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Abstract— The resolution of radar images is constantly
increasing. As a result, radar images require more storage
space, which is associated with increased costs. Therefore, it is
advantageous to minimize the data size. In this paper, we present
various compression methods for reducing the data size of radar
images. Compression and decompression are performed in two
scenarios. In the first scenario, the raw data are compressed and
decompressed before the image is reconstructed. In the second
scenario, the reconstructed image itself is compressed and
decompressed. In both scenarios, the reconstructed radar image
is compared with the original image. Due to its widespread use,
High-Efficiency Video Coding (HEVC) is used as a state-of-the-
art benchmark for both scenarios and compared with proprietary
algorithms that combine lossy and lossless compression. A dis-
crete Fourier transform–based compression algorithm from the
automotive sector is used as another state-of-the-art benchmark.
This is applied against our novel approaches, which are based
on the discrete cosine transform, use of direct thresholding in
the spatial domain, or are applied to the maximum intensity
projection. With the exception of HEVC, all algorithms presented
have in common that they perform lossy data processing in the
first step and then use the Lempel–Ziv–Markov algorithm as
a lossless compression step. To compare the compression ratios,
we use various image- and video-specific metrics, such as the
peak signal–to-noise ratio (PSNR), the similarity of speeded-up
robust features, and the structural similarity index measure
(SSIM). For a simple classification, we use Otsu’s method to
examine the effects of compression on the images. The radar
images are categorized into transparent and nontransparent
based on the measurement objects. Depending on the application
and the desired resolution, our approaches can achieve storage
savings of up to 99.93 % compared to the uncompressed data
with PSNR and SSIM values of 38.8 dB and 0.916, respectively.

Index Terms— Compression, data, discrete cosine transform
(DCT), discrete Fourier transform (DFT), high-efficiency video
coding (HEVC), imaging, peak signal-to-noise ratio (PSNR),
radar, structural similarity index measure (SSIM), speeded-up
robust features (SURF), thresholding.
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I. INTRODUCTION

IN recent years, close-range radar imaging has been
increasingly used in various applications, such as security

screening [1], nondestructive testing [2], and autonomous driv-
ing [3]. In all these areas, artificial intelligence is incorporated
into further processing to automatically detect objects in secu-
rity screening or material defects in nondestructive testing, and
it will undoubtedly be indispensable for autonomous driving.

To achieve good classification results using machine learn-
ing, large datasets are needed to train networks. Consequently,
large amounts of data must be obtained and stored. To reduce
the required storage, data compression techniques will attract
increasing interest as machine learning is used in a growing
number of applications.

Whereas data compression has been widely studied in image
processing, and standards for 1D [4], 2D [5], and 3D [6]
space data have been defined by the Consultative Committee
for Space Data Systems, few such attempts have been made
specifically for radar imaging. Some work has been conducted
in the context of surveillance [7] and remote sensing with
synthetic aperture radar (SAR) [8], [9], [10] or inverse SAR
(ISAR) [11]. However, as demonstrated, for example, in [12],
close-range radar data which we target in this paper, are
different from typical remote sensing data. For close-range
applications, only one study has been conducted [13]. This
study aimed to compress automotive radar data, which are
often sparse by nature and makes compression straightforward.
With high-resolution radar images, the situation is different.
Such images are often similar to optical grayscale images.
An illustration of a 3D radar cube with the corresponding
dimensions is shown in Fig. 1 [14].

Principally data compression techniques can be adapted
from image processing. However, radar images differ from
photographs in some points: First, they are generated from
raw radar measurement data by reconstruction algorithms
[15], [16]. Therefore, unlike optical images, both the radar
image and the raw measurement data are candidates for com-
pression. Second, radar data are generally three-dimensional
and provide depth information in addition to two-dimensional
image information. Due to their 3D shape, radar images are
also referred to as image volumes. Third, radar image data are
typically complex valued, as they contain amplitude and phase
information.

For these reasons, we aim to explore new approaches for
close-range radar image compression. The core contributions
of this work are the use of existing compression algorithms,
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Fig. 1. Illustration of a radar cube for close-range radar imaging [14].

such as High-Efficiency Video Coding (HEVC) and the dis-
crete Fourier transform (DFT)-based algorithm used in [13]
for automotive applications, and their comparison with new
compression algorithms presented here.

The rest of this paper is organized as follows: Section II
describes the measurement setup and the transparent and
nontransparent test objects used in this study. Section III intro-
duces the metrics used for the evaluation of data compression.
Section IV presents the algorithms used for data compression.
Section V presents the compression performance of the algo-
rithms on raw and reconstructed image data. Section VI details
the effects of the algorithms on the compressed radar images.
Section VII concludes the paper.

II. MEASUREMENT SETUP AND TEST OBJECTS

To apply data compression to radar images, we performed
measurements using a network analyzer–based synthetic aper-
ture radar test bench available at our institute (Fig. 2).
An overview of the measurement setup is provided in Table I.
More details can be found in [17]. We used stepper motors
to move the antennas along a predefined trajectory. The
measurement points are scanned line by line, progressing
from left to right in one line and from right to left in the
subsequent line. There is no movement of the antennas during
the measurement. The dimensions of the resulting raw data are
influenced by the number of measurement points in both the x
and y directions as well as the frequency steps N f , represented
in the format y × x × N f .

We investigated two scenarios: one with a test object that
was transparent to the radar waves and one with a nontranspar-
ent object. As a transparent object, we used a closed cardboard
box of 300 × 250 × 80 mm3 with potential threat objects
inside it as seen in Fig. 3 resulting in raw data dimensions
311 × 351 × 201. To better quantify the resolution, we also
placed a Siemens star in the box. The tips of the star converged
radially in the middle. The finer the central dot, the better the
resolution, which is determined by the center’s diameter.

As a nontransparent object, we adopted a case from
medical radar imaging: we used a 3D-printed metallized
hand to simulate a human hand with raw data dimensions
351 × 201 × 201. Human hand imaging is relevant to gesture
sensing and medical diagnoses—for example, in the detection
of arthritis [18]. For millimeter waves, the human skin acts like

Fig. 2. Photograph of the 3D-printed metallized hand used as a nontrans-
parent test object in front of the radar test bench.

TABLE I
OVERVIEW OF THE MEASUREMENT SETUP

a perfect reflector due to its substantial water content. Thus,
radar beams are completely reflected on the skin’s surface and
cannot penetrate into deeper structures. A metallized object is
well suited for simulating this behavior since metal completely
reflects the radar waves as well. Fig. 2 shows the measurement
setup with the test object.

The cross-range resolution δx,y for the x or y direction, can
be calculated as

δx,y ≈
λ

Dx,y
· L (1)

where λ denotes the wavelength, Dx,y represents the aperture
length in the x or y direction and L the distance between
aperture and object [16]. In our case, the box was placed
between 260 mm and 355 mm from the aperture, while the
hand was positioned between 320 mm and 355 mm away. This
yields mean values for the cross-range resolution of 3 mm
and 4.24 mm, respectively. The resolution in z direction is
determined by

δz ≈
c0

2 · B
(2)
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Fig. 3. (a) The outside of the box, (b) the inside of the box (b), and
(c) the resulting maximum intensity projection of the closed box with the
packing tape to seal the box. The box contained a knife, a bottle filled with a
liquid, a pack of powder, a pair of scissors, and a Siemens star for resolution
comparison.

where c0 represents the velocity of light and B the band-
width [16]. With B = 35 GHz (see Tab. I), the resolution
in z direction for the box and hand image results in 4.3 mm.
The unambiguous range in the z direction zA is calculated
as [19]

zA =
c0 · (N f − 1)

2 · B
(3)

which results in 857 mm for both.
To obtain a radar image from the measurement data,

an image reconstruction algorithm must be used. In this work,
we used the phase-shift migration method, as described, for
example, in [20] and [21]. The algorithm reconstructs a 3D
image volume. Given that, in most applications, amplitudes are
normalized to the range [0, 1], and the phase information is not
further utilized, this paper also adopts this approach. However,

Fig. 4. Layers 78 and 84 of the box image with a distance of 6 mm in
the z direction. With increasing viewing depth, the pack of powder and the
knife disappeared, while the Siemens star and the scissors could be seen more
clearly. The bottle was not visible because it lay in layers 52–70.

Fig. 5. Images of the hand (a) and the maximum intensity projection (b).

it is important to note that the normalization process comes
with the drawback of losing absolute amplitude information.
Fig. 4 shows layers 78 and 84 of the 96 layers of the resulting
image volume for the box, with a distance of 6 mm along the
depth direction (herein denoted by z).

The total sizes of the raw data are 175.53 MB and
113.45 MB for the box and hand images, respectively. The
corresponding sizes of the image volumes are 83.835 MB
and 54.183 MB. This is due to the reconstruction algorithm
converting the 201 frequency steps into 96 depth layers.

To visualize a 3D volume in two dimensions, the maximum
intensity projection [18] is often used. This method extracts
the pixel with the maximum image intensity along the depth
direction for every lateral image point (x , y). Fig. 3(c) and
Fig. 5(b) show the maximum projections for the test objects
as grayscale images. The brighter an object appears, the higher
the amplitudes of the reflected radar waves.

III. DATA COMPRESSION METRICS

To compare the reference image I with the compressed
image J and evaluate the data compression performance,
we used various metrics, which are described below.

A. Peak Signal–to-Noise Ratio

The peak signal–to-noise ratio (PSNR) is an established
metric for image comparisons [22]. Referring to the maximum
amplitude A of the image, the PSNR is calculated as

PSNRimage = 10dB·log10

(
A2

σ 2
e

)
(4)
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with variance, also known as mean square error,

σ 2
e = E

(
(I(x, y) − J(x, y))2) (5)

between I and J , with E denoting the expected value and
x and y denoting width and height coordinates of the image,
respectively.

For measurements involving nontransparent objects, (4) is
applied to the maximum intensity projection. For mea-
surements involving transparent objects, the comparison is
performed on the 3D image volume. In this case, (4) is
changed to

PSNRvideo = 10 dB·log10

(
A2

1
K ·
∑K−1

k=0 σ 2
e [k]

)
, (6)

where K is the number of images in a sequence—in this
case, the number of depths. In this study, all amplitudes were
linearly normalized to 1 as a basis and resulting in A = 1.0.

B. Speeded-Up Robust Features

To detect similar regions in two images, machine learn-
ing algorithms perform feature extraction. A widely used
algorithm is the speeded-up robust features (SURF) [23],
which detects edges and corners in images and their geometric
properties. Based on the internal statistics, the SURF algorithm
produces a vector that includes the coordinates of the pixels by
searching for visually interesting features in an image. Similar
regions can be indicated by comparing the extracted features
between images I and J . If the coordinates of the features in
images I and J are the same, a match is found [13].

The SURF recall value is calculated as

SURFrecall(I, J) =
matched Feat (I, J)

detected Feat (I)
(7)

where matched Feat represents the number of matched fea-
tures in I and J , and detected Feat represents the number
of detected features in I . This value indicates how well
the optical features were preserved after compression and
decompression.

As is typical in radar, side lobes occur in addition to
the main lobes. When applying the SURF algorithm to non-
transparent objects, the side lobes do not pose a problem since
they have been truncated in z direction, and the maximum
projection is solely focused on the main lobe. However, for
transparent objects, the side lobes can overlap with the main
lobes of other reflections and, as a result, cannot be separated.
Consequently, the side lobes are carried along during the
compression process.

C. Human Perception–Based Metric

The structural similarity index measure (SSIM) [22] is used
to compare an image I to an image J and calculate the
difference. The SSIM is calculated as

SSIM(I, J) =
(2µIµJ + c1)(2σIJ + c2)(

µ2
I + µ2

J + c1
)(

σ 2
I + σ 2

J + c2
) , (8)

with the variance σI, σJ and the average µI, µJ of I and J ,
respectively. The covariance of the images is expressed as σIJ.
The division is stabilized using the constants c1 and c2 [13].

Fig. 6. Comparison between separation into two classes (a) and three
classes (b) using Otsu’s method. When the maximum projection was separated
into two classes, no contents of the box were visible. When it was separated
into three classes, some of the items inside the box were visible. In the
histogram (c), different thresholds for the two methods are shown.

For measurements involving nontransparent objects, (8) is
applied to the maximum projection. For measurements involv-
ing transparent objects, the SSIM is calculated based on the
3D image volume [24].

D. Image Segmentation

Because radar images are grayscale images, we used Otsu’s
method [25] on the maximum intensity projection for a
simple classification of images I and J . The algorithm sepa-
rates an image into two classes, background and foreground,
according to a threshold. Pixels with values smaller than the
threshold are represented as background (black), whereas the
other pixels are represented as foreground (white), as shown
in Fig. 6(a). The threshold is calculated using an image
histogram [25], [26].
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TABLE II
MAJOR PROPERTIES OF THE DIFFERENT ALGORITHMS

If the image is divided into two classes, the contents of
the box would be assigned to the foreground and would no
longer be recognizable. For this reason, we used the multi-Otsu
method with two thresholds. An example of the classification
is shown in Fig. 6(b), with blue indicating the background,
red indicating the foreground, and green indicating the area
between the foreground and background.

IV. DATA COMPRESSION ALGORITHMS

An overview of the algorithms used in this study is provided
in Table II. The algorithms are described in detail below.

A. HEVC Video Compression Algorithm

Because a 3D image volume is composed of consecutive
images, video coding is suitable for compression. For redun-
dancy reduction, video compression takes advantage of three
dimensions: two spatial and one temporal. Further advanced
prediction tools use similar content in different frames. One
example is motion compensation, which predicts the content
of the current frame I(x, y, zi ) based on the content of a
previously coded frame J(x, y, zi − 1). Another benefit is the
block-based partitioning scheme, which enables an efficient
representation of large areas in images to enhance compression
performance [13].

The first compression tool that we used was the HEVC
codec [27]. Because radar images are very similar to each
other along the depth direction, we used the z direction

(depth) as the temporal dimension (see Fig. 4). As a result,
the movement of objects between the pictures, representing a
displacement over time in the classical HEVC, is analogously
interpreted as a displacement along the z direction in our
approach. To encode the sequence, we used the HM-16.22
[28] encoder implementation of HEVC. The configuration
of the encoder was random-access encoding [29], in which
the coding order of frames differs from the display order.
For instance, a five-frame sequence is hierarchically coded in
the order of 0 → 4 → 2 → 1 → 3. This method achieves
significant bitrate savings because intermediate frames (1, 2,
and 3) can be predicted more accurately using both previous
and subsequent frames. We applied this scheme to a group of
16 frames. We set the color format to 4:0:0 and used a bit
depth of 16 bits per sample with manually quantized input
data [13].

B. Discrete Fourier Transform-Based Compression Algorithm

A Discrete Fourier Transformation (DFT)-based compres-
sion method was introduced in [13] based on the assumption
that it was possible to separate and extract features because
of the correlation gain achieved by the DFT. A threshold
for an estimated noise floor led to the removal of low
values by setting them to zero if they were below the
threshold.

Since radar signals have a broad dynamic range, the
DFT-transformed values were logarithmically quantized
in [13]. In our case, the value range lies in the interval [0, 1]
(see Fig. 6(c)). For this reason, we used a linear representation
of the values, which resulted in several modifications to the
compression method introduced in [13]. The five steps for the
encoder were as follows:

1) transforming via an n-dimensional real-valued DFT by
discarding negative frequencies;

2) switching to a representation with phase and linear
amplitudes;

3) removing the noise floor by setting values below a
predefined amplitude threshold to zero;

4) quantizing the resulting values;
5) lossless entropy coding using the Lempel–Ziv–Markov–

algorithm (LZMA) [30].
For decoding, these steps are performed in reverse order.
It has been investigated whether value quantization should be
performed with a logarithmic amplitude and linear phase or
with linear real and imaginary numbers. In this study, the best
results were achieved using a linear amplitude and phase.

C. Discrete Cosine Transform–Based Compression Algorithm

The discrete cosine transform (DCT), introduced in [31],
is widely used for data compression, including image compres-
sion (such as JPEG). Our initial approach involves utilizing the
DCT, which, like the DFT, transforms a time-discrete signal
into the frequency domain. However, unlike the DFT, which
produces complex values after transformation, the coefficients
obtained by the DCT are real numbers.

The DCT-based algorithm follows the same steps as the
DFT for the encoder:
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1) transforming via an n-dimensional DCT;
2) removing the noise floor by setting values below a

predefined amplitude threshold to zero;
3) quantizing the resulting values;
4) lossless entropy coding using the LZMA.

The decoder follows these steps in reverse using the inverse
DCT. The basic process of thresholding and quantization
corresponds to the algorithm presented in Section IV-B.

We also tested whether a logarithmic representation of the
amplitudes would produce better results. Because the phases
of the DFT include the sign of the amplitude and the DCT
produces only real coefficients with positive and negative
signs, we implemented a method in which the absolute val-
ues were logarithmized after the DCT and the sign of the
uncompressed values was attached to the absolute values.
However, a representation with linear amplitudes showed the
best compression ratio.

D. Thresholding Compression Algorithm

The algorithms described in Sections IV-B and IV-C are
executed in the spatial frequency domain, which necessitates
an inverse transform at the end of the decoding. Our new
approach, which we call Thresholding, is to perform the
compression directly in the spatial domain of the 3D image I .
This method does not require the first two steps of DFT
compression. For determining the threshold value, one option
is Constant False Alarm Rate (CFAR) [32], which estimates
noise in a specific area to detect individual targets. Unlike
in automotive applications, where only a few targets may
surpass the noise, radar imaging typically involves a larger
number of targets. When it is used on larger areas containing
signal components (see the shear blade in Fig. 3(c)), a higher
noise amplitude is typically present in these regions, leading to
the subsequent identification of individual point targets within
them. If only the areas with detected targets were considered
for compression, while the remaining areas were set to zero,
a significant portion of the image information would be lost.
Hence, the application of CFAR is deemed unsuitable, and
instead, a fixed threshold is employed. Thus, process for the
encoder is reduced to the following three steps:

1) removing the noise floor by setting values below a
predefined amplitude threshold to zero;

2) quantizing the resulting values;
3) lossless entropy coding using the LZMA

Again, the decoder follows these steps in reverse. We also
tested a logarithmic representation of the amplitudes, which
showed a lower compression ratio.

E. Maximum Cube for Nontransparent Objects

For nontransparent objects, such as the human hand, the
fact that radar beams are completely reflected on the surface
and do not penetrate into deeper layers can be exploited.
Principally nonzero values occur in the deeper layers of
the actual measurement object, they are side lobes or noise.
So there is only one reflection along the z direction and the
maximum projection contains all relevant reflections from the
image volume.

Our new approach is to reduce the data by generating two
matrices from the image volume. Matrix 1 is the maximum
intensity projection, and Matrix 2 contains the index in the
z direction in which the respective maximum value in Matrix 1
appears. In a simple way, with no quantizing or changing the
data type from float to integer with a lower resolution, the
reduction can be performed as

ratio =
n
2
, (9)

where n is the number of depth layers in image I . Since only
the surface on which the radar waves are reflected is displayed
when the two matrices are reconstructed into the 3D image,
we call this method the maximum cube (MaxCube).

To obtain a higher compression ratio, we quantize both
matrices. While we change the quantization of Matrix 1,
to vary the ratio, we quantize Matrix 2 with a fixed number
of bits. Due to the 96 layers, we quantize Matrix 2 with
8 bits to signed integer because of the interval of [−128, 127].
Again, linear amplitudes for Matrix 1 showed better results
than logarithmic amplitudes.

V. COMPRESSION RESULTS

We applied all algorithms to the 3D image volumes of the
hand and the box. Except for MaxCube, we also applied all
algorithms to the raw data. Because the raw data are complex
valued, we first separated them into real and imaginary num-
bers, except in the case of the DFT, which transformed the
raw data without discarding the negative frequencies, making
the separation into real and imaginary numbers unnecessary.
We then ran each algorithm twice to compress the data: once
for the real numbers and once for the imaginary numbers.
After decompression, we merged the numbers to reconstruct
the raw data and generate the image volumes to be compared
with the uncompressed images.

Different compression ratios were achieved with different
values for the following:

• the quantization parameter for HEVC;
• the threshold and quantization for the DFT- and

DCT-based compression algorithms and the Thresholding
algorithm;

• the quantization of the maximum intensity projection
(Matrix 1) of MaxCube.

The compression ratio was calculated as

compression ratio =
si zeOrig
si zeComp

, (10)

where si zeOrig is the data size of the uncompressed image
or the uncompressed raw data, and si zeComp is the size
of the reconstructed radar image or the raw data after
compression.

A prevalent phenomenon in radar imaging is speckle,
which is characterized by multiplicative overlays of radar
wave amplitudes. The algorithms described in Sections IV-B
and IV-E, incorporating a threshold, significantly mitigate the
impact of speckle, making them a valuable addition [33].
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Fig. 7. PSNRs of the box image. (a) raw data and (b) image volume
compression results. All four algorithms showed the same tendency. The DFT
and DCT performed better than HEVC with higher compression ratios, and
Thresholding performed better than HEVC with lower ratios in both raw data
and image volume compression.

Fig. 8. SURF Recall values of the box image. (a) raw data and (b) image vol-
ume compression results. More matches were found when the raw data were
compressed. The DCT showed the best raw data compression performance.
In image volume compression, HEVC showed the best performance with ratios
of up to approximately 100, above which the DFT and DCT performed better.

Fig. 9. SSIMs of the box image. (a) raw data and (b) image volume com-
pression results. The DFT and the DCT showed similar raw data compression
behavior and performed better than HEVC. In image volume compression, the
DCT produced better results than the DFT.

A. Compression of the Box Radar Image

Because the box image volume contained transpar-
ent objects, we examined it three-dimensionally. First,
we observed the PSNR. Fig. 7 shows the impact of each

Fig. 10. PSNRs of the hand image. (a) raw data and (b) image volume
compression results. Thresholding produced the best results in (a) and (b) with
low compression ratios. The DFT and DCT showed similar behavior, but the
DCT was better with lower ratios, while the DFT was better with higher
ratios. In (b), MaxCube showed the best performance with ratios of up to
approximately 1300, above which HEVC showed comparable performance.

Fig. 11. SURF Recall values of the hand image. (a) raw data and (b) image
volume compression results. The DFT produced the best compression results
in (a). In (b), Thresholding showed the best performance with lower compres-
sion ratios, whereas HEVC showed the best performance with higher ratios.
MaxCube performed better than HEVC only with ratios of up to 1300.

Fig. 12. SSIMs of the hand image. (a) raw data and (b) image volume
compression results. The DFT delivered the best raw data and image volume
compression results, although in image volume compression, MaxCube per-
formed better with compression ratios of up to 1300.

compression algorithm applied to the raw data (a) and the
reconstructed radar image (b). Here, (6) was applied to the
image volume, since it contained both transparent and non-
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transparent objects. Raw data compression resulted in higher
PSNR values. Only for ratios of 10 or higher did the com-
pression of the image volume obtain better results. As a video
compression algorithm, HEVC is suitable for compressing 3D
data. Nevertheless, the DFT and DCT showed better image
volume compression performance. Thresholding was better
only with low compression ratios.

We then examined the SURF recall (Fig. 8). All image lay-
ers were compared before and after compression, a search for
matches was performed, and (7) was calculated for each layer
of the image volume. The mean value of the layers was then
calculated for the compression. As in the case of the PSNR,
when the image volume was compressed (b), higher compres-
sion ratios were achieved with higher SURF Recall values.
Thus, with compression ratios of 10 or higher, compressing the
image volume was more advantageous. Thresholding showed
the best performance with ratios of up to approximately 100.
With higher ratios, the DFT and DCT performed better than
HEVC. In raw data compression (a), the DCT achieved the
best results.

Finally, we evaluated the similarity between the images
using the SSIM (Fig. 9). While the DCT and DFT followed a
similar course when compressing the raw data (a), the graphs
diverged when the image volume (b) was compressed in low
ratios. The DCT reached a value of 100 %, while the DFT
reached a maximum of 94 %. With higher ratios, the DFT
and DCT again showed better results than HEVC.

B. Compression of the Hand Radar Image

Since the hand was opaque to radar waves, we examined
it two-dimensionally on the maximum intensity projection.
First, we observed the PSNR, calculated using (4). As shown
in Fig. 10, up to a ratio of 10, higher PSNR values were
achieved by compressing the raw data (a). The performance
of each algorithm depended on whether the raw data or the
image volume was compressed and on the compression ratio.
In image volume compression (b), Thresholding showed the
best performance when a moderate compression ratio up to
100 was sufficient. With higher ratios, HEVC achieved a
higher PSNR. However, MaxCube achieved the best results,
even with compression ratios of over 500. Only with compres-
sion ratios of 1300 or higher did HEVC outperform MaxCube.
In raw data compression (a), the DFT and DCT showed similar
behavior with compression ratios of 10–100. With higher
ratios, the DCT obtained a lower PSNR than the DFT.

The SURF Recall of the hand image is shown in Fig. 11.
Up to 100 % of the initial matches were still found. In raw
data compression (a), the DCT and DFT showed the best per-
formance with compression ratios of up to approximately 200.
With higher ratios, the DFT performed better. In compressing
the reconstructed image volume (b), Thresholding showed the
best performance with ratios of up to approximately 500 but
was outperformed by HEVC with higher ratios. MaxCube
achieved considerably higher SURF Recall values with com-
pression ratios of up to 1300.

As shown in Fig. 12 for the evaluation of SSIM, in image
volume compression (b), MaxCube achieved the best results
with compression ratios of up to 1300. With higher ratios, the

DFT showed better performance than the DCT and MaxCube.
In raw data compression (a), the DFT achieved the best results
with compression ratios of up to approximately 1200, above
which HEVC performed better.

VI. EVALUATION

To examine the effects of the algorithms, we used the
amplitude histograms of the image volumes. Since there were
hardly any differences in the histograms before and after the
compression of the raw data, they are not reported here. Due
to the lack of transparency, the histograms of the hand image
showed only one large peak. Therefore, only the evaluation
of MaxCube compression is reported. Since the radar waves
were reflected by the skin surface in the hand image, and a
large area was therefore not radiated, this resulted in many
values close to zero. In contrast, the box histograms showed
courses with several peaks across the pixel values because
the different objects in the image reflected the radar beams
at different amplitudes. Thus, we examined the effects of the
compression algorithms on the box image more closely.

Since the maximum intensity projection is, in most cases,
viewed by humans, and therefore subjective perception is
more important than the PSNR or SURF Recall, the SSIM
is used to compare various algorithms. In [34], it was shown
that a value between 80 % and 100 % was suitable. For
comparison, we used the same SSIM value of around 90%
for all reconstructed radar images.

A. Box Radar Image Compression Results

For comparison, Fig. 13(a)–(c) shows the box image before
compression. The thresholds of Otsu’s method, were 0.193
and 0.388.

The HEVC compression results are shown in Fig. 13(d)–(f).
Despite a compression ratio of 120 and a resulting data size
of 682.2 kB, there were hardly any differences in either the
grayscale image or the classification image. The Siemens star
was still visible under the adhesive tape at the top of the
box, and its center was not enlarged. Otsu’s thresholds were
0.185 and 0.383. The histogram in Fig. 13(f) shows that the
number of zero values more than doubled. This is because
the image volume also contained noise, which represents
a high frequency. Since high-frequency components are not
transmitted, they are set to zero before transmission.

The DFT compression results, with a compression ratio
of 520, a data size of 160.7 kB and Otsu’s thresholds of
0.209 and 0.418, are shown in Fig. 13(g)–(i). Some details,
such as the glass body of the bottle, were barely recognizable
in the grayscale image after compression. Moreover, the edges
of the objects were no longer sharp, and the image was
blurry. The classification showed, for example, that the green
space in the adhesive tape became smaller because Otsu’s
threshold for the foreground became lower, thus including
more values. The spaces in the Siemens star under the adhesive
tape also became smaller, and its center expanded significantly.
After compression, the maximum value was no longer 1,
leading to normalization in the range of [0, 1].
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Fig. 13. Comparison of the box image compression using different algorithms. (a)–(c) Image before compression. (d)–(f) HEVC compression. (g)–(i) DFT
compression. (j)–(l) DCT compression. (m)–(o) Thresholding compression. The left-hand column shows the grayscale images. The middle column shows the
classification images with three classes based on Otsu’s method. Values below the lower threshold are represented by blue, values above the higher threshold
are represented by red, and values between both thresholds are represented by green. The right-hand column shows the corresponding histograms with Otsu
thresholds indicated by the red lines.

As shown in Fig. 13(j)–(l), the DCT achieved a higher
compression ratio of approximately 770 and a smaller data size
of 109.3 kB. The corners of the objects were not displayed as

sharply after compression. Moreover, the small openings in the
Siemens star at the top and bottom were no longer visible in
the grayscale image, and its center became larger. The classi-
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Fig. 14. Comparison of the hand images before and after MaxCube compression. (a)–(c) Initial situation before compression. (d)–(f) Results of MaxCube
compression. The left-hand column shows the grayscale images. The middle column shows the classification images with three classes based on Otsu’s method.
The main parts that scattered a significant part of the radar waves back to the antennas in a normal direction are shown in red, whereas areas of the hand
that reflected only part of the energy back to the antennas due to the surface’s curvature are shown in green. Areas with hardly any reflection are shown in
blue. The right-hand column shows the corresponding histograms with Otsu thresholds indicated by the red lines.

fication with Otsu’s thresholds of 0.188 and 0.375 showed that
the red values—that is, the values above the higher threshold—
increased. The edge effects of the DCT resulted in values
above 1, which were set to 1 by clipping. This can be seen in
the histogram in Fig. 13(l), which shows a small increase in
values of 1.

As shown in Fig. 13(m)–(o), Thresholding obtained a
grayscale image with sharper edges than those obtained by
the DFT and DCT. The compression ratio was 60, the data
size was 1.394 MB, and Otsu’s thresholds were 0.173 and
0.358. The classification resulted in even more red regions
due to quantization and the fact that the difference between the
original and compressed images increased, leading to a lower
SSIM value. Furthermore, quantization achieved a sharper
transition of the objects edges and an unchanged center of the
Siemens star. The impact of quantization is clearly shown in
Fig. 13(o). With the other algorithms and in the uncompressed
image, zero values occurred most frequently. This was not
the case with Thresholding because the threshold value was
0.0398 and thus lay slightly to the right of the first peak
(compare with the histogram in Fig. 13(c)). Consequently, the
smallest value in the histogram in Fig. 13(o), which occurred
approximately 3500 times, was not the most frequent value.

B. Hand Radar Image Compression Results

Fig. 14(a)–(c) shows the hand image before compression.
A comparison of the histogram in Fig. 14(c) with the box
histogram in Fig. 13(c) shows that, due to the reflection of
the radar waves on the skin surface, most pixel values were
very small, and the interesting values accounted for only a

small proportion. Nevertheless, Otsu’s method also generated
a classification here, with thresholds of 0.156 and 0.473.

The compression of the hand image using MaxCube is
shown in Fig. 14(d)–(f). Despite a compression ratio of
1360 and a data size of 39.752 kB, no significant differences
were observed in either the grayscale image or the classifi-
cation image, with almost the same areas allocated to blue,
green, and red. This was also reflected in the fairly close Otsu
thresholds of 0.158 and 0.469. The effects of quantization can
be seen in Fig. 14(f), where values close to zero appeared
almost 57 000 times.

C. Comparison of the Algorithms

The individual compression ratios are summarized in
Table III. HEVC achieved a good compression ratio of 120 and
fine details and sharp edges were still visible in the image. The
DFT achieved a higher compression ratio of 520 but resulted in
the loss of fine details and an enlarged Siemens star center. The
same was observed with DCT at a compression ratio of 770.
Thresholding achieved a moderate compression ratio of 60 but
preserved the sharp edges and a small Siemens star center,
which were further improved by quantization.

Data compression was executed using an eight-core Intel®

Core™ i7-9700 CPU at a 3 GHz clock frequency with 8 cores
and 64 GB of RAM. HEVC compression lasted 183 s, DFT
compression lasted 1.22 s, DCT compression lasted 0.93 s,
Thresholding compression lasted 5.70 s, and MaxCube com-
pression of the hand image lasted 0.071 s.

Table IV shows a comparison of the algorithms’ compres-
sion results between the box and hand images. The algorithms
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TABLE III
SUMMARY OF FIG. 13 AND FIG. 14 OF THE ACHIEVED RATIOS

WITH THE DEPENDING VALUES FOR SSIM AND PSNR

TABLE IV
COMPARISON OF THE COMPRESSION ALGORITHMS BETWEEN

THE BOX AND HAND IMAGE

used the same compression settings for both scenarios. The
box SSIM was based on the 3D image, while the hand
SSIM was based on the 2D maximum projection. HEVC and
Thresholding achieved higher hand image than box image
compression ratios with the same parameters, while the DFT
and DCT achieved lower hand image compression ratios.

Since only one measurement object was depicted, most
pixels belonged to the background and the areas between
the individual layers of the image volume. Due to the large
proportion of the background, which does not change suddenly
between layers, HEVC achieved higher hand image than box
image compression due to block formation.

The DFT and DCT obtained lower hand image compression
ratios because in the background regions, in which only
noise originally appeared, not all of the noise was removed.
This resulted in more nonzero values, which prevented effi-
cient compression using the LZMA. Optimizing the algorithm
parameters described in Section V can increase the hand image
compression ratio.

With Thresholding, only the values above the selected
threshold are compressed, whereas those below the threshold
are set to zero. Consequently, the number of zero values
continues to increase, and more values can be represented
by a short bit pattern using the LZMA. In contrast to the
DFT and DCT, the smallest value obtained by Thresholding
was also by far the most frequent when the hand image was
compressed. Furthermore, a smaller quantization can be used
with Thresholding than with DFT and DCT, which means that
the number of different values is also reduced.

D. Discussion of the Results

Our evaluation results show that 3D radar images can be
compressed using the state-of-the-art HEVC standard, with a
good compression ratio. Moreover, although the DFT-based
compression introduced in [13] was initially designed for
automotive use, it can also be used in radar imaging with

no significant changes. Overall, all the algorithms presented
here can achieve better compression ratios when compressing
reconstructed radar images than raw data.

Our detailed evaluation results show that the DFT and DCT
achieve better compression than HEVC in most cases, with
DCT performing slightly better than DFT. Moreover, both
the DFT and DCT are significantly faster than HEVC, with
the DCT being faster than the DFT.

Thresholding is a simple compression variant, with all
values below a certain threshold set to zero. In terms of
compression duration, Thresholding is considerably faster
than HEVC but slower than the DFT and DCT. Moreover,
it achieves a lower compression ratio than HEVC, DFT, and
DCT. However, unlike the DFT and DCT, it does not require
an inverse transform during decompression.

MaxCube can achieve the highest compression ratio and the
fastest compression. We specifically designed this compression
algorithm for radar images of nontransparent objects.

We also examined a combination of Thresholding and
MaxCube, in which Thresholding was also applied to the max-
imum intensity projection (Matrix 1 of MaxCube). However,
the results were inferior to than those achieved by MaxCube
alone and are therefore not reported here. Other combinations,
such as DFT or DCT with MaxCube, are also conceivable but
were not examined in this study.

VII. CONCLUSION

Our results show that the DFT shows better compression
performance than HEVC, as evaluated using image processing
metrics. This contrasts with the results obtained in [13],
in which range–Doppler maps were compared. Moreover, our
results show that our approaches—the DCT-based algorithm,
Thresholding, and MaxCube—can achieve better results than
HEVC and the DFT. However, in which cases the DCT,
Thresholding, or MaxCube performs better depends on the
comparison metric used and the desired compression ratio.

In this work, we considered only two scenarios: one with
transparent objects (box contents) and one with a nontrans-
parent object (hand), because it takes a lot of effort to
generate different images. Nevertheless, we presume that com-
parable results can be achieved using similar images within
the respective scenario. Further studies with several different
measurement scenarios should be conducted. Since the phase
is not required for many applications of radar imaging after
the image reconstruction is done, the image volume com-
pression in this work did not include the phase. Evaluating
recent compression standards, such as Versatile Video Coding
(VVC) or the Discrete Wavelet Transform, is also an option.
Since the 3D shape of the data, compression using Tucker
decomposition [35] is also conceivable. Finally, future studies
could calculate the average rate savings at constant picture
qualities using the Bjontegaard Delta metric [36].
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