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Abstract— The capturing of hands, including their poses,
shapes and motions, has numerous potential applications, such
as human-machine interfaces and medical use cases. However,
in the radar context, most existing methods only allow for the
recognition of dynamic hand gestures based on Doppler evalua-
tions due to the respective systems’ limited lateral resolution.
Radar-based high-resolution three-dimensional (3D) imaging
using multiple-input multiple-output (MIMO) radars is currently
the state-of-the-art in personnel security scanning. However,
the associated imaging techniques suffer from computationally
burdensome reconstruction algorithms that sample the entire 3D
space of interest, thereby making them less suitable for real-
time applications. Moreover, their application in hand motion
tracking scenarios is limited by low frame rates that result
from a high number of transmit frequencies. Hence, we present
an efficient and powerful approach for the radar-based 3D
reconstruction of hand poses. The method extends the frequency
shift keying continuous wave radar principle and reconstructs
the hand surface using only two carrier frequencies. Instead
of reconstructing an entire 3D volume, only two single-tone
radar images are computed. Depth information is derived from
phase differences between corresponding pixels in the images.
The approach significantly reduces computational load by three
orders of magnitude compared with the state-of-the-art and
enables higher frame rates. Within this paper, this novel recon-
struction principle is analyzed and compared to a state-of-the-art
radar imaging approach using a MIMO radar system with
94 transmitting and 94 receiving antennas. Detailed simulations
of point targets and comprehensive measurements demonstrate
the excellent imaging performance of our approach.

Index Terms— Radar imaging, hand pose capture, 3D recon-
struction, frequency shift keying.

I. INTRODUCTION

AUTOMATIC recognition of hand gestures, hand pose
estimation, as well as hand tracking have recently

become an attractive area of research, as contactless
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human–computer interaction becomes more important [1], [2].
In this regard, two popular research fields have emerged [3].
The first focuses on gesture classification based on the
evaluation and extraction of high-level abstract motion or
pose information. The second one builds on precise hand
pose estimation, i.e., it aims at capturing the correct three-
dimensional (3D) information of hand poses and motions. This
is also of great interest in medical contexts, as the analysis of
hand function can provide information regarding the current
health of patients [4], [5], [6].

In the computer vision domain, markerless methods based
on RGB cameras, depth cameras, or RGB-D cameras, i.e.,
a combination of the aforementioned are used for exact hand
pose estimation, as well as static and dynamic automated
gesture recognition [7], [8], [9]. Computer vision algorithms
have a rich history and have been extensively researched.
However, optical sensors have the disadvantage of their per-
formance being highly dependent on the lighting conditions
of the illuminated scene [10].

For this reason, radar-based methods for the capturing
of hand poses or hand motion offer a promising alter-
native, as they do not suffer from this disadvantage on
account of the wavelengths used; therefore, such methods
enable a robust precise measurement of distances. Further-
more, unlike computer vision approaches, they are able to
directly measure motion by analyzing the Doppler effect,
which is beneficial when it comes to the evaluation of
dynamic features. The majority of the work published in
the radar context focuses on dynamic gesture classification.
An overview of the state-of-the-art of hand gesture recog-
nition approaches using radar sensors can be found in [11].
In this context, Google launched a project called Soli, that
utilizes a frequency-modulated continuous wave (FMCW)
radar in combination with machine learning algorithms for
robust dynamic hand gesture recognition and gesture tracking
with sub-millimeter accuracy [12]. Further research can be
found in [13], [14], [15], [16], [17], [18], and [19], in which
micro-Doppler signatures or range-Doppler maps are used
to enable automatic hand gesture recognition in combination
with machine learning approaches. In [20], multiple scattering
points of the hand are extracted from the measurement data
of an FMCW multiple-input-multiple-output (MIMO) radar,
which are subsequently analyzed in the spectrum, spatial,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2276-272X
https://orcid.org/0000-0001-8295-3021
https://orcid.org/0000-0001-7870-7661
https://orcid.org/0000-0002-6186-8183
https://orcid.org/0000-0002-3145-4959
https://orcid.org/0000-0001-8699-3442
https://orcid.org/0000-0002-8369-345X


BRÄUNIG et al.: ULTRA-EFFICIENT APPROACH FOR HIGH-RESOLUTION MIMO RADAR IMAGING 469

and time domains. In [21], an interferometric continuous
wave (CW) radar is used to measure the angular velocity of
dynamic hand gestures. The commonality among all these
methods is that the radar utilized incorporates low lateral
resolution, which is why they focus on dynamic rather than
static features. In [22], a convolutional neural network is
trained and applied to enable improved static hand gesture
recognition based on radar data. The data acquisition is done
using a mechanical MIMO FMCW radar scanner consisting
of two transmitting (Tx) and receiving (Rx) antennas, which
enables a multiperspective view and the generation of suffi-
cient training samples. However, within this work as well as
in the previously mentioned articles, the authors do not aim
for a precise 3D imaging of different hand poses, as is the
case in most computer vision approaches.

High-resolution 3D imaging of the human body has been
the state-of-the-art for personnel security screening for many
years, as radar waves in the millimeter-wave range (mmWave)
can penetrate clothes and, therefore, enable the detection of
forbidden items, such as weapons [23], [24], [25]. To ensure
this, the used radar systems require a high 3D resolution,
which can be achieved by large antenna apertures, compa-
rably high carrier frequencies, and high signal bandwidths.
As radar imaging requires measurements from many positions
and viewing angles, MIMO radars are currently considered
the state-of-the-art in building sufficient imaging systems.
However, a high number of antennas and the use of high
signal bandwidths lead to high requirements for the hard-
ware [23]. Besides that, these radar systems commonly use a
backprojection approach to precisely reconstruct a 3D object
scene. This procedure is computationally expensive as it
raises the need to, first, subdivide the 3D space into smaller
sub-volumes (voxels) and, subsequently, reconstruct each of
them individually (see Section III). Consequently, traditional
imaging radar systems suffer from low measurement rates,
computationally burdensome reconstruction algorithms, and
high hardware requirements. All these limitations make them
unsuitable for use in real-time capable and consumer-friendly
gesture sensing systems, or hand-tracking applications.

A radar-based method that can be used in static and dynamic
hand gesture classification tasks and is also suitable for precise
hand pose tracking applications has not been researched yet.
All previous studies either lack the ability to precisely recon-
struct hand poses or their computational complexity makes
them unattractive for real-time applications. Additionally, low
frame rates associated with the latter present challenges for
tasks involving direct motion evaluations. Therefore, we pro-
pose a new algorithm and measurement principle that is based
on the frequency shift keying (FSK) continuous wave (CW)
radar principle [26]. Our approach requires only two closely
neighbored frequency steps (2FSK) and, thus, requires a
small signal bandwidth, thereby reducing hardware require-
ments. Furthermore, we incorporate a novel 3D reconstruction
approach that lowers computational complexity, as it is based
on the computation of two single-tone images at an estimated
target distance instead of sampling and reconstructing a full 3D
space. In addition, measurement acquisition and data transfer
times can be significantly decreased, as only two frequency

Fig. 1. Measurement setup to capture hand pose and surface. The hand is
positioned in front of the MIMO radar using a styrodur structure placed on a
reference coordinate system of the x-y plane.

steps are sent out by the antennas. By achieving a significant
reduction in measurement time and computational complexity,
this novel approach delivers high measurement rates and
opens the way toward real-time hand-tracking applications.
Furthermore, the precise 3D reconstruction of hands using
radar technology allows for the application of thoroughly
researched computer vision algorithms. This manuscript makes
the following contribution to extant research. We present
the theory underlying our fast, precise, and efficient 3D
reconstruction technique of the human hand. To evaluate
the performance of the novel 2FSK-based imaging principle,
we compare its theoretical accuracy, 3D reconstruction results,
and computational efficiency to a state-of-the-art radar imaging
approach using a stepped frequency continuous wave (SFCW)
signal form. Since automatic sign language recognition is an
intensly researched application of static hand pose classifica-
tion [27], [28], [29], we selected three exemplary hand poses
of the American Sign Language (ASL) alphabet to compare
the 3D imaging results of both approaches. To guarantee
a static object scene for the comparison, all hand poses
were 3D printed. In addition, we also included measure-
ments that involved a real human hand to further prove
the applicability of the novel approach. The manuscript is
structured as follows: The measurement setup is described
in Section II. In Section III and Section IV, we explain the
theoretical background of the SFCW approach, as well as the
theory behind our novel 2FSK based algorithm. In Section V,
we define the signal and reconstruction parameters relevant
for our setup. Thereafter, we analyze the performance of the
proposed approach in Section VI. In Section VII, we discuss
the results and in Section VIII, we present a summary.

II. MEASUREMENT SETUP

Fig. 1 shows an overview of the experimental setup, which
we used to capture different hand poses. To accurately position
the hand in front of the radar, a styrodur structure, including a
reference coordinate system of the x-y plane drawn on a sheet
of paper, was placed on the table. Two absorber walls were
placed behind the table. The hand was positioned roughly at a
distance of 30 cm. In order to reliably resolve the fingers of the
hand in lateral direction, an image resolution significantly less
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Fig. 2. MIMO radar used within the measurement setup. (a) Photo of
hardware. (b) Antenna distribution of the respective MIMO radar.

than 1 cm is necessary. Current state-of-the-art 3D radar imag-
ing systems of the human body are typically broadband MIMO
systems equipped with a two-dimensional (2D) antenna array.
To achieve the same resolutions in both lateral dimensions,
a square aperture is a viable choice. The MIMO array used
for our setup is a submodul of a commercially available
automotive radome tester [30] and is depicted in Fig. 2(a).
It has 94 Tx and 94 Rx antennas, which are arranged on
a square frame, as illustrated in Fig. 2(b). As a result,
we acquire a squared, uniform, and fully equipped virtual array
of 8836 antenna pairs. The spacing between adjacent antenna
elements is 3 mm, thereby resulting in an array with a physical
size of aproximately 14 cm x 14 cm. The size of the resulting
virtual MIMO aperture is 28 cm x 28 cm (assuming a far-field
approximation). Hence, the lateral resolution in 30 cm distance
is 4 mm, as revealed in the next section. The used radar
signal modulation is SFCW. The bandwidth and number of

Fig. 3. State-of-the-art MIMO millimeter-wave imaging. The 3D shape of
an object within the volume of interest O , with #»r ṽ pointing to all relevant
voxels, is obtained by reconstructing a 3D volume Ô and projecting the voxel
containing the highest intensity along the z-axis onto the x-y plane while
extracting its z-index (maximum projection).

frequency steps are configurable within a range from 72 GHz
to 82 GHz. Hence, it is well suited to compare the existing
approaches and our novel 2FSK approach. The transmitting
power per antenna and transmit frequency can be described by
an effective isotropic radiated power of approximately 10 dBm.

III. MILLIMETER-WAVE IMAGING WITH MIMO RADARS

In the following, the state-of-the-art 3D mmWave imaging
approach is discussed in more detail using the example of an
SFCW signal modulation. The procedure is illustrated in Fig. 3
and explained in the following. Let us assume the volume of
interest O containing an object whose 3D dimensions are to
be detected. This volume is divided into smaller subvolumes,
called voxels. Their size is determined by the sampling dimen-
sions of the applied reconstruction. The vector #»r ṽ points to the
different voxel positions O(x, y, z). Within this volume there
are Nv voxels located at #»r v actually containing a scatterer.
The scene is scanned with a MIMO radar consisting of
NTx transmitting and NRx receiving antennas, sending out Nf
frequency steps. To obtain a reconstructed voxel Ô( #»r ṽ) within
the 3D object scene of interest, the baseband signals sB need to
be correlated with complex weights w to correct the respective
signal delays before they are coherently summed up across
all transmit-receive combinations [24]. This signal processing
algorithm is also known as back propagation, backprojection,
or digital beamforming [23]. Mathematically, this procedure
can be described by [31]

Ô( #»r ṽ) =

Nf∑
k=1

NTx∑
m=1

NRx∑
i=1

sB( fk,
#»r Txm , #»r Rxi )

· w( fk,
#»r Txm , #»r Rxi ,

#»r ṽ), (1)
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where

sB( fk,
#»r Txm , #»r Rxi ) (2)

=

Nv∑
v=1

exp(−j2π fk(|
#»r Txm −

#»r v|

+ |
#»r Rxi −

#»r v|)/c + φRx) (3)

and

w( fk,
#»r Txm , #»r Rxi ,

#»r ṽ) = exp(j2π fk(|
#»r Txm −

#»r ṽ|

+ |
#»r Rxi −

#»r ṽ|)/c). (4)

All frequency steps that are transmitted by the Tx antennas
are represented by f , and the speed of light is described by c.
The vectors pointing from the origin, i.e., the center of the
MIMO array, to any Tx or Rx antenna position are denoted as
#»r Tx and #»r Rx, respectively. A constant reflection phase shift is
described by φRx. By performing the backprojection algorithm
for all relevant voxels #»r ṽ , a 3D volume describing the object
scene is obtained. The resolution of this volume depends on
several parameters.

According to [24], the spatial resolution in front of the
center of a square-shaped MIMO array with equal Tx and
Rx apertures and side length D is given by

δx = δy =
c

4 fmax
·

√
4
(

L
D

)2

+ 1 (5)

and

δz =
c/2

1 f +

(
1 −

1√
1+0.5( D

L )
2

)
· fmin

, (6)

where δx and δy describe the cross-range (lateral) resolutions
and the range resolution is depicted by δz. The distance
between the focused spot and the antenna array is denoted
by L . The minimum and maximum operating frequency as
well as the signal bandwidth are indicated by fmin, fmax,
and 1 f . As high signal bandwidths lead to high range res-
olutions, one of the main applications of broadband mmWave
imaging is personnel security screening, as this type of 3D
imaging is able to resolve clothes, body surfaces, and possibly
hidden items underneath the clothes. One disadvantage of this
brute-force algorithm is the extremely high computational cost
associated with the reconstruction of each voxel within the
volume of interest.

If this approach is applied to the imaging of hands, it can be
assumed that the strongest reflections are caused by the skin
surface, as human skin mostly consists of water and, there-
fore, strongly reflects millimeter waves [24], [32]. To extract
the physical dimensions of the hand from the reconstructed
volume Ô , a so-called maximum projection needs to be
performed [33]. Hence, for each pixel position defined by
x and y, the voxel Ô(x, y, z) with the strongest intensity
along the z-axis within the reconstructed volume is extracted,
which can then be used to locate the hand and its surface in
3D space and allows the projection of a 3D volume Ô( #»r v)

onto a 2D image (see Fig. 3). This procedure has two main
disadvantages. On the one hand, the frame rate depends on

the number of transmitted frequencies, as these influence the
pure measurement duration and the time required for the data
transfer. For the given hardware depicted in Fig. 2, the frame
rate for Nf = 128 is approximately 70 Hz. To enable a precise
radar-based tracking of hand motion, frame rates above 1 kHz
are desirable; therefore, an increase in the frame rate of factor
14 is required to enable precise hand motion tracking. On the
other hand, brute-force reconstruction of the complete volume
is computationally expensive, as all iterations depicted in (1)
have to be run for every voxel of interest. This is particularly a
problem with regard to real-time applications. However, when
it comes to imaging of the hand, reconstructing an entire
volume is unnecessary, as only the visible parts of the hand
surface create a radar response. Hence, there is no need to
resolve multiple targets along the z-axis. Therefore, instead
of reconstructing a volume and obtaining the contour of the
hand by performing a maximum projection, new approaches
should be identified that focus on efficient extraction of the
hand surface from the radar data.

The aim of this paper is to present a radar measurement
concept and image reconstruction approach that not only dras-
tically reduces the measurement and computational effort but
still provides pleasing, high-quality results of the reconstructed
hand shell in the form of an image. The results of that study
reveal that an efficient extraction of the body shell and a
reduction of the computational complexity of three orders of
magnitude compared to classical radar imaging methods is
achieved with the proposed concept.

IV. 2FSK MIMO RADAR IMAGING PRINCIPLE

In this section, we describe our novel signal processing
approach that enables efficient radar imaging of the hand. This
approach combines the theory of the 2FSK radar concept [26]
with the previously described principle of mmWave imaging.
Compared to CW radar, 2FSK radar can significantly increase
the unambiguous target range measured [34]. This can be
achieved by subsequently sending out two neighbored CW
frequencies f1 and f2 and evaluating the phase difference
1φ = φ2 − φ1 between both baseband signals. As a result,
the distance d to the target can be calculated by [26]

d =
c

4π( f2 − f1)
1φ. (7)

The maximum unambiguous range is

dmax =
c

2( f2 − f1)
. (8)

This formula can also be used to calculate the maximum
unambiguous range achievable with the SFCW signal form.
In this case, f2 − f1 = 1 f describes the step size between
two frequencies.

When applied to radar imaging, the presented 2FSK
approach reconstructs two single-tone images (Ô1/2

ze ) of one
slice of the volume of interest O at an estimated depth ze and
performs the phase evaluation described in (7) for every pixel
of that slice. This is an iterative process, as we first approxi-
mate the distance to our target and then adjust it based on an
initial 2FSK evaluation. Thereafter, a final phase evaluation
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Fig. 4. The 2FSK MIMO radar imaging principle. The 3D shape of the object
within the volume of interest O is obtained by reconstructing two 2D images
Ô1

ze
and Ô2

ze
of one z-slice at an estimated depth ze based on two neighbored

frequencies. #»r p̃ indicates the different pixel positions of interest. The actual
depth of the target is calculated by evaluating the phase difference 1φ between
respective pixels of both images and correcting the initially estimated depth ze .

is performed to estimate the contour of the respective object.
Based on this approach, only two frequencies need to be
transmitted by every Tx antenna of the MIMO array. The
operating principle of this approach is depicted in Fig. 4 and
is described in more detail in the following account.

If we assume that there is a target at position
#»r p̃ = (x, y, ze), the estimated distance deim from the mth Tx
antenna (m ∈ [1; NTx]) to the respective target back to the i th
Rx antenna (i ∈ [1; NRx]) can be calculated by

deim ( #»r p̃) = |
#»r Txm −

#»r p̃| + |
#»r Rxi −

#»r p̃|, (9)

whereas the scatterer is actually located at #»r p = (x, y, z).
Therefore, the correct distance to the point scatterer is

dim( #»r p) = |
#»r Txm −

#»r p| + |
#»r Rxi −

#»r p| (10)

and

1dim( #»r p,
#»r p̃) = deim ( #»r p̃) − dim( #»r p), (11)

where 1dim describes the error of the distance estimate. For
one Tx-Rx antenna pair, the two baseband signals

sB1im ( #»r p) = A1 exp
(

−j2π f1
dim

c
+ φRx

)
(12)

sB2im ( #»r p) = A2 exp
(

−j2π f2
dim

c
+ φRx

)
(13)

generated from this point target are obtained. For reasons of
simplicity, the amplitudes of the baseband signals A1 and
A2 are set to one. Furthermore, we note that the baseband
signals are influenced by the reflections of multiple point
scatterers. The impact of all scatterers in the volume of
interest, located at x and y coordinates different from the pixel

being reconstructed, can be expressed as an extra unknown
phase term in addition to φRx. For simplicity, the additional
phase term and the unknown reflection phase are summarized
by φRx below. The complex weights w1im and w2im corre-
sponding to (12) and (13), which are needed to reconstruct
a 2D image for both carrier frequencies, are based on the first
estimate deim and described by

w1im ( #»r p̃) = exp
(

j2π f1
deim

c

)
(14)

w2im ( #»r p̃) = exp
(

j2π f2
deim

c

)
. (15)

Correlating the baseband signals from (12) and (13) with their
individual weights, with respect to (11), yields

scorr1im ( #»r p,
#»r p̃) = exp

(
j2π f1

1dim

c
+ φRx

)
(16)

scorr2im ( #»r p,
#»r p̃) = exp

(
j2π f2

1dim

c
+ φRx

)
. (17)

To obtain pixel Ô1/2
ze (x, y) = Ô1/2( #»r p̃) of the image of

slice ze, these results are added up over all possible Tx-Rx
combinations:

Ô1
ze
(x, y) =

NTx∑
m=1

NRx∑
i=1

scorr1im ( #»r p,
#»r p̃) (18)

Ô2
ze
(x, y) =

NTx∑
m=1

NRx∑
i=1

scorr2im ( #»r p,
#»r p̃). (19)

To evaluate 1d , the 2FSK principle is followed. Hence, the
phase difference between corresponding pixels in the two
images is measured by muliplying Ô2

ze
(x, y) with the complex

conjugate of Ô1
ze
(x, y). Therefore, the differential complex

pixel information is obtained by

Ô ze(x, y) = Ô2
ze
(x, y) · Ô1

ze
(x, y)∗

=

NTx∑
m=1

NRx∑
i=1

exp
(

j2π f2
1dim

c
+ φRx

)
·

·

NTx∑
m=1

NRx∑
i=1

exp
(

−j2π f1
1dim

c
+ φRx

)
. (20)

The phase 1φ of this differential complex pixel Ô ze(x, y) is
then used to calculate 1d by applying (7), which results in

1d =
c

2π1 f
1φ. (21)

In (21), there is only a division by two, as 1d is defined as the
complete distance error related to the path from Tx antenna to
point scatterer and from point scatterer to Rx antenna, which is
illustrated in Fig. 5, using the example of a monostatic antenna
and a point target P(x, y, z). In contrast, the distance d in (7)
only covers the forward distance from a monostatic antenna
to the target. To estimate 1z, we simplify

1z =
1d
2

, (22)

which can then be used to correct the first estimated guess ze.
In Fig. 5, it also becomes evident that the difference between



BRÄUNIG et al.: ULTRA-EFFICIENT APPROACH FOR HIGH-RESOLUTION MIMO RADAR IMAGING 473

Fig. 5. Difference between 1d and 1z in case of a monostatic antenna.

1d/2 and 1z is reduced for increasing values of z as the
angle α becomes smaller. The theoretical maximum unam-
biguous value for 1d/2 is defined by (8), thereby resulting
in ±c/(1 f · 2).

To further illustrate the mechanism of this 2FSK imaging
algorithm, (20) can be rewritten as

Ô ze(x, y) =

[
exp

(
j2π f2

1d11

c
+ φRx

)
+ exp

(
j2π f2

1d12

c
+ φRx

)
+ . . .

+ exp
(

j2π f2
1dNRx NT x

c
+ φRx

)]
·

[
exp

(
−

(
j2π f1

1d11

c
+ φRx

))
+ exp

(
−

(
j2π f1

1d12

c
+ φRx

))
+ . . .

+ exp
(

−

(
j2π f1

1dNRx NT x

c
+ φRx

))]
. (23)

Multiplying out the parentheses results in

Ô ze(x, y) = exp
(

j2π f2
1d11

c
+ φRx

)
· exp

(
−

(
j2π f1

1d11

c
+ φRx

))
+ exp

(
j2π f2

1d11

c
+ φRx

)
· exp

(
−

(
j2π f1

1d12

c
+ φRx

))
+ exp

(
j2π f2

1d12

c
+ φRx

)
· exp

(
−

(
j2π f1

1d11

c
+ φRx

))
+ exp

(
j2π f2

1d12

c
+ φRx

)
· exp

(
−

(
j2π f1

1d12

c
+ φRx

))
+ . . . (24)

which can be simplified to

Ô ze(x, y) = exp
(

j2π1 f
1d11

c

)
+ exp

(
j2π1 f

1d12

c

)
+ exp

(
j2π

f21d11 − f11d12

c

)
+ exp

(
j2π

f21d12 − f11d11

c

)
+ . . . (25)

This evaluation leads to the cancelling out of the unknown φRx.
If all 1ds were equal, this formula would result in an in-phase
summation of the individual antenna contributions. For most
imaging radars, 1d differs between Tx-Rx combinations.
However, as 1 f is set to comparably small values for 2FSK
applications and, hence, small variations in 1d cause only
small phase shifts, we can assume that lines 1 and 2 of (25)
cause the same phase shift and lead to an in-phase summa-
tion of these summands. Moreover, the cross terms of (25)
(e.g. in line 3 and 4) remain. To evaluate their influence, line 3
of (25) can be rewritten as

exp
(

j2π
f21d11 − f11d12

c

)
= exp

(
j2π

f21d11 − f1(1d11 + δd)

c

)
= exp

(
j2π

1 f 1d11 − f1δd
c

)
, (26)

with 1d12 = 1d11 + δd and δd being an offset between the
two 1ds. Therefore, line 4 of (25) can be rewritten as

exp
(

j2π
f21d12 − f11d11

c

)
= exp

(
j2π

1 f 1d11 + f2δd
c

)
. (27)

The term 1 f 1d11/c of (26) and (27) causes an additional
in-phase summand with respect to (25). In the following,
we assume that

f1δd ≈ f2δd, (28)

which implies that the phase shifts caused by these terms
in (26) and (27) cancel themselves out, so that only the
in-phase summations of the complex pointers of (25) remain.
In other words, the residual pixel phase of the multiplication
described in (20) is influenced by the average 1d over all
possible Tx-Rx combinations. The phase error that is made
by this assumption is approximately exp

(
j2π

1 f δd
c

)
.

The overall workflow of the 2FSK MIMO imaging principle
is depicted in Fig. 6. The phase difference between the
corresponding pixels of the two complex images is evaluated
for each pixel (x ,y) (see Fig. 4), where a target can be
assumed after applying a suitable threshold. To obtain the best
possible focused image, the image reconstruction is divided
into two steps. First, two images are reconstructed at ze,
and the pixel containing the strongest scatterer is evaluated.
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Fig. 6. 2FSK MIMO imaging workflow.

After calculating the corresponding 1z, ze is corrected by 1z,
and two complex images are reconstructed at the adjusted ze
coordinate. Finally, the phase difference of all pixels with an
amplitude above a certain threshold is evaluated by apply-
ing (21) and (22), and the 3D information is smoothed by an
averaging filter.

V. SIGNAL AND RECONSTRUCTION DESIGN

When choosing the optimum signal parameters for the 2FSK
approach, the value for 1dmax/2 (see (8)) is one design crite-
rion. We set 1 f in the following to 200 MHz; in this manner,
we acquire an unambiguous range for 1d/2 of approximately
0.75 m and ensure that 1 f is still sufficiently small to enable
the use of all simplifications described in Section IV. Further,
the CW frequencies are set to f1 = 79.8 GHz and f2 =

80 GHz, thereby enabling high angular resolution. With regard
to (5) and (6), the cross-range and range resolution for a
CW signal at f1 = 79.8 GHz at a distance L = 0.3 m are
approximately δx = δy ≈ 4 mm and δz ≈ 4 cm, respectively.
With regard to the backprojection, two complex images for
x/y ∈ [−0.1 m, 0.1 m] are reconstructed. Nx = Ny are set to
101 sampling points, thereby leading to a pixel dimension of
1 mm × 1 mm.

When applying the SFCW approach, in our case, a signal
form that covers a bandwidth of 10 GHz from 72 GHz to
82 GHz with Nf = 128 is used. This enables a cross-range
resolution at distance L = 0.3 m of approximately δx ≈

δy ≈ 4 mm as well as a range resolution δz ≈ 1 cm. With
respect to the backprojection of the volume, x and y also
lie within [−0.1 m, 0.1 m] and Nx = Ny are also set to 101
sampling points. The depth z is sampled from [0.26 m, 0.34 m]

in Nz = 81 steps, thereby yielding a voxel dimension of
1 mm × 1 mm × 1 mm.

TABLE I
DEVIATIONS PER COORDINATE — δx , δy , δz — COMPARED TO TRUE

POINT TARGET POSITION P FOR DIFFERING VALUES OF x AND y
IN METERS. 1z IS KEPT CONSTANT AT 0.03 m

VI. PERFORMANCE OF THE 2FSK IMAGING APPROACH

Now that the theory behind the novel approach has been
explained and the signal and reconstruction parameters have
been established, the following section evaluates its recon-
struction performance.

A. Simulation of Point Scatterers

Within this section, the theoretical accuracy of both tech-
niques is evaluated by simulating the reflected signal of one
point scatterer. First, the theoretical accuracy of the novel
2FSK MIMO imaging approach is analyzed for different
point scatterer positions P(x, y, z), as seen in Fig. 5 and
for the MIMO geometry presented in Fig. 1. To estimate the
point target position, two complex images are reconstructed
at an estimated distance ze using the two different carrier
frequencies. At first, ze is estimated at 30 cm. To adjust ze, the
phase difference of the pixel containing the strongest scatterer
is evaluated (see Fig. 6). Afterward, again two complex images
are reconstruced at the adjusted value for ze, and the phase
evaluation of the strongest scatterer is repeated.

Within the first simulation set, the x and y positions of
the point target are varied, whereas the true z coordinate
and ze are kept constant, with z = 0.3 m and ze = 0.27 m
leading to 1z = 0.03 m. In Table I, the true position P of
the point target and the absolute deviations per coordinate —
δx , δy, δz — compared to the detected value using the
2FSK imaging principle before and after adjusting ze can
be seen. Furthermore, the 2FSK algorithm was evaluated for
different z values, which can be seen in Table II. Here, 1z
was kept constant at 0.03 m. In addition, various values for
1z were evaluated while x , y, and z were kept constant
at (0,0,0.3). The results are presented in Table III. These results
indicate that the accuracy of the 2FSK algorithm decreases the
closer the target lies to the radar. This can be illustrated
by Fig. 5. The closer the point target is located with respect
to the radar, the greater the difference between 1d/2 and
1z becomes. It is also evident, that the readjustment of ze
significantly improves the overall accuracy of the detection of
all coordinates.

Second, the theoretical accuracy of the SFCW approach is
analyzed. For all point target positions listed in Table I and
Table II the state-of-the-art approach yielded 100 % accuracy
(results were rounded to the millimeter). The remarkable
theoretical accuracy and the widespread use of this algorithm
provide strong motivation to utilize its reconstruction results
as a benchmark for evaluating the performance of the 2FSK
approach for the upcoming measurement section.
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TABLE II
DEVIATIONS PER COORDINATE — δx , δy , δz — COMPARED TO TRUE

POINT TARGET POSITION P FOR DIFFERING VALUES OF z
IN METERS. 1z IS KEPT CONSTANT AT 0.03 m

TABLE III
DEVIATIONS PER COORDINATE — δx , δy , δz — COMPARED TO

TRUE POINT TARGET POSITION P FOR DIFFERING VALUES
OF 1z IN METERS. P IS KEPT CONSTANT

AT (0.00, 0.00, 0.30) METER

B. Measurements Using 3D Printed Hand Poses

This section presents measurement results regarding the 3D
reconstruction of different hand poses of the ASL alphabet
to further evaluate the performance of the novel 2FSK 3D
imaging approach. In this regard, the results are compared to
the state-of-the-art SFCW approach. To allow this compari-
son, three hand poses were 3D printed and coated with an
electromagnetic interference shielding lacquer. In this manner,
a static object scene can be ensured. The hand poses describe
the ASL letters B, F, and U and are depicted in Fig. 7(a).

The MIMO radar array used for the measurements corre-
sponds to the geometry described in Section II. The mea-
surement setup can be seen in Fig. 7(b). The 3D printed
hands were positioned roughly at a z coordinate distance of
30 cm to the radar. We placed two absorber walls behind the
hands. To position the hands, we used a table with a styrodur
plate and one absorber mat on top. For both the 2FSK and
SFCW measurements, a measurement averaging across three
successive measurements was applied to the measurement
data.

For the 3D reconstruction of the hand poses following the
novel 2FSK approach, we followed the steps depicted in Fig. 6.
A threshold of −13 dB below the maximum amplitude to
suppress sidelobes is applied; hence, every pixel within the
image reconstructed at f = 79.8 GHz with a magnitude below
this threshold is removed from both reconstructed images.
The remaining pixels then define the region of interest (ROI)
in x and y dimension.

To perform a 3D reconstruction of the hand poses using the
SFCW algorithm, first, the volume of interest is reconstructed.
Then, a 2D image is generated via the maximum projection
and the corresponding z coordinates of the skin surface are
extracted as described in Section III. Thereafter, a threshold
of −15 dB below the maximum amplitude is applied to sup-
press side lobes.

The result of the image reconstruction normalized to the
corresponding maximum magnitude with applied thresholding

Fig. 7. Measurements using 3D printed hand poses. (a) 3D printed hand poses
(left: B; middle: U; right: F). (b) Multiperspective view of measurement setup
(left: front, right: back).

for both algorithms is presented in Fig. 8(a). At this point
it is noted that the absolute maximum magnitude for the
SFCW maximum projection image is higher than that of the
reconstructed 2FSK images, as the SFCW algorithm runs a
backprojection for multiple frequencies.

To determine the z coordinate of the skin surface for
each pixel using the novel 2FSK approach, the phase of
both complex images is compared for each pixel within the
extracted ROI. With respect to (21) and (22), 1z as well as
z = ze + 1z are calculated. Afterwards, the values for z
are smoothed with a 2D running mean filter with a kernel
size of 15. The z coordinates extracted during the maximum
projection in case of the SFCW evaluation, are also smoothed
with a 2D running mean filter with a kernel size of 15.

The results for the detection of the skin surface of the hand
for both algorithms can be seen in Fig. 8(b)–(h). The 3D recon-
struction of the hand surface yields rather similar results when
both approaches are compared. The estimated z coordinate
fluctuates slightly more in the 2FSK case, whereas the surface
estimate using the SFCW approach appears smoother. The
small fluctuations of the depth estimate in the 2FSK algorithm
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Fig. 8. 3D imaging results of three printed hand poses from the ASL alphabet. Radar image of 3D printed hand pose B (a) reconstructed at f1 based on
2FSK approach and (b) based on SFCW approach after maximum projection. Estimated hand surface coordinates based on the novel 2FSK approach for hand
poses (c) B, (e) F, and (g) U. Estimated hand surface coordinates based on the state-of-the-art SFCW approach for hand poses (d) B, (f) F, and (h) U.

may be caused by clutter that can have a stronger effect com-
pared to the SFCW case, as only one z-slice is reconstructed.
However, the depth profiles of the respective hand poses are
clearly recognizable in the 2FSK case. By means of these
figures based on both approaches, the different hand poses
can clearly be distinguished from each other and assigned to
the corresponding letter. This remains the case if some parts
of the hand do not return a signal due to their orientation to
the radar — for example, the thumb saddle joint in the case
of the letter F.

Table IV presents the absolute maximum (|δzSFCW−FSKmax |)
and mean value (|δzSFCW−FSK|) for δzSFCW−FSK, describing
the deviation between SFCW- and 2FSK-based z coordinate
estimation. The maximum deviations |δzSFCW−FSKmax | lie in the
range of 1 cm to 2 cm, whereas the mean value of the deviation
lies approximately around 3 mm to 5 mm. It becomes evident
that the algorithms generate similar results for all analyzed
sign language letters.

To further evaluate the performance of the 2FSK approach,
the reconstruction results for letter F are compared to the
state-of-the-art for increased distances to the radar. The com-
parison of the 3D reconstructed hand surface are depicted
in Fig. 9. The average and maximum deviation in case of
letter F for increasing distances to the radar are compared
within Table V. At 40 cm and 50 cm, the 2FSK algorithm

TABLE IV
DEVIATION δzSFCW−FSK OF ESTIMATED z COORDINATE BASED ON

SFCW COMPARED TO 2FSK ALGORITHM IN MILLIMETERS

still yields pleasing results that are comparable to the SFCW
outcome. However, with increased distances to the radar, the
lateral resolution reduces for both approaches. With regard to
the 2FSK algorithm, this implies that the depth information
within one lateral resolution cell is overlayed. In case of the
SFCW algorithm, two targets at differing depths that lie in
the same lateral resolution cell might still be distinguish-
able due to the high radial resolution. Nevertheless, when
applying the maximum projection, only the depth information
with the higher amplitude is retained. Hence, as for the
respective application individual fingers need to be seperated,
a lateral resolution below 1 cm is required. At a distance of
50 cm, the reduction in lateral resolution is clearly recogniz-
able, which is why this distance should not be exceeded.
In Table V, an increase of the deviation between SFCW-
and 2FSK-based results with the increase in distance to the
radar is evident. There are two main reasons for this behavior.
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Fig. 9. Comparison of 3D imaging results of printed hand pose F for
increased distances. Estimated hand surface coordinates at a distance of 40 cm
to the radar based on the (a) 2FSK and (b) SFCW approach. (c) 2FSK and
(d) SFCW based 3D reconstruction results at a further increased distance of
50 cm.

TABLE V
DEVIATION δzSFCW−FSK OF ESTIMATED z COORDINATE IN CASE OF

LETTER F AND INCREASED DISTANCES TO THE RADAR

First, the received signal amplitude decreases, which affects
the 2FSK earlier compared to an SFCW signal generation,
as only two transmit frequencies are sent, thereby making
it more difficult to seperate the main lobe from sidelobes.
Second, a decrease in lateral resolution affects both algorithms
in a different manner, which can cause an increase in the
deviation between the two.

In summary, based on the prior point target simulations and
the comparison of both approaches using real measurements
for distances up to 50 cm, it can be stated that the novel 2FSK
approach has a performance comparable to the state-of-the-
art radar imaging algorithm with a theoretical accuracy in the
sub-millimeter to millimeter range.

C. Efficiency of the 2FSK Imaging Approach

Now that we have shown in the previous section that the
results of the novel 2FSK 3D reconstruction are comparable
to the results of the state-of-the-art approach, the aspect of

TABLE VI
COMPUTATIONAL COMPLEXITY OF PROPOSED 2FSK ALGORITHM

TABLE VII
COMPUTATIONAL COMPLEXITY OF SFCW

(STATE-OF-THE-ART) ALGORITHM

efficiency is now addressed. First, the new algorithm presented
here, requires much less bandwidth than the broadband state-
of-the-art reconstruction approaches. This reduces the require-
ments for the necessary hardware and increases bandwidth
efficiency. Further, the presented reconstruction algorithm is
computationally more efficient. In order to quantify this,
the computational complexity — represented by calculation
steps — of the novel approach is compared to the exemplary
SFCW state-of-the-art algorithm in Table VI and Table VII.
We assume the scenario as depicted in Section VI apart
from setting Nf = 10 GHz/200 MHz = 50 to ensure the
same unambiguous range for both approaches. The advantage
of the novel 2FSK algorithm lies in the reconstruction of
two single-tone images at one z coordinate, whereas the
brute-force state-of-the-art approach reconstructs a full vol-
ume by evaluating a high number of frequency steps paired
with a computationally expensive maximum projection. The
results reveal the immense reduction in computational effort
by three orders of magnitude, thereby opening the way
toward real-time reconstruction of hand poses. It should be
noted that the SFCW-based algorithm requires that one is
aware of the approximate position of the hand, otherwise huge
3D volumes have to be reconstructed, thereby resulting in a
strong increase in computational burden. Using the iterative
localization of the hand as proposed by the novel algorithm,
this problem does not occur. In addition, this novel approach
holds the possibility of considerably increasing the frame rate,
as only two frequency steps are required. With regard to
the hardware used here, the frame rate can be theoretically
increased to 70 ·

128
2 ≈ 4.5 kHz, allowing radar-based hand

motion tracking even for fast motions.

D. Measurements Including a Real Human Hand

To further support our results, we also include an exem-
plary evaluation of a measurement setup in which a real
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Fig. 10. 3D imaging results of a real human hand based on the 2FSK approach for three exemplary hand poses from the ASL alphabet (left: B; middle: F;
right: U). Images reoconstructed at f1 (top) and the respective estimated hand surface coordinates of the hand poses based on the 2FSK algorithm (bottom).
The extracted 3D information accurately represents the corresponding hand pose and allows a clear assignment.

hand was positioned in front of the sensor (as depicted in
Fig. 1 and described in Section II), and the 2FSK signal
and reconstruction approach was applied. Again, we roughly
positioned the hand at a distance of 30 cm and imitated the
three letters from the ASL alphabet. For these measurements,
we gained optimum results setting the measurement averaging
to a factor of 1, as a real human hand cannot be static like
the 3D printed versions. The reconstructed images as well as
the results for the 3D reconstruction are depicted in Fig. 10.
The threshold was further adjusted to −10 dB. The results of
the 3D reconstruction of a real human hand provide further
proof that the application of the 2FSK-based approach for
3D imaging of the human hand is valid and yields promising
results. Their specific depth profiles can be clearly assigned
to the respective hand poses. In addition, the radar image as
well as the depth profile strongly resemble the measurement
results when using the 3D printed hands.

VII. DISCUSSION

Our findings have clearly revealed that the proposed fast
and efficient 2FSK-based imaging approach yields promising
results for the 3D hand pose reconstruction that are com-
parable to the outcome of the state-of-the-art SFCW-based
radar imaging approach. Simultaneously, our novel approach
reduces computational complexity by three orders of magni-
tude and significantly increases possible frame rates. However,
there are also a few drawbacks of the proposed method that
appear to cause the small differences when comparing the
3D reconstruction outcome of both methods. One limitation

exists due to the fact that in our proposed method, we only
reconstruct one z-slice of our object scene. This leads to clutter
having a stronger impact compared to the backprojection of
an entire volume, followed by a maximum projection. In the
future, it would be interesting to research how the robustness
against clutter could be improved. Empty space measurements
could be a viable approach in this context. Furthermore, the
reconstruction of only one z-slice also makes it more difficult
to seperate the side lobes from the main lobe. This is particu-
larly important for hand areas that reflect only a small signal
amplitude. An interesting approach to reduce this effect would
be a stepwise subtraction of the point spread function. More-
over, the approach would benefit from one additional 2FSK
evaluation round. This implies that the 3D coordinates are
estimated by our proposed approach; thereafter, we reconstruct
the depth profile obtained by our prior evaluation, instead of
one z-slice, to increase reconstruction accuracy. In addition,
given that only two transmit frequencies are evaluated, the
impact of phase errors also must be considered. In general,
radar-based approaches, unlike optical methods, suffer from
numerous specular reflections, thereby limiting the hand areas,
where a 3D reconstruction is possible. In the future, this could
be addressed by multi-perspective imaging, which would also
reduce the effect of occlusion.

VIII. CONCLUSION

In this manuscript, we present a novel algorithm for the 3D
reconstruction of hand poses that incorporates the theory of
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frequency shift keying as part of the concept of millimeter-
wave imaging. For this approach, only little bandwidth is
required, as only two closely spaced transmit frequencies
are needed. The concept of frequency shift keying is first
used to iteratively locate the hand within a 3D space. There-
after, the phase difference of corresponding pixels between
two single-tone images is evaluated according to the 2FSK
principle to precisely estimate the contour of the hand. The
big advantage of this approach is that it enables a direct
reconstruction of the body shell, i.e., a 2D depth profile, and
avoids the backprojection of a 3D volume, as is currently
the case with millimeter-wave imaging. This fact brings great
advantages. The presented approach is characterized by high
efficiency in terms of computational effort and hardware
requirements. Furthermore, image reconstruction complexity
can be reduced by a factor of 1000, which brings the potential
to reduce reconstruction time, while frame rates can be signifi-
cantly increased. In this manner, we were able to not only raise
the efficiency of radar-based static hand pose estimation but
also open the way to precise real-time radar-based hand motion
tracking. In this study, suitable simulations revealed that the
algorithm yields a theoretical accuracy in the sub-millimeter
to millimeter range. In real measurement setups, the novel
2FSK approach reveals comparable results to state-of-the-
art 3D radar imaging principle, with deviations lying in the
millimeter range. Finally, it can be concluded that the novel
2FSK imaging approach has great potential to improve radar-
based methods for capturing hand poses, including static and
dynamic gesture recognition and hand-tracking applications.
In the future, this methodology should be implemented by
leveraging the advantages of radar-based methods and the
advancements made in computer vision algorithms to enhance
their performance.
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