
IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 1, 2023 423

Monitoring of Heart Movements Using an FMCW
Radar and Correlation With an ECG

Rémi Grisot , Pierre Laurent, Claire Migliaccio , Member, IEEE, Jean-Yves Dauvignac, Member, IEEE,
Mélanie Brulc, Camille Chiquet, and Jean-Paul Caruana

Abstract— Monitoring the activity of the heart is important
for diagnosing and preventing cardiovascular diseases. The elec-
trocardiogram (ECG) is the gold standard for diagnosing such
diseases. It monitors the heart’s electrical activity, and while
this is highly correlated with the cardiac mechanical activity,
it does not provide all the information. Other sensors such as
the echocardiograph are able to monitor the heart’s movements,
but such tools are expensive and hard to operate. Therefore,
contactless monitoring of the heart using RF sensing has gained
interest in recent years. In this paper, we describe a process
to extract the movements of the heart from millimeter wave
radar with high accuracy, and thus we provide a noninvasive and
affordable way to monitor cardiac movements. We then demon-
strate the correlation between the observed movements and the
ECG. Furthermore, we propose an algorithm to synchronize the
ECG signal and the processed signal from the radar sensor. The
results we obtained provide insights on the mechanical activity
of the heart, which could assist cardiologists in their diagnoses.

Index Terms— Heart monitoring, FMCW, radar.

I. INTRODUCTION

ACCORDING to the World Health Organization (WHO),
“Cardiovascular diseases (CVDs) are the leading cause

of death globally, taking an estimated 17.9 million lives each
year” [1]. These diseases are a major public health issue in
low- to middle-income countries [2] as well as in high-income
countries [3] although the tools for prevention and diagnosis
are more widely available in the latter. Heart disease is the
leading cause of death in the United States, according to
the Center for Disease Control (CDC) [3]. Prevention and
early detection are critical if we want to reduce this mortality.
Electrocardiography and echocardiography are the gold stan-
dards to monitor the activity of the heart. Electrocardiograms
(ECGs) monitor the electric activity of the heart, whereas
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echocardiograms provide structural information about the heart
and blood vessels. These diagnostic tools enable detection
of cardiovascular diseases. However, they are expensive and
require training to operate. Frequency Modulated Continuous
Wave (FMCW) radar is a type of sensor that is very sensitive
to small movements. It could provide a complementary method
to ECGs and echocardiography, for some pathologies, that is
cheaper and easier to operate. Although, at the frequencies
used (77-81GHz), the waves emitted by the radar only pen-
etrate the skin a couple millimeters [4], [5], we are able to
detect skin movements induced by the heart beats. As the
interpretation of ECGs is widely documented and the P, Q,
R, S, and T waves are linked to heart movements, correlating
the movements detected by the FMCW radar sensor with the
ECG signal would allow us to benefit from the knowledge
of cardiology from the ECG in interpreting the radar sensor
signal. The monitoring of vital signs using FMCW radar
sensors has gained tremendous interest over the past several
years [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17]. However the monitoring proposed is often focused on
detecting the heart rate over a period of time whereas we
aim to detect each heartbeat individually and explain each
part of the movement. Some previous work has shown it
is possible to reconstruct the ECG from the radar signal,
using neural networks [18], [19]. One drawback of such an
approach is that the neural network is trained to produce a
normal ECG, as it is trained on data from healthy subjects.
Hence, the results it may produce for subjects with CVDs is
unpredictable. Moreover, some pathologies like heart failure
have an impact on the mechanical activity of the heart, but are
barely detected using an ECG. Therefore, in this paper, we do
not try to reconstruct the ECG from the radar signal. Instead
we demonstrate the correlation between the two signals and
explain it from a medical point of view. The use of the ECG
helps us explain the movements we observe because the link
between the electrical and the mechanical activities of the heart
is well known [20]. Furthermore, because we do not use a
neural network to compute our signals, as in [21], our whole
process is less computationally expensive and does not require
training. Pioneering work was carried out in [22], where the
authors showed some variations in the movement correlated
to the electrical activity recorded by an ECG, however the
observed correlation can be improved. While they used a
Doppler Radar System (DRS) at 24 GHz, we chose to use
a FMCW radar at a higher range of frequencies. Hence, we
have a greater resolution in velocity. In our signal, the peaks in
the velocity signal have a prominence that is greater by three
orders of magnitude, which makes them easier to detect and
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interpret. We also have a better resolution in range due to the
wider bandwidth.

In our paper, we propose an experimental setup to collect
data simultaneously from an ECG and an FMCW radar. Then
we describe our clustering-based method to detect P, Q, R,
S, and T waves on an ECG signal and our process to extract
cardiac-induced motion from the radar signal. This process
offers a good tolerance to missing data and allows the torso
movements induced by the heart to be monitored with a high
accuracy. Finally, we establish a correlation between the data
from the two sources, we demonstrate it with an experiment
and we propose an algorithm to automate this synchronization.
The signals extracted and interpreted in this paper have been
shown to be reproducible among the subjects that took part in
the experiment.

II. MECHANICS OF THE HEART

As the radar detect the movements of the chest induced by
the heart, it is important to understand the different steps of
the cardiac cycle from a mechanical perspective. We explain
below the basics of heart movements and their link to the ECG
as described in [20]. Fig. 1 shows the main cavities of the heart
and the parts involved in the conduction of the depolarization
through the heart.

The myocardium, i.e., the cardiac muscle, can be separated
into two blocks: the atria (left and right) and the ventricles
(left and right). For a healthy subject, a positive electrical
impulse (depolarization wave) is generated in the sinoatrial
node (SA node), in the right atrium. As the depolarization
wave propagates through the atria (P wave on the ECG), they
contract and expel the blood they contain into the ventricles:
this is the atrial systole. The depolarization wave reaches
the atrioventricular node (AV node) and is slowly conducted
through it. But when it reaches the ventricular conduction
system, it spreads quickly through the right and left branches
of the bundle of His. This leads to the depolarization of the
right and left ventricles (QRS complex on the ECG) and
to their contraction. Thus, the QRS complex corresponds to
the initiation of the ventricular systole (i.e., contraction). The
repolarization of the ventricular myocytes lasts from the end of
the QRS complex to the end of the T wave and occurs in two
steps. The ventricular systole ends with the T wave. As the
ventricles are bigger cavities (hence more muscle surrounds
them) than the atria and their depolarization occurs faster
than the depolarization of the atria, the ventricular systole
induces a movement of the myocardium that is faster and
has a greater amplitude than the movement induced by the
atrial systole. The different steps of the cardiac cycle and their
correspondence with ECG waves are represented in Fig. 2.

FMCW radar sensors allow us to monitor small displace-
ments. With the frequencies that we use (77-81 GHz), the
waves emitted by the radar do not penetrate the skin more
than a few millimeters [4], [5]. Thus, they do not reach the
heart itself. However, the different phases of the heart cycle
are composed of rapid, strong contractions and releases that
induce small movements of the skin of the monitored subject.
As explained in [19], there is a transfer function that links the
heart movements to the observed skin movements. While this

Fig. 1. Schema of the myocardium.

Fig. 2. ECG waves and association with cardiac cycle [23].

transfer function is not known, we can infer the movements
that we expect to observe. Indeed, the biggest and fastest of the
movements that comprise the cardiac cycle is the ventricular
systole. During this step, the heart goes from its maximum
overall volume to its minimum one in a short time. Thus,
we expect the skin to quickly move away from the radar during
the ventricular systole.

III. DATA COLLECTION

A. Overall Methodology

We follow the steps described in Fig. 3. As the signals are
of different natures, because they are collected from different
sensors, we use different processing techniques on them. When
the data flows re-join, they are not synchronized. As described
below, there is an operator-induced offset in one of the signals.
When must then synchronize the data to be able to interpret
it. To achieve this we use an approach based on cardiology
knowledge, and more specifically on the mechanics of the
heart, and we setup an experiment to verify it.

B. Experimental Setup

The purpose of this experiment was to demonstrate the
correlation between the ECG and the radar signal. Therefore,
the setup described below corresponds to the conditions that
were determined to be optimal for observing the heart-induced
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Fig. 3. Block diagram of the steps we followed to process and correlate the
signals from the ECG and from the radar.

motions. The experiment consisted of the simultaneous record-
ing of an ECG and an FMCW radar (captures) for two
setups and for three configurations. For each configuration,
two captures were made for each subject. The recordings
were launched by an operator on two different computers.
Therefore, the signals might not be perfectly synchronous.
We will describe in a later section our synchronization proto-
col. The experiment was performed on 22 subjects: 11 males
and 11 females. The subjects were 20 to 58 years old, with
an average age of 25.5. They all provided informed consent to
take part in this experiment. In the first part of the experiment,
the subject was in a supine position as can be seen in Fig. 4
left (setup #1). The radar sensor was positioned horizontally
above the chest, in a fixed position, at a distance of about
50 cm. Subjects were asked not to move or talk, and to breathe
slowly. We then collected data from the two sensors for one
minute (first configuration). Then we asked them to hold their
breath with their lungs full and we collected data for 30 s
(second configuration). And finally subjects were told to hold
their breath with their lungs empty for another 30 s data
collection (third configuration). Then, subjects lay in a right
lateral decubitus position as can be seen in Fig. 4 right (setup
#2) and we repeated the 3 capture sessions (slow breathing,
apnea with full lungs, apnea with empty lungs). The protocol
uses these two setups (supine and right decubitus) for two
reasons: the first one is that the cardiac movement is complex
and multi-directional. Hence, the displacement induced by the
heartbeat in the different directions is not equal. Thus, having
a different angle of view provided additional insight about the
movement. The second reason is that the aorta, between the
heart and the lower abdomen, lies very close to the skin and
is in direct sight of the radar in the supine position. It might

Fig. 4. The left image shows the subject and radar positions in the first part
of the experiment (supine position); the right image shows the positions in
the second part of the experiment (right lateral decubitus).

then produce a bigger movement than the heart in terms of skin
displacement. Correlating and comparing the movements seen
from the two positions gives a good overview of the heart
kinetics. The two setups used for the experiment (subjects
lying on their back or their side) are represented in Fig. 4. The
apnea captures were added to the protocol because we noticed
that the breath had an impact, not only by modulating the
frequency of the heartbeat due to physiological sinus variation
activity [24], but also on our ability to detect the beat properly.
Indeed, as we are detecting the skin movements induced by
the heartbeats, it appears that the skin displacement is not the
same depending on whether the chest is inflated or not.

C. Configuration Details

1) ECG: For the experiment we used a 6-Lead ECG, with
the 4 electrodes placed on the wrists and ankles. We collected
one electrical signal for each lead. The collected data from the
ECG had a sampling frequency of 2 kHz. We had three bipolar
derivations: I, II, III and three augmented derivations: AVR,
AVL, AVF. Each derivation can be seen as a way to look at the
heart, with a certain angle. The signal obtained for each bipolar
derivation corresponds to the difference in potential between
two electrodes. The Lead I signal is the difference between
the potentials of the right arm and left arm; Lead II is the
difference between right arm and left foot and Lead III is the
difference between the left arm and left foot. The augmented
derivations are computed from the bipolar derivations:

AV L =
LeadI − LeadI I I

2

−AV R =
LeadI + LeadI I

2

AV F =
LeadI I + LeadI I I

2
(1)

The obtained derivations and their corresponding angle of view
can be seen in Fig. 5.

2) Radar: The radar we used is a IWR1642Boost [26]
from Texas Instruments®, working in the frequency range
[77-81]GHz. This radar is a MIMO radar that we use as a
SIMO radar with 4 Rx antennas. The antennas are spaced
by λ

2 (computed at the central frequency), which provides a
field of view of 180◦ without grating lobes. For all records
we used the whole 4 GHz bandwidth. Hence, we have the
smallest possible range resolution for that radar, which is
dres =

c
2B = 3.75×10−2m, with c the speed of light in meters

per second, and B the bandwidth in Hertz. The phase noise
of the IWR1642Boost is −93 d Bc/H z, which is compatible
with the range resolution we want to achieve.
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Fig. 5. ECG leads and associated angles. We had three bipolar derivations
and three augmented ones [25].

The distance of 50 cm between the radar and the torso of the
subject was chosen as a compromise. On the one hand, getting
closer to the sensor increases the phase difference between
the signal received on the different antennas. This has an
impact on the summation operation described in section V-C,
adding some noise. The phase difference between the signals
received by two Rx antennas spaced by λ

2 can be seen
in Fig. 6. On the other hand, if we increase the distance
between the radar and the subject, we become more sensitive
to perturbations induced by the environment. As the radar
field of view is 180◦, anything that is at the same range
as the target will interfere with the heart signal we want to
extract.

At the output of the radar sensor, we collect the IQ data
directly, as an output of the Analog to Digital Converter
(ADC). To get access to that raw information, we use the
radar paired with a DCA1000 board. The DCA1000 board
receives raw IQ data from the radar via an LVDS interface
and transmits them to the operator’s computer via an Ether-
net interface. UDP is used to communicate on the Ethernet
interface, as is often the case for time sensitive applications.
However, unlike with TCP, there is no guarantee that the data
will be correctly transmitted between the emitter and the
receiver. Thus, some data packets may end up missing on the
operator’s computer. In our case, missing data were replaced
with zeros. With the IWR1642Boost radar device, groups of
subsequent chirps are sent. Those groups are called frames.
All the frames are equally spaced in time, and within each
frame, the chirps are regularly spaced too. But the inter-frame
time is greater than the inter-chirp time, thus creating a time
discontinuity between the last chirp of the (n −1)th frame and
the first chirp of the nth frame that we had to deal with. This
inter-frame time is caused by the computing performed by the
device on each frame, which cannot be disabled. This time
discontinuity can be observed in Fig. 7. In our setup, we have
625 frames per second and each frame contains 16 chirps. For
each chirp, we have 64 samples, i.e., 64 IQ values. As we want
the best possible resolution in velocity, we use the shortest
chirp time allowed by the radar. This corresponds to a slope
of 100 MHz/µs.

Fig. 6. Phase difference of the signal received by two antennas spaced by
half the wavelength, as a function of the distance of the target. The distance
chosen for the experiment was 0.5 m.

Fig. 7. Discontinuity of time between chirps of successive frames. Source:
Texas Instruments®.

IV. ECG DATA PROCESSING

A. Filtering

As our goal was to correlate the radar signal with the ECG
waves, we processed the ECG data to extract the positions of
the P and T waves and the QRS complex. Therefore, we kept
only the signal from derivation II as it provides a good view
of these waves. We applied three layers of filters to the ECG
signal, as explained in [27]: a high-pass filter with a cutoff
frequency of 0.05 Hz, to remove very low frequency (VLF)
components that are at sub-respiratory frequencies; a low-pass
filter with a cutoff frequency of 75 Hz to remove very high
frequency (VHF) noise; a band-stop filter, with a stop band
from 45 Hz to 55 Hz, to remove noise caused by power-
line interference. After having applied these three layers of
filtering, we still observed baseline wander, which makes the
detection of the ECG waves difficult. To extract the baseline,
we computed the second order moving average on the filtered
signal, with a window of 2001 samples, which corresponds to
1 s of data. Finally we subtract the extracted baseline from
the filtered signal. Hence we obtain a filtered signal with a
constant baseline (see Fig. 8 top).

B. P, Q, R, S, and T Wave Detection

In the processed ECG signal, we wanted to detect the P,
Q, R, S and T waves. The Q and S waves are the bases
of the R peak. Thus, we focused on detecting only the P,
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Fig. 8. The top graph shows the result of peak detection applied to the Lead
II track. The middle graph shows the result of the DBScan clustering applied
to the previously detected peaks based on their prominence and width. The
bottom graph shows the labeling provided by the clustering algorithm applied
to the originally detected peaks.

R and T waves. The wave detection occurred in two parts:
the detection of all peaks in the signal and the subsequent
classification of those peaks. First, for the detection part,
we used a find_peaks algorithm, provided by the scipy [28]
package in Python. We considered a peak if its prominence
was greater than a fifth of the standard deviation of the signal
and if it lasted less than 200 ms. These parameters were found
to detect all peaks of interest while minimizing the number
of false detections. Then, we needed to classify these peaks
into 3 classes: P-wave, R-wave and T-wave. One of the main
challenges of classifying these waves is that their properties,
such as peak prominence or width, can vary greatly from
one individual to another. Hence, finding general properties
to classify detected peaks is difficult. To address this problem,
we used a clustering-based approach. For each ECG capture,
we applied a clustering algorithm to the data: DBScan. The
features used for the clustering were the peak prominence
and the peak width. We chose DBScan as the clustering
algorithm because of its density-based approach and because

it can detect outliers. Thereby, we could discard any possible
false detections by the find_peaks algorithm. As the features
in our dataset were on different scales (hundreds of ms for
peak duration; mV for peak prominence), we scaled our data
by the standard deviation. Furthermore, in order to better
separate the clusters, especially for values near zero, we took
the logarithm of the scaled data. The result of the clustering
is shown in Fig. 8 (middle). Once the clusters were separated,
we labeled them using the wave properties. The R waves are
the most prominent and are short in time, while the T waves
have the longest durations.Then, we added a last verification
step, where we ensured that the wave order was respected (P
followed by R, followed by T, Fig. 8 (bottom)).

V. RADAR DATA PROCESSING

A. Data Format

As noted above, we recorded the IQ signal just after the
ADC. We reorganized it in a 4-dimensional matrix of complex
numbers: [Rx antennas, frames, chirps, samples]. In order to
have equally spaced points in the time dimension (carried by
both the frames and chirps dimensions of our matrix), we kept
only the first chirp of each frame, in order to avoid the apparent
gap between chirps introduced by the inter-frame time. Thus
we had a 3-dimensional matrix to process. The “samples”
dimension is the fast time dimension, whereas the “frames”
dimension is the slow time dimension.

B. Range Selection

The first step consisted of applying a Fast Fourier Transform
(FFT) along the samples dimension. The modulus of the result
gives the intensity of the reflected signal for the corresponding
frequency bins (as the FFT is discrete), which can be easily
converted to distance bins using the formula d = f ×

c×r
2×B

where f is the intermediate frequency associated with the
frequency bin in Hz, c is the speed of light in m.s−1, r is
the ramp time in seconds and B is the bandwidth in Hz.
We can see the evolution of the modulus of the range FFT
in Fig. 9. Using this result, we could focus on the range
index corresponding to the highest intensity, which we will
refer subsequently as the brightest range. To find this range,
we computed the mean modulus of the range FFT over time
for each range index. We obtained plots like that shown in
Fig. 10. Using argmax , we then selected the range index with
the highest mean modulus. This range index corresponded to
a distance around 50 cm of the radar, which agrees well with
the distance between the radar and the observed subject at
azimuth 0Â◦.

C. Velocity Extraction

ST FT (s)[ f, m] =

n−1∑
k=0

s[k + m] × W [k] × e− j.2π.k.
f
n (2)

where n is the number of frequency bins of the FFT and m is
the frame index. The squared modulus of the result gives us
a spectrogram, showing the frequency shift of the target with
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Fig. 9. Example of a heat-map of the range FFT modulus obtained for
one of the Rx antennas (sorted by frequency range index). The frequency
range index corresponds to the index of the frequency bins obtained from the
discretization that occurs during the FFT computation.

Fig. 10. Mean intensity for each range computed for the data shown in
Fig. 9. We can see that the range at index 51 has a much higher intensity on
average than the others.

time. By carefully choosing the window size and the number
of bins, we could reach a high resolution in both time and
frequency. We used a Hann window as windowing function to
soften the artifacts at the edges of the window during the FFT,
and a sliding step size of 1 in order to preserve the temporal
resolution. Using such a window also widens the main lobe,
which is not a concern here, as we are only interested in
the index of the tallest peak, not its properties. The resulting
spectrograms are like the one shown in Fig. 11. We converted
the frequency bins obtained into velocity bins (in m.s−1) by
applying the formula: v = f ×

λ
2 , where v is the radial velocity

in m.s−1, f is the intermediate frequency associated with the

Fig. 11. Spectrogram obtained for one antenna, at the brightest range (zoom
on 5 s). The extracted heart signal (scaled by a factor 30 to be visible) is
superimposed (cyan curve).

frequency bin in H z and λ is the wavelength corresponding to
the central frequency (λ = 3.8 mm in our case). We reached
a temporal resolution of 1.6 ms and a velocity resolution of
1.45 × 10−4 m.s−1.

We then summed the signal of the spectrograms obtained
for the four Rx antennas, for each range. Finally, we took the
argmax along the velocity dimension for each time step and
for each range. By converting the frequency bin into a velocity
we determined, for each range, a time-series of velocity.
We passed our signals through two layers of moving average,
one with a small window to remove high-frequency noise and
one with a large window to extract macro-movements from the
signal to subtract them from the original signal. We obtained
curves of velocity versus time, an example is shown in Fig 12.
Regular down peaks are observable and if we superimpose and
manually synchronize the vertical lines corresponding to the
R-peaks on the ECG to match with these downward peaks,
we can see that the period matches perfectly between the two
signals. In Fig. 13, we show a zoom on 5 s of the velocity
signal, with the ECG superimposed in red and the vertical
green and magenta lines corresponding to R and T waves,
respectively. We can see there is a recurring pattern in the
radar signal and that not only do the downward peaks match
each R peak on the ECG but also a smaller upward peak
matches the T wave peak. The hypothesis used for the manual
synchronization between the two signals is explained in the
following section.

We observed that there are no significant differences
between the captures realized in apnea with inflated lungs
and those realized in apnea with empty lungs. However, the
subjects found more difficult to hold their breath when their
lungs were empty. Sometimes, as they were struggling to hold
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Fig. 12. Evolution of velocity with time, for the brightest range (blue curve).
The superimposed vertical dashed green lines correspond to the times where
the R-peaks are detected on the ECG (manual synchronization).

Fig. 13. Evolution of velocity with time (blue curve), for the brightest range
(zoom on 5 s). The superimposed vertical dashed green lines correspond to the
times where the R-peaks are detected on the ECG (manual synchronization).
The superimposed vertical dashed magenta lines correspond to the times
where the T-peaks are detected on the ECG. The red curve represents the
processed signal from the Lead II track of the ECG.

their breath, they made some uncontrolled movements. Hence,
we recommend to realize apnea capture with full lungs only,
in order to have data of better quality.

D. Discussion and Comparison of Results

Table I summarizes recent examples of vital signs moni-
toring using radar and how our work compares with them.
In this section, we compare our results with those obtained
in [11], [19], and [22]. First, in [11], they use envelope
detection to extract the velocity of the subject’s torso, in order
to monitor breathing. While this method provides accurate
detection of the breath, it is not precise enough to recover
the movements of the heart. A major difference between our
method and the ones presented in [19] and [22] is that
our method allows us to extract the velocity directly while
the methods in [19] and [22] extract the position. We can
easily switch from one signal to the other as the speed is
the derivative of the position. However, if the input signal
contains errors or noise, it is safer to integrate than to compute
the derivative. Abrupt variations in the signal will result in

TABLE I
COMPARISON OF OUR PAPER WITH OTHER PAPERS

MONITORING VITAL SIGNS

high peaks in the derivative. In contrast, integrating a signal
is an operation that is less sensitive to noise. Concerning [19],
we compare our results to the data they obtain before they
feed it into their neural network. This input corresponds to
a displacement time-series (i.e., a mechanical signal) whereas
the output of their neural network is the reconstruction of an
ECG, i.e., an electrical signal. Thus it makes more sense to
compare the two mechanical signals. In [19], the displacement
signal is obtained by extracting the phase of the range FFT
over time, at a given index. Computing the derivative of
this signal gives us a velocity time-series. This method is
subsequently referred to as the “phase method”. First, we can
see from Fig. 14 that if we compute a point-to-point distance
between the curves obtained with the “phase method” and
with our “argmax method”, there is an average difference of
1.8×10−4m.s−1.This small average distance indicates that the
two curves are very much alike, so there is no big difference
in terms of resolution in velocity. The “phase method” has the
advantage that it requires far less calculation than the argmax
method. As explained above, the “argmax method” requires
the calculation of an STFT which is quite computationally
expensive if we want to achieve a good resolution.

We now compare the two methods regarding their robust-
ness to data loss. As we explained in section III-C2, some
packets may be lost between the radar sensor and the oper-
ator’s computer, mostly due to the use of UDP. In order to
measure the robustness of the two methods regarding missing
data, we randomly removed (replaced with zeros) 1% of the
data in a clean signal (without loss). We chose the value
of 1% because it is the worst case we observed during
our measurements. We then extracted the velocity time-series
using the “phase method” and the “argmax method”. The
results can be seen in Fig. 15. We observe that the “phase
method” is much more sensitive to missing data. Missing
data induce high peaks in the velocity time-series as high as
0.2 m.s−1, which is 40 times the height of the big downward
peaks corresponding to heartbeats that we observe in the clean
signal. The average signal-to-noise ratio (SNR) for the “phase
method” is −23.2972 d B whereas it is 11.2541 d B with the
“argmax method”. This shows that our method is much more
resilient to data loss.

In [22], the authors used the Random Sample Consensus
(RSC) algorithm to compute the position from their data.
Even if this algorithm is robust, it is non-deterministic. Hence,
there is only a given probability that the obtained result will
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Fig. 14. Point-to-point distance between the velocity time-series extracted
with the phase method and the velocity time-series extracted with our method.
Logarithmic scale on the y axis.

be correct. Even if this probability can be high, it is never
100%. This uncertainty may induce additional noise in the
data. Our method is deterministic, making it more robust.
We measured the evolution of the RR interval for the ECG
and the evolution of the interval between two big down peaks
for the radar (Fig. 16). Such an analysis was done in [22].
Hence, we can compare our work to theirs based on the metric
they have chosen. There is a documented variability in the
duration of the cardiac cycle. Such variability is visible on
the ECG (by monitoring the RR interval). We observe the
same variability with our method (monitoring of the interval
between two successive downward peaks). We can observe that
with our method, the difference between the interval measured
between two R peaks on the ECG and the interval between
two down peaks on the velocity signal extracted from the radar
is much smaller. Considering the R-R interval as the target
and the interval between peaks on the velocity signal as the
prediction, they obtain a Root Mean Squared Error (RMSE) of
14.67ms, on one subject. With our method, we get a RMSE of
0.0217 ms, computed on 12 subjects. This shows again that our
method is more robust and less prone to error in the detection
of the ventricular systole, as the corresponding peaks in the
radar velocity signal are tall and easily detectable.

VI. SYNCHRONIZATION OF ECG AND RADAR SIGNALS

A. Based on Cardiology Knowledge

As stated previously, the two captures are launched sepa-
rately, on two different computers, by an operator. Such a setup
can induce an offset between the two signals and we have
to manually synchronize them. Because the velocity alone
might be difficult to apprehend (for example, a succession
of small peaks with the same orientation can lead to the
same displacement as a single big peak), we converted the
velocity into a displacement by integrating it. The results are
shown in Figures 17 and 18. The link between the electrical
activity and the mechanical activity of the heart is known [20],

Fig. 15. Velocity extracted with various methods from data with 1% missing
packets (blue curve) and comparison with the velocity extracted with the same
method from the same signal but with no missing packets (red dashed curve).
Graph (a) shows the velocity extracted from the phase of the range FFT,
as in [19]. Graph (b) is a zoom on graph (a), to focus on the heart signal.
Graph (c) shows the velocity extracted with our method.

Fig. 16. Evolution of the R-R intervals on the ECG signal (red dots) and of
the intervals between big downward peaks on the radar signal (blue dots) in
a 30s capture.

as exemplified in Fig. 2 and described in section II. The
QRS complex corresponds to the ventricular depolarization
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Fig. 17. Evolution of the chest displacement with time (blue curve), for the
brightest range. The superimposed vertical dashed green lines correspond to
the times where the R-peaks are detected on the ECG (manual synchroniza-
tion).

and initiates the ventricular systole. The ventricular contraction
is the fastest and biggest movement of the cardiac cycle.
Hence, we expect that movement to correspond to a drop in the
displacement signal and a big downward peak in the velocity
signal, because when the ventricles contract, the heart moves
away from the radar, inducing a negative velocity. We also
know that the ventricular repolarization, which leads to the
relaxation of the ventricles, occurs after the S wave in two
phases and lasts until the end of the T wave. Furthermore,
we know that the repolarization is slower than the depo-
larization. Consequently, we can associate the repolarization
of the ventricle with the succession of upward peaks in the
velocity signal and the two-step rise in the displacement signal.
A similar synchronization hypothesis was made in [22]. The
result of a manual synchronization based on this hypothesis is
shown in Figures 13 and 18.

B. Experimental Verification

In the previous section, we presented a hypothesis, based
on knowledge of the cardiac cycle and its links with the
ECG, for synchronizing ECG and radar signals. In this section,
we describe an experiment to validate our hypothesis. As we
previously stated, the capture on the two sensors was launched
independently and manually by an operator. While he tried to
do it synchronously, we cannot guarantee that there was no
delay between one capture and another. In order to perfectly
synchronize the two signals, we have to detect, on one of them,
when the capture starts on the second sensor. It is easier to
make an observable and controllable perturbation on an ECG
signal than on a radar signal because it is an electrical signal.

1) Experimental Setup: For the experiment, we set up the
circuit shown in Fig. 19. The computer controlling the radar
sensor was connected to a microcontroller (e.g., an Arduino
board). When we launched the capture on the radar, a signal

Fig. 18. Evolution of the chest displacement with time (blue curve), for
the brightest range (zoom on 5 s). The superimposed vertical dashed green
lines correspond to the times where the R-peaks are detected on the ECG
(manual synchronization). The superimposed vertical dashed magenta lines
correspond to the times where the T-peaks are detected on the ECG. The red
curve represents the signal processed from the Lead II track of the ECG.

was sent via USB to the microcontroller. When it receives the
signal, the microcontroller set a given GPIO (General Purpose
Input/Output) to the UP state for 100 ms then it set it to the
DOWN state again. The GPIO was connected to the base of a
transistor. When the GPIO was in the UP state, the potential
Vdd was applied to the transistor emitter. The emitter was
connected to the right arm lead of the ECG. This meant that
the perturbation would be visible on both tracks I and II. For
the experiment, the potential Vdd was 3.3 V. When we apply
such a voltage, we expect to see a huge up front followed
by a similarly huge down front, because a normal ECG signal
typically has a magnitude of only a few mV. Such fronts can be
easily detected. The up front was detected by using a threshold
on the first derivative of the signal of one of the concerned
leads (either Lead I or II). The threshold was chosen so that
the impulse was detected in one capture for one subject, both
randomly selected. The appropriateness of the chosen value
was then confirmed as the impulse was successfully detected
in all the other captures of the experiment. An example of
such a detection can be observed in Fig. 20. We repeated
the experimental setup described in section III (captures with
slow breath or apnea in supine and right decubitus position),
but with the electrode connected to the circuit of Fig. 19.
In order to ensure that we would detect the perturbation in the
ECG, we began recording the ECG 3 s before the radar. This
experiment was performed on a smaller number of subjects
(3 subjects, 2 males, 1 female): its purpose was to validate
our synchronization hypothesis so that we could use it to
synchronize the data recorded without the impulse on the
ECG.

2) Synchronization: Once we detected the perturbation,
because we know that it coincides with the time of the start of
the radar capture, we could apply a shift to the ECG time to
ensure the t0 of both signals corresponded. The signal before
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Fig. 19. Schema of the electrical circuit used to add a visible perturbation
to the ECG signal when the radar capture starts.

Fig. 20. Detection of the impulse sent on the right arm electrode when the
radar capture started. The blue curve is the Lead II track of the ECG. The
vertical red line shows the time when the impulse was detected.

the perturbation was discarded. Finally, in order to remove
the perturbation from the ECG signal, we removed 1 s of data
at the beginning of both signals. The resulting signals were
then processed in the same way as described in the previous
sections.

We can see the resulting velocity and displacement signals
in Figs. 21 and 22. The observed results confirm our hypoth-
esis: on the velocity signal, the R peak happens around the
same time as the downward peak on the radar and the T
peaks match the biggest upward peak of each pattern. Taking
into account the whole captures made within this experiment,
we measure an average delay of 48.0 ms ± 1.3 ms between
manual synchronization based on the correspondence of peaks
and the signal synchronized using the impulse in the ECG.
This difference might be explained by the delay between the
depolarization or repolarization and the actual myocardium
response [20]. This error is sufficiently low to base the
synchronization algorithm described in the next subsection on
the hypothesis described above. We also notice that, while
always being present, the different peaks in the velocity
signal may vary in amplitude (thus inducing a variation in
the displacement signal). One hypothesis to explain these
variations is that they might depend on some cardiac-related

Fig. 21. Evolution of velocity with time, for the brightest range. The radar
signal was synchronized with the ECG using the impulse experiment. The
subject is the same as in Fig. 13. The superimposed vertical dashed green
lines correspond to the times where the R-peaks are detected on the ECG
(manual synchronization). The superimposed vertical dashed magenta lines
correspond to the times where the T-peaks are detected on the ECG.

Fig. 22. Evolution of displacement with time, for the brightest range. The
radar signal was synchronized with the ECG using the impulse experiment.
The subject is the same as in Fig. 18. The superimposed vertical dashed
green lines correspond to the times where the R-peaks are detected on the
ECG (manual synchronization). The superimposed vertical dashed magenta
lines correspond to the times where the T-peaks are detected on the ECG.

factors, for example arterial pressure. This hypothesis is not
further discussed in this paper.

C. Algorithm for Automated Synchronization

In this section we propose an algorithm to automate the
synchronization of the ECG R-peaks with the tall downward
peaks in the velocity signal. The first step is to detect the
R-peaks on the ECG and the downward peaks on the radar
velocity signal. For the former, we used the same technique
based on clustering as described in section IV-B. For the latter,
we used a find_peaks algorithm on the velocity signal. We then
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Fig. 23. Example of a pseudo-comb obtained using Equation 3. Each peak
corresponds to the time of a heartbeat. a = 0.1.

created a pseudo Dirac comb for each signal, each Dirac
delta function corresponding to a detected peak. To create the
pseudo-combs, we used the following formula, based on an
approximation of a Dirac comb:

C({Ti }i∈[[1;n]])(x) =

n∑
i=1

1
|a|

√
π

× exp −

(
x − Ti

a

)2

(3)

where {Ti }i∈[[1;n]] are the times corresponding to the heartbeats
and a is a coefficient that controls the width of the peaks in the
curve. If a → 0, each peak tends to a Dirac function. We can
see in Fig. 23 an example of a pseudo-comb. We compute
a point-to-point distance between the two combs and find
the time shift (or offset) to apply to one of the signals
which minimizes this distance. The offset corresponding to the
smallest distance is the offset induced by the operator. There is
a misalignment between the pseudo-combs of the ECG and the
radar that is mostly caused by the difference in the frequency
sampling of the ECG and radar signals. Thus, we need to
choose a value of a that guarantees that the peaks will still
intersect even if they are not perfectly aligned. a = 0.1 meets
these requirements. So, in our case, to find the offset induced
by the operator, we apply an offset ranging from −2 s to +2 s
with a step of 4 ms, to one of the signals and for each tested
offset, we compute the distance between the pseudo-combs
using Equation (4).

d(CECG, Cradar ) =

∑
i

|CECG[i] − Cradar [i]| (4)

where CECG and Cradar are the pseudo-combs generated from
the ECG and the radar signals, respectively. The offset we
are seeking is the one that produces the smallest distance.
An example of the scores obtained by the algorithm for various
shifts can be seen in Fig. 24. This algorithm is based on two
assumptions:

• the operator does not induce a delay of more than 2 s
between the captures of ECG and radar,

Fig. 24. Example of distance scores obtained for various shifts applied on the
ECG signal. We can see that the shift -1 s corresponds to the lowest distance,
thus the operator launched the ECG recording 1 s before the recording of the
radar data.

• the heart rate is not totally regular: if the subject is
breathing, there is some physiological variation of the
heart rate induced by the breathing [24]. If the subject is
not breathing, apnea makes the heart rate decrease over
time [29].

If it is suspected that a bigger delay was induced by the oper-
ator, a bigger range of shifts can be tested by the algorithm.
However, as more values are tested, the computing time will
be longer.

VII. CONCLUSION AND DISCUSSION

In this paper, we presented a data processing algorithm to
extract, with a high accuracy, the micro chest displacements
induced by the heart movements. We made a hypothesis based
on the current knowledge in cardiology to synchronize the
signals of the radar and the ECG and demonstrated it with
an experiment. Hence we linked the cardiac movement to the
observed skin movement it induced. Based on these results
we proposed an algorithm to synchronize an ECG signal with
the signal extracted from an FMCW radar. A concomitant
analysis of FMCW radar sensor and echocardiography record-
ings would allow us to determine a more precise correlation
between the heart mechanics and the observed skin move-
ments. Such a study is currently ongoing. From a medical point
of view, these results are interesting for several applications.
The first one is that it is possible to accurately monitor the
heart rate in a contactless way, which could help in the
diagnosis of arrhythmia. But above all, heart monitoring with a
FMCW radar could be useful for pathologies that are difficult
to detect solely with the use of an ECG: the diseases that affect
the contractility of the myocardium, like heart failure, are an
example of such pathologies. By focusing on the mechanical
activity of the heart rather than its electrical activity, FMCW
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radar combined with our data processing could provide a new
tool to help establish a diagnosis, follow up a patient pathology
and provide some prognostic elements. As we stated in the
introduction, echocardiography delivers precise information
about the heart kinetics but, as FMCW radar is far cheaper
and easier to operate, it could be used as the first link in
the chain of diagnosis. The experiments we described in this
paper were performed on subjects with no known cardiac
pathology. Therefore it would be interesting to reproduce
them on people with known CVDs, so that some new criteria
could be determined to interpret and capitalize on the signals
described in this paper.
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