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Abstract— This paper investigates the joint optimization of
transmit parameters and receive filter in a Frequency Diverse
Array (FDA)-Multiple-Input Multiple-Output (MIMO) radar
system with a uniform frequency increment from sensor to
sensor. The problem is formulated as the maximization of the
Signal-to-Interference-plus-Noise Ratio (SINR) at the output of
the receive filter in a signal-dependent clutter environment,
taking into account some practical constraints on the probing
waveform and frequency increment. To tackle the resulting
non-convex and NP-hard optimization problem, a Minorization-
Maximization (MM)-Maximum Block Improvement (MBI)
algorithm is developed, which iteratively updates the variables
block that yields the maximum increase of the objective function
while keeping the others fixed. The convergence properties of the
proposed algorithm are rigorously studied, and the computational
complexity is analyzed. Numerical results demonstrate the
effectiveness of the designed procedure under several clutter
scenarios of practical relevance, including proper comparisons
with counterparts.

Index Terms— FDA-MIMO radar, frequency optimization,
waveform design, signal-dependent clutter, MM-MBI, KKT
condition.

I. INTRODUCTION

NOWADAYS, radar systems are experiencing a revolu-
tionary transformation through tailored waveform design,

a powerful tool that paved the way to remarkable performance
enhancement in challenging operating conditions characterized
by signal-dependent clutter environments [1], [2]. In the
open literature, the optimization of the output Signal-to-
Interference-plus-Noise Ratio (SINR) at the receive filter
stands out as the main goal, and it is usually tackled by
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exploiting some possible a priori knowledge of the target and
environment [3], [4]. However, fulfilling this task demands
overcoming some challenges, in terms of constraints in the
optimization process, stemming from practical requirements
and limitations. The most interesting include constant modulus
code, the use of discrete phase alphabet, limits to the Peak-to-
Average-power Ratio (PAR), finite energy, and total transmit
power, as well as guaranteeing waveform similarity with a
particular reference signal [5], [6], [7], [8], [9], [10]. Given that
the resulting design demands generally the solution of a non-
convex and NP-hard optimization problem, several approaches
have been successfully employed to yield high-quality
waveforms synthesis. These methods include Majorization-
Minimization (MM) [11], Cyclic Algorithms (CA) [12],
[13], Alternating Direction Method of Multipliers (ADMM)
[14], [15], successive Quadratically Constrained Quadratic
Programming (QCQP) refinement [9], and Coordinate Descent
(CD) paradigms [16], [17].

While the majority of works in the open literature have
predominantly concentrated on waveform design with phased
arrays and/or MIMO systems, leveraging the spatial degrees
of freedom (DOF) available for interference suppression and
improved detection performance, it is important to note that
there has been a growing interest in Frequency Diverse Arrays
(FDA) and FDA-MIMO systems [18], [19], [20], [21], [22].
As a matter of fact, capitalizing on the range-angle-dependent
beampattern characteristic of this type of transceivers, several
applications have been proposed in the open literature, such as
the adaptive target detection [19], multi-dimensional parameter
estimation [23], mainlobe deceptive jammer suppression [24],
range-ambiguous clutter suppression [25], as well as Synthetic
Aperture Radar (SAR) imaging [26]. Notably, the carrier
frequency of each transmit element represents an additional
Degrees-Of-Freedom (DOF) of these sensing systems, which
could be suitably optimized to further improve the radar
performance [27], [28], [29]. In [30], the joint transmit and
receive weights optimization for a coherent FDA system is
proposed to maximize the power toward the desired two-
dimensional range-angle cell. The target localization problem
for a possibly cognitive FDA radar is addressed in [31]
by optimizing the transmit signal parameters. In [32], the
transmit beamspace and receive filter of an FDA-MIMO
radar are optimized to maximize the SINR at the radar
receiver end. Moreover, in the context of moving target
detection, a cognitive design of transmitter and receive filter
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for an FDA-MIMO radar is investigated in [33]. An optimal
FDA-MIMO frequency design scheme is proposed in [34]
to improve the localization estimation accuracy, exploiting
prior knowledge on potential target locations. However, the
joint optimization of both the frequency increment, radar
code, and receiver filter has only received a limited attention.
Noteworthy, in [35], the FDA-MIMO radar parameters
are optimized considering arbitrary frequency increments
(unstructured case). However, the situation of equal frequency
increment (structured case) represents an architecture of
greater practical relevance. This is due to its relatively simple
implementation, as it demands only a single oscillator and
a sequence of frequency multipliers, in contrast to a more
general case requiring multiple oscillators, which are not
only more costly but also pose synchronization and phase
noise challenges. Given these guidelines, this work develops
a joint design strategy of both the transmit parameters (i.e.,
the frequency increment/radar code) and the receive filter
in an FDA-MIMO radar, aimed at improving the SINR at
the receiver end, thereby boosting the detection performance.
To this end, proper knowledge of the signal-dependent clutter
statistics, provided by (possibly dynamically updated) site
specific environmental databases, is suitably exploited to
accurately model the received signal at the Cell Under
Test (CUT). Thus, the optimization problem is formulated
by maximizing the SINR w.r.t. the transmitter and receiver
parameters. Furthermore, to endow practical appealing to
the design, constraints on the energy of the code and its
similarity with a bespoke probing waveform, along with
limitations on frequency increment that account for the
available radar bandwidth, have also been carefully included
in the optimization process [4], [35]. Within this context,
a tailored Minorization-Maximization (MM)-Maximum Block
Improvement (MBI) procedure [35] has been devised to
address the NP-hard non-convex optimization problem at hand.
Consequently, the main contributions of this paper can be
summarized as follows.

• After modeling the signal from the CUT as the
superposition of target echo, clutter samples, and thermal
noise, a SINR optimization problem is formulated
capitalizing on a priori knowledge on the clutter statistics
and including the aforementioned constraints on the
frequency increment and radar code.

• A MM-MBI solution strategy is devised to tackle the
optimization problem by iteratively optimizing each
variables block. In particular, at each iteration, three
subproblems w.r.t. the receive filter, radar code, and
frequency increment (keeping the other variable fixed),
are either optimally solved exploiting hidden convexities,
or handled resorting to the MM paradigm (for the
frequency increment optimization). Then, only the block
yielding the maximum increase of the output SINR is
updated, until reaching a steady condition.

• The convergence properties of the devised algorithm are
rigorously studied. Precisely, any cluster point of the
sequence generated by the procedure satisfies the Karush-
Kuhn-Tucker (KKT) conditions for the problem [36].

This is also complemented with a thoroughly discussion
on the computational complexity of the method.

• Numerical results are illustrated to assess the capability of
the devised transceiver optimization process under diverse
clutter scenarios of practical relevance, where appropriate
comparisons among the alternating optimization (AO)
procedure, the MM-MBI in [35], and other simpler MBI-
based optimization strategies (also considering the MIMO
configuration) are included to highlight the effectiveness
of the proposed strategy.

The paper is organized as follows. In Section II, the signal
model of FDA-MIMO radar (under the uniform frequency
increment constraint) in the presence of signal-dependent
clutter is introduced. In Section III, the problem of joint
transmitter and receiver optimization is formulated, and the
MM-MBI algorithm is proposed to tackle the constrained
optimization problem. In addition, the convergence properties
and the computational complexity of the devised strategy
are thoroughly discussed. Numerical results are presented in
Section IV, whereas conclusions and possible future research
avenues are provided in Section V.

A. Notations

Boldface is used for vectors a (lower case), and matrices
A (upper case). The (k, l)-entry (or l-entry) of a generic
matrix A (or vector a) is indicated as A(k, l) (or al). I and
0 denote respectively the identity matrix and the matrix with
zero entries (their size is determined from the context). The
all-ones column vector of size N is denoted by 1N , whereas ek

denotes the k-th column vector of I , whose size is determined
from the context. Additionally, diag(x) indicates the diagonal
matrix whose i-th diagonal element is x(i). The transpose and
the conjugate transpose operators are denoted by the symbols
(·)T and (·)†, respectively. ⊙, and ⊗ represent the Hadamard
(element-wise) product, and Kronecker product, respectively.
RN and CN are respectively the sets of N -dimensional column
vectors of real and complex numbers. The letter j refers to
the imaginary unit (i.e., j =

√
−1). For any complex number

x , |x | indicates the modulus of x and Re{x} denotes its real
part. Moreover, for any x ∈ CN , ∥x∥ denotes the Euclidean
norm. E[·] denotes the statistical expectation. Furthermore, for
any x, y ∈ R, max(x, y) returns the maximum between the
two arguments. Finally, for any optimization problem P , υ(P)

represents its optimal value.

II. SYSTEM MODEL OF LINEAR FDA-MIMO RADAR

Let us consider an FDA-MIMO system comprising two
subarrays with M transmit and N receive antenna elements,
respectively, arranged in a Uniform Linear Array (ULA)
configuration (as depicted in Fig.1). Considering the frequency
of each transmit element linearly increasing from a reference
carrier f0 with step 1 f , the actual carrier frequency of the
m-th (m = 1, . . . , M) transmit element is given by

fm = f0 + (m − 1)1 f. (1)

Assuming that the array elements transmit orthogonal
waveforms, a common code sequence (referred to as a radar
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TABLE I
DEFINITIONS OF THE MODEL PARAMETERS

Fig. 1. Geometry of the FDA and range-azimuth bins contributing to the
return from the CUT.

code) of length P ≥ 3, i.e., c = [c1, c2, . . . , cP ]
T
∈ CP , is used

to modulate the fast-time transmitted signals.
At the receiver end, the impinging signals undergo down-

conversion, matched filtering, and sampling to produce a
P M N -dimensional vector v∈ CP M N that represents the fast-
time observations from the range-azimuth CUT. In the
presence of a target in the far field with an azimuth angle
of θ0 and a distance of R0 from the receiver, the received
signal resulting from the CUT can be modeled as [4]

v = zS + zC + n, (2)

where (see Table I for the model parameters definition)
• zS = α0c ⊗ s(θ0, 1τ,1 f )∈ CP M N denotes the vector of

the samples from the target echo, with s(θ0, 1τ,1 f ) =

d(θ0) ⊗
[
a(θ0) ⊙ b(1τ, 1 f )

]
∈ CM N the joint transmit-

receive steering vector [23] with
– d(θ0) =

[
1, e j2π d

λ0
sin(θ0), · · · , e j2π d

λ0
(N−1) sin(θ0)

]T
∈

CN the angle-dependent receive steering vector;

– a(θ0) =

[
1, e j2π d

λ0
sin(θ0), · · · , e j2π d

λ0
(M−1) sin(θ0)

]T
∈

CM the angle-dependent transmit steering vector;
– b(1τ, 1 f ) =

[
1, e j2π1τ1 f , . . . , e j2π1τ(M−1)1 f

]T
∈

CM the range-dependent transmit steering vector;
• zC

=

L−1∑
l=−L+1

I−1∑
i=0

K∑
k=1

βl,i,k J l c ⊗ s(θi , 1τk, 1 f )∈ CP M N

(3)

contains the filtered clutter samples from the range-
azimuth bins adjacent to the CUT (as depicted in
Fig. 1), which is the superposition of the returns from
different uncorrelated scatterers,1 with J l ∈ RP×P the
binary shift matrix with ones only on its l-th (l = 0,

±1, ±2, . . . ,±(P − 1)) diagonal (l indicates the range
ring), and zeros elsewhere, i.e.,

J l(p, q) =

{
1, p − q = l
0, elsewhere,

(p, q) ∈ {1, . . . , P}
2, (4)

with J0 = I . As a result, the covariance matrix of zC is
given by

6c(c, 1 f ) = E[zC z†
C]

=

P−1∑
l=−P+1

I−1∑
i=0

K∑
k=1

σ 2
l,i,k0̄l(c, θi , 1τk, 1 f )

∈ CP M N×P M N , (5)

with 0̄l(c, θi , 1τk, 1 f ) ∈ CP M N×P M N given by

0̄l(c, θi , 1τk, 1 f )

=

(
J l cc† J†

l

)
⊗

(
s(θi , 1τk, 1 f )s†(θi , 1τk, 1 f )

)
; (6)

• n∈ CP M N represents the thermal noise contribution,
modeled as a zero-mean, complex, circularly symmetric,
random vector, i.e., E[n] = 0, with covariance matrix
E[nn†

] = σ 2
n I and noise power level σ 2

n assumed,
without loss of generality, equal to 0 dB.

Before concluding this section, it is worth mentioning that
the model could also be extended to account for the presence
of stand-off noise-like jammers, via a signal-independent
covariance term (generally non-diagonal), as well as the case
of self-screening deception jamming interferences, where each
return resembles that of a clutter patch.

III. JOINT TRANSMIT AND RECEIVE
FILTER DESIGN PROBLEM

In this section, a method for jointly optimizing the FDA-
MIMO radar DOFs (radar code/frequency increment) and
receive filter is proposed. Specifically, by processing the
collected signal v using the weight vector w ∈ CP M N , the

1The amplitude returns of the clutter scatterers are modeled as
independent complex, zero-mean, circularly symmetric, random variables with
E[|βl,i,k |

2
] = σ 2

l,i,k . Moreover, βl,i,k = 0 ∀k when l = 0 and i = 0.
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SINR (normalized with respect to (w.r.t.) |α0|
2) downstream

the receive filter is given by

SINR(w, c, 1 f ) =
|w†(c ⊗ s(θ0, 1τ,1 f ))|2

w†6c(c, 1 f )w + σ 2
n ∥w∥2 . (7)

Now, aimed at maximizing (7), the following transceiver
design problem is formulated, i.e.,

P:



max
c,w,1 f

SINR(w, c, 1 f )

s.t. 0 ≤ (M − 1)1 f ≤ Bw

∥c∥2
= 1

∥c − c0∥
2

≤ δ

∥w∥
2

= 1,

(8)

which accounts for several constraints2 on the optimizing
parameters stemming from physical limitations and desirable
behaviors:

• frequency increment constraint: given the available radar
bandwidth Bw, the frequency increment should satisfy:

0 ≤ (M − 1)1 f ≤ Bw, (9)

where Bw denotes the available radar bandwidth for the
total carrier offset and Bw + Bc the overall single-side
radar bandwidth with Bc the sub-pulse bandwidth;

• code constraints: to comply with the radar power budget,
the energy constraint is forced on the radar code to
account for the finite energy transmitted by the system,
which is tantamount to forcing

∥c∥2
= 1. (10)

In addition, to bestow some desirable attributes to the
radar probing code, a similarity constraint is imposed on
the transmitted sequence, i.e.,

∥c − c0∥
2

≤ δ, (11)

where 0 < δ < 2 rules the size of the similarity
region, and c0∈ CP represents a reference code (∥c0∥ =

1), which possesses some desired features from the
radar performance point of view (as for instance limited
amplitude variation among the elements).

It is now worth noting that obtaining the global optimal
solution to P is generally a difficult task for which
analytic closed-form solution could not be available. More
specifically, since P is a non-convex and NP-hard optimization
problem, the development of a reduced-complexity (practically
implementable) sub-optimal solution strategy holding some
optimality features is demanded. This motivates the design
of the proposed MM-MBI optimization algorithm [5], [37],
[38], [39], capable of providing good-quality solutions
with affordable computational complexity. Precisely, at each
iteration, the method locally optimizes (possibly using the
MM paradigm) each variables block, i.e., frequency increment,
radar code, or filter, and evaluate the corresponding SINR
increment. Then, it updates only the variables block yielding
the maximum increment and proceeds with the next iteration,

2Being the objective function scale invariant, without loss of generality, the
unit norm constraint on the filter vector can be added.

until reaching convergence. In order to formally describe the
procedure, let us introduce the vector y collecting all the
optimization variables, i.e.,

y =
[
wT, cT, 1 f

]T
∈ CP M N+P+1, (12)

which is partitioned into 3 blocks given by y1, y2, y3, with
y1 = w ∈ CP M N , y2 = c ∈ CP , and y3 = 1 f corresponding
to the receive filter, radar code, and frequency increment to
be optimized, respectively. Moreover, the optimization vector
obtained at the n-th iteration is denoted by

yn
=

[
w(n)T, c(n)T, 1 f (n)

]T
. (13)

As previously mentioned, the procedure demands the
optimization of each variables block at time, while keeping
the others fixed [37]. Formally, at each iteration, it requires
the solutions to the following subproblems (or appropriate
surrogate variants):

P1 f (n) :

 max
1 f

SINR
(
w(n−1), c(n−1), 1 f

)
s.t. 0 ≤ (M − 1)1 f ≤ Bw,

(14)

Pc(n) :


max

c
SINR

(
w(n−1), c, 1 f (n−1)

)
s.t. ∥c∥2

= 1
∥c − c0∥

2
≤ δ,

(15)

and

Pw(n) :

{
max

w
SINR

(
w, c(n−1), 1 f (n−1),

)
s.t. ∥w∥

2
= 1.

(16)

Then, based on the output value of (14)-(16), the MBI rule
updates the variable yielding the maximum SINR.

From an analytical point of view, 1 f (n), c(n), and w(n) are
suitable feasible points (either optimal or bespoke sub-optimal)
to the sub-problems P1 f (n) , Pc(n) , and Pw(n) , respectively.

A solution strategy to solve P1 f (n) is presented in
Subsection III-A by means of the MM approach. As to
Problems Pc(n) and Pw(n) , since they are hidden convex, an
optimal solution to Pc(n) can be found in polynomial-time [4]
(see Subsection III-B), whereas an optimal solution to problem
Pw(n) is available in closed form (see Section III-C).

A. Frequency Increment Optimization

In this subsection, the frequency increment 1 f is optimized
given the receive filter and the radar code. Before proceeding
further, it is important to highlight that the main difference
with [35] lies in the frequency optimization stage. In particular,
the optimization strategy in [35] involves M sub-problems,
related to the unstructured frequency increment of each
array element. In contrast, the scenario of equal frequency
increments (1) is here considered. Consequently, for a given
code and filter, only the frequency increment 1 f must
be optimized. To proceed further, the following Lemma is
introduced, which provides an alternative expression of the
objective SINR in (7).
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Lemma 1: An equivalent expression of the objective
function in (14) is

SINR
(
w(n−1), c(n−1), 1 f

)
=

b†
0(1 f )W

(
w(n−1), c(n−1)

)
b0(1 f )

K∑
k=1

b†
k(1 f )6k

(
w(n−1), c(n−1)

)
bk(1 f ) + σ 2

n ∥w(n−1)∥2

,

(17)

where

b0(1 f ) = b(1τ, 1 f ), bk(1 f ) = b(1τk, 1 f )

(18)

W
(
w(n−1), c(n−1)

)
= H†w(n−1)w(n−1)† H ∈ CM×M (19)

with

H = c(n−1)
⊗ d(θ0) ⊗ diag(a(θ0)) ∈ CP M N×M , (20)

whereas

6k
(
w(n−1), c(n−1)

)
=

P−1∑
l=−P+1

I−1∑
i=0

σ 2
l,i,kŵl,i ŵ

†
l,i ∈ CM×M (21)

with

ŵl,i =
(

J l c(n−1)
⊗ d(θi ) ⊗ diag(a(θi ))

)†
w(n−1)

∈ CM . (22)

Proof: The proof follows the same line of reasoning as in
[35, Appendix A], using the range-dependent steering vector
b(1τ, 1 f ) (structured case) in lieu of b(1τ, 1̃ f m) for the
unstructured architecture.

In order to tackle the sub-problem at hand, a MM
approach is developed, whereby an appropriate tight minorant
to the objective function at hand (constructed according to
Proposition 1) is optimized to generate an updated solution.

Proposition 1: A tight minorant (surrogate) to the objective
function in P1 f (n) is given by

ŜINRa
(
1 f |1 f (n−1), w(n−1), c(n−1)

)
= X (n−1)1 f 2

+
˙̂X (n−1)1 f +

˙̄X (n−1), (23)

with the specific definitions of X (n−1), ˙̂X (n−1), and ˙̄X (n−1)

reported in Appendix A.
Proof: The interested reader may refer to Appendix A.

By leveraging Proposition 1, at the n-th iteration, the
devised MM-MBI procedure demands solving

Py(n)
3

:

{
max

y3
ŜINRa

(
y3|y

(n−1)
3 , w(n−1), c(n−1)

)
s.t. y3 ∈ 9

, (24)

where the feasible set 9 is given by

9 = {x : 0 ≤ x ≤ Bw/(M − 1)}. (25)

That said, a feasible solution to (24) is provided by the
following proposition.

Proposition 2: The optimal solution to Py(n)
3

is

ŷ3 = max(min(ỹ3, Bw/(M − 1)), 0) (26)

with

ỹ3 = −

˙̂X (n−1)

2X (n−1)
. (27)

Proof: See Appendix B.
Hence, starting from 1 f (n−1), w(n−1), and c(n−1), the

optimization of y3 can be accomplished according to (26).

B. Radar Code Optimization

In this subsection, the radar code is optimized considering
the frequency increment 1 f and the receive filter as fixed
parameters, set to the values at the previous iteration. First
of all, using the following lemma, an equivalent form of the
objective function in (15) is obtained.

Lemma 2: An equivalent expression of the objective
function in (15) is

SINR
(
w(n−1), c, 1 f (n−1)

)
=

c†2
(
w(n−1), 1 f (n−1)

)
c

c† M
(
w(n−1), 1 f (n−1)

)
c
. (28)

where
• 2(w(n−1), 1 f (n−1)) = S†w(n−1)w(n−1)† S ∈ CP×P with

S = I P ⊗ s(θ0, 1τ,1 f (n−1)) ∈ CP M N×P ;
• M(w(n−1), 1 f (n−1)) = 8(w(n−1), 1 f (n−1)) +

σ 2
n I ∈ CP×P with 8(w(n−1), 1 f (n−1)) =
P−1∑

l=−P+1

I−1∑
i=0

K∑
k=1

σ 2
l,i,k J†

l S̄†
i,kw

(n−1)w(n−1)† S̄i,k J l ∈ CP×P

and S̄i,k = I P ⊗ s(θi , 1τk, 1 f (n−1)) ∈ CP M N×P .
Proof: The proof follows the Appendix D in [35], where

the single increment 1 f is considered in lieu of the vector of
frequencies 1 f .

In this regard, the problem Pc(n) is recast as

P y(n)
2

:


max

y2

SINR
(

y(n−1)
1 , y2, y(n−1)

3

)
s.t. ∥ y2∥

2
= 1

∥ y2 − c0∥
2

≤ δ

, (29)

which is a fractional quadratic optimization problem, whose
optimal solution is denoted in the following as ŷ2.

The solution technique employed to solve (29) is
detailed in [35], which demands solving a relaxed SDP
problem (dropping the rank-one constraint) and then
computing the radar code accounting for the performed
Charnes and Cooper’s transformation and specific rank-one
decompositions [4], [40], [41].

C. Receive Filter Optimization

By considering the transmitter parameters fixed at their
values at the current iteration, the filter (here denoted by the
variable y1) at the n-th iteration can be updated by solving
the following optimization problem

P y(n)
1

:

{
max

y1

SINR( y1, y(n−1)
2 , y(n−1)

3 )

s.t. ∥ y1∥
2

= 1
. (30)

The optimal solution to P y(n)
1

is obtained according to [4]

and [42], and it is given in (31), as shown at the bottom of
the next page.

D. Joint Transmit and Receive Optimization Procedure

The joint transmit and receive optimization process is
summarized in Algorithm 1, where a suitable initialization
of the radar code and the frequency increment, i.e., y(0)

2 = c0,
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Algorithm 1 Joint Transmit and Receive Optimization With
MM-MBI
Input: M , σ 2

l,i,k , c0, δ, Bw, σ 2
n , N1.

Output: y⋆.
Initialization:

• Set n = 0;
• Set y(0)

1 as the RHS of (31) with y(n−1)
2 = y(0)

2 and
y(n−1)

3 = y(0)
3 ;

• Set y(0)
2 = c0;

• Set y(0)
3 = Bw/(M − 1);

• Define y(0)
=

[
y(0)T

1 , y(0)T
2 , y(0)

3

]T
;

• Evaluate χ( y(0));
repeat

3. n = n + 1;
4. for h = 1, 2, 3, let ν

(n)
h and ŷh be, respectively, the

optimal value and an optimal solution to P y(n)
h

;
5. Compute k⋆

= arg max
k=1,2,3

ν
(n)
k ;

6. Let y(n)
h = y(n−1)

h for all h ̸= k⋆ and y(n)
k⋆ = ŷk⋆

7. Define y(n)
=

[
y(n)T

1 , y(n)T
2 , y(n)

3

]T
;

8. Compute χ( y(n));
until |χ( y(n)) − χ( y(n−1))| < ε1.
Output y⋆

= y(n).

y(0)
3 = Bw/(M −1), is employed to compute the optimal filter

y(0)
1 . Therefore, the process to update the frequency increment,

radar code, and receive filter, could be iteratively repeated for
a desired number of iterations N1 > 0 or when reaching a
convergence condition, e.g.,∣∣χ(

y(n)
)
− χ

(
y(n−1)

)∣∣ < ε1,

where ε1 > 0 is the user-defined threshold, and χ( y(n)) is the

objective function (7) evaluated at y(n)
=

[
y(n)T

1 , y(n)T
2 , y(n)

3

]T
.

A schematic representation of the proposed joint transmit-
receive optimization procedure is reported Fig. 2, where
the clutter statistics are provided by (possibly dynamically
updated) site specific environmental databases, such as
Geographical Information System (GIS), digital terrain
maps, meteorological information, and clutter models [4].
Remarkably, accurate and timely clutter information is crucial
for maximizing the actual SINR at the receiver end by
designing bespoke filter (receiver side), radar code and
frequency increment (transmitter side).

As a matter of fact, the devised framework could be easily
conceived as part of a general cognitive process where a
perception stage, i.e., a continuous sensing of the environment
(to extract clutter statistics) is iteratively alternated to the
system action, i.e., where the radar transmits a fast-time signal
that maximizes the actual SINR. Precisely, this is achieved by

Fig. 2. Block diagram of the transmit-receive optimization procedure.

modulating the signal with the optimized radar code and using
the FDA-MIMO tuned to the computed frequency increment.
Given the memory access latency and the computation time
of the cognitive algorithm, it is necessary to know the status
of the surveilled region after a time interval 1t (look-ahead
processing paradigm). Moreover, if 1t is greater than the
memory access latency and the processing time, the cognitive
system is physically implementable [43], [44].

As to the convergence analysis, some relevant properties of
the optimization problem P and Algorithm 1 are summarized
in Proposition 3.

Proposition 3: The optimization problem P enjoys the
following properties:

• The objective χ( y) is a continuous function and the
feasible set is compact. Thus, according to the Weierstrass
theorem, P is solvable, i.e., there exists at least a global
maximum point of SINR(w, c, 1 f ); as a consequence
χ( y(n)) ≤ υ(P);

• The objective χ( y(n)) is monotonically increasing and
converges to a finite value χ ⋆. Moreover, for any cluster
point y⋆ of y(n), χ( y⋆) = χ ⋆;

• Any cluster point y⋆ satisfies the KKT conditions for
Problem P .

Proof: See Appendix C.
It is worth noting that Problem P can be also handled

by resorting to the AO framework [37]. Following this
approach, an optimization algorithm for the joint transmit
and receiver design could be obtained, whose main difference
with Algorithm 1 is the update rule. In particular, the
MBI approach demands the optimization of each variables
block and the update at each iteration corresponds to the
variables block yielding the maximum SINR improvement;
conversely, with the AO framework, each variables block is
cyclically optimized at each iteration. Notably, this AO process

ŷ1 =
(6c( y(n−1)

2 , y3
(n−1)) + σ 2

n I)−1( y(n−1)
2 ⊗ s(θ0, 1τ, y3

(n−1)))√
( y(n−1)

2 ⊗ s(θ0, 1τ, y3
(n−1)))†(6c( y(n−1)

2 , y3
(n−1)) + σ 2

n I)−2( y(n−1)
2 ⊗ s(θ0, 1τ, y3

(n−1)))

, (31)
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enjoys the same properties as the first and second items of
Proposition 3. However, the KKT condition cannot be ensured
(in general) for any cluster point y⋆.

Before concluding this section, the computational com-
plexity of Algorithm 1 is investigated. In particular, the
evaluation of the optimized frequency increment (step 4), radar
code (step 5), and receive filter (step 5), are detailed in the
following.

• Computing the optimal solution to the Problem Py(n)
3

demands O(K I P M2), due to the computation of the K
matrices 6k

(
w(n−1), c(n−1)

)
.

• To update the radar code, it is first necessary to solve
the SDP problem P̂ y(n)

2
, which requires O(P3.5log(1/η))

operations, with η a predefined accuracy [4], [45]. This
step will also yield the optimal value to the corresponding
problem. Then, the synthesis of the code via the rank-one
decomposition demands O(P3) [41].

• The optimal receive filter evaluation is dominated
by the computation of 6c( y(n−1)

2 , 1 f (n−1)),
which is O(P3 M2 N 2 I K ), and the inverse of
6c( y(n−1)

2 , 1 f (n−1)) + σ 2
n I , which is O((P M N )3).

Therefore the overall computational complexity is
O(P3 M2 N 2(K I + M N )). However, since it is positive
definite, after the computation of 6c( y(n−1)

2 , 1 f (n−1)),
the filter could be efficiently computed resorting to
the Conjugate Gradient Method (CGM) [46], with a
resulting computational saving.

Consequently, the overall computational complexity of
each iteration in Algorithm 1 is O(P3.5log(1/η) +

P3 M2 N 2(K I + M N )).
Moreover, it is worth noting that the computational burden

of some MBI iterations can be mitigated by avoiding
redundant evaluations of some terms. For example, the value of
6c(c(n−1), 1 f (n−1)) can be reused (storing it in memory) until
the code or the frequency increment is reoptimized. Similarly,
the computation of 6k

(
w(n−1), c(n−1)

)
, k = 1, . . . , K is

demanded only after the optimization of the filter or the
code. Indeed, for the same number of iterations, empirical
simulations have shown that specific optimization patterns
(in terms of MBI selections) can sometimes lead to a
computational saving in the MM-MBI implementation as
compared to the MM-AO counterpart, due to the larger number
of redundant calculations avoided in the former procedure.

Finally, it is worth considering the possibility of par-
allelizing, at each iteration of the MM-MBI procedure,
the optimization of the filter, the code, and the frequency
increment, to further reduce the overall computational time.

IV. PERFORMANCE ANALYSIS

This section investigates the performance of the devised
optimization scheme in terms of achieved SINR. To this
end, a FDA-MIMO radar, equipped with two ULAs (one for
transmission and the other for reception) having M = 4 and
N = 8 elements, respectively, with an inter-element distance
of half-wavelength, is considered. In addition, the transmitting
array elements are supposed to radiate orthogonal baseband
signals at carrier frequency f0 = 1 GHz. Furthermore, for

TABLE II
SIMULATION PARAMETERS OF FDA-MIMO RADAR

the procedure execution, a standard Barker code of length
P = 11 is used as reference radar code, i.e.,

c0 = [1, 1, 1, −1, −1, −1, 1, −1, −1, 1, −1]
T, (32)

with similarity parameter δ = 0.5, and available radar
bandwidth Bw = 2 MHz are supposed.

In the following, two different scenarios are envisaged,
characterized by the presence of both clutter edges and
heterogeneous clutter patches. Notably, the clutter statistical
characterization is supposed to be known a priori, e.g.,
obtained by means of a site specific environment database
system [4], as mentioned before. Furthermore, the parameters
employed for the simulations are listed in Table I.

To assess the capabilities of the devised approach, at each
iteration, the SINR achieved with the MM-MBI and MM-AO
strategies is compared with

• MBI optimizing only the transmitted code and the receive
filter3 (referred to as MBI-C&F), namely w and c are
obtained from

Pw,c:


max
w,c

SINR(w, c, 1 f (0))

s.t. ∥w∥
2

= 1
∥c∥2

= 1
∥c − c0∥

2
≤ δ

; (33)

as well as the MBI optimization for the MIMO configu-
ration (referred to as MBI-MIMO), i.e., solving (33) with
1 f (0)

= 0.
• MBI optimizing only the frequency increment and the

receive filter (referred to as MBI-DF&F), namely w and
1 f are obtained from

Pw,1 f :


max
w,1 f

SINR(w, c0, 1 f )

s.t. ∥w∥
2

= 1
0 ≤ 1 f ≤ Bw/(M − 1),

, (34)

• the optimal receive filter (referred to as OPT-FLT), i.e.,

wO PT −F LT = arg max
w

SINR(w, c0, 1 f (0))

s.t. ∥w∥
2

= 1 (35)

computed as the RHS of (31) with n = 1,
y(0)

2 = c0, y(0)
3 = 1 f (0).

• MM-MBI optimizing the transmitted radar code, fre-
quency increments for each element of the transmit array,
and receive filter (referred to as MBI-all), whose design

3As there are only two optimization blocks in problems (33) and (34), the
MBI and AO represent equivalent solution strategies.
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Fig. 3. Clutter power distribution (dB) of considered in Section IV-A, i.e.,
an heterogeneous environment with clutter edges.

problem is given by [35]

Pc,w,1 f :



max
c,w,

1 f1 ,...,1 fM

SINR(w, c, 1 f )

s.t. 0 ≤ 1 fm ≤ Bw

m = 1, . . . , M
∥c∥2

= 1
∥c − c0∥

2
≤ δ

∥w∥
2

= 1

, (36)

where 1 fm denotes the frequency increments (w.r.t. f0)
related to the m-th transmit element.

• MBI for Problem (36) initialized with the results of the
proposed MM-MBI method, which will be referred to as
MBI-double.

A. Heterogeneous Environment With Clutter Edges

The first case study considers an heterogeneous clutter
environment encompassing clutter edges as illustrated in
Fig. 3, which reports the clutter power σ̄ 2

l,i at each range-
azimuth bin, given by the sum of the mean square values of
the K clutter scatterers from the (l, i)-th range-azimuth bin,
i.e.,

σ̄ 2
l,i = CNRl,i

K∑
k=1

|ηl,i,k |
2 (37)

where ηl,i,k is a zero-mean, unit-variance, complex Gaussian
random variable and CNRl,i = 10dB in the range rings
from −11 to 2, while for the other rings the clutter profile
is considered having CNRl,i = 50 dB within the region
[−10◦, 20◦

] and CNRl,i = 30 dB elsewhere. In addition,
no clutter is supposed in the BOI, i.e., η0,0,k = 0 , k = 1,

. . . , K , whose return is associated with target echo sought in
that range-azimuth bin.

Fig. 4 reports the SINR (versus iteration) achieved by
the aforementioned optimization processes. Inspection of the
curves in Fig. 4 (a) reveals that both the proposed MM-MBI
and MM-AO algorithms are capable of significantly improving
the SINR with a resulting gain of 5.69 dB as compared with
the initial SINR. Notably, the two methods yield similar results
(with a slight advantage of the MM-MBI approach) after
100 iterations, whereas for a very small number of iterations,
the MM-AO-based optimization outperforms its counterpart.
Moreover, the MM-MBI achieves noticeable performance

Fig. 4. Optimization results for the first environmental scenario:
(a) Normalized SINR versus the number of iterations; (b) Number of times
each parameter is optimized using the proposed MBI-based algorithm. The
magenta circles indicate a SINR of -26.27 dB.

improvement over the MBI-C&F, MBI-DF&F, and MBI-
MIMO approaches, with gaps in the order of 0.39 dB,
5.29 dB, and 3.53 dB, respectively, at the 1000-th iteration.
Not surprisingly, by optimizing the frequency increment of
each transmit element (the curve labeled MBI-all), a slight
improvement (in the order of 0.3 dB) can be attained over the
proposed methods, with the disadvantage of a more complex
hardware architecture as well as a more computationally
demanding procedure (due to the enlarged search space).
In addition, by initializing this procedure with the outcomes
of the devised MM-MBI algorithm at the 1000-th iteration
(whose achieved SINR value is indicated with a magenta circle
in Fig. 4 (a)), it is possible to get a further performance boost
(the curve labeled double) over the MBI-all counterpart in
less than 100 iterations. Consequently, in a scenario where
the carrier frequency of each transmitting element can be
optimized, the MM-MBI method can be also effectively
employed to provide a high-quality initialization leading to a
fast achievement (in terms of the total number of optimization
problems solved) of the steady state. Furthermore, Fig. 4 (b)
reports the number of times each variables block is optimized
by the MBI selection strategy, highlighting the key role of the
code and filter optimization (over the frequency increment) for
this clutter scenario.

The range-angle system response is reported in Fig. 5, that
is

|w(n)†vl,i |
2, l = −L + 1, . . . , L − 1, i = 0, . . . , I − 1 (38)

with vl,i = J l c(n)
⊗ s(θi , 1τk, 1 f (n)) corresponding to the

strength of filter output to an echo return located at θi and l-th
range ring, with the optimized code and frequency increment
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Fig. 5. Squared modulus (dB) of the filter response at a given range-azimuth position for the first environmental scenario and iteration: (a) Initial; (b) 4-th
iteration; (c) 100-th iteration; (d) 1000-th iteration.

Fig. 6. Detection probability at a given iteration for the first environmental
scenario.

Fig. 7. Clutter power distribution (dB) of Section IV-B, i.e., an heterogeneous
environment with clutter edges and range-patches.

at: (a) initialization, (b) 4-th, (c) 100-th, and (d) 1000-th
iterations of the MM-MBI algorithm, which are respectively
shown in Figs. 5 (a)-(d). The results highlight the performance
improvement obtained by the MM-MBI strategy over the
several iterations, with the results of focusing the energy at
the target’s bin, i.e., 0◦ and L = 0, while suppressing the
echoes located at other azimuth-range pairs, clearly confirming
the performance benefits offered by the joint transmit-receive
optimization for clutter suppression.

As a further analysis to corroborate the performance
increment from a radar detection standpoint, the target
detection results are examined considering the case of non-
fluctuating (Swerling 0) target, with the coherent detector
designed as

|ŵ
†
v|
H0

≷
H1

ζ, (39)

Fig. 8. Optimization results for the second environmental scenario:
(a) Normalized SINR versus the number of iterations; (b) Number of times
each parameter is optimized using the proposed MBI-based algorithm. The
magenta circles indicate a SINR of −31.84 dB.

where H0 and H1 indicate the null and the alternative
hypothesis (i.e., target echo absence/presence within the
received observation vector), respectively, and ζ is the
detection threshold set to ensure the desired false alarm
probability (P f a). Hence, under the Gaussian assumption for
the interference, the probability of detection (Pd) is obtained
via

Q
(√

2|α0|
2χ,

√
−2lnP f a

)
(40)

where Q(·) is the Marcum Q function [47], ŵ is the optimized
received filter, and χ is the SINR achieved after the joint
transmit-receive optimization.

The Pd versus |α0|
2, for P f a = 10−4, at different iterations

of the devised MM-MBI procedure, is reported in Fig. 6
assuming the same clutter environment as in Fig. 3. The results
show that, for a given |α0|

2, an increase in the number of
iterations of the MBI/AO-based procedures is connected to
better Pd values. Additionally, the MM-MBI approach yields a
small performance improvement over the MM-AO counterpart,
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Fig. 9. Squared modulus (dB) of the filter response at a given range-azimuth position for the second environmental scenario and iteration: (a) Initial; (b) 4-th
iteration; (c) 100-th iteration; (d) 1000-th iteratio.

just after 4 iterations. Nevertheless, the gap between their
curves reduces as the number of iterations increases, leading
to a negligible displacement by the 1000-th iteration.

B. Mixed Heterogeneous Environment With Clutter Patches
and Edges

As second case study, a mixed clutter profile is considered
(whose power distribution is depicted in Fig. 10), characterized
by clutter patches and edges. Precisely, two range-patches are
simulated respectively in the regions of [−70◦, −50◦

] with
CNR1 = 40 dB and [−35◦, −10◦

] with CNR2 = 40 dB.
Moreover, in angular sectors different from the patches, there
are clutter edges as in the previous case study, i.e., with
CNR1 = 10dB from range rings −11 to 2, whereas in the
other rings CNR2 = 50 dB for the region [−10◦, 20◦

], and
CNR3 = 30 dB elsewhere.

The SINR performance of all considered methodologies is
illustrated in Fig. 8 (a). The plot shows that, likewise the
previous scenario, MM-MBI and MM-AO achieve similar
performance and obtain a gain of 5.96 dB at the 1000-th
iteration. In addition, by optimizing all the frequencies of
the transmit elements, the procedure yields a further SINR
increment of 0.5 dB compared with MM-MBI. Notably, such
a value can be obtained in just 50 iterations if the procedure
is initialized with the outcomes of the proposed (and less
computationally demanding) MM-MBI approach at the 1000-
th iteration. Moreover, the SINR improvement obtained by
the MBI-C&F and the MBI-MIMO rank second and third,
with a gap of 0.5 dB and 1.54 dB, respectively, as compared
with the MM-MBI. In addition, the MBI-DF&F is unable to
provide satisfactory SINR improvement due to the absence of
code optimization, thereby highlighting the key roles of both
transmitter parameters (i.e., code and frequency increment)
and receive filter optimizations.

Interestingly, the chart in Fig. 8 (b), which reports the
number of times each variables block is optimized by the MBI
update rule, pinpoints that the frequency optimization plays
a crucial role in the process of maximizing the SINR. This
result is markedly different from the previous case, where an
increase in SINR was primarily achieved by optimizing the
code and the filter. Therefore, in this case study, the proposed
transceiver design takes full advantage of the FDA-MIMO
DOFs to suppress signal-dependent interference and improve
the SINR.

Again, the squared modulus (dB) of the filter response (38)
as a function of range-azimuth position, computed with the

Fig. 10. Detection probability at a given iteration for the second
environmental scenario.

nominal parameters as well as with the optimized ones at
4-th, 100-th and final iterations, is reported in Figs. 9(a)-(d),
respectively. It is possible to observe an effective clutter
suppression, in both range and azimuth domains, achieved with
the devised optimization strategy, which is better and better as
the number of iterations increases.

As a last analysis for the considered clutter profile, the
Pd (40) versus |α0|

2 is displayed in Fig. 10 using the
SINR value attained by the devised approaches at several
iterations of the corresponding optimization procedure, i.e.,
MM-MBI. An increase of Pd is connected with a large
number of iterations, due to the increased SINR improvement.
Like the previous case, after 4 iterations the MM-MBI
yields a slight performance improvement w.r.t. the MM-AO,
with a gap between curves less than 1 dB at Pd = 0.9.
Still, the discrepancy between the two methods decreases
with the iterations, eventually attaining the same result after
1000 iterations.

V. CONCLUSION

This paper has addressed the problem of joint transmitter
and receiver design of a FDA-MIMO radar system with
uniform frequency increment, operating in a signal-dependent
interference environment. The goal is to maximize the SINR
at the receiver end by optimizing both the transmit parameters,
i.e., frequency increment and radar code, and the receive
filter under some system constraints ruled by the available
radar bandwidth, code features and limited transmitted energy.
To provide a good-quality solution to the resulting non-convex
NP-hard optimization problem, an iterative solution strategy
based on the MM-MBI framework has been developed, where,
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at each iteration, three subproblems, aimed at optimizing
the receive filter, radar code, and frequency increment,
respectively, are solved either optimally or resorting to the MM
framework. Thereafter, the variable block related to the highest
local SINR increment is updated according to the MBI rule,
until a convergence condition is attained. The theoretical proof
of the proposed algorithm’s convergence property, in terms of
satisfying the KKT condition, has been provided, along with
details on its computational complexity.

Numerical results have been presented to underscore the
performance of the devised joint transmitter and receiver
optimization scheme in terms of SINR versus the number
of iterations, detection probability, and signal-dependent
interference cancellation capabilities at the filter output.
The results have highlighted the effective SINR gain and
the successful suppression of the signal-dependent clutter.
Moreover, comparisons with counterparts including MM-AO,
simpler MBI-based strategies, and the MBI-based algorithm
in [35] (also initialized with the outcomes of the proposed
MM-MBI) are also considered to further corroborate the
improvements achievable via the proposed algorithm.

Possible future work might consider the validation of
the devised optimization strategy with measured radar data
collected under different environmental conditions as well as
the extension of the framework to account for multiple pulses
so as to allow a Space-Time Adaptive Processing (STAP).

APPENDIX

A. Proof of Proposition 1

To begin with, let us introduce two auxiliary variables x =

b0(1 f ) and z =

K∑
k=1

b†
k(1 f )6k

(n−1)bk(1 f ) + σ 2
n > 0, so that

the objective function in P1 f (n) can be rewritten in terms of x
and z as

SINR(1 f ) =
x†W (n−1)x

z

∣∣∣∣ x=b0(1 f )

z=
K∑

k=1
b†
k (1 f )6k (n−1)bk (1 f )+σ2

n

, (41)

where W (n−1)
= W

(
w(n−1), c(n−1)

)
and 6k

(n−1)
=

6k
(
w(n−1), c(n−1)

)
are used for ease of notation.

Let us now observe that SINR(1 f ) is jointly convex w.r.t.
x and z. Hence, letting SINR(x, z) =

x†W (n−1)x
z , x ∈ CM , z >

0, and considering its first order Taylor expansion around
(x0, z0), the following inequality holds

SINR(x, z) ≥ SINRa(x, z|x0, z0), (42)

where

SINRa(x, z|x0, z0) =
x†

0W (n−1)x0

z0

+ 2R

{(
W (n−1)x0

)†

z0
[x − x0]

}

−
x†

0W (n−1)x0

z2
0

[z − z0] (43)

with equality if x = x0 and z = z0.

Therefore, by choosing x0 = b0(1 f (n−1)) and z0 =
K∑

k=1
b†

k(1 f0)6
(n−1)
k bk(1 f0) + σ 2

n , yields

SINR(1 f ) = SINR(x, z)
∣∣∣∣ x=b0(1 f )

z=
K∑

k=1
b†
k (1 f )6k (n−1)bk (1 f )+σ2

n

≥ SINRa(x, z|x0, z0)

∣∣∣∣ x0=b0(1 f (n−1))

z0=

K∑
k=1

b†
k (1 f0)6

(n−1)
k bk (1 f0)+σ2

n

= SINRa
(
1 f |1 f (n−1), w(n−1), c(n−1)

)
, (44)

where

SINRa
(
1 f |1 f (n−1), w(n−1), c(n−1)

)
=

K∑
k=1

b†
k(1 f )A(n−1)

k bk(1 f ) + 2R
{

h†
0b0(1 f )

}
+ U, (45)

with
• A(n−1)

k = −
x†

0W (n−1)x0

z2
0

6
(n−1)
k ∈ CM×M ;

• h0 =
W (n−1)x0

z0
∈ CM ;

• U = −
σ 2

n x†
0W (n−1)x0

z2
0

.
Then, using the Taylor expansion with Lagrange remainder

yields

b†
k(1 f )A(n−1)

k bk(1 f )

= b†
k(1 f (n−1))A(n−1)

k bk(1 f (n−1))

+
∂

∂1 f

[
b†

k(1 f )A(n−1)
k bk(1 f )

]∣∣∣
1 f =1 f (n−1)(

1 f − 1 f (n−1)
)
+

1
2

(
1 f − 1 f (n−1)

)2
λ(n−1)

k , (46)

where
∂

∂1 f

[
b†

k(1 f )A(n−1)
k bk(1 f )

]∣∣∣
1 f =1 f (n−1)

= 2R
{

ḃ†
k(1 f (n−1))A(n−1)

k bk(1 f (n−1))
}

(47)

with

ḃk(1 f (n−1)) =
∂bk(1 f )

∂1 f

∣∣∣∣
1 f =1 f (n−1)

= j2π1τk ETbk(1 f (n−1))∈ CM , (48)

ET = diag([0, 1, · · · , M−1]
T) ∈ CM×M , while λ(n−1)

k denotes
the derivative of ∂

∂1 f

[
b†

k(1 f )A(n−1)
k bk(1 f )

]
evaluated at

1 f = ζ1 (with ζ1 between 1 f (n−1) and 1 f ), which is given
by

λ(n−1)
k =

∂2
[

b†
k(1 f )A(n−1)

k bk(1 f )
]

∂21 f

∣∣∣∣∣∣
1 f =ζ1

= 2
∂R

{
ḃ†

k(1 f )A(n−1)
k bk(1 f )

}
∂1 f

∣∣∣∣∣∣
1 f =ζ1

= 2R
{

b̈†
k(ζ1)A(n−1)

k bk(ζ1) + ḃ†
k(ζ1)A(n−1)

k ḃk(ζ1)
}

= 2R
{
−4π21τ 2

k b†
k(ζ1)E2†

T A(n−1)
k bk(ζ1)
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+4π21τ 2
k b†

k(ζ1)E†
T A(n−1)

k ETbk(ζ1)
}

= 8π21τ 2
k R

{
b†

k(ζ1)E†
T A(n−1)

k ETbk(ζ1)

−b†
k(ζ1)E2†

T A(n−1)
k bk(ζ1)

}
=8π21τ 2

k R
{

b†
k(ζ1)

[
E†

T A(n−1)
k ET− E2†

T A(n−1)
k

]
bk(ζ1)

}
= 8π21τ 2

k R
{

b†
k(ζ1) ĀE bk(ζ1)

}
, (49)

where
• b̈k(ζ1) =

∂ ḃk (1 f )

∂1 f

∣∣∣
1 f =ζ1

= −4π21τ 2
k E2

Tbk(ζ1) ∈ CM ;

• ĀE = E†
T A(n−1)

k ET − E2†
T A(n−1)

k ∈ CM×M .
Moreover, since

R
{

b†
k(ζ1) ĀE bk(ζ1)

}
=

√
MR

{
b†

k(ζ1) ĀE
bk(ζ1)

∥bk(ζ1)∥

}
≥ −

√
M

∣∣∣b†
k(ζ1) ĀE lm

∣∣∣
≥ −

√
M

∥∥∥b†
k(ζ1) ĀE

∥∥∥, (50)

where lm =
bk (ζ1)

∥bk (ζ1)∥
with ∥lm∥

2
= 1, the first term in (45) can

be tightly lower bounded as

λ(n−1)
k = 8π21τ 2

k R
{

b†
k(ζ1) ĀE bk(ζ1)

}
≥ −8π21τ 2

k

√
M

∥∥∥b†
k(ζ1) ĀE

∥∥∥ = λ̃
(n−1)

k . (51)

Now, the second term in (45) can be further expressed as

2R
{

h†
0b0(1 f )

}
= 2R

{
M∑

m=1

h∗

0(m)e j2π1τ0(m−1)1 f

}

= 2
M∑

m=1

|h0(m)| cos(2π1τ0(m − 1)1 f − arg(h0(m)))

=

M∑
m=1

gm cos(2π1τ0(m − 1)1 f + ϕm), (52)

where gm = 2|h0(m)| and ϕm = − arg(h0(m)) with h0(m) the
m-th (m = 1, · · · , M) element of h0.

Hence, leveraging again the first order Taylor expansion
with Lagrange reminder, it yields,

2R
{

h†
0b0(1 f )

}
≥

M∑
m=1

gm cos
(
2π1τ0(m − 1)1 f (n−1)

+ ϕm
)

−

M∑
m=1

gm2π1τ0(m − 1) sin
(
2π1τ0(m − 1)1 f (n−1)

+ ϕm
)

(
1 f − 1 f (n−1)

)
−

1
2

M∑
m=1

gm(2π1τ0(m − 1))2

(
1 f − 1 f (n−1)

)2
. (53)

Summarizing,

SINR(1 f ) ≥ X (n−1)
(
1 f − 1 f (n−1)

)2

+ X̂ (n−1)
(
1 f − 1 f (n−1)

)
+ X̄ (n−1)

= X (n−1)1 f 2
+

˙̂X (n−1)1 f +
˙̄X (n−1), (54)

where
• X (n−1)

=
1
2

K∑
k=1

λ̃
(n−1)

k −
1
2

M∑
m=1

gm(2π1τ0(m − 1))2;

• X̂ (n−1)
= 2

K∑
k=1

R
{

ḃ†
k(1 f (n−1))A(n−1)

k bk(1 f (n−1))
}

−

M∑
m=1

gm2π1τ0(m − 1) sin
(
2π1τ0(m − 1)1 f (n−1)

+ ϕm
)
;

• X̄ (n−1)
=

K∑
k=1

b†
k

(
1 f (n−1)

)
A(n−1)

k bk
(
1 f (n−1)

)
+

M∑
m=1

gm cos
(
2π1τ0(m − 1)1 f (n−1)

+ ϕm
)
+ U ;

•
˙̂X (n−1)

= −2X (n−1)1 f (n−1)
+ X̂ (n−1);

•
˙̄X (n−1)

= X (n−1)
(
1 f (n−1)

)2
− X̂ (n−1)1 f (n−1)

+ X̄ (n−1).
As a consequence,

ŜINRa
(
1 f |1 f (n−1), w(n−1), c(n−1)

)
= X (n−1)1 f 2

+
˙̂X (n−1)1 f +

˙̄X (n−1), (55)

is a surrogate (tight minorant) to the objective function
SINR(1 f ).

B. Proof of Proposition 2

The solution y⋆
3 to the problem Py(n)

3
is obtained as

y⋆
3 = arg max

0<y3≤Bw/(M−1)

(
X (n−1)y2

3 +
˙̂X (n−1)y3 +

˙̄X (n−1)
)
. (56)

It is worth noting that assuming X (n−1) < 0, the objective
function in (56) is strictly concave4 in y3, so the optimal
solution is given by

ŷ3 = max(min(ỹ3, Bw/(M − 1)), 0) (57)

with

ỹ3 = −

˙̂X (n−1)

2X (n−1)
. (58)

C. Proof of Proposition 3

The proof exploits the same procedure as in Appendix F of
[35], where the only difference is that, the feasible set to P is
expressed as

F = A× B × C, (59)

with A = { y1 : ∥ y1∥
2

= 1}, B = { y2 : ∥ y2∥
2

= 1, ∥ y2 −

c0∥
2

≤ δ}, and C = {y3 : 0 ≤ y3 ≤ Bw/(M − 1)}.
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