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Bias in Differential Reflectivity Revealed With
a Numerical Model of a Polarimetric

Phased Array Antenna
Djordje Mirkovic and Dusan S. Zrnic , Life Fellow, IEEE

Abstract— An electromagnetic simulation of a large polarimet-
ric phased array radar antenna for weather observation using
a full-wave electromagnetic solver is presented. The modeled
antenna is part of a Ten Panel Demonstrator (TPD) radar
serving as a proof of concept for the Advanced Technology
Demonstrator (ATD). The simulations we use to compute copolar
and cross-polar patterns at horizontal and vertical polarizations.
We present these patterns for beam pointing broadside, in a
horizontal principal plane, and out of the principal plane. Then
we include these patterns into existing exact and approximate
formulas to quantify bias in differential reflectivity and show the
difference in bias for a few pointing directions of the antenna
beam. We demonstrate the techniques which do not use a full-
wave electromagnetic approach and are based on infinite array
assumption to generate accurate copolar patterns but fail to
replicate the cross-polar patterns. The latter ones are crucial for
weather applications because they induce bias in polarimetric
variable estimates. Finally, we compare the simulation times
needed to model one antenna panel with other commonly used
solvers.

Index Terms— Polarimetric phased array radar, polarimetric
variables, polarimetric bias, differential reflectivity bias.

I. INTRODUCTION

THE most advanced technology for weather surveillance
with radar is the Polarimetric Phased Array Radar

(PPAR). NOAA has been exploring this option for almost
two decades [1], [2], [3], [4]. Its advantages are speed of
volume coverage, adaptation to scan when and where needed,
including designs of transmit waveforms, and received signal
processing matched to the phenomena of interest. Its biggest
challenge is achieving polarimetric measurements with quality
matching the WSR-88Ds’. This is especially hard for a
PPAR with a planar array antenna due to the dependence of
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polarization on the antenna pointing direction [5], [6], [7].
A further complication is the preferred polarimetric mode
for weather observations. That mode is the simultaneous
transmission and reception of the horizontal (H) and vertical
(V) (SHV) polarized fields. The isolation requirement between
the polarization signals is about twice as large in the SHV
mode compared to the mode where the polarization on
transmission is alternating (AHV mode).

Nonetheless, the errors of the radar variables for a
substantial range of operating conditions are significantly
larger in the AHV mode [8]. Therefore, the SHV is the
preferred choice for research and future operational PPARs.
Our study examines the antenna patterns from NOAA’s PPAR
dubbed Ten Panel Demonstrator (TPD). The TPD was meant
to serve as proof of concept to build a more substantial PPAR
called the Advanced Technology Demonstrator (ATD), [9].

The important causes of biases in polarimetric variables
obtained with planar PPARs are as follows. 1) Mismatch
in the copolar main lobes (shape and pointing direction)
of the antenna patterns [10], [11], [12]. 2) Geometrically
induced bias due to nonorthogonality of transmitted fields [8].
3) Geometrically induced bias due to deviation of the
intended horizontally/vertically polarized fields from the true
horizontal /vertical direction [4]. 4) Cross-polar patterns [13].
5) System hardware. The number 2 and 3 effects combine,
and acceptable corrections can be made if the lobes’ peak
positions and values of the intended H and V patterns are
known.

Theoretical expressions for bias in differential reflectiv-
ity [13] and copolar correlation coefficient [14] induced
by cross-polar patterns are available, but no experimental
verification has been made on PPARs. Measuring cross-
polar patterns on large arrays in the far field is demanding
as the signals may be weak and easily contaminated by
interferences. Although near-field measurements are easier
to make, they also may have limitations in quantifying
cross-polar patterns related to the correction of the probe’s
cross-polar pattern [15], [16] they are time-consuming and
unsuitable for antennas in the field.

An alternate way for obtaining the radiation patterns is
via electromagnetic (EM) simulation. These can complement
measurements and have the following advantages. Ease and
speed in quantifying changes in patterns of antennas with
failed elements and guiding antenna designers by isolating
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issues, incorporating changes, checking effects on pattern
performance, and assessing bias in polarimetric variables
before building the antenna.

EM simulations also have some limitations, including the
assumption that all radiators are the same and there are
no variations across the array due to manufacturing and/or
other imperfections. The other limitation is the complexity
of a detailed simulation of very large arrays. To mitigate
the latter, engineers typically resort to approximate techniques
combining simulations of the embedded element pattern with
the array factor. Finally, it is unlikely that EM simulations
could capture the effects of active components in the
antenna backplane (e.g., T/R elements), which also affect
antenna pattern measurements. Nonetheless, the fact that EM
simulations typically capture the effects of passive antenna
components (e.g., patch radiators and mutual couplings) can
provide a unique insight into the antenna pattern properties
that are devoid of the effects caused by the active electronic
components.

Before considering the full TPD array antenna, we modeled
the single element patterns, central embedded element patterns
in an 8 × 8 panel with the rest of the panel load matched, and
full panel patterns [6], [17]. The investigation in [17] showed
a very good agreement between modeled and measured
patterns of the single element and single panel. This increased
confidence in our modeling approach and led us to model the
full TPD antenna.

Here we demonstrate potency in simulating patterns of a
large PPAR antenna (the TPD) with a commercially available
WIPL-D 3D EM solver [18]. At pointing directions out of
the principal planes, obtaining credible cross-polar patterns is
impossible with approximate solutions. The important results
from our model are the pattern’s amplitudes and phases. These
are crucial for assessing the antenna-induced biases in the
polarimetric variables. Hence we use the simulated patterns to
estimate this bias in the differential reflectivity and correlation
coefficient between the H and V polarized returns from radars
operating in the SHV mode. We quantify the effects of cross-
polar patterns and beam pointing on the differential reflectivity
and correlation coefficient bias.

The paper is organized as follows. The second section
contains the effects of antenna patterns on bias in differential
reflectivity and correlation coefficient. The radar antenna
and its model are described in section three, where a short
description of computational efficiency is included. In the
fourth section, we consider some weather observations using
TPD. Section five concludes the paper.

II. EFFECTS OF ANTENNA PATTERNS ON THE
POLARIMETRIC VARIABLE BIAS

Assume the SHV mode of polarimetric measurement. Unit
excitation voltage of transmit element is [ 1 e jβ]T , (T signifies
transpose), a phase difference β between the transmitted H
and V components, and no coupling on reflection. Ignoring
this coupling enables fair comparison of the system effects
(i.e., separation of these from the environment). Also, assume
that transmit and receive patterns for each polarization

are identical. Then the incremental received voltages from
scatterers in incremental parts of radar resolution volume are
(as in [13]).[
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where the backscattering matrix coefficient shh =∑
i s(i)

hh e− j2kri is the sum of coefficients from individual
scatterers, ri is the range to the scatterer, and the wave
number k = 2π/λ . The subscript on the left side of (1)
stands for polarization. The second subscript on the scattering
coefficients sij and radiation patterns Fij indicates the intended
(incident) polarization, and the first stands for the achieved
(scattered) polarization. Further, the gain is related to the
pattern via
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The angle pair θ , φ is in accord with standard notation (θ with
respect to the vertical z−axis, φ with respect to the horizontal
axis x) Z0 is the free-space impedance, and η is the antenna
efficiency factor.
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From (1), we can derive the received powers at each
polarization similar to [13] but with some differences. The
authors in [13], consider a special case where Fhh and Fvv are
real, within the main lobe, and the cross-polar components Fhv
and Fvh have fixed phases. We alleviate this assumption with
the exact EM model that yields complex copolar and cross-
polar radiation patterns. Starting with (1), the authors [13]
relate the ensemble average of second-order voltage moments
(powers and cross-correlation) to the ensemble averages of
the second-order moments of the scattering coefficients, i.e.,〈
|shh|

2〉, 〈|svv|
2〉, and

〈
s∗

hhsvv
〉
. It is customary to assume these

moments are constant within the radar resolution volume. The
integration over the resolution volume produces the powers
for horizontal polarization Ph and vertical polarization Pv,

where Zdr is differential reflectivity in linear scale, and
ρhv is the copolar correlation coefficient. True differential
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reflectivity (unbiased by radiation patterns Fhh=Fvv) is given
by Zdr=<|shh|2 > / <|svv|2 > and the copolar correlation
coefficient is ρhv =

⟨s∗

hhsvv⟩
√

⟨|shh|
2⟩⟨|svv|

2⟩
.

Starting from (1), we derive the powers in horizontal Ph

and vertical Pv channels (3 a,b). The integrals are over a solid
angle �, and integration along the range is omitted because it
is constant, having no bearing on the variables. Note that these
equations are exact in that they contain all the terms under the
integrals, whereas the analogous pair of equations in ( [13] eq.
9) lack third and fourth-order terms.

The differential reflectivity bias (δZDR) is estimated
from (3a) and (3b), and on a logarithmic scale, it is

δZDR = 10 log10

(
Ph

Pv

)
− ZDR, (4)

where ZDR (dB) is the true differential reflectivity.
To further illustrate, take the ratio (3a) to (3b) and consider

only the integrals over the main copolar lobe patterns. The
result is
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The power’s ratio will be biased if the ratio of integrals differs
from 1. Conceptually this zero-order bias is easy to quantify
if the two-way power patterns are known. These are the first
and last terms in the eq. (3a, b), namely the |Fhh |4 and |Fvv|4.
The contribution to bias by other terms from (3) is harder to
quantify. Of these, the first-order cross-polar voltage patterns
contribute the most, as the following relative contribution of
the terms illustrates∣∣∣∣∫
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The reference [13] lists the equivalent to equations (3) but
without the third and fourth-order terms. For completeness
and various comparisons, we keep all the terms and refer
to ensuing solutions as exact. The expression of bias up to
second-order terms, i.e., the first and second one from the left
in (6), as well as similar ones in [13], is

δZDR = 10(A1 + A2) log e, (7)

where A1 has Fhv raised to the first power (i.e., to first order)
in the integrals, whereas Fhv to the second order appears in
A2. The two are (8a) and (8b), as shown at the bottom of the
next page.

The differential reflectivity bias is then given by (7). Note
that these equations contain phases of various patterns and
that the approximation (8) with up to second-order terms was
used for two purposes [13]: 1) to demonstrate that first-order
bias terms cancel if cross-polar patterns have four axially
symmetric equal lobes with respect to the main lobe’s center;
2) to further approximate and simplify (8) and thus establish
bounds on the bias as functions of ZDR, ρhv, β, and other
differential phases.

Further examination of (3) reveals that first-order bias terms
also vanish if the cross-polar pattern has two lobes (within the

main lobe) antisymmetric with respect to the principal plane.
That occurs in patterns of the antenna pointed along either
principal plane. To generalize findings in [13], if the cross-
polar patterns have these two types of antisymmetric lobes,
then the terms containing the cross-polar patterns to the first
and third powers vanish. Specifically, in both equations (3),
the 2nd, 4th, 5th, and 9th terms disappear. Moreover, in the
approximate solution (8), A1 = 0, A2 remains with all the
second-order terms (the higher-order terms are ignored).

For computing bias out of the principal planes, the first-
order terms dominate; hence one can ignore A2 and express
the bias as
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are the antenna’s bias weighting factors that measure the
effectiveness of the cross-polar field in generating ZDR bias.
Hereafter we refer to (9) as “approximation,” and it has been
used in [13] to set bounds on the bias.

In summary, bias caused by the |Fhh|4 term in Ph and |Fvv|4

in Pv can be easily accounted for because the correction is a
multiplying factor. And it may be the only needed correction
if the contribution by the other terms is small. However, that
depends on the cross-polar patterns. What matters most is the
shape of these patterns within the main beam. The cross-polar
patterns with symmetric lobes of the opposite sign within the
main lobe would not bias ZDR. But cross-polar pattern having a
lobe coaxial with the copolar pattern’s main lobe would cause
significant bias. Similar bias could be caused by coupling
between the H and V signals in the radar. Typically, PPAR’s
cross-polar patterns at the broadside have four symmetric lobes
of opposite signs, but in the principal plane, these have two
symmetric lobes of opposite signs.

The other polarimetric variable we investigate is the
correlation coefficient ρhv between horizontally and vertically
polarized returns. This variable is very useful for character-
izing the quality of the radar system [19], [11]. Examining
various system contributions to bias in ρhv can isolate the most
contributing component. Here we analyze the contribution of
mainlobe patterns mismatch and a mismatch in the pointing
direction of the TPD. For that, we take equation (6) from [11]
to express the bias parameter ξ .

ξ =

∫
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where ( 1 − ξ)ρhv is the bias, and the pattern functions are
as in (2). The integrals in (11) are over the solid angle
encompassing the mainlobes. Formulation (11) addresses the
correlation coefficient bias due to the mainlobe mismatch only,
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assuming that cross-polar pattern contribution is negligible.
However, following [14] we can derive the copolar correlation
coefficient bias due to all terms of antenna radiation as:

δρhv =
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where Vh(t, r) and Vv(t, r) are given by (1), and integration
is over the resolution volume �.

And finally, from the argument of the ρhv we can determine
the differential phase bias, which is important for rainfall rate
estimates [19]. The differential phase bias can be obtained as

18DP = arg
[∫

�

(Vh(t)Vh(r))∗(Vv(t)Vv(r))d�

]
− 8DP,

(13)

where 8DP is a true differential phase due to propagation and
backscattering.

Having a physical model whereby phases across the
patterns within the main lobe are known enables assessing
pattern effects on polarimetric variables’ bias. This is
especially important for PPARs, whereby the patterns differ
at every pointing direction. Also, with the exact formulation
exemplified by solving (3), we can evaluate how good is the
second-order approximation for differential reflectivity bias
and find the copolar correlation coefficient bias due to miss-
matched mainlobes. Moreover, we may determine if these
approximations are sufficiently accurate to gauge data quality
at the pointing direction where the odd symmetry of cross-
polar patterns does not hold.

Next, we explain modeling the patterns of the TPD.
Specified biases of radar variables [20] we listed in Table I.

III. RADAR ANTENNA AND ITS MODEL

A. Radar Antenna

The TPD (Fig. 1) was meant to serve as proof of concept;
hence it has rudimentary properties. Its characteristics are
listed in Table II.

The three last rows specify the antenna performance. The
antenna consists of ten panels in a 2×5 matrix, and each panel
contains 8×8 patch radiators spaced at half wavelength. For
transmission, panels radiate independently. For the reception,
the panels are combined into eight overlapping subarrays, each
consisting of two panels (Fig. 2). Therefore, there are 16-time

TABLE I
BIAS IN RADAR VARIABLES SPECIFIED BY NATIONAL

WEATHER SERVICE (NWS) [20]

TABLE II
LIST OF TPD CHARACTERISTICS

series (I, Q), eight for each polarization. These are recorded
for further processing as the radar has no real-time capability.
The antenna is mounted on a trailer.

The reason for our choice is to have a basic radar with a
sufficiently large antenna to get an idea about performance
issues that may be facing a larger PPAR antenna. The antenna
can be oriented vertically with its larger axis (dimension) in
the vertical plane or its smaller axis in the vertical plane.
The former orientation is advantageous for quick testing and
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Fig. 1. a) The Ten Panel Demonstrator radar; b) the antenna model; c) antenna panel; d) the antenna element with four differentially fed probes.

Fig. 2. Arrangement of panels and subarrays on the TPD. The subarrays
are numbered from 1 to 8. On transmission, all panels comprise a single
antenna. On reception, an analog beamformer combines signals from adjacent
panels into an overlapped two-panel subarray structure. Arrows and numbers
indicate which panels form each of the eight subarrays are combined. Adapted
from [21].

assessment of performance from scans in elevation (RHI).
This is because, in that configuration, the beam is narrower
in the vertical (elevation) direction and, therefore can resolve
the vertical structure of precipitation. Specifically, the vertical
structure varies significantly from below to above the melting
layer in horizontal uniform stratiform precipitation. This
causes known variations in the polarimetric variables, which
can be a useful standard for evaluating radar performance.
The lateral (azimuthal) structure of precipitation is relatively
uniform and hence would not affect measurements with the
wide lateral beam.

The TPD can transmit linear H and V polarized fields in
succession from pulse to pulse or simultaneously (SHV). The
latter is the preferred polarimetric mode on weather radars
and is the one operating on the WSR-88Ds. In the SHV
mode, coupling between the two polarized signals is strongest
as each copolar component couples into the cross-polar,
strongly affecting the returns of the orthogonal component.
The biggest challenge for this mode is achieving sufficient
isolation between copolar and cross-polar components. In the
alternate polarimetric mode, coupling effects are significantly
reduced because the orthogonal channel, wherein the strongly
coupled component returns, is not processed.

B. Antenna Model

The TPD model is created using the WIPL-D software [18].
The antenna has two axis of symmetry, which can be
exploited in modeling its geometry. In WIPL-D software
the antenna is decomposed into four separate models for
conducting one generator at the time (OGAT) analysis while
the remaining generators are short-circuited. In these four
simulations, the geometrical symmetry is substituted with
Perfect Electric Conductor (PEC) and Perfect Magnetic
Conductor (PMC) planes creating symmetry/anti-symmetry
planes. Superimposing the results of these four simulations,
WIPL-D calculates the final (whole array) radiation pattern.
This approach yields the same results as the analysis of the
full array without taking the array’s geometrical symmetry
into account [22], [23]. The main advantage of applying this
method to large array simulation is lowering the necessary
computer resources by about 16 times and therefore increasing
the computational speed by up to about 16 times. The
approach is designed to enable simulating true radiation of
large geometrically symmetric structures [22], [23].

The antenna model supports electronic beam steering
by changing the phase of the excitation ports on the
element level. Patterns are separately simulated for H and V
polarization. When simulating H polarization, antenna feeds
for V polarization are load-matched and vice versa.

A comparison of simulation with measured results and
a detailed description of simulating the panel are in [17].
We have established the one-panel cross-polar patterns agree
very well with the measurements [17]. This boosts confidence
in the model of the full array antenna. Our interest in
discrepancies between measured and simulated patterns comes
from the paucity of available studies that relate manufacturing
errors in patch antennas to the polarimetric variables. Available
studies of radiation pattern degradation due to surface errors
in reflector antennas [24], [25], [26], which we expect to
produce similar effects as manufacturing errors in horizontal
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Fig. 3. Broadside copolar and cross-polar patterns of the TPD radar. The left image shows the copolar pattern; the right image contains the cross-polar pattern
with four zoomed-in lobes symmetric around the origin. These lobes are more than 70 dB lower than the copolar peak. The minimum in the cross-polar
patterns is at the beam center, and it is lower than -100 dB.

Fig. 4. Copolar and cross-polar radiation patterns of the TPD electronically steered to 35◦ away from the broadside in azimuth. The copolar pattern (left)
and its corresponding cross-polar pattern (right). The cross-polar pattern exhibits two lobes of the opposite sign within the main love; these are over 35 dB
lower than the copolar peak, and the null between these two lobes is at least 100 dB smaller than the copolar peak.

patch antenna dimensions, suggest a relation between the
manufacturing error and decrease of cross-polar isolation.
The tolerances given for the manufacturing process employed
in making the TPD antenna are substantially smaller than
0.01λ , and following the formulations derived for reflector
antennas [21] we expect the degradation in isolation between
the copolar and cross-polar patterns to be smaller than our
cross-pol peak levels.

Concerning the construction of the antenna from panels, ref-
erence [10] states that random additions of bias contributions
from panel to panel cause acceptable errors in the correlation
coefficient of the specific panel design. But coherent addition
causes unacceptable bias in the correlation coefficient. It is
highly unlikely that all panels would have identical flaws;
hence the incoherent addition is expected in practice.

The simulation results of the broadside exhibit the expected
characteristics of the copolar and cross-polar patterns (Fig. 3).
The four axially symmetric cross-polar lobes are within the
main copolar lobe. This feature is present in the patterns of
the WSR-88D [13]. The four cross-polar lobes have alternating
opposite phases; thus, their contribution to the first-order and
third-order bias vanishes (terms containing β). This results in
lower bias values, as presented in the following section.

When the beam is electronically steered away from the
broadside but in the principal (horizontal) plane, the copolar
main lobe widens, and copolar sidelobes become asymmetric.
The cross-polar lobes change from four axially symmetric to
two symmetric with respect to the azimuthal plane (Fig. 4).
These cross-polar lobes have opposite phases, and their
contribution also cancels the first and third-order bias terms.
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Fig. 5. Copolar and cross-polar radiation patterns of the TPD radar electronically steered 28◦ out of broadside in azimuth and 14◦ in elevation. The main
copolar lobe (left) and the main cross-polar lobe (right) are prominent. The cross-polar lobe is 24 dB lower than the copolar main lobe and has a peak-to-peak
angular offset of 1◦ in azimuth and 0.5◦ in elevation.

For the beam steered out of the principal planes to φ =
28◦; θ = 14◦ the radiation patterns are plotted in Fig. 5.
It is significant (not easy to see) that the position of the main
copolar lobe is offset from the steered one to φ= 28.5◦;θ =

12.5◦. This must be known to account for in electronic beam
steering and to quantify ZDR bias. The cross-polar lobe is
now within the main copolar lobe. The maxima of the two
lobes are offset by 1◦ in azimuth and −0.5◦ in elevation.
Clearly, the cross-polar lobe would cause first-order bias to
the polarimetric variables because it does not have a twin lobe
of the opposite sign to cancel. This occurs in directions out of
the principal planes and is referred to as geometrically induced
bias. To avoid this bias pulse to pulse phase coding has been
proposed [27], [28], [29], and effectiveness has been proven
on recorded time series data [30]. Nonetheless, to this date,
a successful quantified correction in real time has yet to be
demonstrated.

The difference between copolar and cross-polar peak gain
(cross-polar isolation) in the H patterns (Fig. 5) is 24.4 dB,
and in the V patterns, it is 25.7 dB (one-way). The phase
differences between the copolar and cross-polar lobes are
22.5◦ for H-polarization and 153.5◦ for V-polarization. The
phase difference between the two copolar lobes is 1o, and
between the cross-polar lobes, it is 132.2◦. All these phases are
average values and variations within the lobes are up to about
10◦. Therefore, approximations and guesses, as in [13], are
inadequate to gauge antenna-induced bias in the polarimetric
variables. Full EM models are a more realistic option for this
purpose.

With the calculated antenna patterns, we evaluate the
biases using eq. (4) and (12). For differential reflectivity
bias, we use the full solution (4), the 2nd order approxi-
mation (7), as well as a further “approximate” formula (9)
for comparison. These comparisons can establish the validity
of the second-order approximation (8) and its “approximate”
form (9). This also limits the contribution of the higher-order
terms [13]. The copolar correlation coefficient bias calculated

Fig. 6. Differential reflectivity bias caused by the antenna radiation patterns’
dependence on the transmission differential phase. The intrinsic ZDR is listed,
the assumed ρhv= 0.99, and 8DP = 0◦. The antenna is pointing at φ = 28◦,
θe = 14◦.

using (12) is compared to the main beam mismatch bias
formulation (11).

Next, we illustrate bias for specific intrinsic ZDR of 1 dB
and 3 dB and ρhv of 0.99. The chosen ZDRs are within a range
for rain or dry snow, and so is ρhv = 0.99 [31]. We assume the
total differential phase 8DP is zero; at other values, the bias
curve would change phase and amplitude with respect to the
β axis. The desired bias for ZDR < 1 dB is 0.1 dB, and for
larger ZDR values is 0.1ZDR. We plot the bias as a function of
the differential phase (β) between the two transmitted fields.
Following from the patterns, it is obvious that steering out of
the principal planes and having a collocated cross-polar peak
is the worst-case scenario in terms of ZDR bias. As biases for
antenna pointed broadside or in the principal planes are lower,
we show, for comparison, the bias for a pointing direction out
of the principal planes in Fig 6.



488 IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 1, 2023

Fig. 7. The differential reflectivity bias caused by the antenna radiation
patterns’ dependence on the elevation angle. The intrinsic ZDR is listed, the
assumed ρhv = 0.99, and 8DP = 0◦. The antenna is pointing at φ = 15◦.

Fig. 8. The differential reflectivity bias caused by the transmitted differential
phase β. The intrinsic ZDR = 1 dB, the assumed ρhv = 0.99, and 8DP changes
in steps of 45◦. The antenna is pointing at φ = 28◦, θe =14◦.

We consider two representative cases: ZDR of 1 dB and
3 dB. Biases computed from the full solution (4) and 2nd

order solution (7) closely follow each other. The important
difference is the zero bias for β= 0◦ exhibited with the
2nd

−order solution. The full solution estimates close to -0.1 dB
bias. The maximal difference between the two solutions is less
than 0.08 dB. We see out of the principal planes. The bias is
larger than 0.1 dB for most β regardless of which of the two
ZDRs is measured. The “approximate” solution is inaccurate in
both bias amplitude and phase. It can’t be used for quantitative
evaluation of similar PPAR antennas.

Next, we use the full solution (4) to determine the ZDR bias
for a few pointing directions (Fig. 7). At broadside, the bias is
about 0.04 dB for ZDR = 1 dB. Broadside bias is independent
of the ZDR value, as the second term (bracket) in the Ph and
Pv is zero. At 15◦ azimuth in the principal plane, the bias is

Fig. 9. The copolar correlation coefficient bias caused by the transmitted
differential phase β. The intrinsic ZDR = 1 dB, the assumed ρhv = 0.99, and
8DP =0◦. The antenna is pointing at broadside and φ = 28◦, θe =14◦.

-0.05 dB. With increasing elevation, the peak bias increases
so that at θ = 10◦, it is a tad over 0.3 dB. Bias also increases
with increasing azimuth to reach -0.1 dB at 35◦ azimuth and
0◦ elevation (not shown).

Our calculations/simulations consider antenna cross-polar
radiation and geometrically induced biases (non-orthogonal
transmission and geometrical deviation), whereas system bias
is not considered. Therefore, Fig. 6 is applicable for relative
comparisons. To determine the worst-case bias, one must
consider 8DP, as explained next.

We assume the beam pointing is the same as in Figure 5.
With increasing 8DP, ZDR bias using the full solution (4)
rises to reach a maximal absolute value of 1.88 dB at
8DP = 135◦, β = 159◦ (Fig. 8). Besides the increase of the
minimal and maximal value, the bias’s dependence on β shifts
proportionally to the increase of 8DP. This is caused by the
real part of the second term in H and V powers (3a, 3b),
which is affected by the differential phase. Because such
a large bias is unacceptable, mitigation methods have been
proposed. One is pulse-to-pulse phase coding on transmission
and spectral processing on reception to eliminate the strongly
coupled component [28], [32]. That technique eliminates the
first and third-order contribution by the cross-polar patterns
to ZDR bias similar to the AHV polarimetric mode. Time-
multiplexing has also been proposed [28] and is equivalent
to the AHV mode in eliminating the first and third-order
bias. Further investigation of time multiplexing indicated
that the reflectivity gradients in range and antenna gain
mismatch might diminish the efficiency of the approach [29].
To our knowledge, no methods can neutralize the second-order
bias in polarimetric variables regardless of the polarimetric
mode.

A previous study using the TPD radar [34], among other
issues, considers the ZDR bias. In light of the results presented
here, their findings of ZDR bias are higher than measured, most
likely due to the computational approach in modeling the radar
array antenna. The authors [34] present results (Fig.3 c, e) that
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Fig. 10. Ten Panel Demonstrator copolar (left) and cross-polar (right) radiation pattern at broadside calculated using the infinite array method in HFFS
software. The color bar indicates dBi, and the red dotted lines are added to the cross-polar pattern to facilitate reading [9].

Fig. 11. (a) Reflectivity field over a sector scanned with the TPD at elevation equal 1◦. (b) Same as (a), but with the KOUN at elevation equal 1.8◦

(c) Differential phase field over a sector scanned with the TPD radar at elevation 1◦. (d) Same as (c), but over a sector scanned with the KOUN radar at
elevation 1.8◦. Scans made at 1759 UTC, on 15 May 2018.

fail to exhibit the lobe structure of the cross-polar patterns,
possibly causing overestimation of ZDR bias for azimuth of
±35◦(1.25 dB simulated compared to -0.2 dB and 0.5 dB
measured, ( [34] Fig. 5 a). We submit that cross-polar pattern
simulation using the approximate technique authors used may
be inadequate for assessing the calibration of polarimetric
phased array radars. When the study [34] was made, we had
not yet developed the model described herein.

In addition to differential reflectivity bias, we evaluate
copolar correlation coefficient bias for the two cases resulting
in the lowest and highest ZDR bias. The copolar correlation
coefficient bias is calculated assuming only the copolar
mainlobe effects (11) and considering both the copolar and
cross-polar patterns as in (12). The copolar mismatch bias
(Fig. 9) equals to about the median value of the bias calculated
using the full solution (12). The full solution variation is



490 IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 1, 2023

TABLE III
SIMULATION TIME FOR A SINGLE PANEL WITH ONE EMBEDDED ELEMENT

EXCITED FOR BOTH POLARIZATIONS FOR EACH SOLVER

caused by β changing the phase of the cross-polar pattern.
Another interesting conclusion can be drawn from Fig. 9; the
cross-polar radiation contribution to the correlation coefficient
bias evaluated using the full solution is negligible for the
broadside case (dashed and solid blue curves overlap). This
is the same as in the bias of differential reflectivity whereby
the contributions by the four cross-polar lobes cancel out.

Models of the TPD antenna, presented here, take about
50 hours per polarization and a pointing direction to simulate
in the WIPL-D CEM solver.

C. Simulation of a Single Panel

We have tested different numerical methods for simulating
TPD’s single panel to compare simulation times and method
accuracies. We present the simulation time comparison for
brevity, whereas a more detailed evaluation is in [17].
We compare the simulation times of the following three
solvers: HFSS, CST, and WIPL-D. Simulations are carried
out on an Intel i7 processor with 32GB of RAM. The model
was of a single panel with one central element excited, and
the rest load matched. The results are in Table III.

D. Approximate Techniques for PAR Antenna Simulation

Assessing the simulation results obtained using an approxi-
mate technique was done by the HFSS (infinite array) solver.
Results are presented in Fig. 10. The copolar main lobe is well-
defined. In contrast, sidelobes in the vertical principal plane
and out of principal planes exhibit unexpected variations and
lack of symmetry. The results from the approximate technique
simulation of the cross-polar patterns are worse. Contrary to
the symmetric cross-polar lobes around the origin we obtained
from WIPL-D simulations, the cross-polar lobe structure in the
center is not symmetric. Furthermore, it seems that the infinite
array technique has underestimated cross-polar isolation. The
peak-to-peak isolation in the WIPL-D results is about 80 dB,
whereas it is about 40 to 50 dB in the infinite array results.

Overall approximate techniques may be sufficient for
determining the beamwidth and shape of the copolar pattern
and the first few sidelobes. However, the application where
far sidelobes and cross-polar radiation are needed is limited
and may not be sufficiently accurate for use in polarimetric
calibration.

IV. WEATHER OBSERVATIONS USING TPD

To determine if TPD could function as a polarimetric radar,
we collected some data and compared these with data from a
collocated research WSR-88D designated as KOUN. The data
have been recorded almost simultaneously (within 59 s) by
both radars. The TPD collected time series data (8 streams of

Fig. 12. Radial profiles of the differential phase: from the TPD’s data at
elevation 1◦, azimuth 216.5◦ (pink graph) and from the KOUN’s data at
elevation 1.8◦, azimuth 216.8◦ (blue graph).

I, Q at H polarization and eight streams at V polarization)
at elevations 1◦ and 2◦. The recorded TPD’s azimuth and
range locations have high relative precision but unknown
absolute reference. To establish the absolute pointing direction
and range locations, we compared the fields of differential
phases from the KOUN and TPD and made adjustments to
the coordinates of the TPD data. The range and azimuth
steps, as well as the beam widths, differ on these radars [35].
Therefore, on KOUN data, we applied an 11-point mean
filter (5.5◦) in the azimuth direction and plotted data at 2◦

increments. We used a 42-range-point median filter (2015
meters) for each TPD’s radial of data.

The TPD’s hardware has instabilities related to temperature
and system synchronization. Therefore, precise measurements
of differential reflectivity and correlation coefficient were
not possible. Nonetheless, measurements of reflectivity and
differential phase are little affected by these issues and hence
are presented. Figs. 11 a and 11 b depict the fields of ZH
measured by the TPD (Fig. 11 a), and KOUN (Fig. 11 b) radars
on conical sector scans at 1◦ elevation (for the TPD radar) and
1.8◦ elevation (for the KOUN radar). The precipitation band
is characterized by high ZH (exceeding 55 dBZ). Comparing
Figs. 11 a and 11 b between 2 blue solid lines, we notice a
similar shape of the area with high values of ZH. The TPD’s
reflectivity factor ZH is about 2 dB lower and overwhelmed
by noise for ZH smaller than 35 dBZ at a distance from the
radar larger than 10 km compared to the KOUN’s reflectivity
factor. This is explained by the large beamwidth (incomplete
beam filling results in lower Z values) and significantly lower
TPD detectability.

The fields of the differential phase from the TPD are in
Fig. 11 c, and from the KOUN, they are in Fig. 11 d. The
fields are fairly similar in patterns and values. The 8DP pattern
from TDP is broader, likely because its beam cross section is
much larger (about 12 times the one of KOUN). Therefore,
it samples precipitation from a wider span of altitudes than
the KOUN. Depending on the vertical profile of reflectivity,
the beam-weighted values can be larger or smaller. What
matters are the 8DP radial gradients. These are comparable.
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For example, we plot the radial profiles at 216.5◦ in azimuth
(Fig. 12). At a range beyond about 37 km, the 8DP of
TPD exhibits nonmonotonic increase likely due to nonuniform
beam filling and possibly backscatter differential phase from
regions illuminated by the wide TPD beam but not by the
much narrower KOUN beam. The good agreement from about
25 to 37 km confirms the robustness of phase measurement
discussed in section III. Therefore, along this range, rainfall
can be measured via the R(KDP) relations or from specific
attenuation [19]. In addition, compensation of reflectivities for
attenuation is feasible.

V. CONCLUSION

We have presented results from EM modeling of antenna
patterns on the Advanced Technology Demonstrator proof
of concept phased array weather radar called Ten Panel
Demonstrator. Although the model uses commercial software,
it needs human interaction and detailed knowledge of radiators
to set it up. The antenna size is 2.1 × 0.8 m and, to our
knowledge, is the largest PAR antenna for weather applications
on which a full simulation model of the sort had been applied.
Our model yields copolar and cross-polar patterns needed to
estimate bias in polarimetric variables.

We focus on the SHV mode of polarimetric genera-
tion/processing because it has smaller errors in polarimetric
variables’ compared to the AHV mode. Magnitudes and phases
of antenna patterns establish bias in the polarimetric variables.

The model confirms that cross-polar patterns within the
main pattern lobe have four axially symmetric lobes of the
alternating sign at the broadside. The cross-polar patterns from
pointing directions in the principal planes have two lobes of
opposite signs. These features make the differential reflectivity
and correlation coefficient bias independent of the cross-polar
pattern to the first and third order but dependent on the second
and fourth order. Therefore, the peak copolar to cross-polar
power ratio as low as 25 dB is sufficient to constrain ZDR bias
within the desired range of ±0.1 dB. Otherwise, twice as large
cross-polar system isolation (antenna and radar combined) is
needed to control the bias. If beams are pointed in the principal
planes, there is no need to apply special signal designs and/or
processing to constrain bias.

What matters is the polarimetric mode of the radar and the
shape of the cross-polar patterns within the main lobe pattern.
In the alternate polarimetric mode, acceptable bias can be
achieved with one-half (in dB) of the copolar to cross-polar
power ratios.

The bias in the polarimetric variables due to patterns within
the mainlobes in the case of conformal arrays can be computed
via CEM analogously as for planar arrays. This would be
done by specifying the conformal arrays’ physical layout in
the WIPL-D software. From computed copolar and cross-polar
patterns, various biases can then be estimated.

Although approximate techniques where radiation patterns
of an individual element are combined with the array factor
replicate well the copolar patterns, they are deficient for
computing the cross-polar patterns. Moreover, the EM model
results of the cross-polar pattern may be closer to the true

pattern than the measured one once all measurement issues
are considered.

The examples we chose are broadside patterns, patterns in
a principal plane, and patterns out of the principal planes.
We show the full antenna model of the TPD produces main
lobe patterns in agreement with measurements. Moreover,
we can determine an offset in the pointing directions between
the peaks of the copolar and cross-polar patterns out of the
principal planes. This is very hard to uncover in the field.

Precise measurements of differential phase and correlation
coefficient were not possible due to instabilities caused
by temperature and synchronization issues. The reflectivity
and differential phase are much less affected; hence we
compared these measured with the TPD to the ones measured
with a collocated research WSR-88D. As expected from
theoretical considerations, these agreed fairly well, implying
that quantitative rainfall estimates using differential phase and
reflectivity would be good.

The TPD served its purpose in that a large PPAR with
identical panels can be constructed to advance this research
further. Indeed, the Advanced Technology Demonstrator (1.6◦

by 1.6◦ beamwidth) has been built and is undergoing
meteorological evaluations.
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[33] I. R. Ivić, “Statistical evaluation of time multiplexing to mitigate
differential reflectivity bias due to cross-polar coupling,” J. Atmos.
Ocean. Technol., vol. 33, no. 1, pp. 127–147, Jan. 2016.

[34] Z. Li et al., “Polarimetric phased array weather radar data quality
evaluation through combined analysis, simulation, and measurements,”
IEEE Geosci. Remote Sens. Lett., vol. 18, no. 6, pp. 1029–1033,
Jun. 2021.

[35] L. Borowska, “Analysis of weather data from the ten panel demon-
strator (TPD) radar,” NOAA/NSSL, Norman, OK, USA, Tech. Rep.,
2020.


