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ABSTRACT: The purpose of this paper is to alleviate the potential safety problems associated with the human driver and
the automatic  system competing for  the right  of  way due to  different  objectives by mitigating the human-machine conflict
phenomenon  in  human-machine  shared  driving  (HMSD)  technology  from  the  automation  system.  Firstly,  a  basic  lane-
changing trajectory algorithm based on the quintic polynomial in the Frenet coordinate system is developed. Then, in order
to make the planned trajectory close to human behavior, naturalistic driving data is collected, based on which some lane-
changing performance features are selected and analyzed. There are three aspects have been taken into consideration for
the  human-like  lane-changing  trajectory:  vehicle  dynamic  stability  performance,  driving  cost  optimization,  and  collision
avoidance. Finally, the HMSD experiments are conducted with the driving simulator to test the potential of the human-like
lane-changing trajectory  planning algorithm. The results  demonstrate that  the lane-changing trajectory  planning algorithm
with  the  highest  degree  of  personalization  is  highly  consistent  with  human  driver  behavior  and  consequently  would
potentially mitigate the human-machine conflict with the HMSD application. Furthermore, it could be further employed as an
empirical trajectory prediction result. The algorithm employs the distribution state of the historical trajectory for human-like
processing,  simplifying  the  operational  process  and  ensuring  the  credibility,  integrity,  and  interpretability  of  the  results.
Moreover, in terms of optimization processing, the form of optimization search followed by collision avoidance detection is
adopted  to  in  principle  reduce  the  calculation  difficulty.  Additionally,  a  new  convex  polygon  collision  detection  method,
namely the vertex embedding method, is proposed for collision avoidance detection.

KEYWORDS: human–machine  conflict,  human–machine  shared  driving  (HMSD),  human-like  lane-changing  trajectory
planning, collision avoidance, trajectory prediction

 
1    Introduction
The  development  of  automotive  intelligence  is  an  important
direction  and  research  hotspot  in  the  21st century.  Its  technical
architecture  includes  environmental  perception  (Cao  et  al.,  2015;
Yan et al., 2018), short-term prediction (Qi et al., 2017), behavioral
decision-making  (Tan  et  al.,  2019),  trajectory  planning  (Zhou
et al.,  2019a, 2019b; Peng et al.,  2020), and path tracking (Xu and
Peng,  2019; Xu  et  al.,  2020).  According  to  SAE’s  classification
criteria  for  intelligent  vehicle,  human-machine  interaction
technology  is  at  the  L1–L3  level  of  intelligent  automobile
development  (Russell  et  al.,  2016),  which  includes  multi-level
technical  functions  (Yuan  and  Zhang,  2020; Kim  et  al.,  2016).
Previously,  research on human-machine shared driving (HMSD)
focused  on  the  control  layer  (Naand  Cole,  2013; Li  et  al.,  2019).
Today,  researchers  are  increasingly  concerned  about  human-
machine  conflicts  due  to  inconsistent  human-machine  tracking
objectives  (Huang  et  al.,  2021).  Working  with  the  automatic
system  of  trajectory  planning  that  does  not  consider  the  driving
habits  of  human  drivers  may  reduce  the  trust  and  acceptance  of

the  automated  system  by  human  drivers,  who  compete  with  the
automated system for the right of way.

There  are  five  main  categories  of  existing  lane-changing
trajectory  planning  methods:  graph  search-based  algorithm,
sampling-based  algorithm,  interpolating  curve  algorithm,
numerical  optimization  algorithm,  and  mechanism  model-based
algorithm  (Zheng  et  al.,  2019).  With  the  objective  of  improving
human  driver  acceptance  and  satisfaction  with  lane-changing,  a
few  researchers  have  proposed  human-like  lane-changing
trajectory  planning  in  which  the  lane-changing  habits  of  human
drivers  are  gradually  taken  into  account.  For  example, Ali
et al. (2021) proposed to capture the driver’s driving behaviour in
a driving simulator and investigated the factors influencing forced
and  free  lane-changing.  A  human-like  lane-changing  trajectory
planning algorithm based on cubic  polynomial  interpolation was
proposed  by Zhang  et  al.  (2019). Wang  et  al.  (2016) proposed  a
lane-changing  trajectory  planning  model  based  on  linear  offset
and sine function to balance driver comfort and vehicle dynamics.
Zhu  et  al.  (2018) proposed  a  sine-wave  lane-changing  model,
which  integrates  driver  behavior  recognition  strategy  to
implement a human-like lane-changing assistant system. He et al.
(2018) proposed  a  trajectory  planning  method  based  on  quintic
polynomial by learning from human driving data.
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In  the  above  human-like  lane-changing  trajectory  planning
research,  the  basic  technical  route  is  data  collection  to  style
classification and stylized trajectory planning. With respect to the
classification  level  of  the  degree  of  personalization,  this  technical
route presents  a  lower level  of  personalization.  Although it  could
reflect  the  style  of  human  drivers  to  a  certain  extent,  it  shows
results  in  style  attributes  that  fall  under  the  typical  segmentation
classification  method,  i.e.,  a  lower  level  of  personalization  (Sun,
2020).  The  individual  scenarios  belonging  to  the  edge  of
classification are significantly different from those belonging to the
classification center. In addition, Zhang et al. (2021) demonstrated
that there are individual scenarios differences in the requirements
for  autonomous  driving.  A  classified  and  stylized  technical  route
could  not  satisfy  the  unique  requirements  of  all  individual
scenarios.

In  order  to  improve  the  level  of  personalization  of  autonomy
and thus mitigate the potential conflict between the driver and the
automatic  systems  at  the  planning  level,  this  paper  proposes  a
highly  human-like  lane-changing  trajectory  planning  algorithm.
The  logic  block  diagram  of  the  proposed  algorithm  is  shown  in
Fig.  1.  Firstly,  the  lane-changing  features  of  human  drivers  are
analyzed with the collection of  natural  lane-changing data.  Then,
based  on  the  selected  lane-changing  features,  the  quintic
polynomial  is  introduced to  generate  trajectory  clusters  based on
the  minimum  fluctuation  lane-changing  objective.  Furthermore,
the human-like lane-changing trajectory takes full consideration of
the  dynamic  stability  performance  of  the  vehicle,  driving  cost
optimization,  and collision avoidance.  The main contributions of
this paper could be concluded as follows:

1) At the macro level, a quintic polynomial trajectory planning
algorithm based on a single independent variable is  developed in
conjunction  with  historical  lane-changing  driving  data  obtained
from  human  drivers.  The  lane-changing  features  and  trajectory
expressions then can be directly combined. In contrast to machine
classification  algorithms,  it  could  be  adapted  to  different  human
drivers with higher accuracy through normal distribution analysis.
In  the  HMSD,  it  shows  great  benefits  in  mitigating  human-
machine  conflict,  thus  improving  the  vehicle  safety  in  dangerous
situation for potential confrontation.

2)  The  optimal  search  algorithm  is  conducted  before  the
collision  avoidance  detection,  reducing  the  computation  time  of
the  algorithm.  In  addition,  a  new  convex  polygon  collision
detection  method  is  proposed  for  collision  avoidance  detection,

namely the vertex embedding method,  which demonstrates great
efficiency in  vehicle  collision avoidance in  real  time using simple
geometry theory.

3)  In  terms  of  application  scenarios,  the  method  could  be
applied to the field of human driver trajectory prediction because
the  planned  trajectory  highly  matches  the  human  driver  lane-
changing  trajectory  clusters.  Therefore,  it  would  be  beneficial  for
the further development of intelligent transportation systems with
mixed traffic participants.

This work is  organized as follows:  Section 2 establishes a lane-
changing  trajectory  algorithm  based  on  the  Frenet  coordinate
system (FCS) with a quintic polynomial.  In Section 3, we use the
extended  driving  simulator  to  collect  the  lane-changing  data  of
human drivers and analyze the lane-changing features. In Section 4,
human-like  lane-changing  trajectory  obtained  by  stability  search,
optimal search, and collision avoidance detection. In Section 5, the
planning  algorithm  and  the  confidence  level  of  lane-changing
trajectory  with  human  drivers  are  verified,  and  the  trajectory
tracking  co-simulation  is  implemented  in  Simulink/CarSim.  In
Section  6,  the  planned  human-like  lane-changing  trajectory  is
employed  for  the  HMSD  experiments  through  a  driving
simulator. And Section 7 includes the conclusions.

2    FCS-based  lane-changing  trajectory  planning
with quintic polynomial
In order to provide a basic lane-changing trajectory algorithm for
a human-like lane-changing strategy, this section develops a lane-
changing  trajectory  algorithm  based  on  the  longitudinal  and
lateral quintic polynomials of the FCS (Werling et al., 2012; Zheng
et al., 2020).

The geodetic coordinate system (GCS) is used by most existing
vehicle positioning equipments (Yang,  2009; Vigue,  1992).  In the
GCS,  due  north  and  due  west  are  taken  as  coordinate  axes.
Although  the  coordinate  system  is  fixed  and  easy  to  obtain,  it
poses  an  inconvenience  to  the  application  of  local  trajectory
planning.  This  is  because  the  local  trajectory  planning  of  non-
linear  roads  involves  considering  the  effect  of  road  curvature  on
the expression of  the trajectory function.  The FCS takes the road
center line as the abscissa and the normal direction perpendicular
to the road center line as  the ordinate.  The FCS could transform
the curve into straight lines, eliminating the above inconvenience.
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Fig. 1    Logic block diagram of the highly human-like lane-changing trajectory planning algorithm.
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2.1    Longitudinal derivation in FCS
During the process of lane-changing, the human drivers typically
want  to  minimize  the  fluctuation  of  lateral  and  longitudinal
motion  as  much  as  possible  to  guarantee  the  stability  of  the
moving process. Therefore, longitudinal acceleration is regarded as
the  fluctuation  in  longitudinal  motion,  and  the  performance
indicators are developed to minimize longitudinal fluctuation:

min
js(t)

w te

ts
j2s (t)dt (1)

s.t.
ṡ(t) = vs(t)

s̈(t) = v̇s(t)

ȧs(t) = js(t)

s(ts) = 0, s(te) = se
vs(ts) = vss, vs(te) = vse
as(ts) = ass, as(te) = ase

where js is the longitudinal jerk; s is the longitudinal displacement;
se is the longitudinal displacement at the end of lane-changing; vs,
vss,  and vse are  the  longitudinal  velocity,  the  start  and  end
longitudinal  velocity  of  lane-changing,  respectively; ass and ase are
the longitudinal acceleration at the start and end of lane-changing,
respectively; ts and te are the start and end time of lane-changing,
respectively.  In  order  to  solve  the  longitudinal  trajectory,  the
Hamiltonian function in Eq. (2) is developed:

Hs =
1
2 j

2
s + λs1 ṡ+ λs2 s̈+ λs3js (2)

ṡ s̈
where λs1, λs2,  and λs3 are the Lagrangian operators corresponding
to ,  , and js, respectively. According to the Pontryagin’s minimum
principle  (PMP)  (Kim  et  al.,  2011),  the  Hamiltonian  function
satisfies the in Eqs. (3)–(6) constraints:

λ̇s1 = −∂Hs

∂s = 0 ⇒ λs1 = cs1 (3)

λ̇s2 = −∂Hs

∂vs
= −λs1 ⇒ λs2 = −cs1t+ cs2 (4)

λ̇s3 = −∂Hs

∂as
= −λs2 ⇒ λs3 =

1
2 cs1t

2 − cs2t+ cs3 (5)

0 =
∂Hs

∂js
= js + λs3 ⇒ js = −λs3 = − 1

2 cs1t
2 + cs2t− cs3 (6)

According  to  the  longitudinal  jerk,  the  longitudinal
acceleration,  longitudinal  velocity,  and  longitudinal  displacement
could be derived by

s̈(t) = − 1
6 cs1t

3 +
1
2 cs2t

2 − cs3t+ cs4 (7)

ṡ(t) = − 1
24 cs1t

4 +
1
6 cs2t

3 − 1
2 cs3t

2 + cs4t+ cs5 (8)

s(t) = − 1
120 cs1t

5 +
1
24 cs2t

4 − 1
6 cs3t

3 +
1
2 cs4t

2 + cs5t+ cs6 (9)

where csi is  the  longitudinal  quintic  polynomial  coefficient.
Assuming  that  the  initial  longitudinal  displacement,  longitudinal
velocity, and longitudinal acceleration are known, the longitudinal

quintic polynomial coefficients can be obtained:

cs1 = 60[6te(vse + vss)− 12se − (ase − ass)t2e]/t5e (10)

cs2 = 12[(14vse + 16vss)te − 30se − (2ase − 3ass)t2e]/t4e (11)

cs3 = 3[(8vse + 12vss)te − 20se − (ase − 3ass)t2e]/t3e (12)

cs4 = ass (13)

cs5 = vss (14)

cs6 = 0 (15)

cs1 = 720(tevs − se)/t5e cs2 = 360(vste − se)/t4e cs3 = 60(vste−
se)/t3e cs4 = 0 cs5 = vs cs6 = 0

se = tevs

In  order  to  minimize  the  fluctuation  in  longitudinal
acceleration  as  much  as  possible,  the  vehicle  velocity  at  the
beginning and end of lane-changing is generally unchanged, there
are , , 

, , , .  In addition, in order to keep the
longitudinal  fluctuation  as  lower  as  possible,  it  is  necessary  to
reduce  the  longitudinal  fluctuation,  set .  In  this  case,  the
longitudinal trajectory is

s(t) = vst (16)

It could be seen from Eq. (16) that the longitudinal trajectory is
mainly determined by the longitudinal velocity and lane-changing
time.

2.2    Lateral derivation in FCS
Referring  to  the  longitudinal  trajectory  planning  process,  the
lateral trajectory planning results could be obtained:

l(t) = 6det5/t5e − 15det4/t5e + 10det3/t5e (17)

where de is  the  lateral  displacement  at  the  end  of  lane-changing,
the standard lane-changing lateral distance of 3.75 m according to
the  common  standards  of  Chinese  roads.  Equation  (17)  shows
that  the  lane-changing  time  and  lateral  displacement  mainly
determine the lateral trajectory.

A  two-dimensional  trajectory  could  be  synthesized  after
obtaining  the  longitudinal  and  lateral  trajectory.  From  Eqs.  (16)
and (17), the lateral displacement of the lane-changing trajectory is
generally  fixed,  and  the  vehicle  velocity  is  also  fixed  when
minimizing the longitudinal  jerk.  So only the lane-changing time
is left as the only lane-changing trajectory parameter.

3    Data acquisition and analysis  of  natural  lane-
changing data for trajectory planning
The information about  human drivers  should  be  added after  the
basic  lane-changing  trajectory  algorithm has  been  completed.  To
calculate the lane-changing trajectory more like the driving habits
of  human  drivers  from  the  planning  level,  the  driving  habits  of
human  drivers  should  be  collected.  This  paper  uses  an  extended
driving simulator to develop a scenario straight lane for a free lane-
changing  test  in  order  to  collect  the  lane-changing  features  of
human  drivers  for  trajectory  planning.  Compared  to  driving  in
real  traffic,  the  extended  driving  simulator  test  does  not  fully
simulate  the  driving  experience,  but  still  reflects  the  driving
features  of  different  drivers.  In  addition,  the  extended  driving
simulator test is more cost-effective and has a shorter development
cycle  without  violating the  test  principles  and design theory.  The
objective of this paper is to verify the feasibility of the principle of
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the technical route. Many technical routes in the engineering field
need  to  be  tuned  to  practical  applications.  The  results  of  the
extended  driving  simulator  test  are  therefore  considered  to  be
credible.

Lane-changing  maneuvers  are  divided  into  free  lane-changing
and  forced  lane-changing.  Forced  lane-changing  often  occurs  in
scenarios  where  the  vehicle  has  to  change  lanes  due  to  traffic
conditions, such as overtaking when the vehicle in front has a slow
velocity,  and  the  target  lane  has  a  small  manoeuvrable  area,  or
turning to avoid an obstacle that suddenly appears in the lane. The
process  of  free  lane-changing  mostly  occurs  in  urban  scenarios
with  small  traffic  flow  to  ensure  lane  requirements,  or  in  urban
viaducts  and  highways  with  long  vehicle  spacing.  The  main
difference  between  the  two  lies  in  the  operable  time  of  lane-
changing  and  the  operable  road  section.  Free  lane  change  could
cover most lane-changing scenarios.

In  practice,  intelligent  vehicles  equipped  with  high-precision
positioning  equipment  are  collected,  recorded,  and  processed  to
obtain a data set of driving features of lane-changing trajectory at
different  mean  velocity  bands.  The  data  set  is  continuously
updated through rolling calculations with a fixed-length window.
Other  data  acquisition  and  analysis  steps  are  identical  to  this
section.

3.1    Experiment setup

The  extended  driving  simulator  used  in  this  paper  is  shown  in
Fig.  2.  The  extended  driving  simulator  adopts  the  dSPACE 1106
series  controller  and  Simulink/CarSim  real-time  simulation
platform.  A  2  km  long  dual  straight  lane  and  random  traffic
vehicles were set in CarSim software, and 20 human drivers were
recruited  to  change  lanes  freely  at  a  constant  velocity  (Vx)  of
[10  m∙s–1,  30  m∙s–1]  with  5  m/s  intervals.  The  mean  age  of  20
human drivers was 24, and their driving years ranged from 1 to 7.

3.2    Lane-changing data analysis
In the 2 km long double straight lane, human drivers were asked
many times to intercept the left and right lanes. In this paper, the
collected  20  drivers’ data  were  used  for  lane-changing  trajectory
interception  and  lane-changing  feature  analysis,  respectively.  The
human  drivers  A  and  B’s  data  were  randomly  selected  for
presentation,  analysis,  and  design  due  to  the  limitation  of  article
length.  The lane-changing trajectories  of  human drivers  A and B
in  five-velocity  clusters  are  shown in Fig.  3.  Then the  features  of
lane-changing  data  were  analyzed:  the  mean lane-changing  time,
the  maximum  slope  of  lane-changing  trajectory,  etc.  The  main
lane-changing features of human drivers A and B in five-velocity
clusters are shown in Fig. 4.

In Fig. 3, the lane-changing trajectories of human drivers A and
B form respective trajectory clusters. In addition, with the increase
in  vehicle  velocity,  the  lane-changing  longitudinal  distance
increases. Fig.  4 shows  that:  (1)  with  the  increase  in  vehicle
velocity, the mean lane-changing times, and the maximum slopes
of  lane-changing  trajectories  of  human  drivers  A  and  B  show  a
decreasing trend; (2) at the same velocity, the lane-changing times,
and the maximum slopes of  lane-changing trajectories  of  human
drivers A and B show a fluctuating pattern with a certain value as
the center, respectively.

Ztu ∼ N(μtu, σ
2
tu)

According  to  the  law  shown  in Fig.  4,  the  multiple  lane-
changing  of  a  human  driver  at  a  given  velocity  is  regarded  as  a
normally  distributed  process.  Then  the  distribution  of  lane-
changing  times  satisfies .  Where μtu is  the  mean
lane-changing time for vehicle velocity u and σtu is the variance of
the lane-changing times at vehicle velocity u. The mean value and
variance  of  the  lane-changing  time  and  the  maximum  slopes  of
lane-changing trajectories at different velocities could be obtained
in Table 1.

The features of human drivers A and B at different velocities are
different: human driver B takes longer to change lanes than A, and
the maximum slopes of changing lanes are smaller.  It  shows that
human driver B is more cautious than A.
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According to the above features,  the vehicle velocity is  used as
the abscissa to fit, and then the features in the whole velocity range
are  deduced.  The  fitting  features  corresponding  to  the  whole
velocity range are shown in Fig. 5.

4    Highly  human-like  lane-changing  trajectory
planning based on human driver features
In this section, the basic trajectory clusters based on the collected
information  of  human drivers  and  the  mean lane-changing  time
are generated and perform constrained optimization solving. The
highly  human-like  lane-changing  trajectory  could  be  obtained
through  trajectory  synthesis  and  coordinate  system
transformation,  trajectory  stability  search,  optimal  trajectory
search, and collision avoidance detection.

4.1    Trajectory  synthesis  and  coordinate  system
transformation
Based  on  the  minimization  fluctuation-based  lane-changing
trajectory  expression derived  in  Section 2  and the  analysis  of  the
influencing factors, the expression of the lane-changing trajectory
at  a  fixed  velocity  is  simplified  to  a  function  with  the  lane-
changing  time  as  the  only  independent  variable.  The  theoretical
idea  of  human-like  lane-changing  trajectory  is  proposed  in  this
paper:  based  on  the  collected  lane-changing  time  features  of
drivers,  a  fixed  spacing  search  is  conducted  to  generate  a  set  of
trajectory  clusters,  and  then  the  final  human-like  lane-changing
trajectory is obtained by using objective function optimization.

In  this  paper,  based  on  the  collected  lane-changing  data  of  a
particular driver, we generated trajectory clusters at fixed intervals
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Table 1    Lane-changing features of human drivers A and B

Driver Feature 10 m∙s–1 15 m∙s–1 20 m∙s–1 25 m∙s–1 30 m∙s–1

A
Mean time 5.4 s 4.3 s 3.4 s 3.1 s 3.0 s
Variance 0.6 s2 0.4 s2 0.3 s2 0.2 s2 0.2 s2

Mean maximum slope 0.1212 0.0957 0.0864 0.0722 0.0691

B
Mean time 7.72 s 5.57 s 5.49 s 4.59 s 4.69 s
Variance 0.59 s2 0.56 s2 0.39 s2 0.35 s2 0.54 s2

Mean maximum slope 0.0939 0.0886 0.0807 0.0619 0.0525
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based on the mean lane-changing time of that human driver as the
center  and  a  range  of  positive  and  negative  5  times  the  lane-
changing time as the range. That is, the range of lane change times
for  the  trajectory  clusters  is  [μtu – 5σtu, μtu +  5σtu].  Although  the
normal distribution already has a 99% probability sum for a range
of  positive  and  negative  2.58  times  the  standard  deviation,  the
range  of  positive  and  negative  5  times  the  standard  deviation  is
still  chosen  in  this  paper  considering  planning  completeness.  In
the absence of special circumstances, the lane-changing features of
a given single human driver at a given velocity are stable. Even if
extreme conditions occur in practice,  the influence of  outliers  on
the  collected  information  would  be  reduced  due  to  the
continuously updated historical lane-changing data. Therefore, the
trajectory  cluster  is  nearly  stable.  In  a  specific  scenario,  the
coordinate  system  is  converted  to  GCS.  The  lane-changing
features of  selected human drivers  A and B at  five sets  of  vehicle
velocities are shown in Fig. 4.

The main factors affecting the number of trajectories generated
and  the  calculation  time  in  this  session  are  the  variances  of
historical  lane-changing  time  and  the  fixed  spacing  step  size.
When the variance of historical lane-changing time is large, more
trajectories  are  generated.  When  the  spacing  step  size  is  smaller,
more  trajectories  are  generated.  However,  a  larger  number  of
trajectories  means  that  the  trajectories  are  closer  to  being
complete.

In this section, to balance the contradiction between calculation
time  and  completeness,  clusters  of  trajectories  in  the  FCS  are
generated  for  natural  drivers  A  and  B  at  vehicle  velocities  of  10
and  15  m∙s–1,  respectively,  with  lane-changing  interval  of  0.2  s

(Fig.  6).  A  circular  road  in  CarSim  software  is  selected  as  the
planning  scenario  and  intercepted  the  center  line  of  a  section  of
road  for  coordinate  system  transformation,  as  shown  in Fig.  7.
The route includes curves and straight lines of varying curvature,
which  is  a  typical  suburban  route.  Two  planning  scenarios  are
selected. The first part is the curve with moderate curvature, which
corresponds  to  the  lane-changing  operation  on  the  road  with
curvature  in  a  real  scenario.  The  second part  is  the  straight  lane,
which  corresponds  to  the  free  lane-changing  or  forced  lane-
changing on the expressway or motorway in the real scenario. The
planning scenario and conversion trajectory clusters are shown in
Fig. 7.

Fig.  7(b)  is  converted  from Fig.  6(a)  and  contains  30
trajectories. Fig.  7(c)  is  converted  from Fig.  6(b)  and includes  21
trajectories. Fig.  7(d)  is  converted  from Fig.  6(c)  and includes  36
trajectories. Fig.  7(b)  is  converted  from Fig.  6(a)  and includes  26
trajectories.  The  generated  trajectories  would  be  used  for  search
optimization in later sections.

4.2    Trajectory stability search
Due  to  the  varying  distribution  of  lane-changing  time  and
differing actual road center lines of human drivers,  the generated
trajectory  clusters  may  contain  trajectories  not  conforming  to
vehicle  stability  requirements.  This  situation  is  typically  found  in
local  planning  algorithms  where  vehicle  kinematic  properties  are
not  taken  into  account.  Therefore,  the  number  of  current  search
rounds is increased to remove unstable trajectories and retain only
clusters that meet the stability requirements. On the one hand, the
reference  road  center  lines  have  different  curvatures,  leading  to
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extensively  obtaining  the  vehicle  dynamics  states  at  different
vehicle  velocities  and  trajectories  with  a  large  and  difficult
workload.  On  the  other  hand,  the  maximum  lateral  acceleration
limit method is selected to improve the operational efficiency and
to expand the application range of the stability search algorithms.
With  the  lateral  acceleration  of  0.4  g  as  the  limiting  instability
condition,  only  the  trajectory  with  the  maximum  lateral
acceleration of less than 0.4 g (Zhao et al.,  2019) could satisfy the
requirement of trajectory stability.

For  the  GCS  trajectories,  the  first-order  and  second-order
derivatives of the plan in the X and Y directions are fitted with S as
the  baseline,  respectively.  Then,  the  curvatures  of  the  trajectories
and  the  lateral  acceleration  of  the  trajectories  are  calculated
according to Eqs. (18) and (19):

ρ = (x′y′′ − y′x′′)/[(x′)2 + (y′)2] (18)

ây = v2xρ (19)

ây

x′ = dx/ds x′′ = d2x/ds2 y′ = dy/ds
y′′ = d2y/ds2

where ρ is the curvature;  is the theoretical lateral acceleration of
the  planned  trajectory. ; ; ;

.
The lateral accelerations corresponding to the trajectory clusters

of  human  drivers  A  and  B  in  the  scenarios  are  shown  in Fig.  8.
The  trajectories  with  the  maximum  lateral  acceleration  greater
than  0.4  g  are  deleted,  and  the  stable  trajectory  clusters  after
searching are shown in Fig. 9.

In Fig. 8, in the two scenarios of human driver A, the planned
trajectory  clusters  contain  trajectories  whose  maximum  lateral
accelerations  are  more  than  0.4  g.  Under  scenario  1,  three
trajectories exceed the 0.4 g stability threshold.  Under scenario 2,
one trajectory exceeds the 0.4 g stability threshold. Moreover, the
trajectories  that  exceed  the  stability  threshold  all  start  in  the
direction  of  the  shortest  lane-changing  time.  In  contrast,  all
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trajectories of human driver B satisfy the stability requirements in
both  scenarios.  The  reason  is  that  human  drivers  have  different
driving features and different needs for trajectories. It also proves
the necessity  for  FCS planning and the independent case of  each
human  driver.  Compared  with Fig.  7,  the  unstable  trajectories
have been eliminated in Fig. 9.

4.3    Optimal  trajectory  search  and  collision  avoidance
detection
For searching out the final  execution trajectory,  the cost function
of  each  trajectory  is  developed  after  the  stability  search,  and  the
trajectory  with  the  minimum  cost  is  selected  for  collision
avoidance  detection.  The  trajectory  passing  collision  avoidance
detection is the final optimal planned trajectory.

4.3.1    Optimal trajectory search

In  the  process  of  trajectory  planning  optimization  based  on
quintic polynomial, the cost function can be developed according
to the design requirements, and the trajectory with the minimum
search  cost  can  be  used  as  the  optimal  trajectory.  To  develop  a
lane-changing  trajectory  close  to  the  features  of  human  drivers,
this  paper  focuses  on  the  following  three  cost  indicators:
personalization  indicator,  smoothness  indicator,  and  lane-
changing efficiency indicator.

As  the  core  indicator  of  human-like  trajectory  planning,  the
rationality  of  its  establishment  would  greatly  determine  the
goodness  of  trajectories.  According  to  the  analysis  of  the  lane-
changing  trajectory  of  human  drivers,  the  features  of  human
drivers’ lane-changing  are  mainly  reflected  in  the  mean  lane-
changing  time  and  the  maximum  slopes  of  lane-changing
trajectories.  In  other  words,  if  the  mean  lane-changing  time  and
maximum slope of the planned trajectory could be closer to that of
the driver’s historical lane-changing trajectory cluster, it represents
that the planned trajectory can better match natural drivers’ lane-
changing  driving  habits.  Since  the  data  of  human  drivers’ lane-
changing are  collected on the  straight  road,  the  final  trajectory  is
affected  by  the  actual  road  center  line,  the  maximum slope  term
should  be  compared  in  FCS.  The  human-like  cost  is  set  to  two
items, namely, the proximity term of the lane-changing times and
the proximity term of the maximum slope of trajectories, and the
expression is

cjp_te = (tje − tdr)2/tdr (20)

cjp_s = (kjm − kam)2/kam (21)

cjp_te
tje

cjp_s
kjm

where  is the proximity cost of lane-changing time of the j-th
trajectory;  is  the lane-changing time of the j-th trajectory; tdr is
the  mean  lane-changing  time  of  human  drivers  at  the  current
velocity;  is the proximity cost of the maximum slope of the j-th
trajectory;  is  the  maximum  slope  of  the j-th  trajectory; kam is
the  mean  maximum  slope  of  human  drivers  at  the  current
velocity.

As  an  important  indicator  of  trajectory  planning,  the
smoothness  indicator  affects  the  ride  comfort.  The  trajectory
developed  in  this  paper  is  based  on  the  minimum  longitudinal
fluctuation,  so  the  longitudinal  fluctuation  cost  could  not  be
considered  when  developing  the  cost  function.  People  in  the
vehicle  are  more  sensitive  to  lateral  fluctuation,  so  the  lateral
stability  design  should  be  considered.  In  this  paper,  the  lateral
acceleration  is  designed  as  the  lateral  stability  feature,  and  the
objective  is  to  minimize  the  lateral  acceleration  of  the  planning

trajectory. The smoothness indicator expression is as Eq. (22):

cjs =
[

n∑
i=1

(âj
yi/4)2

]
/n (22)

cjs âj
yiwhere  is the lateral stability cost of the j-th trajectory;  is the

lateral  acceleration at  the i-th point of  the j-th trajectory; n is  the
planning point value.

The  lane-changing  efficiency  refers  to  the  time  from  the
beginning to the end of the lane change. Therefore, the shorter the
lane-changing time, the higher the lane-changing efficiency. In this
paper, the expression of the lane-changing efficiency indicator is as
Eq. (23):

cje = (tje/tme )2 (23)

cje
tme
where  is the lane-changing efficiency cost of the j-th trajectory,

 is  the  maximum  lane-changing  time,  and m is  the  sequence
number of the longest lane-changing time trajectory.

According  to  the  purpose  of  establishing  lane-changing
trajectory,  the  weights  of  the  above  four  cost  indicators  are
assigned.  In  order  to  reflect  the  human-like  degree  of  the
trajectory as much as possible, the subjective parameter method is
chosen  in  this  paper.  It  is  worth  noting  that  although  the
subjective  parameter  method  could  impose  limitations  to  the
application  of  the  algorithm,  it  satisfies  the  problem-solving
objective  of  this  paper.  Moreover,  the  results  of  the  subjective
parameter  method  are  more  satisfied  with  expectations.  The
weight of lane-changing time, wp_te, is set to 0.3, and the weight of
the maximum slope approach term, wp_s, is set to 0.2. The weight
of  smoothness  cost, ws,  is  0.3,  and  the  weight  of  lane-changing
efficiency  cost, we,  is  0.2.  It  is  necessary  to  emphasize  that  the
parameter  settings  depend  on  the  importance  that  the  designer
places on the different indicators.

The final cost function is as Eq. (24):

cj = [wp_te wp_s ws we][cjp_te cjp_s cjs cje]T (24)

where cj is the lane-changing cost of the j-th trajectory. According
to Eq. (24), the cost value of each trajectory is obtained, and then
the  minimum  cost  value  is  searched  as  the  optimal  planned
trajectory.

cj∗ = cjmin = min(cj) (25)

4.3.2    Optimal trajectory search

The  cost  function  could  not  be  developed  simply  as  a  particle
because the vehicle occupies a certain volume of space. However,
the  collision cost  term is  not  considered in  the  cost  function.  To
guarantee  the  absolute  safety  of  the  planned  trajectory,  it  is
necessary  to  perform  the  collision  avoidance  detection  on  the
optimal  trajectory  (Xue  et  al.,  2019).  If  the  collision  avoidance
detection is passed, the optimal trajectory is the final output of the
optimal  human-like  planned  trajectory.  On  the  contrary,  if
collision  avoidance  detection  fails,  it  is  necessary  to  remove  the
optimal trajectory from the original stable trajectory clusters. After
that, it will search for the optimal trajectory once again, and carry
out  the  collision  avoidance  detection  until  the  planned  trajectory
has completed the collision avoidance detection.

In  this  paper,  vehicles  and  obstacles  are  simplified  as  convex
rectangles  on  the  ground  plane.  Most  conventional  collision
detection methods for the feature points and their corresponding
motion vectors are mostly transplanted from the two-dimensional
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game  area  (Chae  et  al.,  2017).  The  main  methods  include  the
center  distance  detection  method,  projection  line  method,  and
vector  crossing  method.  However,  some  methods  are  not
applicable  to  the  collision  detection  of  convex  rectangles  with
angles,  and  others  have  complicated  calculation  processes,
resulting in huge calculation volumes. This paper proposes a new
collision  detection  algorithm,  the  vertex  embedding  method,
which is used for convex polygons. The principle of this method is
shown  in Fig.  10.  There  are  two  rectangles,  ABCD  and  EFGH.
The  four  vertices  of  rectangular  ABCD  and  rectangle  EFGH  are
connected in pairs to form 16-line segments. Each vertex has four
lines,  which form four angles  with the baseline.  If  a  vertex of  the
rectangle  ABCD  is  inside  the  rectangle  EFGH,  the  four  angles
formed by the vertex would be in four quadrants. On the contrary,
when  the  vertex  is  outside  another  rectangle,  the  four  angles
formed by the vertex are most in two quadrants.

Collision  detection  is  divided  into  dynamic  obstacle  detection
and static obstacle detection. In order to minimize the volume of
calculation,  the  distance  between  the  planned  trajectory  and  the
dynamic  obstacle  vehicle  is  determined  first,  and  collision
detection  is  carried  out  when  the  distance  between  them  is  less
than  a  certain  extent.  This  step  of  processing  would  reduce  the
operation time of the algorithm. For static obstacle detection, only
the  nearest  trajectory  point  is  detected.  The  convex  fitting  shape
and size of static and dynamic obstacles are determined based on
perceptual  information.  Table  2  shows  the  collision  detection

algorithm developed in this paper according to the principle of the
vertex embedding method.

where s_p*(t), l_p*(t), θ_p*(t),  and t_p* are  the  longitudinal,
lateral,  route,  and  time  points  of  the  optimal  trajectory  in  FCS,
respectively; s_dynamic_s, l_dynamic_s,  and vx_dynamic are  the
longitudinal starting point,  lateral starting point,  and longitudinal
velocity  of  the  dynamic  obstacle  in  FCS,  respectively; s_static_s,
l_static_s are  the  longitudinal  point  and  the  lateral  point  of  the
static  obstacle  in  FCS,  respectively; d_threshold is  the  distance
threshold  between  the  obstacle  and  the  vehicle; l_v,  w_v are  the
length  and  width  of  the  obstacle,  respectively; Trigger_collision is
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Fig. 10    Schematic diagram of vertex embedding method.

 

Table 2    Collision detection algorithm

Algorithm 1. The collision detection algorithm based on vertex embedding method
    Input: s_p*(t), l_p*(t), θ_p*(t), t_p*, s_dynamic_s, l_dynamic_s, vx_dynamic, s_static_s, l_static_s, d_threshold, l_v, w_v
        1. Predicting based on constant velocity:
            s_dynamic(t) = vx_dynamic×t_p*; l_dynamic(t) = l_dynamic_s;
        2. The deletion of dynamic obstacle distance and static obstacle distance:
       If (s_p*(t) - s_dynamic(t))2 + (l_p*(t) - l_dynamic(t))2 < d_threshold2

           Output t_d = t
       End
       If min((s_p*(t) - s_static_s)2 + (l_p*(t) - l_static_s)2) is true
           Output t_s = t
       End
        3. Calculating the vertices of vehicles and obstacles
        4. Calculating the angle of the vertex line:
       For i = 1:8
            θi(t_d) = function_calculating_angle(vertex_line_yi(t_d),
                            vertex_line_xi(t_d));
            θi(t_d) = function_calculating_angle(vertex_line_yi(t_s),
                            vertex_line_xi(t_s));
       End
        5. Calculating the difference between the maximum and minimum of the four angles of the vertex:
       For i = 1:8
            θmax_min_i(t_d) = max(θi(t_d)) - min(θi(t_d));
            θmax_min_i(t_s) = max(θi(t_s)) - min(θi(t_s));
    End
        6. Judging the collision result:
       If θmax_min_i(t_d) < π && θmax_min_i(t_s) < π
         Trigger_collision = 1;
       Else
         Trigger_collision = 0;
       End
    Output: Trigger_collision
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the  result  of  collision  detection  algorithm,  which  equals  to  1
means that the track does not collide, and equals to 0 means that
the trajectory would collide.

If Trigger_collision is  1,  the  optimal  trajectory  is  the  final
planned trajectory. Conversely, if Trigger_collision is 0, the optimal
trajectory  is  deleted  from  the  trajectory  clusters.  After  that,  the
optimal  trajectory  search  and  collision  avoidance  detection  are
performed  again  until  the  planned  trajectory  is  output  through
collision avoidance detection, and the cycle ends.

Finally,  the  planned  lane-changing  trajectory  must  satisfy  the
vehicle stability and collision safety constraints.

4.3.3    Summary of planning algorithm

When  the  safe  trajectory  clusters  do  not  satisfy  the  collision
avoidance  detection,  no  lane-changing  trajectory  would  be
generated.  At  this  point,  the  planning  layer  conflicts  with  the
decision  layer  and  requires  the  decision  layer  to  re-execute  the
confirmation.  As  the  logic  algorithm  of  the  decision  layer  is  not
covered  in  this  paper,  it  would  not  be  discussed.  When  the  lane
change trajectory is  not  generated,  the  vehicle  would continue to
travel along the original lane.

In  terms  of  the  trajectory  planning  process  in  this  paper,  the
optimization  objective  is  firstly  proposed  to  generate  the  basic
trajectory  clusters.  Subsequently,  the  trajectory  clusters  are
subjected to an optimization search and a constraint search. In this
paper,  the  optimization  constraint  process  proposed  is
decentralized.  This  process  of  optimal  trajectory  planning  is  the
same  as  the  one  proposed  by Zhou  et  al.  (2019).  However,  it  is
different  from the nonlinear  programming (NLP) problems with
uniform optimization constraints proposed by Li et al. (2020). The
discrete steps do not pose an NLP problem and make it easier to
know the specifics of the planning process.

According  to  the  human-like  means,  the  trajectory  planning
optimization  method  and  optimization  process  that  this  paper
focuses  on  is  summarized  in Table  3 to  compare  the  difference
between  the  lane-changing  trajectory  planning  algorithms
proposed.  It  is  worth  noting  that  the  optimization  method
mentioned in Table 3 refers to the optimization method adopted
for trajectory planning rather than improving a certain step.

Table  3 shows  that  this  paper  is  significantly  different  from
relevant  studies  in  the  comprehensive  treatment  of  human-like
means,  optimization  methods,  and  optimization  processes.  In
terms of human-like means, the statistical method is used to avoid
unexpected extremes, while keeping the algorithm process simple,
the  results  credible,  completeness,  and  interpretable.  In  terms  of
optimization methods and processes, the distributed optimization
search  first  and  the  subsequent  collision  avoidance  detection

structure would lower the calculation difficulty in principle.

5    Verification  of  trajectory  planning  and
tracking
In  this  section,  the  three  objectives  of  the  algorithm  are  verified
through  the  planning  procedure  and  tracking  procedure:  (1)  to
validate the execution of the algorithm, the planning results of the
planning algorithm under different vehicle velocities and scenarios
are  solved;  (2)  to  demonstrate  the  potential  of  the  human-like
planning  trajectory  in  the  field  of  trajectory  prediction  and  to
mitigate  the  potential  conflict  between  human  driver  and
automatic  system,  the  fitting  degree  of  the  planning  trajectory
relative to the lane-changing trajectory of human driver is verified;
(3) to verify the feasibility of the planned trajectory for the tracking
layer  of  intelligent  vehicle,  a  tracking  simulation  program  is
developed  to  track  and  verify  the  trajectory.  The  simulation
procedure  operated  on  a  desktop  computer  with  an  Intel  i5-
7300HQ CPU (2.5 GHz),  16.0 GB RAM, Microsoft  Windows 10
(64-bit), and MATLAB 2018a (64-bit).

5.1    Human-like trajectory planning with obstacles
In  order  to  verify  the  feasibility  of  the  algorithm,  a  dynamic
obstacle  vehicle  is  set  up  in  the  target  lane  with  the  starting
position of  (ss, de)  and the  velocity  of  0.4vs, while  a  static  obstacle
vehicle is set up in the starting lane with a position of (ss + 57.68,
0),  according  to  the  process  described  above.  The  static  and
dynamic obstacle vehicles are fitted into a rectangle with a length
of 2.9 m and a width of 2.5 m. In the above scenarios, the planned
trajectory is obtained, as shown in Fig. 11.

Figs.  11(a), 11(c), 11(e),  and 11(g) show the planned trajectory
of human drivers A and B for scenarios 1 and 2 at 10 and 15 m∙s–1

velocities, respectively. Figs. 11(b), 11(d), 11(f), and 11(h) place the
planned  trajectory  under  a  cluster  of  experimentally  collected
trajectories.  The  results  show  that  the  planned  trajectories  vary
between  drivers  at  different  vehicle  velocities  and  scenarios,  and
the  planned  trajectories  are  the  same  as  the  collected  trajectory
clusters. It is not significantly beyond the actual track clusters.

The planned lane-changing time of human drivers A and B for
scenarios  1  and  2  at  10  m∙s–1 and  15  m∙s–1 velocities  are  5.0257,
3.9971,  6.5551,  and  4.9434  s,  respectively.  The  differences  in  the
mean time of lane-changing collected from human drivers A and
B  are  0.3743,  0.3029,  1.1649,  and  0.6266  s,  with  the  relative
difference  of  6.9%,  7.04%,  15.09%,  11.25%,  respectively,.  The
planned results show that: (1) the performance of the algorithm is
high  in  terms  of  executability;  (2)  the  human-like  degree  of
planned  trajectory  is  high,  which  belongs  to  the  high-level

 

Table 3    Algorithm comparison

Ref. Human-like means Optimization method optimization process

This paper Based on the normal distribution features of historical lane
changing trajectory clusters; Quintic polynomial

Distributed optimization
search

Optimization search before
collision avoidance detection

Zhang et al. (2019) Single fitting based on a lane changing trajectory; Cubic polynomial Coincidence degree with
acquisition trajectory

No collision avoidance
detection

Wang et al. (2016) Single fitting based on a lane changing trajectory; Sine function None None

Zhu et al. (2018) Factor analysis, fuzzy c-means clustering and back-propagation
neural network for classification; Sine and cosine functions None None

Li et al. (2020) None
Nonlinear programming with
unified optimization
constraints

The optimization process
includes collision avoidance
constraints

Zhou et al. (2019) None Distributed optimization
search

Optimization search contains
collision avoidance items
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personalization.  (3)  the  planned  human-like  trajectory  is  the
highly fitting degree for the human driver’s trajectory change.

The total calculation time of the planners in the four cases was
0.321  s,  0.376  s,  0.381  s,  and  0.379  s,  respectively.  Since  the
planning  algorithm  in  this  paper  is  improved  and  applied  based
on  the  reference  (Zhou  et  al.,  2019),  this  paper  selects  the
calculation  time  in  this  reference  as  the  comparison  object.  The

calculation  time  of  the  three  scenarios  in Zhou  et  al.  (2019) is
0.687, 0.772, and 0.828 s, respectively. The calculation time of this
paper  is  44%–61%  faster  than  that  of  the  reference  (Zhou  et  al.,
2019).  The  improvement  in  completion  time  is  explained  by  the
fact  that  the  algorithm  only  calculates  the  collision  avoidance
detection  for  points  within  the  closest  range  of  the  optimal
trajectory from the obstacle, rather than searching for the optimal
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Fig. 11    (a) Planned trajectory of human driver A at 10 m∙s–1 in scenario 1; (b) planned trajectory and the lane-changing trajectory clusters of human driver A at 10 m∙s–1;
(c)  planned trajectory  of  human driver  A at  15  m∙s–1 in  scenario  2;  (d)  planned trajectory  and the  lane-changing trajectory  clusters  of  human driver  A at  15  m∙s–1;
(e)  planned  trajectory  of  human  driver  B  at  10  m∙s–1 in  scenario  1;  (f)  planned  trajectory  and  the  lane-changing  trajectory  clusters  of  human  driver  B  at  10  m∙s–1;
(g) planned trajectory of human driver B at 15 m∙s–1 in scenario 2; (h) planned trajectory and the lane-changing trajectory clusters of human driver B at 15 m∙s–1.
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trajectory from all the collision avoidance safety trajectories.

5.2    Function  verification  of  trajectory  prediction  based
on the historical information
The  high  fitting  of  human-like  trajectory  to  the  lane-changing
trajectory of human drivers provides strong potential for practical
applications: (1) it enables trajectory prediction based on historical
information; (2) it allows for the mitigation of potential trajectory
conflict  between  human  driver  and  automatic  system  at  the
planning  level.  First,  it  is  proposed  that  the  planned  human-like
trajectory  could  reflect  the  lane-changing  trajectory  to  a  certain
extent,  i.e.,  lane-changing  trajectory  prediction.  The  human-like
trajectory  could  be  broadcast  through  V2V  communication
equipment  in  the  intelligent  traffic  flow  (Wu  and  Qu,  2022).
Simultaneously,  the  trajectory  is  a  potential  lane-changing
trajectory  to  be  executed  by  the  primary  vehicle  for  the  other
vehicles that receive it. Secondly, when the planned lane-changing
trajectory is  close to the expected trajectory of  the human driver,
the  human  driver  could  further  reduce  the  additional  driving
burden caused by the human-machine trajectory conflict, and the
automatic system would obtain more reliable input, thus reducing
the interference with system control.

To  further  validate  the  confidence  level  of  the  planned
trajectory  relative  to  the  human  driver’s  lane-changing  trajectory
and  the  applicability  of  the  algorithm  to  other  human  drivers,  a
third human driver C was randomly selected from the remaining
18  human  drivers  for  planning  and  trajectory  prediction
verification in this section.

Figs. 12(a)–12(c) show the lane-changing trajectories and lane-
changing features of human driver C under five clusters of vehicle
velocities,  respectively. Figs.  12(d) and 12(e) show  the  planned
trajectories  of  human  driver  C  for  scenarios  1  and  2  at  10  and
15  m∙s–1 velocities,  respectively.  In Figs.  12(f) and 12(g),  the
planned  trajectories  are  placed  under  the  trajectory  clusters
collected  in  the  experiments.  The  results  in Figs.  12(f) and 12(g)
are  the  same as  those  in Figs.  11(b), 11(d), 11(f),  and 11(h).  The
lane-changing  time  of  human  driver  C  is  5.0046  and  4.1552  s,
respectively,  which  are  0.1114  and  0.0173  s  different  from  the
mean  lane-changing  time  collected  by  human  driver  C,  and  the
relative  differences  are  2.18% and  0.41%.  As  the  variances  of  the
mean lane-changing time of  human driver C are 0.57,  0.37,  0.36,
0.34,  and  0.20  s,  the  planned  trajectories  are  within  one-time
variance.  The planned trajectories  are  used to represent  the lane-
changing trajectory  to  be  executed by  the  primary  vehicle  with  a
high  degree  of  reliability.  This  is  a  fitting  method  based  on  the
historical information, and the planned trajectory could be highly
fitted  to  the  real  trajectory  clusters  and  thus  be  regarded  as  the
prediction result for the next lane-changing.

5.3    Trajectory  verification  based  on  single  view  angle
driver model
In  order  to  verify  the  feasibility  of  planned  trajectories  in  the
tracking control layer of intelligent vehicles, this paper develops a
single-view driver model  for trajectory tracking verification using
the  Simulink/CarSim  co-simulation  platform.  In  order  to  ensure
the  reliability  of  longitudinal  velocity  tracking,  the  longitudinal
velocity  is  simply controlled.  The main vehicle  parameters  in  the
procedure  are  shown  in Table  4,  and  the  results  are  shown  in
Fig. 13.

Fig. 13(a) shows the position error of six trajectories. The error
range of six trajectories is (0, 0.051 m), which is consistent with the
requirement  of  trajectory  tracking. Fig.  13(b) shows  the  lateral

acceleration of the six trajectories. The lateral acceleration range of
the six trajectories is (−0.28 g, 0.27 g), which does not exceed the
stability  constraint  of  0.4  g. Figs.  13(c) and 13(d) show  the
trajectories  of  human  drivers  A,  B,  and  C  at  10  and  15  m∙s–1,
respectively.  The  results  show  that  the  planned  trajectory  with
current driver personality features could meet the requirements of
vehicle execution under the condition of guaranteed stability and
absolute safety.

6    Human-machine  shared  driving  verification
of human-like trajectory planning
In order to validate the potential of the planned human-like lane-
changing  trajectory  to  reduce  human-machine  conflict  in  the
HMSD,  the  driving  simulator  shown  in Fig.  2 is  used  for  the
HMSD  driver-in-the-loop  test  in  this  section.  The  input  of  the
HMSD is the sum of the input of the human driver and machine,
the reference target of the steering system is the planned human-
like  lane-changing  trajectory,  and  the  controller  is  a  single  view
angle  driver  model.  The  workbench  is  operated  in  real-time  at
100 Hz.

Firstly,  in  order  to  provide  a  non-human-like  lane-changing
trajectory for comparison, the human-like indicator in Eq. (24) is
deleted,  leaving  only  the  lane-changing  efficiency  indicator  and
smoothness  indicator.  With  the  sum of  the  above  two indicators
as  the  target  income,  comparative  lane-changing  trajectories  are
generated  following  the  trajectory  planning  process  in Fig.  1.  In
order  to  eliminate  the  interference  of  road  curvature  on  the
experimental results, the two planned trajectories are transformed
to FCS, and the shared driving driver-in-the-loop experiments of
corresponding drivers are carried out, respectively. The testers are
informed in advance that the driving system is an HMSD system
and  that  the  automatic  steering  system  would  assist  in  the  lane-
changing.  The  testers  could  operate  and  input  as  his/her  own
needs.  20  human  drivers  have  participated  in  the  driver-in-the-
loop  test,  and  the  HMSD  results  of  human  drivers  A,  B,  and  C,
corresponding  to  Section  3.1,  are  selected  for  presentation  and
analysis.  After  the  experiments,  drivers’ shared  driving  subjective
feelings  are  interviewed  and  recorded  as  an  auxiliary  evaluation
indicator.  The  HMSD  results  of  drivers  A,  B,  and  C  at  10  or
15 m∙s–1 are shown in Fig. 14.

Fig.  14(a) shows  the  shared  driving  results  of  human  driver
A under the human-like lane-changing trajectory and non-human-
like  lane-changing  trajectory  proposed  in  this  paper.  When  the
human-like lane-changing trajectory is the target of the automatic
steering system, the shared driving trajectory conforms the target
trajectory.  The  shared  driving  trajectory  is  slightly  delayed  when
the  non-human-like  lane-changing  trajectory  is  the  target.
Fig.  14(b) shows  the  steering  input  angle  of  human  driver  A  in
two kinds of shared driving. When the human-like lane-changing
trajectory is the goal of the automatic steering system, the steering
input  angle  of  human  driver  A  is  in  the  same  direction  as  the
shared  driving  trajectory.  When  the  non-human-like  lane-
changing trajectory is the target, the steering input angle of human
driver  A is  in  the  same direction of  the  shared driving  trajectory
within 10 m in the early stage of the lane-changing. However, the
steering input angle of human driver A is opposite to the direction
of  the  shared  driving  trajectory  at  the  later  stage  of  the  lane-
changing. Fig.  14(c) shows  the  shared  driving  results  of  human
driver B under the human-like lane-changing trajectory and non-
human-like  lane-changing  trajectory  proposed  in  this  paper.
When the human-like lane-changing trajectory is the target of the
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automatic  steering  system,  the  shared  driving  trajectory  fits  the
target  trajectory.  When  the  non-human-like  lane-changing
trajectory  is  the  target,  the  shared driving trajectory  is  delayed to
the  human-like  lane-changing  trajectory  and  has  a  long  lane-
changing end adjustment stage. Fig. 14(d) shows the steering input

angle  of  human  driver  B  for  both  shared  driving  trajectories,
which behaves in the same way as Fig. 14(b).

Figs.  14(e) and 14(g) show  the  HMSD  trajectory  of  human
driver  C  at  10  and  15  m∙s–1,  respectively.  The  performance  of
Figs. 14(e) and 14(g) are similar to that of driver A and driver B in
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Fig. 12    (a) Intercepted lane-changing trajectory of human driver C at five clusters of vehicle velocities; (b) main lane-changing features of human driver C at five clusters
of vehicle velocities; (c) main feature values of human driver C corresponding to the whole velocity range; (d) the planned trajectory of human driver C at 10 m∙s–1 in
scenario 1; (e) the planned trajectory of human driver C at 15 m∙s–1 in scenario 2; (f) the planned trajectory and the lane-changing trajectory clusters of human driver C at
10 m∙s–1; (g) the planned trajectory and the lane-changing trajectory clusters of human driver C at 15 m∙s–1.
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Figs. 14(a) and 14(c). Figs. 14(g) and 14(h) show the steering angle
input  of  human  driver  C  at  10  and  15  m∙s–1,  respectively.  The
performance of Figs. 14(g) and 14(h) are similar to that of driver A
and driver B in Fig. 14(b) and 14(d).

The  results  of  shared  driving  trajectories  in Figs.  14(a), 14(c),
14(e), and 14(g) show that human drivers still adhere to their own
objectives in the process of shared driving lane-changing, and the
trajectories  are  reflected  as  a  more  human-like  lane-changing
trajectory.  The  steering  input  angle  of  the  human  driver  in
Figs. 14(b), 14(d), 14(f), and 14(h) indicate that the human driver
would  be  more  likely  to  accept  the  trajectory  like  their  own
objective  in  the  process  of  shared  driving  lane  change,  to  form
mutual  assistance  between  the  two  sides.  However,  when  the
objective of the automatic steering system is significantly different
from that of the human driver,  resulting in the discomfort of the
human  driver,  the  human  driver  chooses  the  reverse  input  to
offset the input of the automatic steering system. This would make
the  vehicle  trajectory  tend  to  the  psychological  expectations  of
human drivers. This process is the human-machine conflict stage.
Figs. 14(b), 14(d), 14(f), and 14(h) show that the human-like lane-
changing  trajectory  in  this  paper  could  reduce  the  occurrence  of
human-machine conflict.

The subjective driving experience of human driver A recorded
that in the shared driving test with the human-like lane-changing
trajectory,  the  lane-changing  performances  are  like  his  own
operation,  and  driver  A  could  feel  the  driving  assistance;  in  the
shared  driving  test  with  a  non-human-like  lane-changing
trajectory,  the  actual  lane-changing  operation  performs  urgently
which  would  increase  the  driver’s  driving  anxiety  under  the
driving  condition.  The  subjective  driving  experience  of  human
driver B recorded that in the shared driving test with a human-like
lane-changing  trajectory,  the  lane  change  operations  perform
closely;  in  the  shared  driving  test  with  a  non-human-like  lane-
changing  trajectory,  compared  with  the  previous  one,  the  actual
lane  change  operation  performs  faster.  The  subjective  driving
experience of human driver C recorded that in the shared driving
test  with  a  human-like  lane-changing  trajectory,  driver  C  could
feel  noticeable  driving  assistance  and  lower  steering  interference
on  driver  C’s  own  driving  operations;  in  the  shared  driving  test
with  a  non-human-like  lane-changing  trajectory,  compared  with
the  previous  one,  driver  C  could  feel  rapid  changes  in  vehicle
status  and  increased  driving  anxiety  during  multiple  tests.  In
addition,  driver  C  could  feel  the  irregular  torque  fluctuation
disturbance  from  the  EPS  system,  which  could  provide  more
interference in the driver’s manoeuvres.

Following  the  test,  the  test  drivers  are  asked  to  subjectively
choose  their  preferred  lane-changing  trajectory.  18  of  20  human
drivers  chose  the  human-like  lane-changing  trajectory,  and  the
remaining 2 of 20 indicated that both trajectories are acceptable.

The experimental results demonstrate that the human-like lane-
changing  trajectory  proposed  in  this  paper  greatly  benefits  in
mitigating  human-machine  conflict  in  the  HMSD  systems.  This
would further enhance the trust and acceptance of human drivers
to  the  HMSD  system,  reduce  the  possibility  of  human  drivers
competing  for  the  right  of  the  road  with  the  automatic  systems,
and thus improve the safety of the HMSD system.

 

Table 4    Simulation parameters

Symbol Interpretation Value (unit)
m Total mass 1,300 (kg)
IZ Moment of inertia 1,523 (kg·m2)
lf Front axle distance 1.5 (m)
lr Rear axle distance 1.275 (m)
i Steering ratio 16.7
T Model discretized step 0.001 (s)

cmax Coefficient 0.024
cmin Coefficient 0.015
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Fig. 13    (a) Position error of trajectory tracking; (b) lateral acceleration of trajectory tracking; (c) tracking trajectory of human driver A and B at 10 m∙s–1 in scenario 1;
(d) tracking trajectory of human driver A and B at 15 m∙s–1 in scenario 2.
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7    Conclusions
This  paper  proposes  a  human-like  lane-changing  trajectory
planning algorithm to mitigate the potential conflicts between the
human  drivers  and  the  automation  systems  from  the  path
planning  level  for  autonomous  driving  cars.  Firstly,  a  basic  lane-
changing trajectory algorithm based on the quintic polynomial in
the  FCS  is  developed.  Following  this,  naturalistic  driving  data  is
collected in order to bring the planned trajectory closer to human
behaviour,  and  based  on  which  some  lane-changing  features  are
selected  and  analyzed.  The  human-like  lane-changing  trajectory
considers  vehicle  dynamic  stability  performance,  driving  cost

optimization,  and  collision  avoidance.  Finally,  the  single  view
angle  driver  model  and  the  HMSD  driver-in-the-loop  test  verify
the proposed human-like trajectory tracking performance. Hence,
we can draw the following conclusions from this paper:

1)  The  proposed  vertex  embedding  collision  avoidance
algorithm  could  be  efficiently  employed  in  vehicle  trajectory
planning with collision detection and avoidance.

2)  The  proposed  lane-changing  trajectory  planning  algorithm
with  the  highest  degree  of  personalization  provides  a  cluster  of
lane-changing trajectories that are highly compatible with human
driving  behaviour,  and  thus  could  further  mitigate  the  potential
driving conflict between human driver and automation systems.

 

40 60 80 100 120 140 160 180
−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

98 106 114 122 130
2.8

3.2

3.6
(g)

40 60 80 100 120 140 160
−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

98 110 122 134

3.0
3.2
3.4
3.6

(c)

40 60 80 100 120 140
−80
−60
−40
−20

0
20
40
60
80

 H
um

an
 s

te
er

in
g 

an
gl

e 
(°

)

(b)

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

84 90 96 102108

3.0

3.4

3.8(a)

40 60 80 100 120 140 160 180
−120
−100
−80
−60
−40
−20

0
20
40
60
80

 H
um

an
 s

te
er

in
g 

an
gl

e 
(°

)

(d)

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

84 92 100 108

2.8

3.2

3.6

(e)

40 60 80 100 120 140
−80
−60
−40
−20

0
20
40
60
80

 H
um

an
 s

te
er

in
g 

an
gl

e 
(°

)
(f)

40 60 80 100 120 140 160 180
−80
−60
−40
−20

0
20
40
60
80

 H
um

an
 s

te
er

in
g 

an
gl

e 
(°

) Planned shared driving 1
Planned shared driving 2
Comparison 1
Comparison 2

Planned shared driving 1
Planned shared driving 2
Comparison 1
Comparison 2

Planned shared driving 1
Planned shared driving 2
Comparison 1
Comparison 2

Planned shared driving 1
Planned shared driving 2
Comparison 1
Comparison 2

(h)

X (m)

X (m)
40 60 80 100 120 140

X (m)

X (m)

X (m)
40 60 80 100 120 140

X (m)

X (m) X (m)

Y
 (m

)
Y

 (m
)

Y
 (m

)
Y

 (m
)

Planned shared driving 1
Planned shared driving 2

Comparison 1
Comparison 2

Planned Yr

Comparative Yr

Planned shared driving 1
Planned shared driving 2

Comparison 1
Comparison 2

Planned Yr

Comparative Yr

Planned shared driving 1
Planned shared driving 2

Comparison 1
Comparison 2

Planned Yr

Comparative Yr

Planned shared driving 1
Planned shared driving 2

Comparison 1
Comparison 2

Planned Yr

Comparative Yr

Fig. 14    (a)  Human A-machine shared driving trajectories  at  10 m∙s–1;  (b)  steering angle of  human A; (c)  human B-machine shared driving trajectories  at  15 m∙s–1;
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3) The proposed trajectory planning algorithm’s search method
could reduce the planned trajectory’s computation cost compared
with other search algorithms.

4)  The  planned  trajectory  which  highly  fits  the  real  lane-
changing  trajectory  clusters  could  be  further  employed  as  an
empirical human driver trajectory prediction result. The potential
application  of  the  proposed  algorithm could  be  further  extended
for the research in the human driver trajectory prediction area.

It  is  worth  noting  that  the  trajectory  planning  algorithm
proposed  in  this  paper  is  based  on  lane-changing  decisions  to
make  actions,  which  may  lead  to  no  solution  for  the  trajectory
planning  algorithm  if  the  decisions  are  faulty  in  terms  of
environmental  perception  or  velocity  mismatch  curvature.  The
lane-changing  trajectory  planning  algorithm  also  has  some
application  limitations  and  requires  information  on  historical
human  driver  behaviors.  However,  there  are  no  implications  for
the  application  of  this  algorithm in  the  areas  of  human-machine
conflict reduction and human-like driving assistance.

Acknowledgements
We  sincerely  thank  the  participants  of  our  user  study  for  their
testing  and  the  insightful  comments  they  provided.  This  work  is
supported by Open Fund of State Key Laboratory of Automobile
Simulation and Control of Jilin University (20201111).

Declaration of competing interest
Declaration of competing interest The authors have no competing
interests to declare that are relevant to the content of this article.

References 

 Ali, Y.,  Zheng,  Z.,  Haque,  M.  M.,  2021.  Modelling lane-changing execu-
tion  behaviour  in  a  connected  environment:  A  grouped  random
parameters with heterogeneity-in-means approach. Commun Trans-
port Res, 1, 100009.

 Cao, T., Xiang, Z. Y., Liu, J. L., 2015. Perception in disparity: An efficient
navigation framework for autonomous vehicles with stereo cameras.
IEEE Trans Intell Transp Syst, 16, 2935−2948.

 Chae, S.  H.,  Kang, M. C.,  Sun, J.  Y.,  Kim, B. S.,  Ko, S.  J.,  2017. Collision
detection method using image segmentation for the visually impaired.
IEEE Trans Consumer Electron, 63, 392−400.

 He,  X.,  Xu,  D.,  Zhao,  H.,  Moze,  M.,  Aioun,  F.,  Guillemard,  F.,  2018.  A
human-like trajectory  planning  method  by  learning  from  naturalis-
tic driving data. In: 2018 IEEE Intelligent Vehicles Symposium (IV).
June 26−30, 2018, Changshu, China. IEEE, 339–346.

 Huang,  C.,  Hang,  P.,  Hu,  Z.,  Lv,  C.,  2021.  Collision-probability-aware
human-machine  cooperative  planning  for  safe  automated  driving.
IEEE Trans Veh Technol, 70, 9752–9763.

 Kim, N., Cha, S., Peng, H., 2011. Optimal control of hybrid electric vehi-
cles based on Pontryagin’s  minimum principle.  IEEE Trans Control
Syst Technol, 19, 1279−1287.

 Kim,  W.,  Son,  Y.  S.,  Chung,  C.  C.,  2016.  Torque-overlay-based  robust
steering  wheel  angle  control  of  electrical  power  steering  for  a  lane-
keeping system of automated vehicles. IEEE Trans Veh Technol, 65,
4379−4392.

 Li, B., Acarman, T., Peng, X., Zhang, Y., Bian, X., Kong, Q., 2020. Maneu-
ver  planning  for  automatic  parking  with  safe  travel  corridors:  A
numerical  optimal  control  approach.  In:  2020  European  Control
Conference  (ECC).  May  12-15,  2020,  St.  Petersburg,  Russia.  IEEE,
1993–1998.

 Li, M., Song, X., Cao, H., Wang, J., Huang, Y., Hu, C., et al., 2019. Shared
control  with a novel  dynamic authority allocation strategy based on
game theory and driving safety field.  Mech Syst Signal Process,  124,
199−216.

 Na, X., Cole, D. J., 2013. Linear quadratic game and non-cooperative pre-
dictive  methods  for  potential  application  to  modelling  driver–AFS
interactive steering control. Veh Syst Dyn, 51, 165−198.

 Peng, T., Liu, X. L., Fang, R., Zhang, R. H., Pang, Y. W., et al., 2020. Lane-
change path  planning  and  control  method  for  self-driving  articu-
lated trucks. J Intell Connect Veh, 3, 49−66.

 Qi, X., Wu, G., Boriboonsomsin, K., Barth, M. J., 2017. Development and
evaluation of  an  evolutionary  algorithm-based  onLine  energy  man-
agement system for plug-in hybrid electric vehicles. IEEE Trans Intell
Transp Syst, 18, 2181−2191.

 Russell, H. E. B., Harbott, L. K., Nisky, I., Pan, S., Okamura, A. M., Gerdes,
J. C.,  2016.  Motor  learning  affects  car-to-driver  handover  in  auto-
mated vehicles. Sci Robot, 1, eaah5682.

 Sun,B., 2020. Research on human-like shared control considering driver's
driving  capability  and  style.  Ph.D.  Dissertation.  Changchun:  Jilin
University. (in Chinese)

 Tan, D., Liu, S., Li, R., Yang, K., 2019. Research status of behaviour deci-
sion-making  for  intelligent  vehicles.  Int  J  Veh Inf  Commun Syst,  4,
279.

 Vigue, Y., Lichten, S. M., Blewitt, G., Heflin, M. B., Malla, R. P., 1992. Pre-
cise  determination  of  Earth’s  center  of  mass  using  measurements
from the global positioning system. Geophys Res Lett, 19, 1487−1490.

 Wang, J., Zhang, Q., Zhang, Z., Yan, X., 2016. Structured trajectory plan-
ning of  collision-free  lane  change  using  the  vehicle-driver  integra-
tion data. Sci China Technol Sci, 59, 825−831.

 Werling, M., Kammel, S.,  Ziegler, J.,  Gröll,  L.,  2012. Optimal trajectories
for time-critical street scenarios using discretized terminal manifolds.
Int J Robotics Res, 31, 346−359.

 Wu, J., Qu, X., 2022. Intersection control with connected and automated
vehicles: A review. J Intell Connect Veh, 5, 260−269.

 Xue,  W.,  Zheng,  R.,  Yang,  B.,  Wang,  Z.,  Kaizuka,  T.,  Nakano,  K.,  2019.
An adaptive  model  predictive  approach  for  automated  vehicle  con-
trol  in  fallback  procedure  based  on  virtual  vehicle  scheme.  J  Intell
Connect Veh, 2, 67−77.

 Xu, S., Peng, H., 2019. Design, analysis, and experiments of preview path
tracking control  for  autonomous vehicles.  IEEE Trans Intell  Transp
Syst, 21, 48−58.

 Xu, S., Peng, H., Tang, Y., 2020. Preview path tracking control with delay
compensation  for  autonomous  vehicles.  IEEE  Trans  Intell  Transp
Syst, 22, 2979−2989.

 Yan,  C.,  Xie,  H.,  Yang,  D.,  Yin,  J.,  Zhang,  Y.,  Dai,  Q.,  2018.  Supervised
hash coding with deep neural network for environment perception of
intelligent vehicles. IEEE Trans Intell Transp Syst, 19, 284−295.

 Yang,  Y.,  2009.  Chinese  geodetic  coordinate  system  2000.  Sci  Bull,  54,
2714−2721.

 Yuan, Y.,  Zhang, J.,  2020. A novel initiative braking system with nonde-
graded fallback level for ADAS and autonomous driving. IEEE Trans
Ind Electron, 67, 4360−4370.

 Zhang, C., Chu, D., Lyu, N., Wu, C., 2019. Trajectory planning and track-
ing for autonomous vehicle considering human driver personality. In:
2019  3rd  Conference  on  Vehicle  Control  and  Intelligence  (CVCI).
September 21−22, 2019, Hefei, China. IEEE, 1–6.

  Zhang, Q., Yang, X. J., Robert, L. P. Jr., 2021. Individual differences and
expectations of automated vehicles. Int J Human–Computer Interact,
38, 825−836.

 Zhao, B., Xu, N., Chen, H., Guo, K., Huang, Y., 2019. Stability control of
electric vehicles with in-wheel motors by considering tire slip energy.
Mech Syst Signal Process, 118, 340−359.

 Zheng, H., Zhou, J., Shao, Q., Wang, Y., 2019. Investigation of a longitu-
dinal and  lateral  lane-changing  motion  planning  model  for  intelli-
gent  vehicles  in  dynamical  driving  environments.  IEEE  Access,  7,
44783−44802.

 Zheng, L.,  Zeng,  P.,  Yang,  W.,  Li,  Y.,  Zhan, Z.,  2020.  Bézier curve-based
trajectory planning for autonomous vehicles with collision avoidance.
IET Intell Transp Syst, 14, 1882−1891.

 Zhou, J., Zheng, H., Wang, J., Wang, Y., Zhang, B., Shao, Q., 2019a. Mul-
tiobjective  optimization  of  lane-changing  strategy  for  intelligent
vehicles in complex driving environments. IEEE Trans Veh Technol,
69, 1291−1308.

 Zhou, Y., Cholette, M. E., Bhaskar, A., Chung, E., 2019b. Optimal vehicle
trajectory planning with control constraints and recursive implemen-
tation  for  automated  on-ramp  merging.  IEEE  Trans  Intell  Transp
Syst, 20, 3409−3420.

 Zhu, B., Yan, S., Zhao, J., Deng, W., 2018. Personalized lane-change assis-
tance  system  with  driver  behavior  identification.  IEEE  Trans  Veh
Technol, 67, 10293−10306.

62 Dai Changhua, Zong Changfu, Zhang Dong, et al.

J Intell Connect Veh 2023, 6(1): 46−63
 



 
 

Changhua  Dai received  the  B.S.  degree  from
Jilin University, Changchun, China, in 2018. He
is  currently  a  Ph.D.  student  at  the  School  of
Automotive  Engineering,  Jilin  University,
China. His  research  interests  include  automo-
tive dynamics simulation and control.

 

Changfu  Zong received  the  B.S.  degree  from
Liaoning  University  of  Technology,  Jinzhou,
China, in 1986, the M.E. degree from Jilin Uni-
versity  of  Technology,  Changchun,  China,  in
1994, and  the  Ph.D.  degree  from  Jilin  Univer-
sity of Technology, Changchun, China, in 1998.
He is currently a Professor at the State Key Lab-
oratory of Automotive Simulation and Control,
Jilin  University,  Changchun.  He  has  been  an
Academic Visitor  at  the  University  of  Cam-
bridge, UK, in 2005 and Senior Academic Visi-
tor  at  the  University  of  California,  Berkeley,
USA, in  2013.  He  has  published  over  200  arti-
cles. His research interests include vehicle con-
trol  stability,  new  energy  vehicle,  intelligent
networked  vehicle  control,  and  autonomous
vehicle control.

 

Dong  Zhang received  the  M.Sc.  degree  from
Jilin  University,  Changchun,  China,  in  2015,
and the  Ph.D.  degree  from  University  of  Lin-
coln,  Lincoln,  UK,  in  2019.  He  is  currently  a
Lecturer  in the Department of  Mechanical  and
Aerospace Engineering, Brunel University Lon-
don, UK. He joined Brunel in 2021, having pre-
viously  spent  one  year  as  a  research  fellow  in
the School  of  Mechanical  and Aerospace Engi-
neering and  the  School  of  Electrical  and  Elec-
tronic  Engineering  at  Nanyang  Technological
University, Singapore. He has been with Brunel
University  since  September  2021  and  founded
the  Intelligent  Driving  and  Transportation
Research  Group.  He  has  published  more  than
30  articles  in  international  journals  as  well  as
numerous  conference  articles,  and  about  10
granted patents mostly in the area of intelligent
driving  and  transportation  control  and  active
safety systems for road vehicles.

 

Gang  Li received  the  M.Sc.  degree  in  vehicle
engineering from Liaoning University of Tech-
nology,  Jinzhou, China,  in 2006,  and the Ph.D.
degree from Jilin University, Changchun, China,
in 2013. He is currently a Professor and Dean of
the School of Automobile and Traffic Engineer-
ing,  Liaoning  University  of  Technology,
Jinzhou,  China.  He  has  authored  or  co-
authored more than 50 journal  and conference
papers, and  owns  30  China  patents  and  soft-
ware  copyrights.  His  current  research  interests
include modelling,  simulation,  intelligent  con-
trol of vehicles, and vehicle active safety.

 

Kaku Chuyo received the M.Sc. degree in auto-
motive  engineering  from  Jilin  University,
Changchun,  China,  in  1988  and  the  Ph.D.
degree  in  mechanical  engineering  from  Tokyo
Institute of Technology, Tokyo, Japan, in 1998.
He  is  currently  working  for  Jiangsu  Chaoli
Electric  Co.,  Ltd.,  as  Head  of  Chian  as  well  as
being the Director of the Technical Center and
Chief Technical Manager.  He was an Associate
Professor  at  the  Department  of  Automotive
Engineering,  Harbin  Institute  of  Technology,
Harbin,  China,  from  1988  to  2005.  From  1998
to  2016,  he  had  worked  in  engineering  field  at
Hino  Motor  Co.,  Ltd.,  Siemens  Automotive
Japan, Toyota Motor Co., Ltd., Bosch Japan. He
has been working on the chassis dynamics con-
trol  projects  over  30  years,  and  achieved  more
than 20 paper publications and patent certifica-
tions.

 

Hongyu  Zheng received  the  B.S.  degree  in
mechanical  engineering  and  automation  and
the  Ph.D.  degree  in  vehicle  engineering  from
Jilin  University,  Changchun,  China,  in  2003
and  2009,  respectively.  From  October  2017  to
October  2018,  he  was  a  Visiting  Research
Scholar  at  the  Department  of  Mechanical  and
Aerospace Engineering, The Ohio State Univer-
sity,  Columbus,  OH,  USA.  He  is  currently  a
Professor at  the  State  Key  Laboratory  of  Auto-
motive Simulation and Control, Jilin University.
His research interests include vehicle dynamics
and  control  as  well  as  control  of  autonomous
vehicles.

 

Fei Gao received the B.S.  and Ph.D. degrees in
automotive  engineering  from  Jilin  University,
Changchun, China,  in  2011  and  2017,  respec-
tively.  From  2014  to  2015,  she  was  a  Visiting
Scholar in Berkeley, California, USA. She is cur-
rently  an  Associate  Professor  at  the  State  Key
Laboratory of Automotive Simulation and Con-
trol Automotive Engineering in Jilin University
and  holds  4  patents.  Her  research  interests
include  automotive  human  engineering  and
motion sickness.

Human-like lane-changing trajectory planning algorithm for human–machine conflict mitigation 63

https://doi.org/10.26599/JICV.2023.9210004
 


