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Detection and Monitoring of People in Collapsed
Buildings Using a Rotating Radar on a UAV

Philipp Stockel , Graduate Student Member, IEEE, Patrick Wallrath , Reinhold Herschel ,
and Nils Pohl , Senior Member, IEEE

Abstract— This paper presents a UAV-driven sensor system
with a rotating radar designed to locate people in collapsed
buildings. A framework including motion estimation, motion
compensation, tracking and clustering is proposed. The developed
algorithms enable the detection of people despite the motion of
the UAV. Furthermore, we propose a Bayesian target selection
approach to discriminate between human targets and other
objects in the environment of the UAV with high confidence. The
effectiveness of the proposed algorithms is demonstrated using
measurements and a vital sign reference system, showing close
agreement of the respiration signal over time with an overall
respiration rate accuracy of 1.3 %.

Index Terms— FMCW radar, unmanned aerial vehicle (UAV),
radar detection, vital signs, motion compensation.

I. INTRODUCTION

SEARCHING for missing people in collapsed buildings is
often very dangerous for the rescue workers. There are

several projects working on technical alternatives [1], [2], [3].
The most common approach is the use of unmanned aerial
vehicles (UAV) equipped with different sensors. The two major
tasks in this application are the navigation of the drone inside
the collapsed building, which is difficult because the walls
block the GPS signal, and the localization of people. Within
the German-Austrian project UAV-Rescue, the German side
is developing a system where the UAV is equipped with a
LIDAR (Light Detecting and Ranging) system for automatic
indoor navigation and a rotating radar to localize people in the
collapsed building [4]. This paper focuses on the latter part of
localizing people with the rotating radar.

To our best knowledge, this is the first publication regarding
a rotating radar on a moving platform used for indoor human
presence detection. In general, there is very little research on
the use of rotating radars for indoor applications as LIDAR
sensors are often more suitable. But LIDAR sensors can not
extract vital signs while rotating radars can if the phase of
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the radar signals is evaluated. Regarding the localization of
humans in collapsed buildings, Bimpas et al. [5] developed a
static radar system to detect people through collapsed walls.
However, since it is a static radar system and the penetration
depth is limited, the system has to be moved by the rescue
workers which can endanger them. There are also some publi-
cations regarding radar sensors on moving platforms in indoor
scenarios [6], but these do only estimate their position based on
the range profiles, which is not accurate enough to compensate
the motion in the phase signal. For the wider field of vital
sign estimation with radars on moving platforms, Rong et al.
give an overview of the current research in [7]. The approach
proposed in [8] is also working with an indoor flying UAV.
They use a secondary, up-looking radar sensor to compensate
for the UAV motion in the data of a down-looking radar sensor.
This approach only works if the UAV is hovering exactly over
the person. In [9] they use a filtering approach based on the
motion estimated by an IMU to remove the platform motion,
which has the disadvantage that the target motion may also
be removed if the target motion and the UAV motion have
similar frequency components. In [10] we proposed different
motion estimation and motion compensation techniques for
down-looking MIMO (Multiple Input Multiple Output) radars
on UAVs to enable the extraction of vital signs. While in some
cases similar algorithms can be used, all current publications
work in a different scenario, with different sensors or have
drawbacks with respect to the considered application [11],
[12], [13].

Two main problems make the detection of humans in this
context difficult. First, the radar system is always moving due
to the ego-motion of the UAV, which makes it impossible to
distinguish between static objects and people based on motion.
The second problem is that the rotating radar system has a
limited rotation rate of 40 Hz. Moreover, due to the 77 GHz
transmission frequency, the phase can only be unambiguously
evaluated for position changes of less than 1 mm. This means
that in order to detect people with the rotating radar, we need
to find a way to correctly unwrap the phase signal despite the
high phase ambiguity and the low frame rate.

In this paper, we propose different algorithms to estimate
and compensate the motion of the radar system. This includes
the estimation of rotations around the vertical axis of the radar
as well as the horizontal motion of the radar system. There-
fore, we also developed a new phase unwrapping algorithm
that can unwrap the signal despite strong motion and high
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Fig. 1. Photo of the UAV equipped with rotating radar and LIDAR system.

phase ambiguity. We also improved the motion estimation
algorithm from our previously published work [14]. Further-
more, we propose a probabilistic cluster selection approach
that evaluates which tracks belong to people and which
do not.

In the following, we first describe the scenario and the
hardware we used. Then, we propose the framework and
algorithms for motion estimation and compensation. Next,
we describe how people in the environment of the radar system
are detected and tracked using a probabilistic cluster selection.
Finally, we present our measurement results.

II. SCENARIO DESCRIPTION

The basic scenario involves a UAV with a rotating radar and
a LIDAR system mounted underneath. The UAV should auto-
matically navigate through the collapsed buildings. Therefore,
the LIDAR system provides information about the distance to
all objects in the UAV’s environment. The data measured by
the LIDAR system, as well as the data measured by an inertial
measurement unit (IMU), are fed into a SLAM (Simultaneous
Localization and Mapping) algorithm to estimate the relative
position of the UAV inside the building. The position estimate
from the SLAM algorithm is used to navigate through the
building [15]. In each new room or large area, the UAV begins
to hover. While hovering, the rotating radar is used to detect
people in the environment of the UAV. If a person is localized,
the radar signal is evaluated to extract the chest motion and
access the vital signs. Fig.1 shows an image of the UAV,
equipped with the LIDAR system and the rotating radar.

III. RADAR SIGNAL PROCESSING

The rotating radar system is a frequency modulated con-
tinuous wave (FMCW) radar transmitting at 77 GHz. The
chirps scan a bandwidth of B = 1 GHz, resulting in a
range resolution of 15 cm. The radar transmits its chirps at
a repetition rate of 4 kHz. In practice, the radar itself does
not rotate, but a rotating reflector reflects the signals from a
static antenna onto the 360◦ field of view. The beam width
of the radar reflector is 3◦ in azimuth and 1.5◦ in elevation.
The rotation rate fr is 40 Hz, which results in 100 chirps per
rotation [16].

Fig. 2. Flowchart describing the overall signal processing.

The distance to a target at position z is evaluated by
calculating the Fast Fourier Transform (FFT) over the chirps.
The resulting range profile for one specific direction 2 and
only one target is

g(r, 2, t) = α · sinc
(

2π B
c

(r − ||z − p(t)||2)
)

· exp
(

2π j ·
2||z − p(t)||2

λ

)
+ n(t), (1)

with r denoting the range variable, α being the amplitude
of the received signal, p(t) the radar’s position, λ =

c
fc

the
wavelength at the transmission frequency, c being the speed
of light, and n(t) being additive noise. The distance to the
reflecting object is evaluated by finding the maximum of the
sinc-term. The second term of Equation (1) includes the phase.
The different range profiles are arranged according to their
rotation angles. In this representation each element, called
voxel in the following, has a corresponding range r and an
azimuth angle 2. Fig. 2 shows a flowchart of the entire signal
processing. The individual processing steps are explained in
the following chapters.

IV. ROTATION COMPENSATION

It is possible that the radar system rotates around its vertical
axis while hovering. One possible way to work with the
UAV rotation would be to track the targets while the UAV
is rotating. However, for the considered application, long
coherent detection intervals of 3 to 5 seconds are required
because the human respiratory motion has a low frequency
of about 0.2 Hz. If a person is located at a distance of 5 m
and the UAV rotates by 30◦ between two detection cycles,
the target would be localized at a distance of 2.6 m from
the last position. This would make any tracking very difficult.
Therefore, we compensate for the UAV rotation using signal
processing [17].

To enable rotation compensation, the angle of rotation has to
be estimated first. When the UAV starts hovering, a reference
frame gref(r, 2), containing one chirp for every azimuth angle,
is measured. This reference frame is used for comparison with
each subsequent frame to estimate the relative rotation. The
rotation is estimated using a cross-correlation based on the
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Fig. 3. Output of the detection with and without rotation compensation.

Fourier transform

R(2, t) = IFFT

{∑
r

(
FFT{gref(r, 2)} · FFT{g(r, 2, t)}∗

)}
.

(2)

Here (·)∗ describes the complex conjugation. In the resulting
cross-correlation R(2, t), the rotation angle 2rot(t) can be
identified by finding the maximum [18], [19].

The estimated rotation angles 2rot(t) are used to compensate
for the rotation. Therefore, the frames for which the UAV is
rotated relative to the reference frame have to be realigned to
the reference frame. Since the data exhibits an array structure,
this can be accomplished by circularly shifting the azimuth
columns about

nrot(t) =

⌊
2rot(t)
2res

⌉
(3)

frames. Here ⌊·⌉ is the rounding operator and 2res is the
azimuth resolution. After the circular shift, the peaks in the
range profiles corresponding to particular objects in the radar’s
environment should be located at the same azimuth angle as
they would have been without a rotation of the UAV. In Fig. 3
the range-azimuth plot of a detection with and without rotation
compensation is shown. Without the rotation compensation,
the different peaks are spread over several azimuth angles,
due to the UAV rotation. After compensation, the peaks are
focused.

Another possibility would be to interpolate the radar data
to the correct angles. However, this would increase the com-
putational complexity enormously compared to the circular
shift. Furthermore, due to the high azimuth resolution, there
are almost no negative effects of the circular shifts on the phase
of the radar signal. This can be seen if the phase of one of the
static targets from Fig. 3 is analyzed. Fig. 4 shows the phase
of the static target at 4.8 m distance and 220◦ azimuth. The
blue signal was extracted before the rotation compensation,
which is why after a few seconds only noise is contained. The
red curve represents the signal after the rotation compensation.
The signal exhibits the orthogonally projected motion of the
radar system onto the direction to the static target. The zoomed
area shows the sequence around a circular shift. It can be seen
that there is no noticeable effect of the circular shift on the
phase signal.

Fig. 4. Phase of a static target with and without rotation compensation. The
zoomed section shows a short period around a circular shift.

V. MOTION ESTIMATION

Since the movement of the UAV has to be compensated to
enable the evaluation of the human chest motion, the motion
of the UAV must be precisely estimated. In contrast to the
position used for indoor navigation, no information about the
absolute position in the room is required, but the description
of position changes must be very precise.

A. Auxiliary Position

The UAV navigates through the building with the position
estimation generated by the SLAM algorithm. Unfortunately,
the position provided by the SLAM algorithm contains jumps
caused by the limited range resolution of the LIDAR sen-
sor and the optimization scheme of the SLAM algorithm.
To remove these jumps and increase the accuracy, we use a
Kalman filter to fuse the position estimate from the SLAM
algorithm with the data from a second IMU integrated in the
radar sensor [20], [21], [22], [23].

The accuracy of the auxiliary position is still coarsely lim-
ited by the 3 cm range resolution of the LIDAR system [24].
Since the magnitude of the breathing motion is about 1 cm,
we need a more precise position estimate to compensate for the
motion of the UAV. Therefore, we estimate the position based
on the radar data itself and use the fused position paux(t) as
auxiliary information.

B. Wall Tracker

To get information about how the UAV’s motion affects the
radar signals, we can evaluate the signals reflected from static
objects. This also means that we can use the reflections from
different static objects in the environment of the rotating radar
to get an estimate of the horizontal motion of the radar. For
the considered application these objects will be the walls of
the building in which the UAV is hovering.

To detect the walls, we need to measure Twall seconds or
Nwall = Twall · fr frames of radar data. As the walls should have
the highest radar cross-section (RCS) in the scene, they can be
found by searching for the reflected signals with the highest
average power. To find all the walls of the room, regardless
of their distance to the radar, the scene is divided into Nskip
azimuth sections. Each section contains the reflected signals
g(r, 2, n) from an interval 2 ∈ [2i , 2i + 2skip], where 2i



16 IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 2, 2024

describes the azimuth angle at which the section starts and
2skip the width of the sections. For each azimuth section the
strongest reflection is located by evaluating the power, or more
precisely, the average absolute value

M(r, 2) =
1

Nwall

Nwall−1∑
n=0

|g(r, 2, n)| (4)

for each signal in the section. Furthermore, we check if the
reflected power from the wall is high enough with

20 log
(

M(r, 2)

r4

)
> 20 log

(
Mmax

r4
max

)
− ϵ. (5)

Here, Mmax and rmax are the range and the power of the global
maximum in the scene, and ϵ is a threshold that can be chosen
between 5 and 15 dB. The larger the threshold, the more
walls are detected and can be used for position estimation.
However, with a larger threshold it is also possible that
some multipath reflections are used for position estimation.
Therefore, the parameter ϵ should be chosen depending on
how reverberant the expected environment is. If Equation (5)
is satisfied, we identify the corresponding voxel as a wall.

If all azimuth sections have been processed, the detected
walls are inserted into a tracker that tracks the walls over
time and ensures that the ensemble of walls used for position
estimation is as stable as possible. For every tracked wall,
the movement of the radar relative to the wall is evaluated.
Therefore, we calculate the phase φwall from the measured
signal g(rwall, 2wall, t) of the considered wall in direction 2wall
(see Eq. (1)) using

φwall(t) = ̸ g(rwall, 2wall, t)

= tan−1
(

Im{g(rwall, 2wall, t)}
Re{g(rwall, 2wall, t)}

)
. (6)

Then, we need to unwrap the phase signal over time. Unfor-
tunately, classical unwrapping algorithms will not reconstruct
the true motion because the UAV’s position can change about
10 mm between consecutive samples, while classical unwrap-
ping only works for changes smaller than λ

4 = 0.97 mm. This
problem arises mainly due to the low frame rate, which can
not be increased because the rotation rate is already at its
mechanical limit [25], [26].

To overcome this problem, we proposed an assisted unwrap-
ping algorithm that uses position data from other sensors
to assist the unwrapping process in [14]. Unfortunately, this
method requires a quite accurate auxiliary position. More
precisely, if we project the auxiliary position onto the direction
of some target and calculate the differences between successive
samples, the error compared to using the true position must be
less than λ

4 . Due to the limited resolution of the LIDAR system
and the geometric distance between the center of the UAV
and the center of the radar, the auxiliary position described
in Section V-A does not reach the required position accuracy.
Therefore, we propose a new unwrapping algorithm, shown
in Algorithm 1, which is capable of working with stronger
motions and higher phase ambiguity.

In this algorithm, the lines 1 through 7 are similar to a
classical unwrapping algorithm. So φ[k] at line 7 describes

Algorithm 1 Second Derivative Unwrapping
input : wrapped phase signal φ[k]

length K of signal φ[k] with k = 1, . . . , K
output: unwrapped phase signal φ[k]

1 ρ̃ = 0, ρ = 0, φ̃ = 0, d̃φ = 0
2 for (k = 2; k <= K ; k = k + 1) do
3 dφ = ρ̃ · 2π + φ[k] − φ̃

4 if dφ > π then
5 ρ̃ = ρ̃ − 1
6 else if dφ < −π then
7 ρ̃ = ρ̃ + 1
8 φ[k] = φ[k] + ρ̃ · 2π

9 dφ = φ[k] − φ̃

10 φ̃ = φ[k]

11 d2φ = dφ − d̃φ

12 d̃φ = dφ

13 if d2φ > π then
14 δ = −1
15 else if dφ < −π then
16 δ = 1
17 else
18 δ = 0
19 σ = σ + δ

20 ρ = ρ + σ

21 φ[k] = φ[k] + ρ · 2π

22 end

an incorrectly unwrapped signal. The incorrect unwrapping
results in a sudden change in the slope, or more precisely,
in the first derivative of the phase signal. A jump in the first
derivative can be detected by calculating the second derivative
and checking for peaks, as done in the lines 8 through 17.
If there is a negative peak, then the first derivative contains
a negative jump. This means that we have to add 2π to the
first derivative of the incorrectly unwrapped phase signal to
remove the jump. Consequently, 2π have to be subtracted if
there is a positive peak. The correctly unwrapped signal can
then be calculated by integrating the corrected first derivative.
The proposed Algorithm 1 uses the integer values δ, σ and
ρ to describe how many times we have to add or subtract
2π to get the correct second derivative, first derivative and
unwrapped signal, respectively. In reality, the algorithm is not
implemented as a for-loop, but is called with each new phase
value for each wall tracked. Fig. 5 shows the results of the
proposed unwrapping for a simulated signal

φsim(t) = 125 · (cos(2π t · 0.5) − 1) (7)
φ′

sim(t) = ̸ exp( jφsim(t)), (8)

with φ′

sim(t) being the wrapped phase signal.
The red line describes the phase signal φ(t) unwrapped

using the classical unwrapping algorithm, which is also the
intermediate result from line 7 of Algorithm 1. The yellow
line describes how many full cycles have to be added to φ(t)
to get a correctly unwrapped signal. Finally, the purple line
shows the result of the Second Derivative Unwrapping. As it
is exactly aligned with the green dots, which correspond to the
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Fig. 5. Unwrapped phase of a simulated signal using the proposed
unwrapping algorithm (purple), together with the true phase (green), the
results using a classical unwrapping algorithm (red) and a signal describing
the number of full cycles which were added to correctly unwrap the signal
(yellow).

true unwrapped phase φsim(t), we can argue that the proposed
algorithm can unwrap the signal correctly while the classical
unwrapping can not.

The algorithm has two weak points. First, if a new wall is
detected, an easy way to initialize the integer variable for the
first derivative σ would be to set it to 0. However, if at that
moment the true first derivative of the phase is greater than
2π , the unwrapped phase is incorrect. Therefore, we need to
estimate σ during initialization. The auxiliary position paux[k]

can be used to calculate an estimation of the phase signal

φaux[k] =
4π

λ
·

cos(2wall)

sin(2wall)

0

 · paux[k]
T. (9)

This allows the calculation of an estimate of the first derivative
dφaux, which can then be used to calculate the approximate
number of full cycles with which σ has to be initialized. The
second weakness occurs if a peak in the second derivative
is missed or incorrectly recognized. This leads to incorrect
values of the integer variable for the first derivative σ , which
then implies that the unwrapped phase signal differs more and
more from the true unwrapped phase with each new sample.
To overcome this, the unwrapped phase φ[k] is compared to
φaux[k]. If the difference is bigger than the threshold 30 · 2π ,
the unwrapping algorithm will be reset.

To validate the benefits of the proposed unwrapping
algorithm, we show in Fig. 6 the results for a measured phase
signal and a projected motion of about 15 cm. The red line
describes the phase signal φ(t) unwrapped using the classical
unwrapping algorithm. The yellow line again describes how
many full cycles have to be added to φ(t) to get a correctly
unwrapped signal. Finally, the purple line shows the result
of the Second Derivative Unwrapping. In blue, we have also
plotted the phase signal without any unwrapping. To allow
a better comparison between the proposed unwrapping, the
classic unwrapping and the wrapped phase signal, we also
show a zoomed view of the first three seconds.

C. Motion Calculation

Before estimating the position, the mechanical rotation of
the radar has to be compensated. Since the radar rotates at a
rate fr, the signals for the different angles 2 are measured
over a period of Tr = 1/ fr seconds. For an accurate position

Fig. 6. Unwrapped phase using the proposed unwrapping algorithm (purple),
together with the signal without any unwrapping (blue), the results using a
classical unwrapping algorithm (red) and a signal describing the number of
full cycles which were added to correctly unwrap the signal (yellow).

estimation, the time shift between the different measurements
has to be compensated by interpolating the measured phase
signals φ[k] for each wall with

φ[k] = φ[k] − (φ[k] − φ[k − 1]) ·
2 − 2π

2π
. (10)

Afterwards, the movements measured at the different angles
of the rotation are aligned with each other. This means that
we can use the phase signals of the detected walls to estimate
the position. However, the position estimation is only accurate
if the ensemble of detected walls is well distributed. For
example, if only two walls have been detected and their
angles 2 differ by 180◦, a precise position estimation is not
possible because there is no information about the motion
perpendicular to the axis between the two detected walls.
Therefore, we check if for at least two of all detected walls
the absolute angular difference

α = |21 − 22|%180 (11)

will be greater than 30◦. Here, % is the modulo operator and
21 and 22 are the azimuth angles of the two walls.

If the ensemble of M detected walls is valid, the current
position of the radar system and the UAV can be estimated
by solving a localization problem. The basic idea is that
the unwrapped phase signals are the orthogonal projection
of the motion, and therefore the motion can be computed by
evaluating the projection from the different walls with a system
of equations. We build the equation system

Ap = y with

A =

− cos(21) − sin(21)
...

...

− cos(2M) − sin(2M)

,
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Fig. 7. Simulated scenario with four walls. The static targets used for position
estimation are marked in the detector output on the left side. On the right side
the estimated position is shown together with the true position of the radar.

Fig. 8. Position estimation in x- and y-direction over time for the SLAM
algorithm (blue), the Kalman filtered combination of SLAM and IMU (red)
and the radar based motion estimation (yellow).

y =
λ

4π

φ1(t)
...

φM(t)

 (12)

using the azimuth angles 21, 22, . . . ,2M and the unwrapped
phase values φ1, φ2, . . . , φM of the detected walls. The
equation system can be solved e.g. by the method of least
squares, and the solution corresponds to the current position
of the UAV

p =

(
x
y

)
. (13)

The position estimation is performed for each new radar frame,
resulting in the estimation of the radar motion p(t). Note that
p(t) is only a relative and not an absolute motion estimation
because it only describes the change in position relative to the
moment in which the wall tracking has started.

To evaluate the accuracy of the position estimation, a sim-
ulated scenario is used. On the left side of Fig. 7 the
detected static scatterers used for position estimation are
marked. On the right side of Fig. 7 the estimated position for
10 seconds of simulated measurement data is shown together
with the true position. Over the whole measurement time,
the differences between the true and estimated positions are
very small and the overall root mean square error (RMSE) is
0.94 mm. Fig. 8 shows the results for a measured dataset. It can
be seen that the position estimate of the SLAM algorithm
and the auxiliary position calculated by fusing the SLAM
position with the data of an IMU using a Kalman filter are
coarsely aligned with the position estimated using the radar

data. However, comparing the proposed position estimate with
the SLAM position, there is an RMS error of 4.7 cm and even
comparing with the auxiliary position, the RMS error is still at
3.9 cm. Thus, the auxiliary position can not be used for motion
compensation and we have to estimate the position with the
proposed approach [14].

VI. LOCALIZATION OF HUMAN TARGETS

A. Motion Compensation

To compensate the motion of the radar system, we have
to calculate the compensation signal for every direction 2.
Therefore, the estimated motion p(t) is projected onto the
directions 2 with

φproj(t) =
4π

λ
·

(
cos(2)

sin(2)

)
· p(t)T. (14)

Again, we have to take into account the mechanical rotation.
Therefore, the projected phase signals are interpolated with

φproj(t) = φproj(t) + (φproj(t) − φproj(t − Tr)) ·
2 − 2π

2π
(15)

so that they are exactly aligned with the measurement time for
the angle 2. Here, Tr is the duration of one rotation. Compar-
ing the equations (10) and (15), we see that (15) reverses the
interpolation from (10). The projected and interpolated phase
signals are then used to compensate the motion for all the
angles 2 with

gcomp(r, 2meas, t) = g(r, 2meas, t) · exp(− j · φproj(t)). (16)

Since the compensation signal depends only on the azimuth
angle, the same compensation signal φproj(t) can be used for
all range bins in the corresponding direction 2 [10], [27], [28].

B. Detection and Clustering

After motion compensation, people in the scene can be
localized. The detection is performed blockwise every Tdet
seconds on Ndet = Tdet · fr radar frames. To detect the
people in the scene, we use an FFT to compute the Doppler
representation G(r, 2, f ) on the detection interval for each
voxel. The Doppler describes the relative velocity of the
objects reflecting the radar signals. As the respiratory motion
has a magnitude of 5 to 20 mm and a frequency of about
0.2 Hz, we can expect motions with a velocity v between
vmin = 1 mm

s and vmax = 4 mm
s . Using

fDoppler =
2 · v

λ
(17)

we can calculate the frequency boundaries fmin ≈ 0.5 Hz and
fmax ≈ 2 Hz, between which respiratory motion should be
present. Therefore, the detector

D(r, 2) =

∑
fmin< f < fmax

|G(r, 2, f )| (18)

should contain high values for breathing humans [29].
The voxels for which

20 log(D(r, 2)) > 20 log(Dmax) − 40 dB, (19)
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Fig. 9. Flowchart describing the clustering algorithm.

with Dmax being the maximum of the Doppler detector, are
sorted in descending order by their magnitude and inserted
into the clustering algorithm. Each selected voxel (ri , 2i ),
with i = 1, .., I and the number of strong voxels I , has its
specific cartesian position pi and a corresponding slowtime
signal si (t). Since the detection block is executed every Tdet
seconds, the slowtime signals contain Ndet values. For each
selected voxel, we first check if there is already an existing
cluster geometrically close to the new voxel by checking the
euclidean distance

||pi − pk ||2 < 1.5, m k = 1, . . . , K . (20)

Here, pk with k = 1, . . . , K are the cartesian positions of the
existing clusters, with K as the number of existing clusters.
If the new voxel does not belong to any of the existing clusters,
a new cluster is created with the new voxel as its center.
If the new voxel is geometrically close to an existing cluster,
we check if the slowtime signals of the voxel and the cluster
contain similar features. Therefore, we calculate the central
value of the cross-correlation between the slowtime signal of
the voxel si (t) and the slowtime signal of the cluster sk(t) with

Rsi sk (0) =
1

Ndet

Ndet−1∑
n=0

si (n) · sk(n)∗. (21)

If
Rsi sk (0)√

Rsk sk (0) · Rsi si (0)
> 0.7, (22)

the new voxel is assigned to the cluster. Otherwise, a new
cluster is generated. If the left side of Equation (22) is 1, the
signals are identical. The threshold value of 0.7 was chosen
based on heuristics. In Equation (21), s(n)∗ is the complex
conjugate of s(n) and Rsi si (0) and Rsk sk (0) are the central
values of the auto-correlation of si and sk , respectively. Fig. 9
shows a flowchart of the clustering process.

The K detected clusters are then fed into a tracking
algorithm. For each cluster, we check if there is already a
tracked cluster from the previous detection cycles with a
similar geometric position by examining

||pk − pm ||2 < 1.5, m = 1, . . . , M. (23)

Here, pk with k = 1, . . . , K are the center positions of the
clusters detected in the current detection cycle and pm , with
m = 1, . . . , M being the center positions of the already tracked
clusters. If the euclidean distance is less than 1.5 m, the cluster
is assigned to the track and the center position as well as the

slowtime signal are updated with the data of the new cluster.
A cluster that is not assigned to any of the existing tracked
clusters, will be added to the tracker as a new track as long
as the maximum number of tracks is not reached. If two or
more clusters would be assigned to an existing track, only the
closest cluster will be assigned to it, while the other clusters
will be inserted as new tracks if the maximum number of
tracks has not yet been reached. If a tracked cluster is not
updated for more than two consecutive detection cycles, the
track is deleted.

C. Probabilistic Cluster Selection

Unfortunately, the motion compensation can never com-
pletely remove the motion of the UAV. For example, there
is always a small error between the true azimuth angle from
which a signal was reflected and the azimuth angle of the
voxel where the reflected signal was detected. Therefore, the
orthogonally projected compensation signal is also slightly off,
resulting in a residual motion. This residual motion is most
of the time smaller than the motion of the target, but since
the RCS of walls is much higher than the RCS of people,
there might still be some large peaks corresponding to walls
in the Doppler detector. This leads to tracked clusters, which
do not correspond to a person. Since we only want to detect
and monitor people, we use a Probabilistic Cluster Selection
(PCS), which should ensure that only people and not walls or
other static objects in the scene are tracked [30].

PCS is based on the calculation of a probability that
describes the likelihood that a cluster corresponds to a person.
The probability is built from four base probabilities:

• Geometric probability Pgeo, it is unlikely that a person
is distributed over an area larger than 0.5 m,

• Motion probability Pmot, the phase should not be the
residual of the compensated UAV motion,

• Respiration probability Presp, the amplitude of the phase
should be in the range of typical values for the respiration,

• RCS probability Prcs, the radar cross-section of a person
should be at a certain level.

The geometric probability Pgeo utilizes that the chest motion
of a person should be restricted to an area smaller than
0.5 meters. Walls or other static objects often occupy an area
much larger than that. We use this property to define the
probability as

Pgeo =

{
γgeo dmax ≤ 0.5 m
1 − γgeo dmax > 0.5 m , (24)

with dmax being the maximum distance between two elements
in the cluster and 0 < γgeo < 1 being a parameter that defines
how large the influence of the geometric probability should
be. In our experiments, γgeo = 0.75 gave good results. Since
all clusters that occupy a big area should have a geometric
probability smaller than 0.5, the total probability for these
clusters should also be relatively small.

The motion probability Pmot examines the similarity of
the phase to the UAV motion. Therefore, we evaluate if the
phase signal and the UAV motion p(t) are linear dependent,
by solving the equation

Ax = b (25)
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with b =
λ

4π
φ(t) as the unwrapped phase of the target in the

current detection cycle and A = p(t)T as a Ndet × 2 matrix
containing the UAV motion. By solving the equation system
using least squares, we obtain x as the factors of the linear
combination closest to b. By analyzing the relative residual

vres =
1

Ndet

Ndet−1∑
n=0

|b − Ax|, (26)

we can assess to which degree the phase signal is resulting
from the imperfect compensation of the UAV motion. The
residual vres is then used to calculate the residual probability
with

Pmot =

{
γmot vres ≥ 5 mm
1 − γmot vres < 5 mm . (27)

The threshold value of 5 mm was chosen based on heuristics
and 0 < γmot < 1 is again a parameter defining the influence of
the probability, which was set to 0.75 in our experiments. The
residual probability discards all clusters whose phase signal is
influenced only by the remaining UAV motion.

The third base probability evaluates the resemblance of
the unwrapped phase signals with a respiratory motion. The
amplitude of the respiratory motion is typically about 1 cm.
Therefore, all clusters for which the unwrapped phase of the
slowtime signal has a amplitude much larger or much smaller
are unlikely to correspond to a person. The amplitude a for a
cluster’s phase signal is calculated with

a = ξresp ·
λ

4π
(max{φ(t)} − min{φ(t)}), (28)

with φ(t) being the unwrapped phase signal from the central
cluster voxel for the detection interval and min{·} and max{·}

being operators which take the minimum and maximum value
of a signal, respectively. The factor ξresp = 100 is used to scale
the amplitude in a way that the probability distribution has the
desired properties. Using a, we can compute the probability
Pmag with

Presp =
1√

2πσ 2
resp

exp

(
−(a − µresp)

2

2σ 2
resp

)
. (29)

Here, the parameters µresp = ξresp·7 mm and σresp = ξresp·4 mm
are chosen based on the typical amplitude of the respiration
and the deviation of likely amplitude values. We estimated
both parameters based on multiple radar measurements with
different people in different orientations.

The last base probability is based on the reflected power
in the specific voxel and the distance to it. Therefore, the
reflected power in the current detection interval is scaled by
the corresponding distance with

S =
1
r4

1
Ndet

Ndet−1∑
n=0

|s(n)|. (30)

The normalized reflected power is then used to calculate the
probability

Prcs =
1√

2π(ξrcs · σrcs)2
exp

(
−(ξrcsS − ξrcsµrcs)

2

2(ξrcs · σrcs)2

)
, (31)

which describes how likely it is that a target with a specific
radar cross-section, in this case represented by the normalized
reflected power, corresponds to a person. The parameters µrcs
and σrcs are estimated by analyzing the normalized reflected
power for people at different distances and poses. Both param-
eters are highly dependent on the radar system and have to be
scaled with a factor ξrcs. The scaling parameter ξrcs is defined
by

ξrcs =
σrcs

0.2
(32)

and should again ensure that the probability density function
has the desired properties.

The four base probabilities are then combined to the likeli-
hood

P(d j |is person) = min(Pgeo, Pmot) ·
Presp + Prcs

2
, (33)

which represents the probability that the data of a cluster in
the j th detection cycle corresponds to a person. The operator
min(a, b) takes the smaller one of the two input arguments.
This operator is chosen because the influence of a multiplica-
tive combination of the two base probabilities Pgeo and Pmot
on the combined probability would be too strong.

Afterwards, Bayes’ theorem is used to compute the posterior
probability

P(is person|d j ) =
P(d j |is person) · P(is person)

P(d j )
, (34)

describing the probability that the hypothesis is correct based
on the data measured in the j th detection cycle. Here is

P(d j ) = P(d j |is person) · P(is person)

+ P(d j |not person) · P(not person), (35)

with P(is person) and P(not person) being the prior proba-
bilities for the hypothesis. Since most of the detected targets
do not correspond to humans, we initialized the priors with
P(not person) = 0.8 and P(is person) = 0.2 [31].

The probabilities for the tracked clusters are updated in each
detection step. Thus, the posterior from the last detection cycle
is used as the prior for the next detection cycle. This means
that Pm

j−1 is the prior of the hypothesis is person for the m th

tracked cluster in the j th detection cycle. Since there are only
two cases, the prior of the hypothesis not person for the m th

tracked cluster in the j th detection cycle is described with
(1− Pm

j−1). Furthermore, we define the likelihood that the m th

cluster’s data in the j th detection cycle corresponds to a person
with P̃m

j . This results in the following Bayesian update

Pm
j =

P̃m
j · Pm

j−1

P̃m
j · Pm

j−1 + (1 − P̃m
j ) · (1 − Pm

j−1)
. (36)

Because of this iterative probability update, the prediction
of whether a tracked cluster belongs to a person or a static
object becomes more reliable with each iteration. This allows
to remove tracks which have a probability of less than 10 %
to belong to a person over multiple detection cycles. After
hovering for 20 seconds, only clusters belonging to people
should be tracked. By evaluating the corresponding slowtime
signals, the vital signs of these people can be estimated [31],
[32], [33].
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Fig. 10. Photo of measurement with a person and the UAV equipped with
rotating radar and LIDAR at TCRH in Mosbach.

Fig. 11. Detector output before and after motion compensation.

VII. RESULTS

To test the proposed algorithms, a measurement campaign
was carried out at the TCRH in Mosbach, Germany. The
UAV, equipped with LIDAR-System and rotating radar, flew
in a room with a person1 sitting on a chair. The scenario is
shown in Fig. 10. To verify the measurements the person was
connected to a vital sign reference system [34].

Processing begins with the detection of the walls or other
static objects with high RCS in the environment of the
radar system. For each wall detected, the phase signals are
extracted, unwrapped using Algorithm 1, and used to estimate
the precise radar position. Then, the position estimate is
used to compensate for the UAV’s motion in the radar data.
By analyzing the motion contained in the phase signal reflected
from static objects before and after the compensation for
different measurements we can see that the motion is reduced
from about 200 mm to less than 4 mm. This means that we
can compensate for about 98 % of the motion.

After compensating for the UAV’s motion, the people in
the environment of the radar can be detected. Fig. 11 shows
the results of the detection algorithm from Equation (18)
before and after the motion compensation. The position of
the person is marked in both plots. It can be seen that before
the compensation the peak corresponding to the person is
much weaker than the peaks corresponding to the walls. After
compensation, the peak corresponding to the person is the
largest.

1Informed consent was obtained from all subjects.

Fig. 12. Depiction of the phase signal extracted from a detected person
together with the respiration motion measured by the reference system.

Fig. 13. Detector output for a reverbant environment with a schematic of
the environment on the left side and markers for the targets chosen with the
probablistic cluster selection.

If a person is detected, we can extract the slowtime signal
and calculate the unwrapped phase signal. Fig. 12 shows the
unwrapped phase signal extracted from the target belonging to
the person. For comparison, we have also plotted the respira-
tory motion measured by the vital sign reference system. The
similarities are easy to see. If we compare the respiration rate
predicted from the unwrapped phase signal f̂ resp = 11.13 bpm
with the respiration rate measured by the reference system
fresp = 10.99 bpm, we get a relative error of 1.33 %.

Unfortunately, in more complicated or reverberant environ-
ments, the peaks corresponding to people are often weaker
than some of the static targets, even after motion compensa-
tion. This can be caused by large movements of the radar,
multipath reflections, small motion of the person, or unwrap-
ping problems in the apparent detection cycles. Therefore,
we have to track different detected targets over time and
estimate how likely it is that the tracks belong to a person
by using the Probabilistic Cluster Selection. Fig. 13 shows
the detector output for such a reverberant environment. For a
better understanding of the scenario, we also give a graphical
description of the environment, showing the position of the
person in the scene. The three marked scatterers in the detector
output correspond to two false targets (red) and the person
(green).

Using the Probabilistic Cluster Selection, many of the strong
scatterers can be removed immediately because they are initial-
ized with a probability of belonging to a person smaller than
0.1, while some of the targets with similar RCS as a human
will also have higher probabilities of belonging to a person.
However, due to the Bayesian probability update, these targets
can also be removed after some detection cycles, leaving only
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Fig. 14. Bayesian probability development for different targets. The dotted
lines represent the accompanying a-priori probabilities for the different tracks.

those targets that correspond most likely to a human. Fig. 14
shows the estimated probability for the three marked scatterers
from Fig. 13. Here, the dotted lines represent the calculated
probability that the target belongs to a person based on the
data measured in the current detection cycle, while the solid
lines represent the posterior probabilities after the Bayesian
update. It can be seen that the posterior probabilities for the
targets belonging to walls tend to zero, while the posterior
probability of the target belonging to the person becomes more
confident with each iteration. This means that we can use the
Probabilistic Cluster Selection to remove all targets that do
not belong to a person.

VIII. CONCLUSION

In this research, algorithmic solutions were developed to
locate missing people in collapsed buildings using a rotating
radar mounted underneath a UAV. This involved estimating
the UAV’s rotations around its vertical axis and estimating the
UAV’s horizontal motion using the reflected radar signals of
different static targets in the environment of the radar system.
A new unwrapping algorithm was proposed to enable the
motion estimation based on the reflected signals. Using the
motion estimates, the rotation and the motion of the UAV were
compensated in the radar data. After the motion compensation,
more than 98 % of the UAV’s motion are removed from the
radar signals. In the compensated radar data, the human targets
in the environment of the UAV can be detected, clustered and
tracked using a Bayesian approach that distinguishes human
targets from other objects. Finally, we have demonstrated the
effectiveness of the proposed algorithms by localizing people
in the environment of the UAV in a realistic scenario. Further-
more, we have extracted their chest motion and verified the
measured respiration rate with a vital sign reference system,
showing high signal overlap in the time domain as well as an
overall respiration rate error of only 1.33 %.
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