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Abstract— Autonomous driving technology has made remark-
able progress in recent years, revolutionizing transportation
systems and paving the way for safer and more efficient journeys.
One of the critical challenges in developing fully autonomous
vehicles is accurate perception of the surrounding environment.
Radar sensor networks provide a capability for robust envi-
ronmental detection. It become apparent that the principle of
a synthetic aperture radar (SAR) can be employed not only
in the field of earth observation but also increasingly in the
field of autonomous driving. With the help of radar sensors
mounted on vehicles, huge synthetic apertures can be created
and thus a high angular resolution is achieved, which ultimately
allows detailed images to be obtained. Increasing image quality,
however, also increases the demands on position accuracy and
thus the localization of the vehicle in the map. Since relative
localization accuracies in the millimeter range over long trajec-
tories cannot be achieved with conventional Global Navigation
Satellite Systems (GNSS) so-called simultaneous localization and
mapping (SLAM) algorithms are often employed. This paper
presents a purely radar-based SLAM algorithm, which allows
high-resolution SAR processing in the automotive frequency
domain of 77 GHz. The presented algorithm is evaluated by
measurements for trajectories with a length of up to 500 m and
a measurement duration of more than two minutes.

Index Terms— Chirp-sequence radar sensors, radar imaging
sensors, radar sensor networks, synthetic aperture radar, SAR,
simultaneous localization and mapping, SLAM.

I. INTRODUCTION

THE field of autonomous driving is advancing rapidly,
thus putting increasing demands on environment recog-

nition and sensor systems. A variety of sensor systems can
be used for this purpose, each with its own strengths and
weaknesses. LIDAR systems and cameras offer high angular
resolution [1], but they lack robustness in adverse weather
conditions [2]. Radar systems, on the other hand, have lower
angular resolution but are more robust to weather conditions.
In recent years, the use of radar sensor networks has offered
significant advantages in terms of detection capability and
accuracy. References [3], [4], and [5], allowing these sensors
to be utilized for mapping as well.
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The target information obtained from radar raw data can
be used to create environmental maps, e.g. grid maps [6].
These offer the advantage of a cell-based representation of
the environment, which makes them efficient to process. Grid
maps can be generated either from target lists (T-GM) or from
raw data (R-GM). Target list-based mapping approaches can be
divided into amplitude grid maps and probabilistic occupancy
grid maps. Probabilistic occupancy grid maps have been shown
to provide a more robust representation of the environment
with significantly increased resolution.

One way to represent the environment with a much higher
resolution without changing the hardware is to use syn-
thetic aperture radar (SAR). SAR processing of the raw
data from a mm-wave radar sensor mounted on a mov-
ing vehicle can create a larger aperture, which results in
increased angular accuracy compared to target list-based map-
ping approaches [7], [8], [9]. Since SAR processing also
represents the environment in a cell-based manner, it is called a
raw databased grid map (R-GM). SAR maps provide a much
more accurate representation of the environment than target
list-based grid maps due to the huge aperture spanned [10],
[11]. Target list-based grid maps, on the other hand, are very
computationally efficient and can be implemented in real time
without much hardware overhead.

Although T-GMs and R-GMs represent the map differ-
ently, their processing has one major common feature –
the position of the radar sensors and the vehicle must be
known at each measurement interval. While the position of
the radar sensors at each frame must be known for T-GMs,
the position of the radar sensors at each transmit interval
must be known for SAR processing. T-GMs have a lower
localization requirement due to their lower maximum map
resolution, which results in a position accuracy of 3 cm being
sufficient to obtain an artifact-free image of the environment.
Nowadays, such position accuracy in the lower centimeter
range can be achieved with a differential Global Navigation
Satellite Systems (GNSS) [12]. In SAR processing, however,
the range-compressed data must be phase-corrected according
to the position of the radar sensor. Therefore, in theory,
a relative accuracy of less than λ/4 should be maintained.
For radar sensors typically used in automotive applications
with a frequency of 77 GHz, the maximum localization error
corresponds to 1.8 mm. This accuracy cannot be achieved
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nowadays with ordinary GNSS. Furthermore, dense cloud
conditions, high buildings or driving in tunnels or underground
garages impede satellite-based localization and the localization
accuracy is significantly degraded or fails completely. Internal
measurement systems such as an internal measurement unit
(IMU) or a wheel speed sensor have the advantage of being
able to measure the speed of the vehicle independently of the
external environment. However, their suitability for long-term
localization is limited. The speeds are integrated according
to dead reckoning and thus a small speed error leads to a
large position error for long trajectories. Another problem of
all systems is on the one hand the expensive price and on the
other hand the time synchronization between the radar sensors
and the corresponding localization systems, which must be in
the range of a few microseconds for SAR in order to guarantee
a coherent SAR processing.

The problem of insufficient position accuracy for SAR
processing in the frequency range of 77 GHz is well known
and is being attempted to be solved with the aid of various
algorithms. At the early stage of the research the radar sensor
was placed at thousands of different positions for this purpose
and a measurement was performed at each position to span
a synthetic aperture [13]. Following on these results, the
radar sensor was mounted on a moving vehicle to generate a
synthetic aperture while driving. In this process, the trajectory
length could be extended stepwise from a few meters [9], [14],
[15] up to 75 m to generate high-resolution SAR images [16],
[17], [18]. Although ground truth information was a pre-
requisite, the velocity errors had to be compensated with
different autofocusing methods to obtain a sharp image of the
environment. As a consequence, it could be shown that an
ego-motion based dead reckoning exclusively from the radar
sensors used allows a trajectory estimation on the basis of
which a SAR processing is possible [8], [19], [20]. However,
all these methods allow SAR processing only for rectilinear
trajectories and limited coherence.

Therefore, the paper describes an accurate position esti-
mation algorithm based solely on radar data, allowing SAR
processing over long and curved trajectories. This enables
localization completely independent of external systems such
as GNSS or an IMU. For this purpose, different algorithms like
ego-motion-based dead-reckoning and scan-matching methods
are fused using a graph-based SLAM algorithm. Due to
the long trajectory and the high requirements on accuracy,
cross-frame constraints are added to the graph. Thus, land-
marks from different spatial directions are fused with each
other. To avoid increasing the computational complexity of
the already compute-intensive SLAM further, the SLAM is
processed in combination with T-GM. Furthermore, another
advantage of applying scan-matching to T-GM rather than
directly to SAR imaging is the decoupling of the image
quality from the ego-motion estimation. Once the trajectory
is estimated, the trajectory is used for the significantly higher
resolved SAR processing.

The paper is organized as follows: The sensor setup and the
radar architecture are presented in Section II. In Section III
the basic structure of the signal processing chain is described.
In Section IV the conventions of SAR processing and

Fig. 1. Top: chirp-sequence modulation scheme for NK ramps and two
frames (1: orange, 2: blue). Bottom: sensor position for each transmitted ramp
spanning a synthetic aperture [18].

probabilistic T-GM are derived. Subsequently, possibilities for
radar-based ego-motion estimation and corresponding dead
reckoning are derived in Section V part V-A, which are
fused with presented scan-matching algorithms from Section V
part V-B to set up the graph-based SLAM described in
Section V part V-C. The presented algorithms are subsequently
evaluated qualitatively and quantitatively in Section VI for
different measurement runs on a parking lot with a length
of several hundred meters.

II. CONCEPT AND SYSTEM ARCHITECTURE

The sensor configuration consists of incoherently-networked
chirp-sequence radar sensors mounted on a non-stationary
vehicle. The chirp-sequence radar sensors have multiple trans-
mit and receive antennas enabling multiple input multiple
output (MIMO) operation. The radar sensors emit frequency
modulated continuous wave (FMCW) ramps. These are char-
acterized by the bandwidth fB, the up-chirp time Tc, the ramp
repetition time Tr and the start frequency f0 [21], [22]. The
radar sensors are frame-based and emit Nk ramps within each
of the Nf frames. This notation and the modulation scheme
are shown in Fig. 1.

The time signal sTx of the emitted frequency ramps as shown
in Fig. 1 are calculated by the equation [23], [24]

sTx(t) ∝ ej(2π f0t+πκt2
+φ0). (1)

For comprehensibility, both the amplitude in (1) and the
counting index nk are neglected. κ describes the slope of
the frequency ramp which results from the ratio between the
bandwidth fB and the up-chirp time Tc. φ0 describes the start
phase of the emitted chirp. This generated transmit signal is
emitted with the help of the transmit antenna, reflected at the
target and then received again with the help of the receive
antenna. For this, the signal in air needs a transit time of
τ = 2r/c0, where r describes the distance between the sensor
and the target. Thus, the received signal corresponds to the
time-delayed transmitted signal and is represented by

sRx(t) ∝ ej(2π f0(t−τ)+πκ(t−τ)2
+φ0). (2)

Due to the radar architecture, the transmit signal and the
receive signal are mixed analogously and lowpass filtered,
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Fig. 2. Radar network with Nr = 6 radar sensors in violet with different
orientations. Vehicle coordinate system Pc

=
[
xc, yc] in blue, dashed and

corresponding velocity components in orange, solid lines [18], [25].

resulting in the intermediate frequency (IF) signal

sIF(t) ∝ ej(2π f0τ+2πκtτ−πκτ 2). (3)

For each of the Nk emitted ramps and Nf frames, this IF signal
is subsequently processed as described in Section III.

The radar sensor network consists of any number of sensors
and is sketched for Nr = 6 sensors in Fig. 2. The vehicle
coordinate system

[
xc, yc

]
is shown in blue. The velocity

vectors for all degrees of freedom (DoF) is shown in orange.
These DoFs include the vehicle velocity in the local x and
the local y directions, as well as the yaw rate ω acting at the
center of the rear axle.

III. PROCESSING CHAIN

Based solely on the raw data sIF of all radar sensors, a high-
resolution SAR image is processed. The algorithm used for
this is shown in Fig. 3 for Nr sensors, and Nf frames. For
clarity, each frame consists in the sketch of only Nk = 3 ramps
as opposed to Nk = 384 as in the later evaluated measurement.

In the first step, the signals sIF of all radar sensors are
digitized and transformed independently into the frequency
domain to obtain the range-compressed fast-time samples
( ). Based on these fast-time samples, SAR processing is
performed afterwards ( ) as described in Section IV-A. The
problem in this case is the localization and therefore the
knowledge about the trajectory of the vehicle. To determine
this trajectory a SLAM algorithm is applied ( ). A graph-based
SLAM is employed in this case, which determines the most
likely trajectory based on the fusion of ego-motion estimation
and kaze feature-based scan matching. However, this SLAM
does not optimize the SAR-processed environment but a robust
and significantly more efficient occupancy target-list based
grid map as described in Section IV-B. To create such a
target list based occupancy grid map the target lists have to
be determined independently for each sensor ( ). For this,
common signal processing techniques (windowing, slow-time
Fourier transform, constant false alarm rate (CFAR), and angle
of arrival (AoA) estimation) are applied to the IF data of
all Nk emitted ramps of a frame. Thus, with each of the Nr
chirp-sequence radar sensors used, the azimuth angle φs

nr,nt
,

the range r s
nr,nt

, and the radial velocity vr
nr,nt

in the local sensor

Fig. 3. Signal flow chart of the target list-based ( ) SLAM algorithm ( ) for
creating high-resolution SAR images ( ).

coordinate system (s) is determined for each nt-th target, where
Nt describes the number of targets detected.

Using the occupancy grid map (OGM) for the SLAM
algorithm enables velocity-independent environment mapping
for one frame, reducing the complexity of the computationally
expensive algorithm.

IV. MAPPING

In general, for this purpose, the environment M to be
mapped is gridded into Ni cells. Subsequently, for each cell mi ,
either the occupancy probability is computed based on OGM
processing or the received power is computed based on SAR
processing. Thus, either an efficient OGM or a high-resolution
SAR image can be processed based on the same radar data.
Due to the efficient processing, the SLAM from Section V-C is
processed based on the OGM. The subsequent high-resolution
environment mapping is created using SAR processing based
on the SLAM estimated trajectory.

A. Synthetic Aperture Radar (SAR)

In general, there are many different methods to generate
SAR images of the environment. Basically, a distinction is
made between algorithms in the frequency domain and algo-
rithms in the time domain [26], [27], [28]. The advantage of
the time-domain algorithms lies in their universal application
range since the trajectory does not have to meet any special
requirement like linearity. Therefore, the backprojection (BP)
algorithm, which is operating in the time domain, is applied
in the following.

For each cell mi of the environment to be imaged M, the
measured range information is phase corrected according to
the range to be evaluated. This corresponds to a matched-filter-
based phase correction. If the cell to be evaluated mi represents
a target, the signals of all Nk ramps overlap constructively after
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phase correction, whereas these pointers overlap randomly if
the cell represents noise.

According to Fig. 3, range compression is first performed
based on the fast time samples Snf,nk

IF , which describe the
sampled IF signal sIF(t) from (3). For clarity, the time tk is
used in the following to describe the time of an emitted ramp.
In contrast, tf describes the time of a frame, which is relevant
for the calculation of grid maps. This results in the following
assignment:

Snf,nk
IF = Stk

IF (4)

The range-compressed data corresponds to the transformation
of the fast-time samples into the frequency domain and is
described with a Fourier transformation

Atk = F {Stk
IF}. (5)

where Atk is the range information vector at time tk with

Atk =
[
A1 A2 . . . ANs

]T (6)

Ns corresponds to the number of samples of a frequency ramp.
As long as no zero-padding is performed and IQ sampling is
applied, this also corresponds to the length of the frequency
vector. Each entry of the vector Atk corresponds to a complex
value, which is assigned to a certain frequency and thus to a
certain distance r.

Based on the range information r and the assigned complex
amplitudes Atk a SAR processing with the BP algorithm is
performed for the environment M to be imaged. To each of the
cells a received power G(mi ) is assigned. This complex value
is iteratively calculated based on all measurements (4) and
all position data (χ) using the backprojection algorithm [29],
[30], [31].

G
(
mi |41:tk , χ1:tk

)
= G

(
mi |41:tk−1, χ1:tk−1

)
+ A

(
mi |4tk , χtk

)
· exp( j · 8). (7)

The received power of the cell G(mi ) at measurement time tk
is composed of the cell’s received power at time tk−1 and the
phase-corrected measured value of the current measurement
Atk . 8 describes a distance-dependent phase correction to
ensure constructive superposition for targets. The assignment
of the correct frequency bin of the current measurement Atk

to the cell mi is described with

A
(
mi |4tk , χtk

)
= Atk

(
u
(
mi |4tk , χtk

))
, (8)

where Atk
(
u
(
mi |4tk , χtk

))
describes the u-th entry of the

vector Atk . The position index u for the vector Atk is given by
the following ratio rounded to the nearest integer.

u
(
mi |4tk , χtk

)
=

⌊
dmi

1r

⌉
. (9)

In this case dmi describes the distance between the nr-th radar
sensor at the global (g) position Pg

= [Pg
x , Pg

y ] and the cell mi .
The final SAR image is processed exclusively in the

xy-plane at the height of the radar sensors, given that the radar
sensors, along with the vehicle’s motion, cover a synthetic
aperture limited to the xy-plane.

According to (8), each cell of the map to be imaged is
assigned a distance and thus also a complex-value received

Fig. 4. Representation of the free space model only (4a) and the free space
model + target model (4b) for an exemplary measurement.

power according to (6). This complex pointer must be
rotated around the phase 8 according to the backprojection
algorithm (7) to obtain a constructive or destructive overlay.

8 = −j2π
f0

c0
· 2r

(
mi |χtk

)
. (10)

These steps are performed for each of the Ni cells of the
rasterized map, as well as for all Nk emitted ramps of
each emitted frame. The movement of the vehicle leads to
a continuously changing sensor position which results in a
large synthetic aperture. As soon as a cell represents a target,
all complex-valued received powers constructively overlap,
whereas the received powers overlap randomly if the respective
cell does not represent a target.

B. Occupancy Grid Mapping
The creation of target list-based grid maps is fundamentally

different from the creation of SAR mappings. While SAR
processing is a ramp-based processing, OGM processing is
a frame-based processing. According to Fig. 3, all ramps of
a frame are taken to obtain a target list. Subsequently, the
targets are added to the map M according to their probabilistic
properties.

Each of the Ni cells of the map M represents a probability
in OGM and not an integrated received power as it is the
case in SAR processing. The processing of the OGMs is
fundamentally divided into three steps:

• modeling of free-space
• calculating target probability
• updating probabilistic map
These steps are described below with reference to [32], [33],

and [34]. The goal in this case is to determine the occupancy
probability p

(
mi |41:tf , χ1:tf

)
of cell mi at time tf based on all

measurements 41:tf and all pose information χ1:tf up to the
current time tf.
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The first step of probabilistic OGM processing involves
modeling the free space. This free-space model describes
the occupancy probability pFS of each cell if no target is
detected with the CFAR at that position and is both range and
angle dependent. While the free space probability is modeled
proportional to the distance squared, it is approximated with
a cosine in the azimuth plane.

pFS(mi )

=
0.5 − c1

2
·

(
d2

mi

R2
max

+

(
1 − cos

(
π

2
φmi

FoVφ

)))
+ c1 (11)

The parameter c1 describes the minimum probability of the
free space model and has to be chosen according to the radar
sensor and the applied CFAR and angle estimation algorithm.
For the radar sensors, c1 = 0.3 is used to avoid suppressing
missing detections due to clustered CFAR detection. The
variables Rmax and FoVφ describe the maximum measurable
distance of the radar sensor and the beam angle of the utilized
antenna. According to the properties of the free-space model,
this probability pFS

(
mi |x1:tF

)
must generally lie in the interval

[0; 0.5] and must be normalized accordingly. The variable φmi

describes the azimuth angle in sensor coordinates between the
sensor and the cell mi to be evaluated. The free-space model
is shown in Fig. 4a for a sensor at position Pg

= [0 m 0 m].
Next, for each of the Nt detected targets, the target proba-

bility pT must be determined. This is modeled based on the
measured distance r s

nr,nt
, the azimuth angle φs

nr,nt
, and the SNR.

In the following, the indices are neglected for clarity.

pr = 1 −

(
0.5 ·

r s

Rmax

)
(12)

pφs = cos
(

arccos (0.5)

FoVφ

· φs
)

(13)

pSNR = 1 − (1 − 0.5) · e−h·SNR (14)

The variable h is taken to vary the slope of the function
pSNR which adapts the function to the radar sensor employed.
The target probability pT describes the arithmetic mean of all
three sub-probabilities. The Gaussian distribution is used to
model the probability of each target within the interval [0.5; 1],
accounting for the uncertainties σr , and σϕ associated with the
radar sensor.

fK (k) =
1√

(2π)3 det(6)
e(−

1
2 (k−µ)T6−1(k−µ)) (15)

pT(mi ) =


0, (|k − µ|) > diag

(
3
√
6
)

fK (k)

max( fK (k))
· (pT − 0.5) + 0.5,

otherwise.

(16)

The matrix 6, represents the covariance matrix of the mea-
surement 4, while the extracted target information is denoted
as µ. The vector k specifies the cell that is being evaluated.

k =
[
mi,r mi,φ

]
. (17)

Consequently, the probability distribution of each detected
target extends across multiple cells in the free-space map. The
registration of each of the Nt detected targets is performed,

allowing the probability of a cell mi at the current measure-
ment time tf to be characterized by

p
(
mi |4tf , χtf

)
= max

(
pT(mi ), pFS(mi )

)
. (18)

If this procedure is performed for many measurements,
an OGM can be calculated. For this, the probabilities of the
current measurement p

(
mi |4tf , χtf

)
are combined with the

probabilities of all previous measurement p
(
mi |41:tf−1, χ1:tf−1

)
and all sensors.

p
(
mi |41:tf , χ1:tf

)
= p

(
mi |4tf , χtf

)
⊚p
(
mi |41:tf−1, χ1:tf−1

)
=

1(
1 + E−1

A · E−1
B · E−1

C

) (19)

E A =
p
(
mi |4tf , χtf

)
1 − p

(
mi |4tf , χtf

) (20)

EB =
p
(
mi |41:tf−1, χ1:tf−1

)
1 − p

(
mi |41:tf−1, χ1:tf−1

) (21)

EC =
1 − p(mi )

p(mi )
(22)

The symbol ⊚ describes the probabilistic update step corre-
sponding to [35].

V. SELF-LOCALIZATION

The mapping algorithms described in Section IV enable
an environment mapping once the global vehicle pose Pg

v =[
Pv,x Pv,y Pv,8

]
is known. This vector consists of the x and y

position of the vehicle and the orientation Pv,8. In general,
however, this vehicle pose Pg

v is not known and must be
determined which is done below using a graph-based SLAM
method for an unknown environment M. The graph-based
SLAM algorithm consists of three steps:

• radar-based ego motion estimation
• scan matching
• solving the graph equation

These steps are derived below to enable stand-alone radar-
based self-localization.

A. Ego-Motion Estimation

In [36], [37], [38], [39], [40], and [41] it was shown that
three velocity components vx and vy as well as the yaw
rate ω (corresponding to Fig. 2) can be determined using
a radar sensor network(Nr≥2) based on the target lists. For
this purpose, the following model describing the relationship
between the measured target information vr

nr,nt
, φs

nr,nt
and the

intrinsic velocity Vp is used:
−vr

nr,1
−vr

nr,2
...

−vr
nr,Nt


︸ ︷︷ ︸

Vr
nr

=


cos
(
φc

nr,1

)
sin
(
φc

nr,1

)
cos
(
φc

nr,2

)
sin
(
φc

nr,2

)
...

cos
(
φc

nr,Nt

)
sin
(
φc

nr Nt

)


︸ ︷︷ ︸
Dnr

·

[
−yc

nr
1 0

xc
nr

0 1

]
︸ ︷︷ ︸

Snr

·

ω

vx

vy

. (23)
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In this case, xc
nr

and yc
nr

denote the sensor positions and φc
nr,nt

denote the incidence angles relative to the vehicle coordinate
system. These are calculated with

φc
nr,nt

= φs
nr,nt

+ ϕc
nr

(24)

As soon as more than two radar sensors are employed on
the vehicle, the equations can be transformed into a common
system equation, and thus the velocity vector Vp can be
uniquely determined.

Vr
1

Vr
2
...

Vr
Nr


︸ ︷︷ ︸

Vr

=


D1 · S1
D2 · S2

...

DNr · SNr


︸ ︷︷ ︸

Q

·

ω

vx

vy


︸ ︷︷ ︸

Vp

. (25)

Subsequently, (25) is transformed according to the searched
velocity vector Vp, for example, using a Moore-Penrose
inverse of Q.

Ṽp = Q+
· Vr (26)

The velocity of the vehicle is calculated by considering
stationary targets, as explained in (25). To accurately estimate
the vehicle’s speed, it is necessary for at least two sensors to
detect a minimum of three targets, enabling velocity estimation
for all three degrees of freedom (DoFs). As (25) applies
exclusively to stationary targets, any non-stationary targets
or false detections need to be eliminated. To filter out these
outliers that do not conform to the expected motion model,
a random sample consensus (RANSAC) algorithm [42] is
employed.

1) RANSAC-Filtering: In order to ensure a dependable
and resilient estimation of ego-motion, it is essential to
eliminate outliers. One effective approach is to utilize an
iterative RANSAC algorithm with a specified number of
iteration steps, denoted as Nit. During each iteration step
nit≤Nit of the RANSAC algorithm, the velocity model Vnit

p is
estimated by selecting three targets randomly from the target
lists (TL1, . . . , TLnt ). Subsequently, the velocity difference
DV between Vnit

p and all measured radial velocities Vr is
calculated

Dnit
V =

∣∣Q · Vnit
p − Vr

∣∣. (27)

Following that, the accuracy of the velocity estimation is eval-
uated based on the number of inliers. Inliers represent targets
with velocity errors below a suitable threshold Tv relative to
the currently estimated motion model. It is crucial to select
a threshold that encompasses the majority of real stationary
targets, taking into account measurement inaccuracies and
noise. To ensure this, a threshold of Tv = 0.7 m

s is chosen
for the evaluation. This iterative RANSAC process is outlined
as follows:

Kit = arg max
nit≤Nit

 J∑
j=1

1(Dnit
V, j <Tv

)
 (28)

where Dnit
V, j describes the j-th element ( j≤J , J = O(Dnit

V, j )

where O describes the cardinality and therefore the number

Fig. 5. Representation of the ego-motion estimation based on detected
targets of a simulated straight line drive for two sensors with the orientation
ϕc

=
[
ϕc

1 ϕc
2
]

= [0◦ 90◦] and the corresponding inliers.

of detections) of the vector Dnit
V with

Dnit
V =

[
Dnit

V,1 Dnit
V,2 . . . Dnit

V,J

]T (29)

and 1 specifies the indicator function with:

1(Dnit
V, j <T

) =

{
1 Dnit

V, j ≤ Tv

0 otherwise.
(30)

The model that provides the best fit to the current mea-
surement, indicated by having the highest number of inliers,
corresponds to the most probable velocity vector VKit

p of all
Nit iteration steps.

As the RANSAC filtering relies on Nit iteration steps
and three randomly selected targets, VKit

p represents the best
estimation derived from three stationary targets rather than
encompassing all stationary targets. In order to enhance the
accuracy of velocity estimation, the vehicle’s velocity is re-
estimated, this time considering all targets that conform to
the model within the threshold tolerance Tv for the velocity
vector VKit

p .
This principle is shown schematically for two sensors in

Fig. 5. The two sensors have an orientation of ϕc
=
[
ϕc

1 ϕc
2

]
=

[0◦ 90◦] and are color coded. The measurements selected as
inliers by the RANSAC algorithm are shown as red-filled
scatters. Those detected targets which do not correspond to the
most probable velocity model are filled transparent. Based on
the selected inliers, the most likely vehicle speed is estimated,
which is shown in green ( ).

2) Dead-Reckoning: Based on the estimated velocity vector
Ṽ p, the vehicle pose Pg

v =
[
Pv,x Pv,y Pv,8

]
is determined

using the dead-reckoning algorithm. In this case, the pose at
time t+1 is determined based on the vehicle position, vehicle
velocity, and vehicle orientation at time t :P̃ t+1

v,x
P̃ t+1

v,y
P̃ t+1

v,8



=


P t

v,x−rv

(
sin
(
P t

v,8+8t
Vp

)
−sin

(
ω·dt+P t

v,8+8t
Vp

))
P t

v,y+rv

(
cos
(
P t

v,8+8t
Vp

)
−cos

(
ω·dt+P t

v,8+8t
Vp

))
P t

v,8+ω·dt


(31)
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Fig. 6. Illustration of the scan matching principle. a) measurement at time t ,
b) measurement at time t+1, and c) estimated transformation of the vehicle
pose based on the reference image and the object image.

The variable rv denotes the radius of the curve, which is
given by

rv =

√
v2

x + v2
y

ω
(32)

The variable dt describes the time interval between two
consecutive time steps and 8Vp the angle of the estimated
velocity. Since the processing of grid maps is frame-based, the
time interval dt in this case corresponds to the reciprocal of the
frame rate of the radar sensors, which in the later measurement
is 37 frames per second (fps).

Dead reckoning is a very simple way to estimate the a
posteriori pose of a vehicle. However, since the pose estima-
tion is based solely on velocity estimation, erroneous velocity
estimations will be integrated and lead to erroneous vehicle
poses for long trajectories. To minimize these errors, the pose
is additionally determined by scan matching.

Dead reckoning is very well suited for short-time posi-
tion estimation within a frame and thus for each transmitter
ramp, which is important for SAR processing. Incorrect dead
reckoning within a frame leads to a distorted image of the
environment during SAR processing. However, since GMs
process target lists, and are frame-based, the resulting map
is independent of the ramp positions and thus independent of
the dead reckoning. Since the dead reckoning and the scan
matching should be as independent as possible for the later
presented SLAM algorithm, this property is exploited and
the scan matching is processed on the basis of the velocity
independent OGMs.

B. Scan-Matching
Rather than using velocity information, scan matching

estimates the pose change of the vehicle based on envi-
ronment maps. The measurements from different times are
compared with each other. The pose difference of these two
measurements is subsequently converted into a transformation
which determines a relative pose information between the two
measurement times. This is sketched in Fig. 6.

The Fig. 6 consists of three sub-figures. The upper left figure
shows the environment of a vehicle ( ) in relation to the

vehicle at time t . The vehicle is surrounded by a possible
target, a wall, on the front side and on the left side. As soon
as the vehicle is in motion and a second measurement is
performed, at time t + 1, a different relative environmental
image results as shown in the upper right sub-image. The
vehicle ( ) is still at position (0, 0) in the local vehicle
coordinate system, but the targets have shifted. Based on this
target shift, the pose change of the vehicle is determined in this
section. If this pose estimation is performed by scan-matching
methods, the result is the lower sub-image, which is again
shown in the vehicle coordinate system at measurement time t .
It is evident that the two walls are congruently matched, and
the vehicle ( ) has moved forward ( ) during one frame
and has gone through a left turn.

The aim is to estimate the transformation as precisely and
robustly as possible. Since the sensor environment according
to Section IV-B can be mapped very efficiently with an
occupancy grid map for one frame, methods from image
registration are applied for scan matching [43], whereas these
have to be adapted according to the sensing properties of radar
sensors.

In general, image registration describes a method for deter-
mining the transformation between two images, in the sensing
case, of two images of the environment [43]. In this case,
a basic distinction is made between the reference image
(Fig. 6a) and the object image (Fig. 6b). According to Fig. 6c),
the reference image is at a fixed position while the object
image is shifted to the reference image as best as possible by
means of a transformation. This is done with the help of auto-
mated feature detectors such as the robust kaze features [44],
[45], [46]. In this process, scan matching is performed in three
basic steps, which will be discussed in more detail below:

1) feature detection
2) feature description
3) determination of correspondences
1) Feature Detection: The detection of suitable features is

elementary for an accurate scan-matching-based pose estima-
tion, since all post-filtering steps are based on the detected
features. As the subsequent algorithms have their origin in
image processing, the occupancy grid maps are converted
to gray-scale images. Each cell mi in this case no longer
describes the probability p(mi ) but the concentration C(mi ).
To ensure robust and reliable feature detection, the image
C(mi ) is simplified in several stages and will be referred to as
scale space W in the following. This reduces noise and makes
prominent structures such as edges or corners more prominent.
In the simplest case, this could be achieved by convolving the
image with a linear (Gaussian) kernel function BG(mi ).

W(mi , σk, sk) = BG(mi , σk, sk) ∗ C(mi ) (33)

BG(mi , σk, sk) =
1

2πσk
e
−

m2
i,x +m2

i,y
σ2

k sk (34)

The parameter σk describes the standard deviation of the
Gaussian filter whereas the parameter sk describes a factor
for the modification of the Gaussian kernel. This parameter
will be discussed in more detail later. In general, the image
C is smoothed more for higher values of sk , which results
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Fig. 7. Illustration of the convolution with a linear kernel function (a) and
a non-linear kernel function (b).

in more noise suppression. This is exemplarily shown for a
measurement in Fig. 7a.

The problem in this case, however, is that not only the noise
of the image is smoothed by a convolution with a Gaussian
kernel, but also all prominent structures, which are essential
for a robust feature extraction. This is remedied by nonlinear
kernel functions such as those used in kaze features [46]. The
goal of this nonlinear kernel function is to suppress noise,
but not to smooth details and structures. For this purpose,
the intensity of the smoothing is adapted to the local image
structure. To achieve this, a diffusion description method is
applied.

Fick’s law describes in general the diffusion and thus the
energy-less smoothing process of concentrations. The concen-
tration corresponds to the gray values C(mi ) of the image
of the environment. By applying the continuity equation, the
diffusion equation to be solved is obtained

∂C
∂t

= ∇ · (5(mi , ∇C, ts) · ∇C). (35)

The variable of time ts corresponds to a scaling factor, which
has a direct effect on the diffusion. A higher value of ts leads
to a stronger smoothing and thus a stronger simplification of
the image. This value will be discussed in more detail later.
In order to achieve the desired nonlinear diffusion filtering, the
conductivity function 5 has to be determined as a function of
the gradient, which can be done by the following equation

5(mi , ∇C, ts) = g(|∇Cσ (mi , ts)|). (36)

The luminance function Cσ represents the gradient of a
Gaussian-filtered rendition, with standard deviation σ , of the
initial image C. The function g must be chosen according to
the image [47]. Since the radar images according to Fig. 4
do not have clear edges and corners as it is the case for
example with camera or LIDAR images, the function g is
chosen accordingly to favor wide regions over smaller regions.

g =
1

1 +
|Cσ |2

k2
c

. (37)

The factor kc is a contrast factor which influences the degree
of diffusion. The diffusion (35) is subsequently solved numer-
ically, since an analytical solution is not possible due to
its complexity. One way to do this is by the linear-implicit

method [48]. In this case, (35) is discretized and solved
iteratively for each iteration i t

Ci t+1
=

I − τ

2∑
kl=1

5′

kl

(
Ci t)−1

Ci t (38)

The unit matrix is described by I and the discrete time step
by τ . 5′ is a matrix that encodes the image conductivities
for each of the two dimensions. This result of a nonlinear
kernel function is shown in Fig. 7b. Especially in comparison
to the linear kernel function as shown in Fig. 7a, the different
weighting of the diffusion in the nonlinear case is visible.
Once prominent structures are detected, they are further high-
lighted and irrelevant structures are filtered out by Gaussian
smoothing.

Based on the described diffusion (35), a nonlinear scale
space (NSS) is spanned in the following. Based on this
nonlinear scale space the kaze features are extracted. The
nonlinear scale space corresponds to a two-dimensional matrix
NSS with Ko columns, which will be called octaves in the
following, and Ks rows, which will be called sub-levels in
the following. Each matrix entry of the two-dimensional NSS
contains a specific simplification of the image CσnNSS

.

NSS(ko, ks) = CσnNSS
(39)

The different simplifications are described by different stan-
dard deviations σnNSS .

σnNSS(ko, ks) = σ02ko+
ks
Ks (40)

The parameter σ0 is the base scale level. Based on this, the
nonlinear scale space is constructed. Since the diffusion (35)
is computed in time and not in discrete scale levels, σnNSS these
must be converted to a diffusion time tnNSS according to [46].
In the case of a Gaussian distributed scale space, convolving
an image with a Gaussian kernel with standard deviation σ

corresponds to image filtering for a specific time.

tnNSS =
1
2
σ 2

nNSS
(41)

The advantage of the nonlinear scale space is the invariance
of the detected features to noise and features, since the
features are extracted into different simplifications and thus
for different diffusions. Based on this NSS, the features are
subsequently extracted. For this, a normalized Hessian matrix
CσnNSS ,H is computed for different image levels.

CσnNSS ,H

= σ 2
nNSS

(
∂

∂x
∂

∂x
CσnNSS

∂

∂y
∂

∂y
CσnNSS

−

(
∂

∂x
∂

∂y
CσnNSS

)2
)

(42)

As the amplitude of the spatial derivative decreases with
increasing uncertainty σnNSS it must be normalized [49]. The
second order derivatives are approximated by a consecutive
application of sharp filters [50]. To allow a robust estimation,
detector responses are performed for different scale levels
σnNSS . Furthermore, the maximum search is not only performed
spatially, and thus in the two-dimensional image, but also in
cross-level between the different scale levels σnNSS . The search
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Fig. 8. Search for local maxima in multidimensional space for feature
detection.

for maxima is performed in all levels excluding the first level
nNSS = 0 and the last level nNSS = Ko · Ks. The search for a
local maxima is performed over a σnNSS ×σi large area on three
levels (nNSS − 1, nNSS, nNSS + 1). This is shown schematically
in Fig. 8.

For this purpose, the maximum value is determined in
this cuboid based on all cells, excluding the cell under test
(CUT), according to Fig. 8. As soon as this minimum value
is smaller than the gray value of the CUT, this CUT describes
a local maximum and thus a kaze feature. Once a kaze
feature is detected, the position of this feature is localized to
sub-pixel accuracy according to [51] to ensure more accurate
pose estimation. Overall, this procedure extracts all Kkf kaze
features.

To further increase the robustness of feature detection, the
grid map is not based on a single frame but on many frames.
This allows structures to be mapped more clearly, which
ensures that kaze features are detected more reliably. The
fusion of several frames is based on dead reckoning. Therefore,
the more frames are accumulated, the sharper the structures
become, but the more dependent the scan matching is on dead
reckoning. Due to the later fusion of dead reckoning and scan
matching, both localization methods should be independent of
each other. Chapter VI shows that an optimal value is around
eight frames.

2) Feature Description and Matching: In order to form
correspondences between the features found in each frame,
they must be characterized. This is done by descriptors, which
describe the environment of a feature.

The feature description is divided into two parts and is
done sequentially for each of the Kkf detected kaze features.
First, the orientation of each feature is estimated to make it
rotation invariant. In the second step, the actual descriptor is
built, which describes the environment of the feature. Based
on this descriptor, correspondences between other features are
subsequently determined to estimate the transformation and
thus the relative vehicle pose.

In the first step, the orientation estimation, a circular area
with a radius of 6σnNSS is defined around the extracted kaze
feature kkf. In this area, the derivatives in the local x-direction
∂
∂x CσnNSS

and in the local y-direction ∂
∂y CσnNSS

are formed to
determine the orientation of the derivative as shown in Fig. 9a.

Subsequently, these derivatives are weighted depending on
their distance according to a Gaussian distribution with the
standard deviation σ = 2σnNSS . To find out the dominant

Fig. 9. Process of feature description. a) describes the local derivations in
the x- and y-direction. b) describes the process of estimating the dominant
orientation of the corresponding feature.

Fig. 10. Process of calculating the descriptor vector.

orientation 8kkf of the feature these local gradients are repre-
sented as blue crosses in a vector space according to Fig. 9b.

The dominant orientation is subsequently determined using
a sliding window method. The sliding window has a size of
π
3 and is highlighted as a gray area in Fig. 9b. The maximum
of the sliding window method corresponds to the dominant
orientation of the feature and is shown as a red arrow in
Fig. 9b.

Following the orientation determination, the environment of
the feature is described as robustly and efficiently as possible.
For this purpose, the M-Surf method [45] is used, which is
adapted to the NSS. In the first step, an area of size 20σnNSS ×

20σnNSS is defined around the extracted feature. To make the
subsequent feature description rotation invariant, this surface
is rotated around the dominant orientation 8kkf of the feature
under investigation as shown in Fig. 9b.

The 20σnNSS ×20σnNSS large area is subsequently divided into
16 identically sized squares. For all 16 squares, corresponding
to a sliding window of size 9σnNSS × 9σnNSS , the derivatives
in the x and the y directions are determined and weighted
with a Gaussian distribution with a standard deviation of σ =

2.5σnNSS with respect to the feature position. The derivatives
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are subsequently assigned to a descriptor vector ψ i .

ψ i =


∑

∂
∂x∑
∂
∂y∑

|
∂
∂x |∑

|
∂
∂y |

 (43)

This is performed for each of the 16 sub-regions and com-
bined into a common vector 9, with each sub-descriptor
normalized by a Gaussian distribution with standard deviation
σ = 1.5σnNSS .

9kkf =

ψ1
...

ψ16

 (44)

Now a specific and rotation invariant descriptor has been deter-
mined for each feature. Therefore, it is possible to determine
correspondences between the features of the reference image
and features of the object image. For this purpose, the squared
difference of the elements of the two descriptor vectors to be
compared is summed up. As soon as the squared error is below
a chosen threshold, the features are marked as correspondence.
To avoid multiple correspondences between different features,
the correspondence with the smallest error is selected in a
second iteration, which enables a robust transformation.

3) Pose Estimation: In the final step of image registration,
a transformation is estimated from the detected features and
determined correspondences. First, translation and rotation are
determined via a procedure that minimizes the squared error
between the found feature pairs from sub-Section V-B2 [52].
The corresponding features of the object image are represented
below as a two-dimensional point set {p} with pi = [xi , yi ]

whereas the features of the reference image are represented
as a two-dimensional point set {p′

} with p′

i = [x ′

i , y′

i ].
The corresponding feature positions are represented by the
transformation

p′

i = Rsm · pi + Tsm, (45)

where Rsm describe a rotation matrix with dimensions 2×2 and
Tsm a 2×1 translation vector. The most probable matrices Rsm
and Tsm are determined via a quadratic error minimization of
all features found.[

R̃sm, T̃sm
]

= arg min
Rsm,Tsm

(
Kkf∑
i=1

(
p′

i −
(
Rsm · pi + Tsm

))2

)
(46)

This equation can be solved very efficiently via a singular
value decomposition according to [52]. Based on the rotation
matrix, the relative vehicle pose Pg

v =
[
Pv,x Pv,y Pv,8

]
is

determined.

C. Graph-Based SLAM

With both dead reckoning and scan matching, the trajectory
of the vehicle can be determined solely on the basis of the
radar data. However, both methods lead to erroneous pose
estimation during longer measurement runs, which signifi-
cantly degrades the quality of the resulting map as illustrated
in Section VI. However, since there is no existing map in

Fig. 11. Sketch of a graph with multiple nodes, consecutive constraints (blue)
and constraints used for loop closures (orange).

which the vehicle can perform a self-localization, a SLAM
approach is chosen to determine the most probable pose of the
vehicle and the most probable map. For this purpose, a graph-
based SLAM is used in the following because it has significant
robustness and speed advantages compared to FastSLAM or
Kalman-SLAM algorithms [53].

In this case, the nodes of the graph represent the vehicle
poses at different times, with the edges between the nodes
representing the constraints between the poses. The nodes are
shown as a triangle and the constraints as arrows in Fig. 11.
These constraints can be obtained via different ways. First,
constraints exist between two consecutive nodes based on
dead reckoning from Section V part V-A and based on scan
matching from Section V part V-B of consecutive measure-
ments. These types of constraints are shown as blue arrows
in Fig. 11. Furthermore, however, the features determined in
Section V-B can also be used to establish constraints between
non-consecutive nodes, where these are shown as orange
arrows in Fig. 11.

Once the graph is created, which will be referred to as the
front-end, it is solved using an optimization procedure, the
back-end, to find a solution that minimizes the error between
all constraints.

1) Front-End: The set of nodes Nn and the corresponding
nodes qnn are combined in a vector q = [q1, . . . , qNn ]. The
nodes qnn and qn′

n
are connected by the edge cnn,n′

n
.

cnn,n′
n
= qnn → qn′

n
(47)

The initial constraints cnn,nn+1 are taken from the dead reck-
oning and scan matching and are shown as blue arrows in
Fig. 11. Furthermore, general constraints are also entered into
the graph. These constraints describe the recognition of already
visited locations and are called loop closures. For this purpose,
the described scan matching from Section V-B is not only
performed for consecutive frames but for all recorded frames.
According to the estimation uncertainty, these constraints are
subsequently also added to the graph, which is shown as
orange arrows in Fig. 11. This constructed graph is optimized
and solved with the back-end in the following.

2) Back-End: The optimization of the constructed graph is
done by minimizing the squared error of all constraints. The
error is defined as the difference between the measurement
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Fig. 12. Illustration of two nodes qnn and qn′
n

and the corresponding estimated
constraint cnn,n′

n
and measured constraint ĉnn,n′

n
.

cnn,n′
n

and the expected measurement ĉnn,n′
n
. This expected

measurement can be determined from the current configuration
of the graph and the nodes. Thus, the error between the
expected and real measurement can be calculated with

enn,n′
n
= cnn,n′

n
− ĉnn,n′

n
(48)

This error and the constraints are shown in Fig. 12.
As soon as the estimate cnn,n′

n
has an unequally distributed

uncertainty, (48) has to be adapted

enn,n′
n,�

= eT
nn,n′

n
�nn,n′

n
enn,n′

n
(49)

The variable �nn,n′
n

characterizes the uncertainty. Due to
the high robustness and consistency of the ego-motion
estimation, the uncertainty for the ego-motion-based dead
reckoning is assumed to be constant. Based on the stan-
dard deviations for the velocity estimate [σvx , σvy , σω] =

[0.045 m
s , 0.045 m

s , 0.56
◦

s ], the local pose uncertainties (x , y,
8) according to the measurement data from chapter VI for
dead reckoning (31) and one frame are

�DR =

0.0012 0 0
0 0.0008 0005
0 0.0005 0.0003

. (50)

According to [36], this results in a significantly smaller
measurement uncertainty than estimating the velocity with
budget IMUs or GNSS. The uncertainty for the scan matching
is calculated from the uncertainty of the determined kaze
features. For this, the error corresponding to (46) for the
estimate

[
R̃sm, T̃sm

]
is calculated with

ESM,i,x/y = p′

i −
(
Rsm · pi + Tsm

)
(51)

for each of the Kkf kaze features (i≤Kkf). While the position
error in x- and y-direction follows directly, the rotation error
has to be determined via a transformation in polar coordinates
in relation to the vehicle coordinate system:

ESM,i,8 = ∡p′

i − ∡
(
Rsm · pi + Tsm

)
(52)

The covariance is obtained by

�SM = Cov[ESM] (53)

ESM =

 ESM,1,x ESM,1,y ESM,1,8

...
...

...

ESM,Kkf,x ESM,Kkf,y ESM,Kkf,8

 (54)

Fig. 13. Bird’s eye view of the measurement environment with Google Earth
©2023, Kartendaten ©2023 GeoBasis-DE/BKG (©2009). Satellite image does
not reflect real vehicle positions due to different recording times.

The error function of the entire graph is thus computed using
the sum of all errors as a function of the nodes q.

E�(q) =

∑
nn,n′

n

ei, j,� (55)

The optimal and most probable node values and thus vehicle
poses are obtained by minimizing the entire graph by

q̃ = arg min
q

(E�(q)). (56)

This problem can be solved via common numerical methods
such as the Gauss-Newton method, or a modification of it,
the Levenberg-Marquardt method. In this work, the framework
g2o corresponding to [54] is applied, which is based on the
Levenberg-Marquardt method. In this case, the minimum of
the error function is approximated iteratively via linearizations.

VI. MEASUREMENTS

The measurements to verify the theoretical derivations from
the previous sections were performed in a parking lot accord-
ing to Fig. 13. Driving on the parking lot allows a curved
trajectory with a large loop (upper loop), which has a length
of approximately 180 m, and a small loop (lower loop), which
has a length of approximately 140 m.

The measurement setup consists of Nr = 6 incoherently
connected chirp-sequence radar sensors, which are exploited
for the different signal distribution steps [55]. The sensors
are positioned around the vehicle at equal angular intervals
of 45◦, ensuring a complete 360◦field of view, which is
depicted in Fig. 14. In general, all six sensors are evaluated
for ego-motion estimation and self-localization and only the
two sensors S2 and S5 are employed for SAR processing.

The precise locations of the sensors relative to the vehi-
cle’s coordinate system were determined using a Trimble
tachymeter. The orientation of the sensors was estimated by
use of self-calibration algorithms [25], [56]. To achieve time
synchronization among the radar sensors, an external trigger
is employed. By introducing a slight variation in the start-
ing frequencies of the sensors, this synchronization enables
interference suppression between them [57]. Since all the
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Fig. 14. Experimental system setup with six chirp-sequence radar sensors
mounted on a car according to the sketch from Fig. 2.

TABLE I
USED RADAR PARAMETERS FOR SLAM-BASED SAR PROCESSING

sensors share identical radar parameters except for their start
frequencies, the transmit ramps of each sensor consistently
exhibit a frequency offset from one another. As a result, there
is no overlap or interference in the IF band. The sensors are
only synchronized in time to have accurate time stamps and
to avoid interference. The sensors are incoherently networked,
so no common oscillator reference is distributed and each
sensor operates on its own oscillator. The radar parameters
are listed in Table I.

The ground truth trajectory of the vehicle was determined
using a Trimble total station with an accuracy of at least 2 mm
to ensure an accurate ground truth trajectory and is shown in
red in Fig. 15.

Based on this precise ground-truth trajectory, a SAR map
can be processed according to Section IV part IV-A, which
is shown in Fig. 16 based on both side-looking radar sensors
S2 and S5.

The Fig. 16 shows not only highly reflective objects such
as vehicles or posts and thus free or occupied parking spaces,
but also weakly reflective objects such as a wooden fence
(distinctive targets are marked in Fig. 23a). It is clearly
visible that this fence is also detectable in the area behind
the vehicles, since the synthetic aperture processes a reflection
under many different angles and thus a high integration gain
exists. This high integration gain also leads to the fact that the
asphalted road can be clearly distinguished from the graveled
parking spaces. Thus, with the help of SAR imaging, not only
a detection of free parking spaces is possible, but also an
identification of parking areas.

Fig. 15. Trajectory estimation based on dead reckoning (a), ( , )
and based on scan matching (b), ( , ) for a correctly chosen threshold
Tv (solid) and an incorrectly chosen threshold Tv (dashed). The ground-truth
trajectory is shown in red ( ).

Fig. 16. SAR-based representation of the environment on the basis of the
ground truth trajectory.

A. Dead-Reckoning Versus Scan-Matching

As soon as a ego-motion estimation with infinite quality
or a scan matching with infinite accuracy would be possible,
an identical SAR mapping of the environment could be
generated. However, this is not a given due to measurement
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Fig. 17. Illustration of the influence of the number of sub frames on
ego-motion based dead reckoning ( , ) and scan matching based
trajectory estimation ( , ).

inaccuracies and deterministic errors. This becomes clear once
the estimated trajectories based on these two localization
methods are compared, which is shown in Fig. 15a for dead
reckoning and Fig. 15b for scan matching.

The red line ( ) represents the ground truth trajectory
whereas the blue lines ( , ) describe the ego-motion
based dead reckoning and the turquoise lines the scan match-
ing ( , ). The solid lines represent the trajectories based
on a correctly parameterized ego-motion algorithm whereas
the dashed lines represent the result based on an incorrectly
configured ego-motion algorithm. An incorrect parameteriza-
tion of the ego-motion algorithm from Section V part V-A is
present as soon as the threshold is set to low with Tv = 0.1 m

s ,
whereas a correct parameterization is given for a threshold of
Tv = 0.7 m

s resulting in all relevant targets being considered
for ego-motion. By choosing the correct threshold, the average
trajectory error over all frames is reduced from 2.66 m to
1.02 m.

A similar behavior can be observed for the scan matching
algorithm in Fig. 15b. Although the algorithm in general does
not depend on the ego-motion estimation, the scan matching
becomes significantly worse as soon as an incorrect threshold
Tv is chosen for the ego-motion estimation, which is shown
as ( ). The reason for this is mainly due to the fact that as
described in Section V part V-B several frames are combined
to get a higher target density to better detect the kaze features.
The position of the vehicle for all sub-frames to be combined
is determined based on ego-motion estimation and thus dead
reckoning. The number of sub-frames to be evaluated has a
significant influence on the quality of the scan matching which
is shown in Fig. 17.

The coloring of the Fig. 17 is identical to that of Fig. 15.
It is obvious that the number of sub frames is irrelevant for
the ego-motion estimation and the subsequent dead reckoning,
which is shown in blue ( , ). Pose estimation based on
scan matching, on the other hand, depends significantly on the
number of sub frames evaluated. As soon as only one frame
is used, in general too few targets are detected, which means
that no prominent structures can be detected in the grid maps
and thus the average position error over the whole trajectory
is between 6 m and 8 m. On the other hand, it can be clearly
seen that the more sub frames based on ego-motion are linked
together, the average error is significantly minimized and

Fig. 18. SAR-based representation of the environment on the basis of
dead-reckoning. Enlargement of the double structure of the wooden fence.

ultimately the accuracy of ego-motion based dead reckoning
is improved.

The trade-off between best scan matching and independent
estimation versus ego-motion based dead reckoning is about
8 evaluated sub frames, which are also used for scan matching
in the following. In the end, however, it can be seen that with a
correctly parameterized ego-motion estimation as well as with
a correctly parameterized scan matching no ideal trajectory
estimation is guaranteed. This can also be seen when a SAR
map is created based on dead reckoning with correctly chosen
threshold as shown in Fig. 18.

It is noticeable, that a reasonable picture of the surroundings
can already be generated at first glance. Free parking spaces
can already be identified. On closer inspection, however,
it becomes apparent that the image of the environment is
distorted in some places and that double structures exist even
though they do not occur in reality. This applies to the wooden
fences which are no longer horizontal but convex and concave
as well as the vehicle contours which are heavily smeared.
This is the result of the integration error of the dead reckoning,
whereby each speed error leads to a larger and larger trajectory
error. This error is minimized in the following by using the
SLAM algorithm presented in Section V part V-C.

B. Graph-Based SLAM

The trajectory estimated via ego-motion estimation and dead
reckoning is used as the base trajectory. From this, the first
configuration of nodes and the edges connecting consecutive
nodes are generated. The sub-maps generated for each node
are compared for loop closure detection. If a transformation
is estimated, a constraint is created between the two nodes.
The result after optimizing the graph (Section V part V-C) is
shown in Fig. 19.

Fig. 19a illustrates the results with correctly selected
RANSAC threshold Tv (solid lines) while Fig. 19b illustrates
the results of an incorrectly selected threshold (dashed lines).
The color coding corresponds to the previous color coding.
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Fig. 19. Trajectory estimation based on (a): correctly choosen velocity
threshold Tv, and (b): incorrectly choosen velocity threshold Tv. Ground truth
trajectory ( ), dead reckoning ( , ), graph-based SLAM ( ,

), and optimized graph-based SLAM ( , ).

Red corresponds to ground truth trajectory, blue corresponds
to ego-motion based dead reckoning, and orange corresponds
to graph-based SLAM pose estimation. The black lines denote
the constraints based on the loop closures.

It can be clearly seen that the graph-based SLAM again
significantly improves the trajectory estimation. With a well
parameterized ego-motion estimation, shown in Fig. 19a,
the average error can be reduced from 1.02 m to 0.59 m.
The same phenomenon is evident for the evaluation with
a badly parameterized ego-motion, which is shown in
Fig. 19b. In this case, the average error is reduced from
2.66 m to 0.83 m.

Ultimately, however, it is noticeable in both estimates that
the estimate in the range y = 21 m has errors of up to
one meter, although the graph-based SLAM has already been
applied (orange trajectory). Since this area was not traversed
several times, no loop closures can be found in this area. Thus,
there are no additional constraints over which the graph could
be optimized. To solve this problem the scan matching from
Section V part V-B is not only applied to consecutive frames
but also to frames which have a larger time distance than
t = 1 from each other. This results in redundancy, which
can be added to the graph as constraints between the nodes
to again significantly improve the estimation. This principle is
illustrated in Fig. 20.

Fig. 20. Illustration of stepped scan matching for well-defined constraints
without loop closures.

Fig. 21. SAR-based representation of the environment on the basis of the
graph SLAM-based trajectory.

Fig. 20 illustrates that each node qnn has an additional
exemplary constraint to the node qnn+5. The distance should be
chosen in such a way that objects from different perspectives
are detected, but remain small enough to still be able to
detect identical objects. The result of this optimized graph
is also shown in 19a and 19b as green trajectory. It is clearly
visible the estimated trajectory and the ground truth trajectory
are almost perfectly superimposed and thus an optimized
estimation is possible. The average error is again reduced
from 0.59 m to 0.28 m for the well parameterized ego-motion
and from 0.83 m to 0.33 m for the badly parameterized ego-
motion. This illustrates not only a significantly increased
precision of the localization algorithm but also a significantly
increased robustness. Regardless of whether the ego-motion
was parameterized well or badly, the result of the final pose
estimation is only 17 % worse compared to the initial pose
estimation error of more than 250 %.

The resulting map is shown in Fig. 21. Compared to
the ground-truth based SAR map in Fig. 16, no obvious
differences can be seen here. This is quantitatively illustrated
by the three lanterns in the center of the image at y = 20 m
by comparing the position of these lanterns with the positions
from the ground-truth image corresponding to Fig.16. The
average position deviation is only 7 cm, making the map a
true representation of the environment.
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Fig. 22. Trajectory estimation based on dead reckoning ( ), and optimized
graph-based SLAM ( ) in comparison to ground truth trajectory ( ).

C. Evaluation of Longer Trajectories

The previous investigations were all performed only for a
measurement trajectory with a constant measurement duration
of 30 s. However, the described SLAM algorithm for the gener-
ation of high-resolution environment images is also applicable
for significantly longer trajectories, which is illustrated in the
following Fig. 22. The measurement duration is approximately
140 s with just under 500 m traveled during this time. Fol-
lowing the previous convention, the ground-truth trajectory is
shown in red, the ego-motion based trajectory in blue, and
the SLAM based trajectory in green. The average absolute
localization error over all 4800 evaluated frames is 42 cm. This
error is only 50 % larger despite a measurement run more than
twice as long as in Section VI part VI-B. A visual comparison
between ground-truth based SAR imaging and SLAM based
SAR imaging is shown in Fig. 23.

It is evident that qualitatively the images look identical.
No double structures or distorted wooden fences can be identi-
fied. Furthermore, the gravel of the parking bays is still clearly
distinguishable from the road. The reasons for this are the
small localization errors within small sub-apertures, affecting
the SAR processing the most. For a synthetic aperture of
16 cm, which corresponds to one frame and thus 384 evaluated
ramps, the standard deviation is 1.2 mm. For a synthetic
aperture size of 96 cm, the standard deviation is 17 mm.
This corresponds to a deviation of only four wavelengths
for a synthetic aperture of almost one meter. This minimizes
the influence of the localization error on the environmental
mapping as illustrated in the following.

In a SLAM algorithm, not only is the accuracy of the
trajectory estimation crucial important but also the accuracy
of the map. For this purpose, the position of a total of
nine defined targets (posts) were investigated. The comparison
between ground-truth based SAR processing from Fig. 23a
and SLAM-based SAR processing Fig. 23b shows that the
average localization error is 16 cm, ensuring accurate mapping
even over large areas. Another way to compare the quality of
the image is to determine the signal-to-clutter ratio (SCR).
For this, the SCR is determined based on the wooden fence
(signal) and the gravel and thus an empty parking area (clutter)

according to Fig. 23a. The SLAM-based SAR image shows a
lower SCR by only 0.35 dB, so that weakly reflecting targets
can still be clearly distinguished from the gravel, although the
position of the vehicle is estimated exclusively on the basis of
the radar data.

D. Evaluation of Optimal Number of Sensors

The SLAM measurement results from Section VI are based
on all Nr = 6 radar sensors installed. The extent to which
the number of sensors is decisive for dead reckoning, scan
matching and the subsequent graph-based SLAM is shown in
Fig. 24.

The Fig. 24 illustrates the relationship between the number
of sensors and the average logarithmic error of the trajectory
estimation in meters based on different methods. Analogous
to the measurement results, the blue curve indicates trajectory
estimation based on dead reckoning, the turquoise curve indi-
cates trajectory estimation based on scan matching, and the
green curve illustrates trajectory estimation based on graph-
based SLAM. It is clearly visible that on average the accuracy
of the trajectory estimation can be significantly increased with
increasing number of sensors. This is especially true for the
trajectory estimation based on dead reckoning (blue). Already
purely based on dead reckoning, with six sensors the error is
reduced from almost 8 m to only 1 m.

A similar behavior is also evident for scan matching.
Whereby the estimation with six sensors does not bring
any advantage compared to the estimation with only four
sensors. In contrast to ego-motion estimation, where the data
is evaluated jointly but each target is processed independently,
the detected targets smear in the joint sub-map as shown in
Fig. 4. Moreover, since the position and orientation of the
sensors in relation to the vehicle coordinate system can only
be estimated, the target peaks in the sub-map being evaluated
widen when multiple detections are made by different sensors.

The graph-based SLAM finally merges the ego-motion
based dead reckoning and the scan-matching based trajec-
tory estimation. This results in the green curve in Fig. 24,
which illustrates a significant reduction in the estimation
error for up to four sensors. The improvement from four
to six sensors is correspondingly small. This is largely due
to the scan-matching based loop closures, which accord-
ing to the green curve do not improve with more sensors,
since the targets do not produce significantly defined kaze
features when the relative pose estimation of the radar sensors
is incorrect.

E. Impact of Localization Inaccuracies on the SAR Image

According to chapter VI-C, the average position error for
the long trajectory is 42 cm, which is more than 200 times
larger than the λ/2 requirement for SAR applications. However,
according to Fig. 23a it can be seen that this has almost no
effect on the imaging quality and defocusing effects. This
seeming apparent contradiction can be traced back to the
following three factors:

• limited detection range of the radar sensors
• attenuation
• frame-based error
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Fig. 23. SAR-based representation of the environment on the basis of the ground truth trajectory, depicted in a), and based on the optimized SLAM, depicted
in b).
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Fig. 24. Influence of the size of the radar sensor network on the accuracy
of trajectory estimation for dead-reckoning ( ), scan-matching ( ), and
the graph-based SLAM ( ).

Fig. 25. Influence of different aperture lengths on the SNR of a target at the
position t = (0 m|5 m).

1) Limited Detection Range of Radar Sensors: The average
position error of 42 cm occurs over the entire trajectory.
For the final evaluation, however, the relative error in short
sections of the trajectory is relevant. The parking lot, with its
length of 100 m and a width of 60 m, is so spatially extended
that the radar sensors cannot cover it completely with one
measurement. On the one hand because of occlusion effects
and on the other hand because of the limited maximum range
of the radar sensors of 25 m. The relative error of the vehicle
positions of the trajectory that are farthest from each other and
thus have a relative error of more than 42 cm to each other
((−15 m|− 15 m) and (30 m|20 m)) is consequently irrelevant
for the SAR processing and only distorts the final image.

2) Attenuation: Another factor is the influence of the tra-
jectory on the SNR of a target. The received power at any
synthetic antenna position is significantly dependent on two
factors (in the case of an ideal target). First, on the distance
due to the r4 dependence, and second, on the angle of arrival
and thus the angle-dependent attenuation due to the antenna
pattern [58]. This leads to the fact that very large synthetic
apertures bring only a small performance advantage compared
to much smaller synthetic apertures, since the additional
accumulated energy of large apertures is negligible. This is
shown in Fig. 25 for a simulation without position error.
For this, a typical automotive scenario with a point target at
position t = (0 m|5 m) is studied. In each case, the synthetic
aperture is centered to the target. As an example, for an
aperture with a length of 1 m this results in a trajectory from
(−0.5 m|0 m)→(0.5 m|0 m).

Fig. 26. Illustration of different position errors (a) and their effect on
SAR mapping (b). Green - ground truth trajectory, red - random positioning,
blue - noise corresponding to self-localization.

Fig. 25 illustrates the SNR loss of a short synthetic aperture
compared to a long synthetic aperture. The loss is shown in
relation to the maximum SNR and thus for the maximum aper-
ture length. The SNR of the target at position t = (0 m|5 m)

is 7.8 dB lower for an aperture length of 96 cm than for an
aperture length of 25 m. For a synthetic aperture length of
5 m, the difference is only 1.7 dB, which is marked in red
in Fig. 25. According to the normalized measurement results
from Fig. 23 the image of the environment is not SNR limited
but limited by ground clutter, which results from the asphalt
and gravel. This makes even the SNR loss of 7.8 dB of the
trajectory over 96 cm negligible.

3) Frame-Based Error: The 96 cm long trajectory corre-
sponds to exactly 6 evaluated frames in the measurement.
According to chapter VI-C, it could be shown from the
measurements that the standard deviation of the position
estimate for this trajectory length is 17 mm and thus 10 times
higher than λ/2. Nevertheless, according to Fig. 23a, no visual
differences occurs. This is because the position error is not
completely random, which is shown in Fig. 26a. The position
error for 6 frames á 384 ramps is shown for no position noise
(green), random position noise (red) and a real position noise
from the measurement (blue).

The positional error of the measurement exhibits a distinctly
piecewise steady pattern. Each frame comprising 384 ramps
relies solely on dead reckoning, causing a continuously
evolving positional error attributed to an inaccurate estima-
tion of ego-motion. Following each frame, encompassing
384 ramps, the vehicle’s position undergoes estimation through



64 IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 2, NO. 1, 2024

TABLE II
MONTE CARLO SIMULATION TO EVALUATE THE SAR PERFORMANCE

BASED ON TRAJECTORIES WITH DIFFERENT TYPES OF NOISE

scan matching, cross-frame dead reckoning, and graph-based
SLAM, resulting in discontinuities in the estimate. The high
accuracy of dead reckoning, coupled with cross-frame con-
straints, yields a trajectory that is piecewise continuous,
marked by minor discontinuities between consecutive frames.
The SAR processing results of these three trajectories are
shown in Fig. 26b in cross range for a range of 5 m. It can
be clearly seen that the ground truth trajectory (green) and
the estimated trajectory (blue) lead to almost identical results,
while the evaluation of the random trajectory position no
longer allows SAR processing.

The reasons for accurate SAR processing based on the
estimated trajectory is the piecewise steadiness of the position
error. A sharp SAR image of the environment can be generated
for each of the six sub-apertures even though they have an
error of 1.2 mm according to VI-C. Due to this ego-motion
based error, the targets have small angular errors of less than
one degree [17], [59]. Ultimately, to enable coherent addition
of the six sub-apertures it must be ensured that a pixel can
be found that compensates for the phase errors due to the
positional inaccuracies caused by its erroneous pixel position
in the grid. It is apparent from Fig. 26b that such a position
can be found adjacent to the green peak. However, since the
height of the peak is identical, a coherent addition was possible
and thus a precise angle estimate.

To show this in general, the result of a Monte-Carlo sim-
ulation with 50000 trials is presented below. For each trial,
a target is positioned at a distance of 5 m from the synthetic
aperture at a random angle. Subsequently, the ground-truth
trajectory, a random noisy trajectory and a piecewise continu-
ous trajectory corresponding to the measurement are simulated
according to Fig. 26a with a standard deviation of 17 mm.
The performance is evaluated using the following results in
Table II.

According to the expectations, it is best if the trajectory
would be known exactly and thus no position errors exist. For
the simulation an average maximum peak of just under 30 dB
and an integrated side lobe ratio (ISLR) of nearly −32 dB
results. It should be noted that the ISLR is normalized to the
width of the main lobes, which means that the average received
power outside the main lobes is on average −32 dB lower. Due
to a simulation without position error, there are no erroneous
angles under which the targets are detected. In the Monte Carlo
simulation with random position noise, however, a peak with
15 dB less power was detected, but on average its localization
is wrong by about 25◦ and therefore random, which makes
reliable target localization impossible. Furthermore, it can be
seen by the ISLR that the peak found is also minimally above
the average noise and sidelobes.

For the position uncertainty based on the presented SLAM
algorithm, very similar average values as for simulation with-
out position noise are obtained despite the high uncertainty
of almost 2 cm. The maximum peak power is on average only
2 dB lower, the average ISLR is only 5 dB higher which means
that unwanted signal components are still clearly below the
peak. This also explains the low angular error of the simulated
target of less than 0.4◦. As soon as the required accuracy is
maintained for each frame and the targets are located close
to the radar sensor, cross-frame position errors only lead to
a minimal degradation of the results, which are not visually
identifiable.

VII. CONCLUSION

The algorithm described in this article enables for the first
time SAR processing in the automotive domain of an unknown
environment without having to rely on external localization
systems. The algorithm enables self-sufficient self-localization
based solely on radar sensors. This enables high-resolution
mapping that is completely independent of GNSS, IMU or
other sensors. It has been shown metrologically that the
presented algorithm achieves an average absolute localiza-
tion accuracy of 42 cm and an average relative localization
accuracy within one frame of only 2.5 mm over a driving
duration of more than 2 minutes and up to 500 m. Furthermore,
it was shown that this application also benefits from cascadable
radar sensor networks. A comparison between the ground truth
based mapping and the SLAM based mapping reveals that
the signal to clutter ratio is only 0.35 dB lower for the slam
based mapping, resulting only in a minimal loss of dynamic
range. With the help of a Monte-Carlo simulation it could be
shown that under certain circumstances the position accuracy
may be many times worse than the wavelength without lead-
ing to defocused images. The presented algorithm not only
enables high-precision environment mapping with 77 GHz
chirp-sequence radar sensors, but also precise self-localization
in unknown environments based solely on these sensors,
allowing flexible use in arbitrary automotvie applications.
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