an updated development of a data pipeline to use a
simple inference procedure to infer truck activity.

·  We  propose  novel  strategies  of  finding  the  depot/hub  of
operations.

∼ 196

·  We  implement  and  test  the  algorithm  on  a  large  real  world
dataset  containing  data  across  four  months  greater  Philadelphia
region (  M rows).

·  We  share  insights  on  practical  parameter  selection  for  each
step in the data processing pipeline, while highlighting the effects
of errors in data collection, such as gaps and variable transmission
frequency, on data processing.

3    Research methodology
The problem addressed in this research is how to accurately infer
truck activity, including stops, trips, tours, and hub of operations,
from GPS data that contains resetting device IDs. This problem is
important  because  the  resetting  of  device  IDs  in  commercially
available GPS data can obscure long-term trends in truck activity
and limit the usefulness of the data to public agencies. To address
this  problem,  we  propose  a  pipeline  that  includes  a  device
matching  algorithm  to  create  longer  records  of  activity  for  each
truck, as well as an activity inference module that uses a variety of
methods  to  infer  stops,  trips,  tours,  and  hub  of  operations  from
the  GPS  data.  The  goal  of  this  research  is  to  develop  a  privacy-
preserving  method  for  accurately  inferring  truck  activity  from
GPS data with resetting device IDs, and to demonstrate the utility
of  this  method  for  public  agencies  seeking  to  understand  long-
term trends in truck activity.

In this section, we first present in detail the exact methodology
adopted by us to perform device matching. This is  then followed
by  a  comprehensive  introduction  of  the  studied  truck  activity

d(i)
t

inference methods using GPS data.  Some common notations are
first  established.  We  may  represent  each  data  point  in  the  GPS
way point dataset, , as Eq. (1):

d(i)
t =

(
x(i)
t , y(i)t , z(i)t ,m(i)

t , l(i)t
)

(1)

i ∈ I t ∈ {1, . . . ,T}
x(i)
t y(i)t z(i)t

i t
m(i)

t l(i)t
i

t

d(i) = {d(i)
t }Tt=1 wi ∈

i

where  is the device ID,  is a time index of the
data  points  for  each  device. , ,  and  are  the  latitude,
longitude, and actual timestamp of device  at index , respectively.

 and  are the Micro Analysis Zone (MAZ) ID and land use
category associated with the latitude-longitude position of device 
at  time .  MAZs  are  disaggregations  of  Traffic  Analysis  Zones
(TAZs) created using block level census data to collect and project
socioeconomic data at neighborhood level. By using MAZs as the
units  of  clustering  analysis,  clustering  can  effectively  capture
network  artifacts  like  highways  without  spanning  clusters  across
them.  These  data  points  make  up  the  entire  dataset  for  a  device,

.  We  know  the  weight  class {“Light”,
“Mediun”, “Heavy”}  for  each  device .  We  also  know  other
supplemental information such as provider ID and driving profile
(locally owned fleet, nationally owned fleet) for each device which
is used to characterize and study truck behaviors. There is no fixed
transmission  frequency  and  the  methodology  is  modular  and
flexible enough to work for different levels of data quality.

3.1    Device matching

E

This  section  describes  the  rule-based  approach  developed  to
match eligible devices with candidate devices.  The overall  process
is  summarized in Fig.  1.  The set  of  eligible  devices, ,  represents
the  devices  that  we  think  have  reset  their  IDs.  Equation  (2)
formalizes  this  definition  for  datasets  in  which  the  device  reset
happens within a fixed time interval.

E = {i : Ts ≤ d(i)
T ≤ Tr} (2)

Ts Tr

Tr

Tr

Ts

where  and  are the start and end time thresholds respectively,
between which a device must have its time of last transmission to
be  an  eligible  device.  can  further  be  understood  as  the  reset
time of devices. We find this set of devices by looking at the mode
of  distribution  of  device  start  and  end  time,  and  the  device
transmission frequency. The mode of the distributions shows the
time  at  which  the  device  resets  are  likely  happening,  thus
informing .  The  device  transmission  frequency  helps  inform
how far back from the reset time should we search for the eligible
devices, thus informing . For example, if a device resets happen
at  midnight  and the  transmission frequency is  every  5  min,  then
we  may  want  to  search  matches  for  devices  which  stop
transmitting in the 15 min prior to midnight. We found that this
is  an essential  step to  minimize  instances  of  false  positives  in  the
device  matching  algorithm.  However,  note  that  not  all  eligible
devices may have a match since they may stop transmitting due to
reasons other than a reset, such as simply turning off.

j ∈ E
Cj

For  each  eligible  device, ,  we  define  a  set  of  candidate
devices, , which consist of devices that the eligible device may be
matched to

Cj = {k : k ∈ I
∧ d(k)

1 − d(j)
T ≤ δ

∧
(
x(k)
1 , y(k)1

)
∈ P

∧ |mj −mk| ≤ Θ
∧ w(j) = w(k)

∧
∣∣s(k)1,2 − sj,k

∣∣ ≤ Δs
∧ sj,k ≤ Simp} ∀j ∈ E (3)
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δ

We  now  describe  all  the  conditions  presented  in  Eq.  (3)  as  a
sequence of  filters.  The first  is  a  timestamp-based filter where we
only keep devices which start transmitting information  min after
the  last  transmitted  data  point  of  the  eligible  device  as  shown  in
Eq. (4):

d(k)
1 − d(j)

T ≤ δ (4)

δ
Ts

We set the  to be equal to 15 min to match up with the value
selected for , for the same reasons. Therefore, we have a 15-min
interval after the last transmitted data point of the eligible device.
This interval may be adjusted based on the transmission frequency
of  GPS  pings  in  a  particular  dataset  to  obtain  suitable  candidate
devices.

P
R2

(
x(j)
T , y(j)T

)
Following  this  step,  a  few  filters  are  added  to  match  devices

accurately,  demonstrated  in Fig.  3.  We  apply  a  second,
membership-based  filter  to  the  candidate  devices.  Let  define  a
bounded  set  in  such  that  are  members  of  this  set.
The second filter then is shown in Eq. (5):(

x(k)
1 , y(k)1

)
∈ P (5)

P(
x(j)
T , y(j)T

)
M δ

In this  project,  we construct  by drawing a  circle  centered at
 with a radius equal  to the max speed limit  of  network,

 (70  mph)  multiplied  by  (15  min).  This  ensures  that  an
eligible device is not matched to a candidate device whose location
could not have been realistically reached by the eligible device. In
this  case,  Eq.  (5)  can  equivalently  be  represented  by  points
satisfying the following condition:(

x(j)
T − x(k)

1

)2
+
(
y(j)T − y(k)1

)2 ≤ (Mδ)2

τ

The third filter is based on the direction of travel.  The last few
pings of the eligible device and the first few pings of the candidate
device  are  used to  calculate  the  direction of  travel  for  the  eligible
device and the candidate device respectively. The number of pings
selected  depends  on  the  transmission  frequency  of  the  device.
Higher the transmission frequency, more pings are selected to find
the direction of travel. Instead of selecting a fixed number of pings,
this  ensures  that  enough  pings  are  selected  for  high  frequency
devices  to  find  the  general  direction  of  travel  rather  than  the
immediate  direction  of  travel  for  the  device.  In  order  to  achieve
this,  a  reasonably  large  window  of  duration  is  selected.  We
would like to introduce notation in Eq.  (6)  representing a period
of time to aid in explaining the methodology.

d(j)
a:b =

{
d(j)
t : a ≤ z(j)t ≤ b

}
(6)

d(j)
T−τ:T d(k)

1:1+τ

τ

τ

We  use  trajectory  points  and  for  eligible  and
candidate  devices  to  find the  direction of  travel  for  those  devices
respectively.  The  hyperparameter  controls  the  time  window  to
be  used  for  determining  the  direction  of  travel.  A  longer  time
window  may  not  be  appropriate  for  devices  performing  shorter
range  travel  as  they  may  frequently  change  direction  of  travel.  A
very short window on the other hand may just show a particular
maneuver  that  a  truck  might  need  to  make  enroute  to  its
destination. Additionally, consideration should be provided to the
data frequency while setting . For example, in data of frequency
10 min,  a  time window of  5  min may only  have  one  data  point.
We use a time window of 5 min in this study.

Using the trajectory points above, we find the direction of travel
filter  in  two  ways.  In  the  first  method,  we  assume  that  the  least
square regression line using all the trajectory points is the direction
of travel. In the second method, we take the first and last points in
the trajectory interval outlined above and simply join them to find
the direction of travel.
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Fig. 1    An overview of the device matching process. See Fig. 2 for details about
the candidate device filters.
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Fig. 2    Sequence of filters applied in order to find matches for devices.
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|mj −mk| ≤ Θ (7)

mj mk

Θ

Θ = 45◦

where  and  are the bearings for eligible and candidate device
respectively.  Equation  (7)  shows  that  the  magnitude  of  their
difference must then be less than or equal to . This was based on
the  observation  that  freight  devices  are  unlikely  to  drastically
switch  the  direction  of  travel.  In  our  study  we  set  the  value  of

 since we thought it would be unlikely that a truck would
switch from a north–south freeway to an east–west  freeway.  The
exact value of the allowable angle between direction of travel of the
eligible  and  candidate  devices  may  be  adjusted  based  on  the
topography of the road network.

The fourth filter shown in Eq. (8) posits that weight class of the
eligible  device  and  candidate  device  should  be  the  same.  This  is
based  on  the  rationale  that  the  after  resetting  the  device  ID,
barring any hardware issues, the weight class of the device should
not  change.  For  example,  a  heavy  weight  truck  should  remain  a
heavy weight truck.

w(j) = w(k) (8)

Δs
s(k)1,2

The  fifth  filter  posits  that  the  inferred  speed  of  the  candidate
device  should  be  within  of  the  implied  speed  of  candidate
device  as  shown  in  Eq.  (11).  The  inferred  speed, ,  of  the
candidate device is calculated using the first two GPS pings of the
candidate device as shown in Eq. (9). We also use a more general
definition of inferred speed later while inferring truck activity (see
Eq. (13)).

s(k)1,2 =
dist

(
(x(k)

1 , y(k)1 ), (x(k)
2 , y(k)2 )

)
z(k)2 − z(k)1

(9)

sj,kThe  implied  speed, ,  is  calculated  by  first  calculating  the
distance between the last ping and first ping of the eligible device
and  candidate  device  respectively,  which  is  then  divided  by  the
time difference between the last and first pings of the eligible and
candidate  devices.  Equation  (10)  shows  this  concept
mathematically:

sj,k =
dist

(
(x(k)

1 , y(k)1 ), (x(j)
T , y(j)T )

)
z(k)1 − z(j)T

(10)

The rationale behind this filter is that the speed of the candidate
device should not be changing abruptly. A device may change its
speed quickly but to have high confidence in a match, we assume
that devices keep travelling at constant speed.∣∣s(k)1,2 − sj,k

∣∣ ≤ Δs (11)

And  finally  an  implied  speed  filter  is  also  used  (Eq.  (12)),  in

Simp :

addition to the second filter described above. The benefits of doing
so are that it enables us to control the area of search and implied
speed during matching, in case the search area in the second filter
is  required  to  be  different  from  a  circle.  This  is  a  simple  filter
where the implied speed must be less than a threshold 

sj,k ≤ Simp (12)

|Cj| = 1

An eligible device is then matched to a candidate device if after
applying  all  the  six  filters,  the  set  of  candidate  devices  for  an
eligible  device  just  has  one  member  (i.e., ).  The  reason
being that if there are multiple devices which pass through all the
filters,  it  might  be  hard  to  programmatically  select  which  of  the
multiple  candidate  devices  is  the  correct  match.  It  may  require
human intervention which may not be possible for large datasets.

3.2    Truck activity inference

σ(i)
k i

Σi

This section describes the rule-based approach utilized to identify
truck activities such as stops, trips, and tours from GPS data. Stop
activity, ,  for  a  truck ,  is  when  it  is  performing  some  freight
delivery related functions. The set of all stops is represented by .

σ(i)
k =

{
d(i)
t
}tek,i
t=tbk,i

Σi =
{
σ(i)
k

}N

k=1

k ∈ {1, . . . ,N}
tbk,i tek,i

k i

λ(i)
k,k+1

where  is an increasing index of the order of stops.
 and  are  the time index associated with the beginning and

ending of stop  of device  respectively. Some other reasons for a
truck to stop, such as being stuck in traffic or taking a rest, which
are not relevant to this project, are intended to be excluded.. Trip
activity, ,  is  when  a  truck  moves  from  one  stop  activity  to
another stop activity.

λ(i)
k,k+1 =

{
d(i)
t
}tbk+1,i−1

t=tek,i+1

Λ(i)
O,D

i O D

Λ(i)
H,H

Λ(i)
H,H̄ H H̄

A  tour  activity, ,  is  a  collection  of  trip  and  stop  activities
undertaken  by  truck  between  origin, ,  and  destination, .
Tours  may  be  characterized  as  either  closed  tours,  meaning  that
the truck returns to its hub of operations, , or as open tours,
the truck does not return to a hub, , where  and  are just
the inferred hub and any place not the hub respectively.

Λ(i)
O,D =

{
d(i)
t
}teD,i
t=tbO,i

We apply a speed threshold based on Kuppam et al.  (2014) to
identify stopping activity by trucks since it is the most commonly
used  technique  (Yang  et  al.,  2014; Aziz  et  al.,  2016; Akter  et  al.,
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Fig. 3    Application of membership, direction of travel, and weight class filters.
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2018; Camargo  et  al.,  2017; Yang  et  al.,  2022a),  easiest  to
understand  and  fast  to  apply  on  large  datasets.  Another
motivation  was  to  create  an  algorithm  that  works  with  the  least
amount of additional data. The basic idea behind the technique, as
illustrated  in  Fig.  4,  is  that  when  we  find  that  a  device’s  inferred
speed to fall  below a certain threshold we say that  the device has
stopped,  and  use  a  variety  of  filters  and  clustering  methods  to
remove and summarize stopping events into representative stops,
finally  followed  by  inferring  higher  order  activity  characteristics
such  as  inferring  the  hub  of  operations,  trips  undertaken,  and
finally chains of trips created to finish tours.

3.2.1    Finding stops and defining device-tours

s(i)t−1,t

s(i)t,t+1

The  first  step  towards  stop  inference  is  to  calculate  the  inferred
space  mean speed from the  previous  GPS ping, ,  and to  the
next GPS ping, , as shown in Eq. (13):

s(i)t,t+1 =
dist

(
(x(i)

t , y(i)t ), (x(i)
t+1, y(i)t+1)

)
z(i)t+1 − z(i)t

(13)

We sort the GPS records in increasing time order and use Eq.
(13)  to  calculate  speeds  for  each  device.  We  use  the  haversine
distance  between  consecutive  GPS  events  and  divide  that  by  the
time  passed  between  those  consecutive  events  to  obtain  the
inferred speed to the next GPS event and from the last GPS event.

Λ̂(i)
kThe  next  is  to  find  the  device-tours  (d-tours), ,  for  each

device  (Kuppam  et  al.,  2014).  Sometimes  there  are  large  gaps  in
the dataset, for example the device does not transmit data for 7 h
at a time, after stopping. These situations may lead to calculation
of  extremely  long  stop  durations.  Inaccurate  calculations  of  stop
duration may lead to compounding errors in downstream steps of
the  data  processing  pipeline  to  infer  truck  activities.  Therefore,  it
might be useful to break down the entirety of the GPS trajectory of
a  truck  into  meaningful  chunks  of  analysis.  As  an  added  bonus,
this  ensures  that  our  analysis  lines  up  with  the  realities  of  the
freight delivery industry such as regulations on how long a driver
may drive, so how long a tour can last.

Ideally, we would want to perform analysis within a tour since
that is the top level of truck activity that we are interested in. But
also note that our definition of a tour includes the idea that it is a
new  tour  if  the  truck  returns  to  its  hub  of  operations.  Since  the
inference of hubs requires the knowledge of stops which requires
us to set tours. It creates a circular problem. The concept of d-tour
(Eq. (14)) solves this by providing conservative continuous subsets
of  the  GPS trajectory  to  perform analysis  in,  which  may  then  be
further  broken  down  with  the  knowledge  of  hub  locations  into
actual tours.

Λ̂(i)
k =

{
d(i)
t : d(i)

t /∈ {Λ̂(i)
j }k−1

j=1 ∧ z(i)t+1 − z(i)t ≤ Δd

}
(14)

Δd

For each device, we say that a new d-tour has started if there is
time  difference  of  h  between  any  two  GPS  events  for  that
device.  In  this  study,  we  define  a  new  d-tour  if  there  is  time
difference of 8 h between any two GPS events for that device. This
threshold  is  chosen  since  it  reflects  the  longest  allowable
continuous driving time for commercial drivers in the USA①.

L(i)
k,j

Δs

In  the  next  step,  the  GPS  events  are  provided  a  label, ,
within  each  d-tour.  A  speed  threshold  value, ,  is  selected  and
each  GPS  event  is  given  one  of  "starting",  "moving",  "stopping",
"stopped" event labels. The labels are applied according to the rules
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Fig. 4    Overview of the truck activity inference process. 

①Federal  Motor  Carrier  Safety  Administration.  Interstate  Truck  Driver’s  Guide  to  Hours  of  Service.  Available  online  at
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/Drivers%20Guide%20to%20HOS%202015_508.pdf (accessed on April 1, 2022)
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presented in Eq. (15):

L(i)
k,j =


starting, s(i)t−1,t ≤ Δs ∧ s(i)t,t+1 ≥ Δs

moving, s(i)t−1,t ≥ Δs ∧ s(i)t,t+1 ≥ Δs

stopping, s(i)t−1,t ≤ Δs ∧ s(i)t,t+1 ≤ Δs

stopped, s(i)t−1,t ≤ Δs ∧ s(i)t,t+1 ≤ Δs

(15)

j Λ̂(i)
kwhere  we  use  the  index  for  each  GPS  event  in .  Based  on

prior  research,  we searched for  a  suitable  speed threshold in  1–7
miles per hour (Akter et al., 2018; Aziz et al., 2016; Camargo et al.,
2017; Kuppam et al., 2014; Yang et al., 2014; Yang et al., 2022a). In
order  to  inform  the  choice  for  the  speed  threshold,  we  analyzed
the  distributions  of  several  truck  activity  metrics,  including  stop
duration  (Yang  et  al.,  2022a),  trip  distance,  and number  of  stops
per trip, as well as device transmission frequency. By plotting these
distributions  and  identifying  the  elbow  point,  we  were  able  to
make informed decisions about the appropriate speed threshold.

However,  it  is  worth noting that  in some cases,  there may not
be  a  clear  elbow  point,  or  the  need  to  adjust  spot-checked
instances.  In  such  cases,  we  found  that  too  many  stops  of  very
short  duration,  too many trips of  short  distance,  and a very high
number of trips per tour were generally considered indicators of a
poor  speed  threshold,  as  they  would  represent  unrealistic
operating conditions.

Empirically,  we  found that  different  speed thresholds  may not
label the exact same GPS event as the start of a stop, but overall it
seems  like  the  same  general  stop  is  identified.  Additionally,  we
observed that  higher  speed thresholds  are  more  tolerant  to  small
changes  in  speed,  such  as  movements  within  a  parking  lot,  but
may be less tolerant to congestion and stop-and-go conditions on
the highway.

Λ̂(i)
k

tbk,i

tek,i
ω(i)

k ω(i)
k,k+1

Consistent with the methodology in Kuppam et al.  (2014),  the
events  labelled  "stopped"  and  "moving"  are  dropped.  To  keep
things  simple,  we  are  going  to  take  advantage  of  some  notation
overloading  and  represent  this  filtered  set  of  events  with  as
well. This leaves a "stopping" event at time index , as the event
when  a  device  arrived  at  a  potential  stop.  And  the  consecutive
"starting" event at time index  as when the device left that stop.
The stop durations,  (Eq. (16)), and trip durations,  (Eq.
(17)),  are  calculated  between  successive  events  by  taking  the

difference  of  timestamps  between  consecutive  events.  Similarly,
haversine  distance  between  successive  events  is  calculated  and
stored.

ω(i)
k = z(i)tbk,i − z(i)tek,i ∀σ(i)

k (16)

ω(i)
k,k+1 = z(i)tek,i+1 − z(i)tbk+1,i−1 ∀λ(i)

k,k+1 (17)

3.2.2    Applying filters to identified stops

Since  some  of  the  potential  stops  might  not  be  related  to  freight
activities, we propose applying two stacked filters to potential stops
to obtain stops related to freight activities. We also apply clustering
techniques to merge stop events  located close by,  but  detected as
unique events, possibly due to effects like GPS jitter.

Ψ

We first propose applying a filter based on invalid land use like
in Thakur et al.  (2015). The rationale behind this filter being that
some  inferred  stops  are  associated  with  land  uses  which  are
unlikely to contain a valid freight stop. Examples of land uses that
can potentially be used to be filter out nonfreight stops are water,
golf  course,  undeveloped,  cemetery,  rail  right-of-way,  highway
right-of-way,  utility  right-of-way  and  wooded.  This  filter  should
help  remove  temporary  stops  such  as  those  made  in  traffic  and
stops made on neighboring invalid land use due to GPS jitter. The
effectiveness of this filter depends on the accuracy of the GPS data
and the correctness of the land use data. If the set of invalid land
use  is  written  as ,  we  can  formalise  this  filter  as  shown  in  Eq.
(18):

l(i)t /∈ Ψ ∀ d(i)
t ∈ σ(i)

k ∀i, k (18)

The second filter is based on stop duration (Eq. (19)). These are
based on the idea that freight related stops must take some time to
be completed. While used widely (You and Ritchie, 2018; Akter et
al.,  2018; Camargo  et  al.,  2017; Holguin-Veras  et  al.,  2020;
Chankaew  et  al.,  2018; Thakur  et  al.,  2015; Yang  et  al.,  2022b,
2022a; Kuppam  et  al.,  2014),  we  study  the  effectiveness  and
interaction  of  this  filter  criteria  on  other  aspects  of  a
comprehensive pipeline such as clustering and hub finding. Apart
from a visual inspection, we suggest looking at the distributions of
the number of stops per trip and the marginal decrease in number
of  stops  on  increasing  the  stop  duration  threshold,  to  determine
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Fig. 5    Demonstration of hub-finding algorithm.
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Δtthe stop duration threshold, . In general, we found that a short
duration  filter  of  3  min  is  good  enough  to  remove  most  traffic
stops.  The  effectiveness  of  this  filter  is  influenced  by  the
transmission  frequency  of  data  since  infrequent  data  can  make
accurate determination of stop duration hard.

ω(i)
k ≥ Δt ∀i, k (19)

C M
N

As a final step towards reducing external effects of working with
GPS data on accurately inferring truck activities, we perform some
stop clustering to reduce the number of false trips and get a better
estimate of stop/trip duration. We studied clustering by using pre-
determined  geospatial  boundaries  (i.e.,  MAZs)  (Sharman  and
Roorda, 2011), using density of points (i.e., DBSCAN) (Luo et al.,
2017; Aziz et al., 2016; Hwang et al., 2017; Karam et al., 2020), and
using  distances  between  stops  (hierarchical  clustering)  (Sharman
and  Roorda,  2011).  The  goal  of  clustering  is  to  identify  a
membership  matrix, ,  which  has  columns  representing
clusters  and  rows  corresponding  to  each  stop  in  a  d-tour.
Specifically,  since  the  purpose  of  clustering  was  to  remove  short
trips  within  the  same  stop,  the  clusters  are  identified  among  the
stops of a d-tour. In this way, clustering allows us to group stops
from  a  d-tour  into  clusters  based  on  their  characteristics  or
attributes.

C = [c1, . . . , cM] ∈ C =
{
C ∈ {0, 1}N×M ∧ Ce = 1

}
e M×1 1 N×1where  is a  column of ones, and  is a  column of ones.

Different methodologies populate this matrix in different ways. To
identify  the  best  set  of  parameters  for  the  clustering  algorithms
and the algorithm itself, we look at distribution of land use within
identified  clusters,  distribution  of  trip  distance,  and  overlap  of
clustering  results.  Ideally,  we  would  want  the  stops  clustered
together  to  agree  with  the  same  land  use  if  they  are  at  one
destination, they should eliminate short trips between stops at the
same  facility,  and  similar  clusters  should  be  found  through
equivalent methods.

We  found  that  MAZ-based  clustering  (Eq.  (20))  is  most
appropriate  if  it  is  desired  to  apply  topological  constraints  to  the
clustering results,  such as  a  cluster  of  stops should not  straddle  a
freeway,  or  to  assert  choices  from  the  downstream  use  of  the
inferred activities, such as truck trips within an MAZ may not be
of concern for truck trip modeling. They can also provide a more
direct, and potentially more tedious, way of controlling for sizes of
clusters.  The  main  difficulty  of  this  approach  is  the  need  for
additional  information  which  may  not  be  readily  available.
Mathematically, this can be represented as Eq. (20):

Cij =

{
1 if m(i)

t = m(j)
t

0 otherwise
(20)

Vanilla DBSCAN was found to be most appropriate for an easy-
to-use algorithm with which we can group closer by stops together
based on density. This does not require any extra information but
there  are  parameters,  the  search  radius,  and  the  minimum
number  of  points,  that  need  to  be  tuned.  However,  a  limitation
that we ran into quickly was that parameters for DBSCAN need to
be set differently for urban and suburban/rural stops. For example,
if the parameters are set to be better able to cluster geographically
spread out stops on facilities outside dense urban areas, then they
create  very  large  urban  stop  cluster  where  all  stops  may  even  be
clustered into a large stop. This could be hard to programmatically
achieve.  As  an  aside,  we  found  that  utilizing  a  stop  duration
threshold  to  filter  out  stops  was  especially  helpful  if  using
DBSCAN,  as  it  strips  away  a  lot  of  very  short  stops  in  an  urban

area as it might drive up the density of stops artificially.
To  deal  with  the  extremely  large/small  sizes  of  clusters  found

with  DBSCAN  for  stops  with  different  densities  but  to  preserve
the programmatic nature of a clustering algorithm which does not
need  additional  rich  data,  we  tried  out  Agglomerative  clustering
with complete and single linkage.  We did not try Ward criterion
as  it  does  not  perform  well  for  non-spherical  clusters.
Agglomerative  clustering  uses  a  bottom-up  approach,  starting
with  each  observation  as  its  own  cluster,  the  clusters  are
successively merged based on distance between them.

Cij =

{
1, if max{dist(a, b) : a ∈ A, b ∈ B} ≤ Δc

0, otherwise
(21)

A i B
j

where  is the cluster that stop  is a member of, similarly  is the
cluster  that  stop  is  a  member  of.  If  we  are  using  the  complete
linkage  criteria  for  calculating  distance,  it  utilizes  the  maximum
distance between observations of pairs of clusters (Eq. (21)). If we
use  the  single  linkage  criteria,  it  utilizes  the  minimum  distance
between observations of pairs of clusters. While the single linkage
was  found  to  also  lead  to  larger  cluster  sizes  in  areas  of  higher
density of stops, the complete linkage criteria was selected in order
to  control  the  maximum  size  of  the  cluster  and  compactness  of
clusters.

In this project, due to the availability of the MAZ layer data, we
find  two  separate  cluster  memberships  of  a  stop.  One  through
MAZ-based  clustering,  and  the  other  using  the  complete  linkage
Agglomerative clustering. The goal is to be able to use the benefits
of  both  clustering  methodologies.  This  way  we  can  use  the
topological constraints provided by the MAZ layer to find sensible
clusters, and take care of situations where a stop may straddle two
MAZs.  At  this  point,  the  trips  and  stops  durations  are  also
updated  to  reflect  the  filtering  away  of  some  stops.  This  finishes
the characterization of trips and stops.

3.2.3    Finding the hub and inferring tours

The subsequent step in the pipeline involves identifying the truck's
hub,  which  enables  the  inference  of  the  final  activity  of  trucks,
namely tours. The strategy to find a hub has three parts to it. The
first part is to create initial estimates of which GPS stop(s) may be
the hub. In case the criteria to find initial estimate of the hub yields
multiple  potential  hubs,  the  second  part  of  the  strategy  helps  tie
break to find which stop can be designated the hub.  And finally,
the  third  part  of  hub  finding  strategy  helps  extend  the  identified
hubs  to  take  advantage  of  the  benefits  afforded  by  a  different
clustering strategy. Therefore, we can mix two different clustering
strategies.

There are two main decisions that  need to be made to inform
all  parts  of  the  hub  finding  strategy.  The  first  decision  relates  to
deciding  whether  to  use  the  cumulative  stop  duration  at  a
potential hub or the number of unique visits to a potential hub as
the  better  indicator  of  which  stop  is  the  hub.  This  decision
corresponds with assuming whether a hub is the location at which
the truck spends most time or whether a hub is the location which
the truck visits most often. If the two criteria were correlated, that
the  number  of  visits  to  a  location  leads  to  higher  overall  stop
duration, then the decision becomes trivial and any one of the two
may be chosen. It may be hard to see a clear correlation between
the two quantities due to data issues such as gaps in data.  In our
case,  since  gaps  in  data  impact  inferred stop duration more than
the number of unique visits, we select the number of unique visits
to  a  potential  hub  as  the  main  criteria.  We  however,  use  the
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cumulative stop duration at a potential hub as the tiebreaker.
The second decision is to decide which clustering methodology

to  use  to  calculate  unique  visits  or  cumulative  stop  duration.
Empirically  we  get  similar  results  using  either  of  MAZ-based  or
Agglomerative clustering. If  there is a rich geospatial  information
such  as  MAZs  available,  then  using  those  might  mean  making
more  meaningful  assumptions.  This  is  since  a  distance  based
cluster however defined, may include cases where stops on either
side of a highway are clustered together.

σ(i)
k

Combining  the  two  decisions,  we  use  the  following  three-part
strategy for finding hubs. For each device, we find the number of
unique visits to an MAZ. We then designate the MAZ associated
with the mode of the distribution of number of unique visits as the
hub.  In  cases  where  there  is  a  tie,  we  break  the  tie  by  looking  at
which  agglomerative  cluster  has  the  highest  cumulative  stop
duration. We then extend the identified hub to also include stops
using  its  associated  agglomerative  cluster.  That  means  that  if  a
certain  MAZ  had  membership  of  a  particular  cluster  found
through agglomerative methods, then other MAZs which are also
a  member of  the  same cluster  would also  be  designated as  MAZ
hubs (Fig.  5).  In our trials we test out eight other common sense
hub  strategies  which  are  listed  in Table  4.  We  then  introduce  a
new column indicating if a stop, , is a hub or not,

h(i)
k =

{
1 if hub
0 otherwise

Finally, after finding the hub, we are now able to finish inferring
the tour activity for trucks. For each device-tour, we find a closed
tour (You and Ritchie, 2018) if a continuous subsequence of trips
within  it  starts  and  ends  at  the  inferred  hub.  For  every
subsequence of trips which does not satisfy the criteria that it starts
and ends at a hub, that is designated as an open tour. This finishes
the methodology employed to infer truck activities from GPS data.

4    Data
We  used  anonymized  truck  GPS  trajectory  data  for  this  project.
There  are  about  196  million  GPS  pings  from  383,647  devices.
These data are from four weeks selected between 15 October 2017
through 21 July 2018 covering different seasons. The transmission
frequency of data transmitted for devices varies from one second
to  more  than  two  days.  The  average  transmission  frequency
however  is  closer  to  2  min.  The  data  is  provided  in  the  World
Geodetic  System  1984  (WGS-84)  coordinate  system.  Each  GPS
data  point  contains  timestamp  information,  latitude,  longitude,
and device ID.

Additionally,  we  have  information  related  to  the  weight  class
(light-, medium-, or heavy-weight) and a unique identifier for the
data  provider  for  each  device.  We  use  the  weight  class  data  and

provider  information  to  group  the  data  for  processing  and
analysis.  We  can  see  the  breakdown  of  the  number  records,
number  of  devices  by  week  and  weight  class  in Tables  5 and 6.
The median and maximum gap between data points broken down
by weight class and week is provided in Table 7.

We  also  use  MAZ  and  Land  Use  information  provided  as
geospatial  layers.  MAZs  are  sub-divisions  of  Traffic  Analysis
Zones  (TAZs)  which  allow  for  a  higher  spatial  resolution  for
modeling.  These  are  informed  using  block  level  census  data  and
can  allow  for  collecting  and  projecting  socioeconomic  data  at
neighborhood  level.  There  are  40  different  land  use  categories
informing on the purpose designated for a particular tract of land
such  as  commercial,  industrial,  institutional,  residential,
transportation and their sub-categories among other things.

5    Calculations and results

5.1    Device matching
This  section  describes  the  different  experiments  undertaken  to
identify,  understand,  and  resolve  the  different  challenges
encountered  while  developing  a  device  matching  methodology.
We use truck data from January to construct the figures and tables
in  this  section  as  we  found  that  it  was  representative  of  the
challenges present in data from other time periods.

5.1.1    Device reset time

To ensure that we are not matching devices which are not in need
of  matching,  it  is  essential  to  first  validate  if  the  device  IDs reset.
An interesting followup to that question is to identify when do the
device  IDs  reset.  That  can  also  help  inform  efforts  to  match  the
devices  by  narrowing  the  search  window.  We  found  that  data
from  only  one  of  the  providers  was  amenable  for  the  matching
algorithm.

We  established  this  by  looking  at  the  distribution  of  the  first
and last time of data transmission for that provider. Fig.  6 shows
that  most  of  the  devices  start  transmitting  information  around
midnight and finish transmitting near midnight.  We can also see
from Fig.  7 that  there  are  two peaks  for  device  duration.  One  of
the peaks happens just short of 8 h and could be representative of
the standard working day for a truck. The other peak is the actual
mode  happening  at  the  24-h  mark.  This  means  that  there  are
many devices which persist for a day and no longer. If we plot the
start  and  end  time  specifically  for  the  devices  which  persist  for
20–25  h,  the  start  and  end  time  get  even  more  concentrated
around midnight.

Hence, we can conclude that although not all devices from this
provider reset their ID at midnight,  there is  a significant number
of  devices  which  end  and  start  transmissions  around  midnight.

 

Table 4    Summary of different practical hub strategies tried out. N/A = Not Applied

Index Initial strategy Extending strategy Tie-breaking strategy
1 Starting MAZ N/A N/A
2 Mode MAZ N/A N/A
3 Mode MAZ N/A Total stop duration from MAZ
4 Mode MAZ N/A Mode distance cluster
5 Mode MAZ N/A Total stop duration from distance cluster
6 Mode MAZ Distance cluster Total stop duration from distance cluster
7 Cumulative stop duration from MAZ N/A N/A
8 Mode distance N/A N/A
9 Cumulative stop duration from MAZ N/A Mode MAZ
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These devices may be good candidates to be matched.

5.1.2    Using temporal criteria for device matching

Temporal  features  can be  an important  source  of  information to
provide accurate device matching, however they may not be very
straightforward  to  use  due  to  noise  and  uncertainty.  The  first
temporal  feature  we  utilize  to  match  devices  is  their  first  or  last
time  of  data  transmission.  From Fig.  6,  it  can  be  seen  that  most
devices stop transmitting just before midnight. Since 23.43% of the
devices are covered in the last 15 min, we set that as the threshold
to construct the set of eligible devices.

Next, if we plot the cumulative distribution of the transmission
frequency of pings and devices from this provider, in Fig. 8, we see
that 88.95% of devices have a 95-percentile transmission frequency
of  up  to  5  min.  We  argue  that  the  maximum  length  of  time
between  the  new  device  ID  and  old  device  ID  can  be  modelled
based  on  the  following  scenario.  The  device  resets  just  as  it  is
about to record a new data point, 5 min after its last one. And then
it  must  wait  another 5 min before recording the next  data point.
So,  the  candidate  devices  for  an  eligible  must  start  transmitting
information  within  two  times  the  transmission  gap  plus  device
resetting  time,  amount  of  time.  We approximate  this  quantity  to
be three times the device transmission frequency.

This is an attempt to balance having a large enough window to

be able to find the match, with having a small enough window to
reduce  the  chance  of  false  positive  matches.  Therefore,  the  set  of
candidate  devices  for  an  eligible  device  must  then  satisfy  the
constraint  that  it  should start  transmitting information within 15
min of the last transmission of the eligible device. Interestingly, we
observed that only 42% of the devices have the same transmission
frequency  in  the  first  and  last  10  min  of  the  time  that  it  is
recording  information.  This  led  us  believe  that  directly  using  the
transmission  frequency  as  a  criterion  for  device  may  not  be
appropriate.

We  observed  that  if  we  just  use  a  temporal  filter  as  described
above  and  improve  it  by  adding  constraints  such  as  the  weight
class of the devices should match and that the implied speed of the
device  should  be  less  than  70  miles  per  hour,  we  obtain  a  lot  of
candidate devices for every eligible device. Multiple matches such
as  these  are  not  desirable  as  they  can  be  seen  as  a  proxy  for
estimating false positives. By adding the filters described in Section
3.1,  we can decrease the number of multiple matches from 2,882
to 4 in January.

5.1.3    Synthetic dataset

In the dataset,  the  ground truth of  which device  reset  to  become
another  device  is  unknown.  To  validate  our  device  matching
procedure,  we create synthetic  dataset  to test  it  on.  The synthetic

 

Table 5    Number of devices in dataset by month and weight class

Month
# devices

Light Medium Heavy Total
January 1,214 32,820 58,285 92,319

April 1,419 37,305 59,185 97,909
July 1,523 39,446 58,837 99,806

October 1,030 36,811 55,772 93,613
Total 5,186 146,382 232,079 383,647

 

Table 6    Number of data points in dataset by month and weight class

Month
# pings

Light Medium Heavy Total
January 2,572,492 21,738,581 22,410,326 46,721,399

April 2,781,923 24,477,479 24,159,324 51,418,726
July 3,014,320 24,843,564 25,034,782 52,892,666

October 1,937,633 22,648,435 20,339,965 44,926,033
Total 10,306,368 93,708,059 91,944,397 195,958,824

 

Table 7    GPS data frequency of devices in dataset by month and weight class. Here s = seconds, m = minutes, and h = hours

Month
Light Medium Heavy Total

Median Max Median Max Median Max Median Max
January 6 s 7 h 59 m 22 s 1 m 29 s 17 h 53 m 22 s 1 m 8 h 02 m 42 s 1 m 17 h 31 m 42 s

April 6 s 17 h 52 m 31 s 1 m 30 s 17 h 24 m 28 s 1 m 23 h 39 m 50 s 1 m 23 h 39 m 50 s
July 6 s 15 h 08 m 52 s 1 m 30 s 20 h 41 m 29 s 1 m 10 h 16 m 36 s 1 m 20 h 41 m 29 s

October 6 s 9 h 04 m 40 s 1 m 30 s 20 h 53 m 32 s 1 m 21 h 39 m 28 s 1 m 21 h 39 m 28 s
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Fig. 6    First and last GPS data transmission time for a data provider.
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dataset consists of devices that are known to have a match. Since
we found that we could only reliably match devices from a specific
provider,  we  decided  to  only  use  data  from  that  provider  while
constructing the synthetic dataset.

Next we needed to select a reset time at which we will artificially
reset the device ID. To ensure that we have a lot of data points to
test, we selected 2 pm as the reset time since that time has one of
the  highest  number  of  data  points.  Consequently,  for  a  device  to
be  a  part  of  the  synthetic  dataset,  we  say  that  it  needs  to  have  at
least 50 datapoints between 1–2 pm and 2–3 pm. To ensure that
the artificial dataset mimics the actual conditions, we also add the
constraint that the device should have a duration of at least 8 h.

We  find  3,612  devices  in  January  which  satisfy  these
constraints.  On  using  the  parameters  recommended  in  the
methodology  section,  we  were  able  to  identify  3,599  (99.64%)
devices as eligible for matching. We were then able to find a single
matched device  for  742  (20.62%)  of  the  eligible  devices.  We find
that  465  (62.67%)  of  the  singly  matched  devices  were  matched
correctly.  Therefore,  it  validated  our  design  goal  of  identifying
conservative  parameters  to  balance  matching  with  reducing  the
incidence  of  false  positives.  There  are  limitations  to  the  synthetic
data  approach  to  validate  the  algorithm.  Primarily,  they  are  that
we  may  not  know  if  the  external  conditions  impact  the  data
collection in an unknown way during the day as compared to the
night.

5.2    Truck activity inference
In this section we describe the numerical experiments undertaken
to  identify,  understand,  and  resolve  issues  encountered  while
developing  a  truck  activity  inference  procedure.  Like  Section  5.1,
we again use the truck data from January to construct the figures
and tables in this section. The section is organized in the order of
when the  specific  challenge  would  have  been  encountered  in  the
activity inference pipeline.

5.2.1    Event type inference

One of the first issues that we noticed while attributing event types
based on the thresholds on speed to the next GPS event and speed
form  the  last  GPS  event  is  that  there  were  some  (very  rare)
consecutive  starting  and  stopping  events.  On  manual  inspection
we  found  that  there  was  usually  a  large  gap  in  time  when  the
device did not transmit any information between two consecutive
starting/stopping  events.  Hence  this  would  be  a  missing  data
problem,  which  can  be  dealt  with  by  assigning  the  events  to
different  tours.  In  case  it  would  not  make  sense  to  assign  the
events to different tours, care should be taken while calculating the
stop/trip  duration  before  and  after  the  consecutive  events  to
account for this uncertainty.

In  another  issue,  we  noticed  that  the  device  used  a  very  long
time to travel between a pair of starting and then stopping events,
relative  to  the  distance  between  the  two  events.  Basically,  the
device has an unrealistically slow speed while moving between two
locations.  As  an  example,  spot  inspection  yielded  a  device  that
took  8  h  to  travel  53.23  miles.  In  another  extreme  example,  a
device  was  inferred to  take  about  20 h for  a  trip  of  distance 0.27
miles. Manual inspections of these instances show that the devices
transmit information very infrequently,  once in 7 h,  so it  escapes
the common sense filter for finding d-tours. However, it might be
possible to fix this by breaking d-tours using a different aadaptive
criterion (refer  to  Table  8  for  the  results  obtained using different
criteria to infer d-tours).

Related  to  the  last  issue,  we  also  found  instances  where  the
distance between a consecutive pair of inferred stopping and then
starting  events  was  very  high.  A  spot-checked  example  showed
that  the  distance  between  a  pair  of  consecutive  stopping  and
starting events to be 9.62 miles. Overall, in January data, we found
11,000  (6.5%  of  all  potential  stops)  instances  where  the  starting
location and the previous stopping location was more than 1 mile
away,  out  of  which 5,500 instances where the two locations were
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more than 10 miles apart. This was also identified to be an artefact
of infrequent device data transmission. Like the previous issue, we
can  potentially  perform  better  in  these  situations  by  using  some
sort  of  more  complex  tour  breaking  criteria  based  on  data
uncertainty.

5.2.2    Device activity characteristics

This set of issues stem primarily from the observation that the trip
or stop duration are very low, or that the number of trips per tour
or  the  number  of  stops  per  tour  are  very  high  for  some
combination  of  weight  class  and  speed  threshold  used  for  stop
inference.

One of the ideas we explored was application of different speed
thresholds  to  infer  stops  depending  on  the  weight  class  of  the
truck. Based on examples in the literature, we experimented with
various speed thresholds ranging from 2 to 8 mph (see Table 9 for
the  results  of  using  these  different  speed  thresholds).  Ultimately,
we use  the  six  mph threshold  to  infer  stops  and perform further
analysis.  The actual  speed threshold may change some stops,  but
the stop duration filters and clustering efforts were more effective
in dealing with false stops.

Another  idea  we  explored  to  deal  with  implausible  stop
durations or unexpectedly large number of stops in a tour was to
change  the  definition  of  d-tours.  We  tested  8  h  and  a  change  of
date and 2 h (Kuppam et al., 2014) as the gap between two events
which  will  break  the  trajectory  into  a  new  d-tour  (Table  8).
However, it did not completely take care of several of the longest
stops/trips.  Since the trajectory only gets broken up if  it  does not
transmit information for more than 8 h. Ultimately, we stuck with
8 h since it had practical meaning and was conservative. Setting a
hub to break d-tours into actual tours later was found to be more
useful.  It  might  be  possible  to  test  smarter  ways  of  setting  the

threshold  such  as  by  using  percentiles  of  the  device  data
transmission frequency.

One  of  the  first  filters  we  tried  was  the  stop  duration  filter  to
drop stops also suggested in Kuppam et al.  (2014) (Table 10). To
select  the  value  of  the  stop  duration  filter,  we  checked  the
distribution  of  the  length  of  trips,  particularly,  the  percentage  of
trips of shorter duration. In doing so, we use the length of trips as
a  proxy  for  detecting  false  positive  stops.  The  underlying
assumption  is  that  a  higher  number  of  false  stops  would  yield  a
higher  number  of  shorter  duration  trips.  In  the  subset  of  data
from January, we found that there are 1.75M (53.40%) stops with
a stop duration less than 1 min. Additionally,  61.82% of trips are
shorter than 5 min if no stop duration filter is used. We found that
by  using  a  3  min  stop  duration  filter,  this  proportion  drops  to
34.12%.  On  increasing  the  value  of  the  stop  duration  filter  to  5
min  only  a  very  small  decrease  (~7%)  was  observed,  hence  we
stick with a 3 min threshold.

5.2.3    Filters using land use

We  explored  using  land  use  data  as  another  criteria  to  filter  out
inferred stops which may not  be  actual  freight  related stops.  The
motivation  behind  explicitly  utilizing  land  use  to  filter  out  stops
was due to an observation that some inferred stops were assigned
land uses it would not make sense for private fleet vehicles to stop
in.  We  found  that  applying  land  use  as  a  filter  decreases  the
average  number  of  stops  per  tour  and provides  a  good common
sense  criteria  filter  to  remove  stops  which  would  be  improbable
(Table 11).

However,  doing  so  was  not  straightforward.  The  primary
reason  behind  the  difficulty  of  doing  so  is  that  the  specific  event
recognized as a stop by the algorithm may not be in the location
characterized  by  the  correct  land  use  code  for  that  stop.  This  is

 

Table 8    Impact of different device-tour methodologies on truck activity metrics. Here mi = minutes and m = meters

Method Weight class Stop duration (mi) Trip duration (mi) # Stops per tour Trip distance (m)

No d-tour
Light 22.75 2.12 224.02 1,998.34

Medium 73.85 9.77 53.53 9,070.20
Heavy 21.33 8.96 32.68 10,408.54

8 h
Light 6.30 2.10 48.69 1,988.81

Medium 24.35 8.95 17.69 8,347.89
Heavy 10.64 8.10 28.70 9,679.04

Date change and 120 mi
(Kuppam et al., 2014)

Light 11.90 2.10 67.63 1,985.82
Medium 28.98 9.10 19.12 8,491.78

Heavy 11.75 8.29 29.47 9,789.53

 

Table 9    Impact of different speed thresholds on truck activity metrics, using an 8-h threshold for finding d-tours. Here mi = minutes and m = meters

Speed threshold Weight class Stop duration (mi) Trip duration (mi) # Stops per tour Trip distance (m)

2 mph
Light 8.93 4.29 31.30 3,199.47

Medium 25.64 11.23 16.35 8,597.19
Heavy 10.80 9.03 28.02 9,608.30

4 mph
Light 7.14 2.72 41.57 2,357.06

Medium 24.74 9.81 17.22 8,424.05
Heavy 10.69 8.55 28.28 9,738.34

6 mph
Light 6.30 2.10 48.69 1,988.81

Medium 24.35 8.95 17.69 8,347.89
Heavy 10.64 8.10 28.70 9,679.04

8 mph
Light 5.86 1.76 53.57 1,781.20

Medium 24.13 8.32 18.02 8,289.52
Heavy 10.67 7.69 29.20 9,534.90
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exacerbated  when  considering  that  we  can  cluster  several  stop
events at a facility, but they may lie on different parcels and hence
have  different  land  uses.  This  adds  another  step  in  inferring  the
actual land use of the stop.

Table  12 shows  the  share  of  land  use  for  inferred  stops  in
January. In most cases,  the majority of the stops were inferred to
be on land uses which are considered valid. There were stops that
were inferred to be on invalid land uses, but simply filtering them
out may not be the best. We now present some observations from
examples of stops inferred on an invalid land use code:

·  Stops  on  water  land  use  corresponded  predominantly  with
devices  on  bridges  crossing  water  bodies.  These  stops  may  have
been  inferred  incorrectly,  or  may  be  a  result  of  trucks  breaking
down  on  bridges.  Some  stops  were  on  islands.  The  stops  on
islands may be a result of trucks stopping at facilities on the island.

· Stops on golf courses were made on roads running through or
around  golf  courses.  These  stops  may  correspond  to  stores  and
facilities  next  to  the  golf  course.  Some of  the  stops  were  inferred
next to facilities located on a golf course.

·  Several  stops  inferred  on  undeveloped  land  use,  based  on
satellite  imagery②,  appeared to  actually  be  on developed facilities.
The  age  of  development  varied,  with  some  developments
seemingly  being  present  for  a  while  whereas  others  being  more
recent.

·  Stops  inferred  to  be  on  cemetery  land  use  were  located  on
road bordering cemeteries. Due to their location in urban areas, it
is possible that these stops were inferred incorrectly and belong to
freight activity at stores and facilities adjacent to the cemetery.

·  Stops  on  the  rail  right-of-way  were  mostly  inferred  on  roads
running parallel to railroad tracks.

· Stops on highway right-of-way were by far the most prevalent
type of stops on an invalid land use category. These stops may be a
result of traffic conditions, truck repairs, rest stops or simply actual
freight stops for locations next to highways.

·  All  the  stops  inferred  on  utility  right-of-way  are  located  on
roads.  In  the  dataset,  a  large  number  of  inferred  stops  are  along
the New Jersey Turnpike. The land use designation seems to be a
result of utility lines located close to these roads.

· Stops inferred to be on wooded land use were located on roads
or  facilities  in  developed  areas  with  trees  nearby.  However,  the
stops were not observed to lie inside the clusters of trees.

5.2.4    Clustering stops

Clustering  methods  were  employed  to  arrive  at  more  accurate
estimates of stop duration and trip duration. This is accomplished
by  merging  stops  which  may  represent  the  same  destination

during  a  specific  interval  of  time.  We  tried  out  several  different
types  of  clustering  algorithms  such  as  topology  based  (MAZ
clustering),  density  based  (DBSCAN),  and  distance  based
(Agglomerative clustering). Table 13 shows the results of applying
these clustering methodologies as a filter on truck activity metrics.

Somewhat  unsurprisingly,  we  found  that  clustering  by  MAZ
leads  to  the  greatest  number  of  clusters  with  the  same  land  use.
We  also  observe  that  MAZ  based  clustering  provided  the  most
meaningful  clusters  respecting  network  topology.  A  potential
disadvantage  of  using  MAZ-based  clustering  is  that  the  spatial
resolution  of  the  clustering  is  essentially  at  a  census  block  group
level. The median area of an MAZ in the dataset is about 7.6 acres,
and  the  median  bounding  box  dimensions  are  about  870  feet  ×
890  feet.  Therefore,  MAZ  clustering  may  not  be  appropriate  if
activity inference is required at a finer spatial resolution.

We  found  that  DBSCAN  makes  large  clusters  for  light  truck
data in urban areas. Fig. 9 shows a scenario where all the stops for
a light truck were identified in the same distance cluster when they
are  clearly  spread  out  across  the  city.  This  results  in  all  of  them
being identified as a hub. Consequently, every trip is inferred as a
tour  as  it  ends  at  a  hub.  This  is  clearly  undesirable  behavior.
Essentially,  different  densities  of  stops in suburban stop locations
and urban stop locations requiring to be merged makes it hard for
vanilla DBSCAN to perform well.  Towards that end, we found it
helpful  to apply the stop duration-based filter  to make the urban
stop density lower for DBSCAN to work better.

Finally, we utilized Agglomerative clustering with complete and
single linkage. We find that the complete linkage criteria is able to
reasonably  handle  cases  such  as  that  presented  above  without
growing the cluster to a really large size.  We can obtain compact
clusters  while  controlling  for  max  size  of  clusters.  This  can  be
helpful  for  cluster  size  of  a  specific  spatial  resolution.  We  also
utilize this fact later for using hierarchical clustering for extending
inferred  hub  for  devices.  For  the  distance  measure,  experiments
using  haversine  distance  and  Euclidean  distance  on  Mercator
projected  points  yield  similar  results.  Additionally,  using
Agglomerative  clustering does  not  require  stops  to  be  filtered for
stop duration as it is not density based.

5.2.5    Identifying hubs

Finding a hub is an important part of the algorithm to infer tours.
As  described  in  Section  3.2,  we  employed  different  methods  to
create  and  test  various  hub  finding  strategies.  We  first  test  two
very simple hub finding strategies: the first MAZ a device visits is
its  hub,  and  the  MAZ  that  a  device  visits  most  often  is  its  hub.
Using  just  the  MAZ  however  led  to  problems,  for  example  we

 

Table 10    Impact of different stop duration thresholds on truck activity metrics, using an 8-h threshold for finding devicetours and 6 mph speed threshold for finding
GPS ping labels. Here mi = minutes and m = meters

Stop duration threshold Weight class Stop duration (mi) Trip duration (mi) # Stops per tour Trip distance (m)

0 mi
Light 6.30 2.10 48.69 1,988.81

Medium 24.35 8.95 17.69 8,347.89
Heavy 10.64 8.10 28.70 9,679.04

3 mi
Light 43.87 17.45 8.21 13,124.71

Medium 54.56 19.82 8.80 17,464.19
Heavy 64.14 41.26 6.31 46,801.81

5 mi
Light 60.88 24.63 6.29 17,431.41

Medium 66.22 24.25 7.53 20,675.36
Heavy 74.56 46.45 5.74 52,000.98

 

②Available at https: //historicaerials.com
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noticed for a device that sometimes when the truck returns to an
adjacent MAZ, it is mislabeled as not having returned to the hub,
whereas the facility that it returned to is just straddling two MAZs.

As  a  specific  example,  for  a  device,  MAZ  ID 4 709 was
identified as the hub based on the most frequently visited criteria.
MAZ  ID 4 609 is  adjacent  to  MAZ  ID 4 709,  and  distance-based
clustering  methodologies  identify  points  in  both  MAZs  together.
However,  when  the  device  returns  to  MAZ  ID 4 609,  it  is  not
counted as the end of the previous tour.  This leads to one of  the
tours of the device lasting for 2 days,  when the tour number was
not  reset  until  it  returned  to  MAZ  ID  4709.  This  example
demonstrated  that  we  could  use  distance-based  clusters  as  an
alternative or supplementary way to identify hubs.

In  several  instances,  we  found  that  while  trying  to  find  the
MAZ  which  was  most  visited  by  a  device,  there  were  instances
where  two  MAZs  were  both  visited  the  same  number  of  times.
This  necessitated  the  need  for  a  tie-breaking  strategy.
Consequently,  we  tried  out  three  ideas  to  tie  break.  One  of  the
ideas was to look at the cumulative stop duration from the MAZ
cluster, or we could use the most visited associated distance cluster
or  use  the  cumulative  stop  duration  from  associated  distance
cluster.

The  stop  duration-based  approaches  above  yielded  results
similar  to  each  other.  An additional  assumption had to  be  made
for  using  the  distance  cluster  based  rules:  for  cases  in  which  an
MAZ  ID  gets  associated  with  two  distance  clusters,  for  example,

say that MAZ ID 70 732 is associated with distance cluster IDs 10
and 38, then the mode for the hub is found by counting instances
of both 10 and 38. Also, as illustrated in the example of the facility
straddling  two  MAZs  above  there  is  some  need  to  "extend"
identified hubs.

Since  we  use  MAZ  based  methods  for  finding  the  initial  hub
locations,  we  decide  to  use  a  different  (distance-based)  cluster
method  to  extend  the  hub  location  to  incorporate  a  different
source  of  information  and  use  the  advantage  of  distance-based
methodologies to find things which are close by. Finally, we utilize
these  ideas  to  come  up  with  the  final  strategy  of  using  MAZ  to
find initial hub locations, tie-break with cumulative stop duration
from distance clusters, and extend hubs using the distance cluster
membership.  Table  14  shows  the  result  of  hub  finding
methodologies on truck activity metrics.

5.2.6    Mean versus median

Selecting the measure of central tendency when evaluating metrics
is  an  important  decision  in  any  data-driven  project. Table  15
shows the mean and median values of the different truck activity
metrics  using  a  simple  threshold-based  baseline  and  using  the
entire  inference  pipeline  with  default  values.  The  distributions  of
the truck activity metrics used to check the quality of truck activity
inference  itself  are  very  skewed.  While  in  traditional  settings,  we
would  use  the  median  as  the  preferred  measure  of  central
tendency  for  a  skewed  distribution,  in  this  project  we  use  the

 

Table 11    Impact of applying land use filters on truck activity metrics, using an 8-h threshold for finding d-tours, 6 mph speed threshold for finding GPS ping labels
and a 3-min stop duration filter. Here mi = minutes and m = meters

Land use Weight class Stop duration (mi) Trip duration (mi) # Stops per tour Trip distance (m)

Without filter
Light 43.87 17.45 8.21 13,124.71

Medium 54.56 19.82 8.80 17,464.19
Heavy 64.14 41.26 6.31 46,801.81

With filter
Light 51.05 17.33 7.43 13,007.14

Medium 65.22 19.80 7.78 17,420.77
Heavy 77.24 41.41 5.71 47,309.40

 

Table 12    Breakdown of land use by inferred stops for January. Although unknown land use is invalid, stops with unknown land use are not filtered out

Light truck Medium truck Heavy truck
#Stops %age #Stops %age #Stops %age

Valid land use
Residential 12,989 33.96% 155,667 22.19% 9,309 3.06%
Industrial 658 1.72% 63,623 9.07% 75,189 24.68%

Transportation 650 1.70% 25,260 3.60% 32,595 10.70%
Utility 122 0.32% 21,740 3.10% 2,803 0.92%

Commercial 13,019 34.04% 176,949 25.23% 51,660 16.96%
Institutional 3,232 8.45% 46,392 6.61% 6,362 2.09%

Military 38 0.10% 641 0.09% 414 0.14%
Recreation 726 1.90% 11,513 1.64% 1,382 0.45%
Agriculture 112 0.29% 10,356 1.48% 2,533 0.83%

Mining 1 0.00% 2,044 0.29% 200 0.07%
Cumulative 31,547 82.48% 514,185 73.31% 182,447 59.90%

Invalid land use
Highway row 3,413 8.92% 67,055 9.56% 29,469 9.67%

Wooded 377 0.99% 18 720 2.67% 6,695 2.20%
Water 14 0.04% 449 0.06% 178 0.06%

Undeveloped 1,023 2.67% 24 519 3.50% 10,568 3.47%
Unknown 1875 4.90% 76 435 10.90% 75,254 24.70%

Total 38,249 100.00% 701,363 100.00% 304, 611 100.00%
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mean instead.
The  median  is  preferred  while  analyzing  skewed  distributions

due to its robustness to outliers. However, the advantage of using
the  median  becomes  a  disadvantage  in  this  scenario  since  the
difficulties in truck activity inference do not lie in the usual cases
but in the messy, outlier cases. The mean, being driven by outliers,
gives  a  better  sense  of  the  performance  of  the  pipeline  on  the
harder to infer cases.

6    Conclusions
The  overall  goal  of  this  project  was  to  setup  and  apply  a  simple
and modular truck activity inference method on a real-world GPS

dataset. The real-world dataset is composed of multiple providers
with  challenges  presented  by  its  size,  variable  frequency  of
transmission,  long  gaps  in  data  transmission,  and  assorted
auxiliary  information.  These  challenges  restrict  the  application of
algorithms in literature to be directly employed on datasets other
than  those  they  were  created  for.  We  study  the  effects  of  these
challenges  encountered  in  real  world  datasets  and  propose
practical  tips  for  using  simple  methods  on  such  data  effectively.
The different aspects of truck activity that we identified were stops
made  by  a  truck,  hubs  of  its  operations,  and  consequently  the
tours  and  trips  made  by  a  truck.  To  achieve  this  goal,  we
undertook  two  additional  activities.  First,  a  device  matching/
chaining method was developed to deal with the issue of resetting

 

Table 13    Impact  of  applying  clustering  methods  as  a  filter  on  truck  activity  metrics,  using  an  8-h  threshold  for  finding  device-tours,  6  mph  speed  threshold  for
finding  GPS ping  labels  and a  3  min stop duration filter.  The  number  in  brackets  denotes  the  distance  threshold  specific  to  each clustering  algorithm.  Here  mi  =
minutes and m = meters

Clustering methodology Weight class Stop duration (mi) Trip duration (mi) #Stops per tour Trip distance (m)

None
Light 43.87 17.45 8.21 13,124.71

Medium 54.56 19.82 8.80 17,464.19
Heavy 64.14 41.26 6.31 46,801.81

MAZ
Light 43.68 18.95 8.04 13 420.98

Medium 54.26 24.76 8.32 18,638.61
Heavy 60.92 62.28 5.46 55,391.02

DBSCAN (500 feet)
Light 43.79 19.35 7.98 13,527.68

Medium 54.11 24.34 8.37 18,492.71
Heavy 59.75 58.13 5.67 53,092.51

DBSCAN (0.25 mile)
Light 44.89 22.15 7.57 14,339.60

Medium 55.27 29.95 7.75 20,126.95
Heavy 61.06 68.93 5.19 58,539.50

Agglomerative (500 feet)
Light 43.78 19.15 8.01 13,483.79

Medium 54.17 23.01 8.51 18,165.09
Heavy 60.81 54.66 5.79 51,883.37

Agglomerative (0.25 mile)
Light 44.46 21.19 7.72 14,047.37

Medium 54.65 27.12 8.08 19,263.27
Heavy 60.81 64.87 5.37 56,565.79

 

Using DBSCAN Using Agglomerative clustering
Fig. 9    An example of DBSCAN creating larger clusters in urban areas. Agglomerative clustering enforces a maximum size constraint on clusters, creating more compact
clusters. Nearby stops of one color belong to the same cluster.
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device identifiers. Second, effective clustering methods for stops to
remove  false  positive  stops  and  infer  hubs  of  operations  were
studied and developed.

We used threshold methods for their simplicity and employed
calibrated dwell time filters to remove non-freight stops. We then
utilized clustering methods based on MAZs and complete linkage
Agglomerative  clustering  to  further  consolidate  stops  to  yield
meaningful  stop/trip  durations.  Agglomerative  clustering  helped
in  getting  clusters  which  were  close  in  distance  together  while
applying the constraint on how far the farthest point of a cluster of
stops  can  be.  We  experimented  with  and  suggested  novel
strategies of finding the hub/depot of operations, which finally led
to finding tours. We showed how the parameter selection for these
steps  be  performed  in  a  general  project  while  highlighting  the
effect of gaps in data, and variable data frequency.

The utilized threshold methods are inherently inhibited by their
simplicity may be under-fitting the data. That means that may be
unable  to  pick  up  trends  or  signals  within  the  dataset.
Additionally,  their  practical  application  is  impeded  by  their
heuristic  nature.  A direction of  future analysis  could be to  utilize
more  methods  based  in  machine  learning  so  that  those  methods
are  capable  of  learning  more  complicated  artefacts  of  the  dataset
and  require  less  manual  tuning.  Although  literature  contains
several  examples  of  such  methods  for  individual  aspects  of  truck
activity  inference,  their  interaction  in  a  data  processing  pipeline,
such  as  the  effect  of  using  Support  Vector  Machines  or  Deep
Sequence  Models  to  identify  stops  on  identifying  trips  or  tours,
could be an interesting direction.
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