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Abstract— The meteorological industry is currently exploring
Solid State Weather Radar (SSWR) systems, a new technology
that emits minimal transmission power, to minimize harm to
the environment and reduce system cost. However, accurately
estimating reflectivity for each polarization and decreasing the
blind range present significant challenges for SSWR systems that
use pulse compression. In these systems, transmit waveforms
and receive filters play a crucial role in enhancing estimation
accuracy, while implementing partial correlation can reduce
the blind range. In this research, we propose a novel joint
design technique for transmit waveforms and receive filters in
weather radar systems using the Alternating Direction Method of
Multipliers (ADMM) and Coordinate Descent (CD) optimization
approaches. We demonstrate the effectiveness of our technique
by iteratively solving nonconvex design problems and showcasing
the convergence of the objective function. Furthermore, we assess
the impact of our proposed waveform and receive filter, as well as
the blind range, on dual-polarized real weather radar data, illus-
trating the practicality of our approach. Our research provides
a promising solution for the challenges faced by SSWR systems
and offers a sustainable and efficient solution for the industry’s
needs.

Index Terms— ADMM, CD, ISL, PSL, MSE, blind range, pulse
compression, weather radar.

I. INTRODUCTION

PULSE compression is a technique used in modern radar
systems to achieve high range resolution while reducing

the peak transmitting power. This technique involves transmit-
ting a long modulated waveform and obtaining the same range
resolution as an unmodulated short pulse, which enables the
radar system to discriminate targets with high accuracy even
in the presence of noise and clutter. The technique was first
proposed in the 1950s, and it has since been developed and
refined in many different forms [1], [2], [3], [4], [5], [6]. How-
ever, its application in weather radar systems is yet limited.

Manuscript received 2 January 2023; revised 9 May 2023 and 22 June
2023; accepted 24 June 2023. Date of publication 28 June 2023; date of
current version 13 July 2023. This work was supported in part by the Fonds
National de la Recherche (FNR) through the CORE SPRINGER Project
under Grant C18/IS/12734677 and in part by the European Research Council
under Grant AGNOSTIC (ID: 742648). An earlier version of this paper was
presented in part at the 2022 IEEE International Geoscience and Remote Sens-
ing Symposium (IGARSS) [DOI: 10.1109/IGARSS46834.2022.9884519].
(Corresponding author: Mohammad Alaee-Kerahroodi.)

Mohammad Alaee-Kerahroodi, Linlong Wu, and M. R. Bhavani Shankar
are with the Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, 1855 Luxembourg City, Luxembourg (e-mail:
mohammad.alaee@uni.lu; linlong.wu@uni.lu; bhavani.shankar@uni.lu)

Ehsan Raei was with the Reliability and Trust (SnT), University of
Luxembourg, 1855 Luxembourg City, Luxembourg. He is now with
Amphinicy Technologies, 7243 Walferdange, Luxembourg (e-mail: ehsan.
raei@ieee.org).

Digital Object Identifier 10.1109/TRS.2023.3290846

A. Reflectivity and Power

In radar systems, “power” refers to the strength of the signal
that is transmitted. In general, higher power levels can result
in stronger signals being returned from targets, which can
improve the accuracy of target parameter estimation. In the
receive side, the strength of the signal reflected from a target
is often measured in terms of “reflectivity”. Reflectivity is a
function of the physical characteristics of the target, such as
size, shape, and composition. The higher the reflectivity of
a target, the stronger the signal that is returned to the radar
system.

In meteorology, reflectivity is commonly used to estimate
the intensity of precipitation. In particular, the reflectivity
factor Z is proportional to the sixth power of the precip-
itation particle diameter. However, the relationship between
reflectivity and precipitation is not always straightforward due
to factors such as attenuation, variations in the particle size
distribution, and the presence of non-precipitation echoes. The
ultimate goal of a weather radar is to improve the accuracy
of precipitation estimation by mitigating these factors and
reducing the effects of noise and clutter. Higher reflectivity
values are generally associated with more intense precipitation,
such as heavy rain or hail.

B. Pulse Compression in Weather Radar Systems
Pulse compression technology used in solid state weather

radar (SSWR) provides several benefits compared to conven-
tional high-power short-pulse magnetron radars, as long as
accurate reflectivity estimation is ensured. These advantages
include lower peak power, improved phase stability (compa-
rable to Klystron radars), reduced weight, and enhanced range
resolution, as reported in various studies [7], [8], [9]. However,
using pulse compression in weather radar systems, poses a
number of challenges for weather radar systems, the majority
of which come from increasing of the blind range and the
autocorrelation sidelobe levels [9], [10], [11].

1) Blind Range: In order to achieve sensitivity comparable
to a high-power short-pulse radar using a low-power SSWR,
a long transmit waveform must be utilized. As a consequence
of using long transmitting waveforms, the blind range, associ-
ated with blanking the receiver whilst transmitting the signal,
will increase and shorter ranges will not be covered. A solution
to decrease the blind range is the use of concatenated wave-
forms, which incorporates a combination of longer sub-pulses
for long range and shorter sub-pulses for short range and
provides simultaneous radar coverage for both short and long
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ranges [12], [13]. Although the concatenated waveforms have
a number of attractive attributes, they present a challenging
problem in that different sub-pulses will reflect back from
different ranges and be received at the same time. Therefore
since each sub-pulse is not separable at the RF front-end,
a more complex radio-frequency (RF) chain is required [12],
[14]. An alternative to the concatenated waveforms solution is
computing partial correlation between the transmitted signal
and received reflections. This technique is called progressive
pulse compression (PPC), and is based on partial decoding of
the received signal after the transmission time. The technique
has been tested with real weather radar data of PX-1000
in [15], and it offers several advantages over concatenated
waveforms. In fact, the transmit waveform will be superposed
with the echos even when the receiver is turned off (during the
transmission). Depending on the waveform duration, a portion
of the waveform that is reflected by the weather targets (if
existent) will be received as soon as the receiver is turned
on (after the transmission time). This portion can be used for
partial correlation.

2) Sidelobe Levels: In addition to the blind range issue,
targets in weather radar systems are extended volume scat-
terers, with range sidelobes being a significant source of
error for meteorological parameter estimation [14]. To achieve
waveforms with extremely low sidelobe levels, two design
strategies are widely pursued; one aiming to maximize the
signal to noise ratio (SNR) of the received signal, through
the use of matched filter design [14], [16], while the other
achieving low estimation error on meteorological scatter-
ing coefficient by minimizing the reflectivity parameter’s
mean-squared error (MSE) or, alternatively, increasing the
received signal’s signal to interference plus noise ratio (SINR)
through the design of the receive mismatched filter [5], [17],
[18], [19], [20], [21], [22], [23], [24]. Indeed, the matched
filter improves the SNR of the target when it is contami-
nated with white Gaussian noise, whereas mismatched filter
improves the signal to sidelobe ratio by increasing the filter
length.

C. Background

Previous works, such as [17] and [25], have used
gradient-based approaches to address the filter design problem
for mismatch peak sidelobe level (PSL) and integrated sidelobe
level (ISL) metrics. However, they only consider the mini-
mization of the ℓp-norm metric of autocorrelation sidelobes
for even values of p. On the other hand, [24] proposes
a majorization-minimization (MM)-based approach for joint
waveform and filter design, where a surrogate function of the
original objective function is minimized. Despite the fact that
the problem of designing waveforms with low sidelobe levels
has been addressed in a number of recent studies (see, for
instance, [6], [8], [13], [14], [16], [17], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42], [43]), they need to be revisited due to the
challenging need for accurate amplitude and phase estimation
of the reflected signal in a pulse compression weather radar
system. In this context, designing the mismatched receive filter

concurrently with optimizing the transmit waveform can result
in an extremely small correlation sidelobes with a negligible
SNR loss as reported in [9], [14], [16], [24], [38], [40],
and [42].

In contrast to aforementioned methods, this paper introduces
a novel approach based on coordinate descent (CD) for solving
the joint design problem, which guarantees monotonic conver-
gence of the original objective function and allows for finding
an optimum solution for any p ≥ 2. Moreover, this approach
can be used for discrete-phase signal design, resulting in a
waveform that can be directly implemented in a digital system,
as shown in [44] and [45]. Notably, [36] used CD framework
for designing waveforms in multiple input multiple output
(MIMO) radar systems. In contrast to this paper, in the current
study we consider the problem of mismatched filter design
together with the waveform design problem. The current study
also considers minimizing the MSE metric to reduce the
estimation error of the scattering coefficient, in addition to the
PSL/ISL metrics, which is not reported in [36]. Unlike [46]
that uses a gradient-based approach for MSE optimization,
this study proposes an Alternating Direction Method of Mul-
tipliers (ADMM)-based solution with monotonic convergence
properties. Furthermore, unlike [47] that focuses on slow-time
waveform and filter design based on ADMM, this study
designs fast-time waveform and filter pairs.

D. Contribution

In the present study, we focus on the two aforementioned
issues of blind range and autocorrelation sidelobe level reduc-
tion in pulse compression weather systems. Regarding the
former, we show that the adoption of an integrated sidelobe
level-based metric such as mismatched ISL can counteract
the influence of blind range on the optimization procedure,
which can lead to more refined outcomes following calibration
of the partial correlation outputs in the blind range. For the
latter issue, we formulate the optimization problems of joint
waveform and filter design for weather radar systems, using
mismatch PSL, mismatch ISL, and MSE objective functions.
We show that the mismatched PSL/ISL metrics do not require
noise variance estimation, while the MSE metric does. All
of them, however, will obtain small sidelobe levels in the
autocorrelation sidelobes. Following the description of the
aforementioned problems, we propose various optimization
techniques based on CD and ADMM to solve the problems
and obtain a pair of optimized waveform and filter. Then, using
the optimized waveform and filter pair, we evaluate the perfor-
mance of the chosen metric and its corresponding optimization
solution on actual weather radar data. The contributions of this
study is summarized as follows:
• The problem of joint waveform and filter design for

weather radar systems is formulated using mismatch
PSL, mismatch ISL, and MSE metrics. It is shown that
the mismatched PSL/ISL metrics do not require noise
variance estimation, while the MSE metric does.

• An optimization framework based on CD is proposed for
joint waveform and receive filter design using ℓp-norm
criteria. It has a monotonic convergence of the objective
function.
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• An ADMM-based optimization framework has been
proposed for the MSE metric, resulting in monotonic
improvement of the objective function.

• Partial correlation is used as an alternative to concatenat-
ing waveforms to reduce weather radar blind range. The
results show that using an integrated sidelobe level-based
metric such as mismatched ISL can counteract the
influence of blind range on the optimization procedure,
leading to more refined outcomes following calibration of
the partial correlation outputs in the blind range.

• Several numerical examples have been used to demon-
strate the proposed technique’s impact on real dual
polarized weather radar I and Q data in terms of esti-
mating the relevant weather parameters.

The current study assume that the coded pulse utilizes the
same bandwidth as the uncoded pulse. Additionally, since
the simulation is conducted in the digital domain, any range
misalignment between the convolved and sampled signals is
not taken into account. In other words, it is assumed that
the sampling process is ideal, and that the signal bandwidth
(and therefore range resolution) remains unchanged after
pulse compression. However, as mentioned in [48] and [49],
weather radars that use pulse compression typically require
range-oversampling processing in practice.

E. Organization and Notations

The rest of this paper is organized as follows. In Section II,
we formulate different optimization problems for waveform
and receive filter design which enables the use of pulse com-
pression in weather radar systems. We develop an algorithm
based on the ADMM framework in Section III to identify the
solution of joint waveform and filter design based on MSE
metric. In IV, we look at a PSL and ISL based metric to find
the solution to the optimization problem using CD framework.
In Section V, we cover a variety of numerical experiments
using both real radar data and simulated data to evaluate
the efficiency of the proposed algorithms. Finally, Section VI
concludes the paper.

Notation: Boldface upper case letters denote matrices, bold-
face lower case letters denote column vectors, and italics
denote scalars. Z, R and C denote the integer, real and
complex field, respectively. E{.} represents the mathematical
expectation, also known as the expected value or the mean.
Re(·) and Im(·) denote the real and imaginary part respec-
tively. arg(·) denotes the phase of a complex number. The
superscripts (·)T , (·)∗, and (·)H denote transpose, complex
conjugate, and conjugate transpose, respectively. X i, j denotes
the (i, j)th element of a matrix and xi denotes the i th element
of vector x. vec(x) is a column vector obtained by stacking all
the columns of x. Further, ∥x∥ is the l2 norm of the vector x.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The goal of this work is to bring advances in joint radar
waveform and filter design to the field of weather sensing
by using pulse compression to enable low-power and mobile
solutions. To this end, in this section we present the system

model and problem formulation required for signal design
using matched and mismatched filters.

Let Jk be N × N shift matrix which its (m, n)-th entry
(m = 1, 2, . . . , N , n = 1, 2, . . . , N ) is given by

Jk(m, n) =

{
1, m − n = k
0, m − n ̸= k.

(1)

Also, let x = [x1, x2, . . . , xN ]
T
∈ CN be the transmitted

fast-time radar code vector with N being the number of coded
sub-pulses (code length). Then, the received signal y ∈ CN

after sampling by Analog-to-digital converter (ADC) from the
range bin of interest is [46], [50], and [51],

y = α0x+
N−1∑

k=−N+1
k ̸=0

αkJkx

︸ ︷︷ ︸
interference caused by radar code

+ν, (2)

where α0 is a complex-valued scalar, and αk are proportional
to the reflectivity of the adjacent range bins illuminated by
the radar pulse compression code. In (2), ν ∼ N

(
0, σ 2

ν I
)

is the noise vector which we assume that it is uncorrelated
with the other signal-dependent terms. Further, we assume that
the scatterer coefficients {αk}k ̸=0 in (9) are independent of each
other and of ν, with

E{|αk |
2
} = ζ, k ̸= 0. (3)

The second term in (2) denotes interference caused by the
radar code. Note that, in the conventional weather radars
which do not employ pulse compression at the transmitter,
the received signal will not contain this term.

In weather radar systems, an important step towards ana-
lyzing the hydrometer phenomena is the estimation of α0; this
quantity is proportional to the reflectivity (of the scatterer)
attenuated along the return path to the radar receiver at the
range bin of interest. Suppose a linear finite impulse response
receive filter w ∈ CN is deployed on the receive side. Then
the output of the filter, corresponding to the maximum overlap,
can be obtained by calculating z = wH y. Depending on the
selection of w, matched and mismatched filtering approaches
can be used to estimate α0.

A. Matched Filtering

In this case, we set w = x, to obtain

z = xH y = α0xH x+
N−1∑

k=−N+1
k ̸=0

αkxH Jkx+ xHν. (4)

Given ∥x∥2
= 1, the estimate of α0 through matched filtering

is given by [46], [50], and [51],

α̂0 = xH y. (5)

This estimation requires the absence of sidelobes,∑N−1
k=−N+1

k ̸=0
αkxH Jkx, for the transmit waveform to ensure

enhanced estimation of the reflectivity. Formally, the
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performance of the estimator in (4) is determined by the
received SINR determined as follows

SINR =
|α0|

2

ζ
∑N−1

k=−N+1
k ̸=0

|xH Jkx|2 + σ 2
ν

. (6)

In (6), the term
∑N−1

k=−N+1
k ̸=0

|xH Jkx|2 is the ISL of the waveform

autocorrelation function which is a form of self-noise that
reduces the effectiveness of the reflectively estimation.

Towards minimizing the sidelobes, the following optimiza-
tion problem can be considered for the transmit waveform
design, minimize

x

N−1∑
k=1

|xH Jkx|2

subject to x ∈ �

(7)

where � is a set of constraints on the transmitting waveform,
which is defined mathematically in the next section, and
typically reflects the limits of high power amplifiers and digital
synthesizers [52].

The problem in (7) is the classic ISL minimization for the
radar systems, which has been well studied in several recent
papers. See [6], [14], [25], [28], [30], [32], [33], [34], [35],
[36], [53], [54], [55], [56], [57], [58], [59], and [60] and
references therein. Even-though a significant reduction in ISL
values for point targets can be achieved by using the meth-
ods proposed in the aforementioned literature, the remaining
sidelobes for distributed targets may still not be acceptable for
weather radar applications, as typically weather scatterers have
a wide-spatial and temporal distribution. In fact, unlike other
radar applications, weather sensing not only requires object
detection but also precise parameter estimation in order to
determine the weather type. As a result, a small sidelobe from
the transmit waveform can be aggregated over a wide range
of weather targets, resulting in a significant error in parameter
estimation.

B. Mismatched Filtering

The motivation behind the use of mismatched-filter-based
method is to have relatively larger filter lengths compared
to the transmitted sequence length so that the autocorrelation
sidelobe energy can be spread over larger lag coefficients [14].
This approach offers additional flexibility since the sequences
and filters can be separately optimized within a framework,
to obtain higher reduction in the self-noise term of the received
signal. Towards this, let us define

x̃ = [0T
M , xT , 0T

M ]
T , (8)

and let w̃ ∈ CÑ be the receive filter, with Ñ = 2M + N , with
M ∈ Z+. In this case, the received signal after filtering can
be obtained by

z̃ = α0w̃H x̃+
Ñ−1∑

k=−Ñ+1
k ̸=0

αkw̃H J̃k x̃+ w̃H ν̃, (9)

where J̃k is Ñ × Ñ shift matrix and can be defined similar
to (1), i. e., its (m, n)-th entry is 1, when m − n = k, and
0 otherwise. Further, ν̃ ∼ N

(
0, σ 2

ν̃ I
)
. The received SINR in

this case is

SINR =
|α0|

2
|w̃H x̃|2

w̃H Rw̃
, (10)

where

R = ζ

Ñ−1∑
k=−Ñ+1

k ̸=0

J̃k x̃̃xH J̃H
k + σ 2

ν̃ I. (11)

In this case, the instrumental variable estimate of α0 is given
by [46], [50], and [51],

α̂0 =
z̃

w̃H x̃
, (12)

and its MSE can be derived by [46],

MSE(α̂0) = E

{∣∣∣∣ z̃
w̃H x̃

− α0

∣∣∣∣2
}
=

w̃H Rw̃
|w̃H x̃|2

. (13)

Considering (10) and (13) we can readily observe that mini-
mizing the MSE is equivalent with maximizing SINR.

The optimum filter which enhances the estimation of α0 can
be obtained by solving the following optimization problem,

minimize
w̃

w̃H Rw̃
|w̃H x̃|2

, (14)

which yields to the following well-known closed-form expres-
sion minimum variance distortionless response (MVDR)
solution for the optimized w vector,

w̃⋆
= R−1̃x. (15)

However, the above MSE-based filter design approach neces-
sitates knowledge of σ 2

ν̃ , which may be difficult to obtain for
weather radar applications. Instead, the mismatch ISL and PSL
discussed in the sequel do not require this knowledge. The
use of a mismatched filter in radar signal processing typically
does not alter the range resolution. Nevertheless, it can lead
to a reduction in the SNR, which corresponds to the pulse
compression gain of the received signal. This is because the
mismatched filter is optimized for other signal processing
aspects, such as sidelobe reduction, which may come at the
expense of not achieving the maximum gain attainable by a
matched filter. Hence, while range resolution remains largely
unaffected, the performance of the radar system as a whole
can be affected by the use of a mismatched filter.

C. Mismatch ISL Minimization

A possible approach to enhance further the SINR is to
optimize mismatch ISL, defined by [51]

Mismatch ISL =
Ñ−1∑

k=−Ñ+1
k ̸=0

|w̃H J̃k x̃|2

|w̃H x̃|2
. (16)
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By this minimization, we guarantee that α̂0 in (12) is an
enhanced estimate of α. To see the reasoning, let us calculate

α̂0 − α0 =

Ñ−1∑
k=−Ñ+1

k ̸=0

αk
w̃H J̃k x̃
w̃H x̃

+
w̃H ν̃

w̃H x̃
. (17)

By defining Inverse Signal to Noise Ratio (ISNR),

ISNR =
∥w̃∥2

|w̃H x̃|2
, (18)

under white-noise assumption, the variance of the
noise-dependent term in (17) equals σ 2

ν̃ ISNR. This means
that when σ 2

ν̃ and αk are unknown, the minimization of the
data-independent term of the above estimator is a natural way
of minimizing the MSE. This can be obtained byminimize

x̃,w̃

∑Ñ−1
k=−Ñ+1

k ̸=0
|w̃H J̃k x̃|2

|w̃H x̃|2
subject to x ∈ �

(19)

This problem is essentially a joint design of transmit waveform
and receive filter weights, a problem which is studied in the
literature [46], [61], [62], [63], [64], [65], [66], [67], [68],
[69], [70], [71], [72]. Meanwhile, the MSE minimization can
also be interpreted as a joint design problem asminimize

x̃,w̃

w̃H Rw̃
|w̃H x̃|2

subject to x ∈ �

(20)

with R defined in (11). In the context of hydrometric esti-
mation in weather radar, the noise is weak compared to the
reflectivity of hydrometric scatters, i.e. ζ ≫ σ 2

ν̃ . Therefore,
minimizing the MSE can be reasonably achieved by solving
the problem 19. Besides, as earlier mentioned, the MSE
minimization requires prior information on the ambient noise,
which is hard to obtain in practice for weather applications
and thereby leads to a model mismatches. On the contrary,
the ISL approach avoids such an issue and could yield more
robust results especially when the noise information is barely
known.

D. Mismatch PSL Minimization

Another possible approach is to optimize the transmit wave-
form and its corresponding filter weights based on mismatch
PSL minimization that minimizes the maximum error in the
estimation of the reflectively parameter. The mismatch PSL
can be defined by [20] and [51],

Mismatch PSL =
Ñ−1
max

k=−Ñ+1
k ̸=0

|w̃H J̃k x̃|2

|w̃H x̃|2
. (21)

In this case, the optimization problem can be written as,minimize
x̃,w̃

max
k ̸=0

|w̃H J̃k x̃|2

|w̃H x̃|2
subject to x ∈ �

(22)

which is a non-convex min-max optimization problem.
The optimal solution for the problem in (22) can be

obtained using block coordinate descent (BCD) and bi-section
approaches [28], or Second-Order Cone Programming
(SOCP) [51].

E. Joint Waveform and Mismatch Filter Design Based on
ℓp-Norm Metric

Since the objective in (22) is nonsmooth and potentially the
problem is non-deterministic polynomial-time hard (NP-hard),
replacing it with a differentiable and smooth function may
provide higher quality and faster convergence results. Indeed,
it has been shown that the ℓp-norm of autocorrelation sidelobes
of the transmitting waveform is a very successful figure of
merit that allows to trade-off between good PSL and ISL via
different p ≥ 2 values [28], [57]. Motivated by this observa-
tion, we define a new metric based on ℓp-norm optimization
of transmit waveform and receive filter which is

minimize
x̃,w̃

Ñ−1∑
k=−Ñ+1

k ̸=0

|w̃H J̃k x̃|p

|w̃H x̃|2

subject to x ∈ �

(23)

By considering the above optimization problem, different
objective functions can be generated by changing the value of
p in (23). Precisely, p = 2 equals (19), and p→+∞ yields
the problem in (22). Thus, this problem can be considered as
a generalization form for mismatch ISL and PSL optimization
problems. Section IV of this paper discusses the solution
to (23), but before delving deeper into its details, let’s fist
consider the joint waveform and filter design problem based
on the MSE metric in the following section.

It’s worth noting that the waveform and filter design can be
done offline, and pre-optimized pairs can be used in a practical
radar system. Implementing this pair is as straightforward
as implementing a matched filter, except that mismatched
filter coefficients are used in the receive side instead of
matched filter coefficients. Therefore, a fast-convolutional type
algorithm can still be employed, where the optimized sequence
obtained from one of the proposed algorithms in this paper is
used as the transmit waveform, and the derived mismatch filter
from this paper is used as the receive filter.

III. ADMM-BASED WAVEFORM AND FILTER DESIGN
FOR MSE MINIMIZATION

A possible solution for the problem in (20) is to alterna-
tively optimize the transmit waveform and the receive filter
by keeping the other variable fixed [19]. In this case, the
design problem needs to have information about R, which is
considered to be obtained from a cognitive paradigm [73].
Some examples are the design algorithms referred to as
the CREW (cognitive receiver and waveform) methods [46],
which optimize the transmit sequence based on gradient solver
and compute the optimum filter based on the MVDR solution.
In this section, we propose a new solution to the optimization
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problem (20). The optimization problem in this case is:minimize
x̃,w̃

w̃H
(∑K

k=1 Jk x̃̃xH JH
k + σ 2I

)
w̃

|w̃H x̃|2
subject to x ∈ �∞

(24)

where �∞ = {x ∈ CN
| |xi | = 1, i = 1, . . . , N }. Using

the alternative optimization approach [19], for a fixed x̃, the
problem w.r.t w̃ is

minimize
w̃

w̃H Rw̃
w̃H x̃̃xH w̃

(25)

with R =
∑K

k=1 Jk x̃̃xH JH
k +σ 2I, which is the classical MVDR

problem and can be recast into{
minimize

w̃
w̃H Rw̃

subject to w̃H x̃ = 1
(26)

Thus, the closed form solution of w̃ is given by

w̃⋆
= R−1̃x, (27)

and any scaled w̃⋆ is also optimal. For a fixed w̃, the problem
w.r.t x̃ can be written asminimize

x̃

x̃H P̂ x̃
x̃H Q̂x̃

subject to |xi | = 1,

(28)

where P̂ =
∑K

k=1 JH
k w̃w̃H Jk +

σ 2

N ∥w̃∥
2 and Q̂ = w̃w̃H .

Recall that x̃ = [0T
M , xT , 0T

M ]
T , the problem in (28) is

essentially to optimize x. Therefore, it can be written asminimize
x

xH Px
xH Qx

subject to |xi | = 1,

(29)

with P = [P̂]M+1:M+N ,M+1:M+N and Q =

[Q̂]M+1:M+N ,M+1:M+N . Further, this problem can be written
equivalently by introducing slack variables as

minimize
x,y,z

yH Py
zH Qz

subject to |xi | = 1
x̃ = y
x̃ = z.

Its Lagrangian function is

L(x, y, z, u, v)=
yH Py
zH Qz

+
ρ1

2
∥y− x+ u∥2

+
ρ2

2
∥z− x+ v∥2.

(30)

By deploying the ADMM framework, at the ℓ-th iteration, the
ADMM update rules are as follows:

xℓ+1 = arg min
|xi |=1

L(x, yℓ, zℓ, uℓ, vℓ) (a)

yℓ+1 = arg min
y
L(xℓ+1, y, zℓ, uℓ, vℓ) (b)

zℓ+1 = arg min
z
L(xℓ+1, yℓ+1, z, uℓ, vℓ) (c)

uℓ+1 = uℓ + yℓ+1 − xℓ+1 (d)

vℓ+1 = vℓ + zℓ+1 − xℓ+1. (e)

(31)

In the following, we will focus on solving (31)-(a)(b)(c). For
notation simplicity, we ignore the subscript ℓ and ℓ+1, which
can be inferred according to the context.

The problem in 31(a) reduces to

minimize
x

xH x− Re
(
aH x

)
subject to |xi | = 1, (32)

where a = 2
ρ1+ρ2

[
ρ1(y+ u)+ ρ2(z+ v)

]
. Since xH x = N , the

optimal solution to problem (32) is

x = e j arg(a). (33)

Similarly, problem (31)(b) can be further written as

minimize
y

yH P̃y+ Re
(
bH y

)
with P̃ = P

zH Qz +
ρ1
2 I ≻ 0 and b = ρ1(u− x). The closed form

solution is

y = −
1
2

P̃−1b. (34)

Finally, the problem (31)(c) can be recast as

minimize
z

(
zH Q̃z

)−1
+

ρ2

2
zH z+ Re

(
cH z

)
(35)

with Q̃ = Q
yH Py ⪰ 0 with rank 1 and c = ρ2(v− x). By letting

Q̃ = UH3U with UUH
= UH U = I, c̃ = Uc, and z̃ = Uz,

problem (35) can be equivalently expressed as

minimize
z̃

(
z̃H3z̃

)−1
+

ρ2

2
z̃H z̃+ Re

(
c̃H z̃

)
. (36)

Since rank
(
Q̃
)
= 1, we know that 3 = diag

(
{λi }

N
i=1

)
with

λ1 =
∥w̃∥2

yH Py and λ2 = · · · = λN = 0. Thus, the objective
function of problem (35), denoted by f

(
z̃
)
, can be expressed

as

f
(
z̃
)
=

{(
λ1
∣∣z̃1
∣∣2)−1

+
ρ2

2

∣∣z̃1
∣∣2 + Re

(
c̃∗1 z̃1

)}
+

{ρ2

2
ẑH ẑ+ Re

(
ĉH ẑ

)}
, (37)

where z̃i is the i-th element of z̃, ẑ =
[
z̃2, . . . , z̃N

]T and ĉ =[
c̃2, . . . , c̃N

]T .
Therefore, problem (36) can be decomposed into two inde-

pendent problems. The first problem is as follows:

minimize
z̃1

(
λ1
∣∣z̃1
∣∣2)−1

+
ρ2

2

∣∣z̃1
∣∣2 + Re

(
c̃∗1 z̃1

)
. (38)

Since Re
(
c̃∗1 z̃1

)
≥ −

∣∣c̃1
∣∣∣∣z̃1

∣∣ with the equality achieved when
arg
(
z̃1
)
= π + arg

(
c̃1
)
. Then, solving problem (38) is essen-

tially solving

minimize
z̃1

(
λ1
∣∣z̃1
∣∣2)−1

+
ρ2

2

∣∣z̃1
∣∣2 − ∣∣c̃1

∣∣∣∣z̃1
∣∣. (39)

Let t =
∣∣z̃1
∣∣ ≥ 0 and g(t) = 1

λ1t2 +
ρ2
2 t2
−
∣∣c̃1
∣∣t , then the

first-order optimality condition is

ρ2t4
−
∣∣c̃1
∣∣t3
−

2
λ1
= 0. (40)
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According to Descartes’ rule of signs, we obtain the only
positive root of the quartic polynomial equation. Hence, the
optimal solution is z̃1 = −te j arg(c̃1).

The second problem is as follows:

minimize
ẑ

ρ2

2
ẑH ẑ+ Re

(
ĉH ẑ

)
, (41)

which has a closed form solution ẑ = − 1
ρ2

ĉ. Finally, the
optimal solution of problem (36) is

z̃ =
[
−te j arg(c̃1),−

c̃2

ρ2
, . . . ,−

c̃N

ρ2

]T

, (42)

and the optimal solution to problem (35) is thereby is z =
UH z̃. The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 ADMM - Monotonic MSE Improvement for
Joint Waveform and Filter Design
Input: ρ1, ρ2
Output: x, w̃

1: set n← 0
2: repeat
3: R =

∑K
k=1 Jk x̃̃xH JH

k + σ 2I
4: w̃n+1 = R−1̃xn,

5: P̂ =
∑K

k=1 JH
k w̃n+1w̃H

n+1Jk +
σ 2

N ∥w̃n+1∥
2

6: Q̂ = w̃n+1w̃H
n+1

7: P = [P̂]M+1:M+N ,M+1:M+N and Q =

[Q̂]M+1:M+N ,M+1:M+N

8: set ℓ← 0
9: repeat

10: aℓ =
2

ρ1+ρ2

[
ρ1(yℓ + uℓ)+ ρ2(zℓ + vℓ)

]
11: xℓ+1 = e j arg(aℓ)

12: P̃ = P
zH
ℓ Qzℓ
+

ρ1
2 I

13: bℓ = ρ1(uℓ − xℓ+1)

14: yℓ+1 = −
1
2 P̃−1bℓ

15: Q̃ = Q
yH

ℓ+1Pyℓ+1 = UH3U
16: c̃ = ρ2U(vℓ − xℓ+1)

17: Solve ρ2t4
−
∣∣c̃1
∣∣t3
−

2
λ1
= 0 and find optimal t

18: z̃ =
[
−te j arg(c̃1),− c̃2

ρ2
, . . . ,− c̃N

ρ2

]T

19: zℓ+1 = UH z̃
20: uℓ+1 = uℓ + yℓ+1 − xℓ+1
21: vℓ+1 = vℓ + zℓ+1 − xℓ+1
22: ℓ← ℓ+ 1
23: until convergence
24: n← n + 1
25: until convergence

IV. CD-BASED WAVEFORM DESIGN AND MISMATCH
ISL/PSL MINIMIZATION

In this part, we consider the following optimization problem

Px̃,w̃


minimize

x̃,w̃

Ñ−1∑
k=−Ñ+1

k ̸=0

|w̃H J̃k x̃|p

|w̃H x̃|2

subject to x ∈ �h

(43)

where p ≥ 2, h ∈ {L ,∞}, and the constraints x ∈ �∞
and x ∈ �L identify continuous alphabet and finite alphabet
codes, i. e., �∞ = {x ∈ CN

| |xn| = 1, n = 1, . . . , N }, and
�L = {x ∈ CN

| xn ∈ {1, ej 2π
L , . . . , ej 2π(L−1)

L }, n = 1, . . . , N },
respectively. Note that in the optimization problem Px̃,w̃,
by choosing p = 2, the resulting optimized filter and sequence
will have a small ISL, and by minimizing the ℓp-norm when
p→+∞, the optimized filter and sequence will have a small
PSL. To obtain the optimum solution of (43), we observe that
the constraints are separable with respect to the optimization
variables x̃, and w̃. In this case, one possible solution is to use
the classical alternating optimization method [19], where we
iteratively optimize for w̃ maintaining x̃ fixed and vice-versa.

A. Optimization of Filter

By keeping x̃ fixed, the optimization problem is

Pw̃

min
w̃

Ñ−1∑
k=−Ñ+1

k ̸=0

|w̃H J̃k x̃|p

|w̃H x̃|2 (44)

By using MM framework, we can majorize |w̃H J̃k x̃|p by a
quadratic function locally [57].

Lemma 1: Let f (x) = x p with p ≥ 2 and x ∈ [0, t]. Then
for any given x0 ∈ [0, t), f (x) is majorized at x0 over the
interval [0, t] by

u(x) = ax2
+

(
px p−1

0 − 2ax0

)
x + ax2

0 − (p − 1)x p
0 (45)

with

a =
t p
− x p

0 − px p−1
0 (t − x0)

(t − x0)
2 . (46)

Proof: See [57].
Let us define the operator (⊛) to denote the correlation. The
mismatched filter output at lag k is defined as

(w̃ ⊛ x̃)k ≡ r̃k = w̃H J̃k x̃, (47)

k ∈ {−M − N + 1, . . . , N + M − 1}. Given |̃r (ℓ)
k | at the ℓ-th

iteration, according to Lemma 1, |̃rk |
p is majorized at |̃r (ℓ)

k |over
[0, t] by

u(|̃rk |) = τk |̃rk |
2
+ λk |̃rk | + γk, (48)

where1

τk =

t p
− |̃r (ℓ)

k |
p
− p|̃r (ℓ)

k |
p−1
(

t − |̃r (ℓ)
k |

)
(

t − |̃r (ℓ)
k |

)2 , (49)

λk = p|̃r (ℓ)
k |

p−1
− 2τk |̃r

(ℓ)
k |, (50)

γk =

(
τk |̃r

(ℓ)
k |

2
− (p − 1)|̃r (ℓ)

k |
p
)
. (51)

As illustrated above, (48) is the local majorizer over [0, t], and
we need to find a value of t so that the objective is guaranteed

to decrease. Now, let us observe that, |̃rk | ≤

(∑
k ̸=0 |̃r

(ℓ)
k |

p
) 1

p
.

1ak and bk depend on ℓ, but the dependency is not depicted for the
notational simplicity.
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Therefore, we can choose t =
(∑

k ̸=0 |̃r
(ℓ)
k |

p
) 1

p
in (49), and

denoting by τk , λk and γk the resulting coefficients, a surrogate
function to |̃rk |

p can be written as,∑
k ̸=0

(
τk |̃rk |

2
+ λk |̃rk | + γk

)
. (52)

Thus, the optimization problem is

minimize
w̃

∑
k ̸=0

τk |̃rk |
2
+ λk |̃rk |γk

|w̃H x̃|2
(53)

Before proceeding further, notice that the second term
in (52) can be majorized by [57],∑

k ̸=0

λk |̃rk | ≤
∑
k ̸=0

λkRe

{̃
r∗k

r̃ (ℓ)
k

|̃r (ℓ)
k |

}
(54)

where λ0 = 0. Consequently, the optimization problem is

min
w̃

∑
k ̸=0

(
τk
∣∣w̃H J̃k x̃

∣∣2 + λkRe
{
(w̃H J̃k x̃)∗

r̃ (ℓ)
k

|̃r (ℓ)
k |

}
+ γk

)
|w̃H x̃|2

(55)

which is a nonconvex fractional optimization problem. An effi-
cient solution that directly obtains solution of (55), is to
sequentially optimize the filter coefficients by using the CD
framework which is discussed in the following.

Let wd , d ∈ {1, . . . , Ñ } be the only entry variable of
vector w̃ while other entries are held fixed and stored in
vector w̃−d ≜ [w1, . . . , wd−1, 0, wd+1, . . . , wÑ ]

T . In this case,
to simplify the objective function in (55), we rewrite it based
on the variable wd by the following steps. It can be shown
that (

w̃H J̃k x̃
)∗
= κ1kwd + κ2k . (56)

where

κ1k =

{
x∗Ñ−(k−d)

d ≤ k < d + Ñ

0 otherwise
(57)

and

κ2k = (w̃−d ⊛ x̃)k . (58)

Thus, by omitting subscripts k for the sake of notational
simplicity from κ1k and κ2k , and considering wd = ρde jθd , it
would be straightforward to show that,

|w̃H J̃k x̃|2 = |κ1|
2ρ2

d + κ1κ
∗

2 ρde jθd + κ∗1 κ2ρde− jθd + |κ2|
2.

(59)

Further, we observe that

Re
{
(w̃H J̃k x̃)∗

r̃ (ℓ)
k

|̃r (ℓ)
k |

}
=

1

|̃r (ℓ)
k |

Re
{
(κ1ρde jθd + κ2)̃r

(ℓ)
k

}
=

1

2|̃r (ℓ)
k |

(
(κ∗1 ρde− jθd + κ∗2 )̃r (ℓ)

k + (κ1ρde jθd + κ2)̃r
∗(ℓ)
k

)
.

(60)

Thus, the nominator in the objective function (55) can be
explicitly written based on wd as,

∑
k ̸=0

(
τk
∣∣w̃H J̃k x̃

∣∣2 + λkRe

{
(w̃H J̃k x̃)∗

r̃ (ℓ)
k

|̃r (ℓ)
k |

}
+ γk

)
= η̃1ρ

2
d + η̃2ρde jθd + η̃3ρde− jθd + η̃4, (61)

with

η̃1 =
∑
k ̸=0

τk |κ1|
2,

η̃2 =
∑
k ̸=0

{
τkκ1κ

∗

2 +
λk

2|̃r (ℓ)
k |

κ∗1 r̃ (ℓ)
k

}
,

η̃3 = η̃∗2,

η̃4 =
∑
k ̸=0

{
τk |κ2|

2
+

λk

2|̃r (ℓ)
k |

(
κ∗2 r̃ (ℓ)

k + κ2̃r∗(ℓ)k

)
+ γk

}
. (62)

Similarly, it would be easy to show(
w̃H x̃

)∗
= µ1wd + µ2, (63)

where µ1 = x∗d , and µ2 = x̃H w̃−d . Consequently,

|w̃H x̃|2 = µ̃1ρ
2
d + µ̃2ρde jθd + µ̃3ρde− jθd + µ̃4, (64)

where

µ̃1 = |µ1|
2, (65)

µ̃2 = µ1µ
∗

2, (66)
µ̃3 = µ̃∗2, (67)

µ̃4 = |µ2|
2. (68)

Thus, with respect to ρd and θd , the optimization problem is

Pρd ,θd


minimize

ρd ,θd

f (ρd , θd)

subject to ρd ∈ R
θd ∈ [0, 2π)

(69)

where, f (ρd , θd) ≜ f1(ρd ,θd )

f2(ρd ,θd )
, and,

f1(ρd , θd) ≜ η̃1ρ
2
d + η̃2ρde jθd + η̃3ρde− jθd + η̃4,

f2(ρd , θd) ≜ µ̃1ρ
2
d + µ̃2ρde jθd + µ̃3ρde− jθd + µ̃4. (70)

Note that η̃1, η̃4, µ̃1 and µ̃4 are real values. On the other hands
η̃2 with η̃3 and µ̃2 with µ̃3 are complex conjugate variables,
therefore we encounter with a real function. To design θd , and
ρd , one possible solution is to alternatively solve Pρd ,θd , where
we first optimize for θd keeping ρd fixed and vice-versa.

In this case, the optimal θ ⋆
d can be calculated by finding

real roots of the first order derivative of the objective function
and evaluating the objective value in these points and the
boundaries. In this regards the derivative of f (ρd , θd) with
respect to θd can be written as,

∂ f (ρd , θd)

∂θd
=

∂ f1(ρd ,θd )

∂θd
f2(ρd , θd)−

∂ f2(ρd ,θd )

∂θd
f1(ρd , θd)

f 2
2 (ρd , θd)

. (71)
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From (70) it can be easily shown that,

∂ f1(ρd , θd)

∂θd
= j (̃η2ρde jθd − η̃3ρde− jθd ),

∂ f2(ρd , θd)

∂θd
= j (µ̃2ρde jθd − µ̃3ρde− jθd ). (72)

Substituting (70) and (72) in (71) and after straight-forward
mathematical manipulations, it can be shown that,

∂ f (ρd , θd)

∂θd
=

e− jθ (v2e j2θ
+ v1e jθ

+ v0)

f 2
2 (ρd , θd)

(73)

where,

v2 ≜ jρd((̃η2µ̃1 − η̃1µ̃2)ρ
2
d + η̃2µ̃1 − η̃1µ̃2))

v1 ≜ v∗2

v0 ≜ j2ρ2
d (̃η2µ̃3 − η̃3µ̃2)ρ

2
d)

(74)

Using the slack variable z ≜ e jθ , the critical points can be
achieved by obtaining the roots of second degree polynomial
of v2z2

+ v1z + v0 = 0. Let us assume that z1 and z2 be the
roots of the aforementioned polynomial function. Therefore
the extremum point of f (ρd , θd) with respect to θd is θ1,2 ≜
− j ln (z1,2) and subsequently the optimized phase is,

θ ⋆
d = arg min

θ

{
f (ρd , θ) | θ ∈ θ1,2

}
. (75)

Kindly note that since f (ρd , θd) depends on sin(θd) and
cos(θd); since these are periodic in [0, 2π), the objective
function also is periodic. Thus, because of the periodicity,
we can choose the principal angles as θ ⋆

d .
Similar to θd , the optimal ρ⋆

d can be calculated by finding
real roots of the first order derivative of the objective function
with respect to θd and evaluating the objective value in these
points and the boundaries. Updating the phase with optimum
solution (θd = θ ⋆

d ) we have,

∂ f (ρd , θ
⋆
d )

∂ρd
=

∂ f1(ρd ,θ⋆
d )

∂ρd
f2(ρd , θ

⋆
d )−

∂ f2(ρd ,θ⋆
d )

∂ρd
f1(ρd , θ

⋆
d )

f 2
2 (ρd , θ

⋆
d )

(76)

From (70) it can be easily shown that,

∂ f1(ρd , θ
⋆
d )

∂ρd
= 2η̃1ρd + η̃2e jθ⋆

d + η̃3e− jθ⋆
d ,

∂ f2(ρd , θ
⋆
d )

∂ρd
= 2µ̃1ρd + µ̃2e jθ⋆

d + µ̃3e− jθ⋆
d . (77)

Substituting (70) and (77) to (76) and do some mathematical
manipulation it can be shown that,

∂ f (ρd , θ
⋆
d )

∂ρd
=

u2ρ
2
d + u1ρd + u0

f 2
2 (ρd , θ

⋆
d )

(78)

where,

u2 ≜ (̃η1µ̃2 − η̃2µ̃1)e jθ⋆
d + (̃η1µ̃3 − η̃3µ̃1)e− jθ⋆

d

u1 ≜ 2(̃η1µ̃4 − η̃4µ̃1)

u0 ≜ (̃η2µ̃4 − η̃4µ̃2)e jθ⋆
d + (̃η3µ̃4 − η̃4µ̃3)e− jθ⋆

d (79)

The extremum points with respect to ρd can be obtain by
calculating the roots of the following second degree polyno-
mial function, u2ρ

2
d + u1ρd + u0 = 0. Let ρ1 and ρ2 be the

roots of the aforementioned polynomial function. Since 0 is
the lower bound of ρd (ρd ≥ 0), another critical point of the
objective function with respect to ρd is ρ3 = 0. Therefore in
total the critical points of f (ρd , θ

⋆
d ) with respect to ρd are

{ρ1, ρ2, ρ3}. Subsequently the optimized amplitude is,

ρ⋆
d = arg min

ρ

{
f (ρ, θ ⋆

d ) | ρ ∈ ρ1,2,3
}
. (80)

Please note that, since ρ3 = 0 is one of the critical points,
therefore we have at least one solution for ρd and the opti-
mization become not infeasible.

Once ρ⋆
d is obtained, w̃ will be updated by w⋆

d = ρ⋆
de jθ⋆

d .
Remark 1: For the special case p = 2, it would be straight-

forward to show that the optimization problem can be cast
to the form of (25), with R =

∑Ñ
k=1 JkxxH JH

k . In this case,
MVDR can directly find the optimal w̃⋆

= R−1x.

B. Optimization of Waveform

For a fixed w̃, the optimization problem is

Px̃


minimize

x̃

Ñ−1∑
k=−Ñ+1

k ̸=0

|w̃H J̃k x̃|p

|w̃H x̃|2

subject to x ∈ �h

(81)

we note that the problem in (81) is a special case of (44) under
�∞, and its solution can be achieved by using procedures
identical to those used to find θ ⋆

d . As a result, only the solution
to (81) under the constraint of a discrete phase waveform,
namely �L , is provided in this section. In this instance, the
problem can be solved immediately as shown in the details
below using the CD framework and fast Fourier transform
(FFT) operator.

Let xd = e jφd , d ∈ {1, . . . , N } be the only entry variable
of vector x while other entries are held fixed and stored in
vector x−d ≜ [x1, . . . , xd−1, 0, xd+1, . . . , xN ]

T , and x̃−d =

[0T
M , xT

−d , 0T
M ]

T . Then,

|w̃H J̃k x̃|p = |a1ke jφd + a2k |
p (82)

where

a1k =

{
w∗Ñ−(k−d)

d ≤ k < d + Ñ

0 otherwise
(83)

and

a2k = (̃x−d ⊛ w̃)k . (84)

Also,

|w̃H x̃|2 = |b1e jφd + b2|
2, (85)

where b1 = w∗d , and b2 = w̃H x̃−d . In this case, the optimiza-
tion problem with respect to the phase variable φd by removing
the constant terms is

Pφd


min
φd

Ñ−1∑
k=−Ñ+1

k ̸=0

|a1ke jφd + a2k |
p

|b1e jφd + b2|
2

s.t. φd ∈ {1, ej 2π
L , . . . , ej 2π(L−1)

L }

(86)
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Note that in the optimization problem (86), all the discrete
points lie on the boundary of the optimization problem; hence,
all of them are critical points for the problem. Interestingly,
the solution to the aforementioned problem can be obtained
efficiently using an FFT operation due to the fact that the
objective function represents the modulus of the L-point
discrete Fourier transform (DFT) of a sequence associated with
coefficients a1k , a2k , b1, and b2. Precisely, we find the index
l⋆ by

l⋆ = arg min
l=1,...,L

Ñ−1∑
k=−Ñ+1

k ̸=0

|FL{a1k, a2k}|
p

|FL{b1, b2}|
2 , (87)

where FL indicates L-point FFT operation. Hence, φ⋆
d =

2π(l⋆−1)

L and x⋆
d = e jφ⋆

d .
The summary of the proposed method is given by

Algorithm 2, where, x̃⋆ and w̃⋆ are the optimized solution.
To obtain this solution, the algorithm considers an initial
waveform x̃(0) and its corresponding matched filter coefficient
w̃(0)
= (̃x(0))H as the initial filter. Then, at each iteration,

it alternates between solving the problems of Pw̃ and Px̃.
This procedure is repeated until all the algorithm examines
the convergence metric for the objective function.

Algorithm 2 CD - ISL/PSL-Based Joint Waveform and Mis-
match Filter Design
Input: value of p, initial waveform, and filter coefficients
Output: x̃⋆, w̃⋆

1: set n← 0
2: repeat
3: set d ← 1
4: repeat
5: Find ρ⋆

d by solving Pρd ;
6: Find θ ⋆

d by solving Pθd ;
7: w⋆

d = ρ⋆
de jθ⋆

d ;
8: d ← d + 1
9: until d = Ñ

10: set d ← 1
11: repeat
12: l⋆ = arg minl=1,...,L

∑Ñ−1
k=−Ñ+1

k ̸=0

|FL {a1k ,a2k }|
p

|FL {b1,b2}|
2 ;

13: φ⋆
d =

2π(l⋆−1)

L ;
14: x⋆

d = e jφ⋆
d ;

15: d ← d + 1
16: until d = N
17: n← n + 1
18: until convergence

V. NUMERICAL EXAMPLES

In this section, we show through numerical examples how
to effectively employ the pulse compression methodology in
a weather radar system using the suggested optimized wave-
forms, and the related receive filter. In order to achieve this,
we first evaluate the performance of the proposed algorithms in
terms of convergence behavior and the quality of the solutions.
We then evaluate the results on real weather radar time series

(I and Q), by analyzing the reflectivity, spectrum width,
correlation coefficient, and differential phase.2

A. Convergence Behaviour and Autocorrelation Sidelobes

Figure 1 illustrates the convergence behaviour and autocor-
relation functions of the waveforms obtained by algorithms 1
and 2, which are herein referred to as ADMM and CD,
respectively. We set N = 64 and M = 128 (i.e., the filter
length Ñ = 2 × M + N = 320), and run the algorithms for
1000 iterations to obtain the convergence curve shown in this
figure. The initial sequence for the curves in this figure was
a random polyphase code, and that was identically used for
both ADMM and CD methods. For ADMM, we use ρ1 = 16,
ρ2 = 40; and for CD, we show the results for the cases
p = 2, and p = 6. Additionally, the two design algorithms are
constrained to constant modulus codes, such that the resultant
waveforms would not cause performance degradation due to a
potential distortion from transmit power amplifier nonlinearity.

Despite the fact that CD and ADMM used different objec-
tive functions in this study, Figure 1a shows a monotonic
decrement of the objective value with regards to the number
of iterations. We explicitly solve the problem (20) using the
ADMM approach, but (43) using the CD method, which
alters the objective function based on the value of p chosen.
Figure 1b demonstrates small correlation levels for the opti-
mized sequences by both ADMM and CD approaches. The
areas outside of the highlighted area display the correlation
function’s extension area, which is related to the receive filter
length, that is considered to be longer than the sequence
length in this study. Note that, in the event when p = 6,
CD obtains a flat correlation level for the sidelobes, that is
due to the mismatch PSL minimization. Additionally, CD with
p = 2 has acquired extremely low correlation sidelobe
values. As a benchmark, the autocorrelation functions of the
method reported in [53] and [25], which are referred to
as CAN and Gradient Descent, respectively, together with
the autocorrelation function of the initial sequence are also
shown in this figure. For the Gradient Descent technique [25],
we gradually increase the p values from 2 to 22, 23, 24, and
26 as suggested in [28] to obtain very small values in PSL.
We also choose a certain amount of lags to be minimized for
the Gradient Descent technique, so that the extra degree of
freedom offers a very low sidelobe level in an area near the
main peak of objects. This is critical for weather applications
because sidelobes can introduce uncertainty into reflectivity
calculations. We precisely adjust the weight factor to one for
the 62 lags around the main peak of the autocorrelation and
keep the weight at zero for the remainder of the Gradient
Descent method.

B. Reflectivity Estimation Error

The dynamic range of precipitation reflectivity in weather
radar applications is relatively high, sometimes surpassing
55 dBZ [74]. In this case, the calculation of the reflectiv-
ity value will be distorted by waveforms that do not have

2We omit the effects of alphabet size (L) in the numerical results without
sacrificing generality and use the case where the alphabet size is not limited.
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Fig. 1. (a) Convergence behavior of the proposed algorithms 1 and 2 and
(b) Autocorrelation functions of the waveforms obtained by algorithms 1
and 2, with 200 iterations for N = 64 and M = 128. The autocorrelation
function of the initial sequence and an optimized sequence that is obtained.

extremely low correlation sidelobes after pulse compression.
In order to demonstrate this influence on the designed wave-
form, we consider a weather radar with maximum range of
30 km and range resolution 31.25 m. We convolve each of the
optimized waveforms from the earlier categories of ADMM,
CD (p = 2), CD (p = 6), CAN, and Gradient Descent with a
signal containing mask, which is built with certain reflectivity
values that must be estimated after pulse compression. Then,
we convolve the obtained uncompressed samples with the
optimized filter coefficients. The results, which are displayed
in Figure 2, reveal that only CD (p = 2) was able to
closely match the mask. As to the mask, we consider three
range intervals3 of 4 km to 7 km, 7.003 km to 14 km, and
14.003 km to 25 km, with three distinct reflectivity values4

levels of 25 dBZ, 40 dBZ, and 10 dBZ, respectively. Figure 2a
shows how the jumps between the reflectivity levels in this
simulated environment have had a substantial impact on the
estimated level of the reflectivity, emphasizing the necessity
of simultaneous waveform and filter optimization for avoiding
this effect.

To demonstrate the impact of pulse compression on the
Doppler domain, we also take into account a second pulse
that was returned from the simulated scene with a similar
reflectivity in the amplitude but a different phase value in
every region. Accordingly, the regions one, two, and three
have phase differences of − π

12 , π
6 , and 0 radian, respectively.

Figure 2b demonstrates that waveform correlation sidelobes
can have an adverse effect not only on the reflectivity levels,

3The initial range interval and the issue with the blind range of the
pulse-compression radars is covered in the following section.

4The reflectivity Z (in units of mm6/m3) commonly span many orders of
magnitude, and hence a logarithmic scale dBZ = 10 log10 Z is used.

Fig. 2. Reflectivity level estimation by performing pulse compression based
on ADMM, CD (p = 2), CD (p = 6), CAN, and Gradient Descent
waveforms. (a) Reflectivity levels. (b) Phase. The figure shows only CD
(p = 2) due to very low correlation sidelobes is able to closely match the
mask.

Fig. 3. Application of partial correlation for reducing a pulse compression
radar’s blind range. The gray background indicates the area that is blind
to radar because the receiver is turned off during the transmission. The
full correlation demonstrates the assumption that the receiver was turned on
during the transmission time, allowing for the capture of all reflections. Partial
correlation indicates the possibility of identifying the reflection in the blind
range, given that some reflections are received after the gray area when the
receiver is turned on.

but also on the phase of the reflectivity as well. Note that
the phase evaluation is only valid in the highlighted area;
elsewhere, noise affects the phase, where there is no signal
reflection in the simulation.

C. Blind Range Suppression

Figure 3 illustrates the use of partial correlation to reduce
blind range for a waveform with length N = 289 that results
in 9.0313 km of blind range in a radar with range resolution
31.25m. The reflectivity inside the blind range can be partially
identified when employing partial correlation with CD or CAN
techniques. However, CD with optimized waveform and filter
follows more precisely the mask as indicated in this figure.
For this figure, the initial waveform for both CD and CAN
is the Px code [75], and the mismatch filter length was kept
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TABLE I
TECHNICAL SPECIFICATIONS OF THE WEATHER RADAR USED FOR RECORDING I AND Q DATA

Fig. 4. Assessing the utility of the optimized waveform and subpluse-filter pair based on horizontal reflectivity of real data from ELDES; (a) indicates
reflectivity (dBZ) of real weather data as the benchmark that was recorded on September 30, 2022, in Florence, Italy, during a time of rain. The remaining
images represent the impact of applying pulse compression to real data reflectivity (dBZ) using (b) CAN, (c) Gradient Descent, (d) ADMM, (e) CD (p = 2),
and (f) CD (p = 6).

identical to the code length (M = 0). Note that the gain-loss
for the partially decoded signal is calculated by comparing
the amplitude of the partially decoded signal to that of the
full decoded signal. The resulting value is used as a calibration
factor and applied to the partially decoded signal (more details
for gain-loss calibration can be found in [15]).

D. Real Data

In this section, we evaluate the effectiveness of the
enhanced waveform and subpulse-filter combinations by ana-
lyzing real-world weather data from ELDES (https://www.
eldesradar.com/). The data was collected during a period of
heavy rainfall in Florence, Italy, on September 30, 2022. The

principle radar’s specifications are listed in Table I, and further
information about it can be found in [76]. The collected I and
Q data are obtained from an uncoded pulse with a resolution
31.25m. In order to replicate the effects of pulse compression
on these observations, we convolve the optimized waveform
(designed in the previous section) with the echoes captured by
the radar when transmitting an uncoded pulse. The acquired
uncompressed samples are then convolved with the optimized
filter coefficients.5 Therefore, we assess the effectiveness of
the optimized waveform and subpluse-filter pair using real data
from the aforementioned system.

5The code length N = 64, filter length Ñ = 320, and all the other algorithm
parameters are identical to those used in the first part of the numerical results.
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Fig. 5. Assessing the radial velocity; (a) Benchmark, (b) CAN, (c) Gradient Descent, (d) ADMM, (e) CD (p = 2), and (f) CD (p = 6).

Fig. 6. Reflectivity level estimation by performing pulse compression on real
data at angle cut 7.0807 degree, based on ADMM, CD (p = 2), CD (p = 6),
CAN, and Gradient Descent waveforms. (a) Reflectivity levels. (b) Radial
velocity. The figure shows only CD (p = 2) due to very low correlation
sidelobes is able to closely match the benchmark.

In Figure 4, we present the analysis of horizontal reflectivity
values obtained from the dataset “IQP2227223270U.003”. The
results clearly indicate that each of the described methods

introduces deviations from the benchmark reflectivity image.
These deviations manifest as artifacts that appear in different
regions of the image. When partial correlation is applied in the
blind range region, these artifacts become more pronounced.
This is due to the nature of partial correlation, which can
introduce additional distortions and inconsistencies in the
reflectivity image. To mitigate these artifacts, one possible
approach is to use an uncoded short pulse specifically designed
for the blind range, while employing a long coded pulse for
the remaining ranges. This combination can help reduce the
impact of artifacts in the blind range region. However, it’s
important to note that even when utilizing a long coded pulse,
the range sidelobes of the pulse and the receive filter can still
contribute to the generation of artifacts. These artifacts arise
from the side effects of the pulse compression process and the
characteristics of the receive filter. To minimize these artifacts,
it is crucial to select a waveform and filter pair that exhibit
smaller correlation sidelobes. Among the methods analyzed
in this paper, CD (p = 2) demonstrates a closer match to the
benchmark reflectivity values. This indicates that CD (p = 2)
has waveform and filter characteristics that result in smaller
correlation sidelobes, leading to a reduction in artifacts and a
more faithful representation of the reflectivity image.

To support this observation, we calculate the difference
between the reflectivity values of each image and the bench-
mark for the entire available dataset. The norm of this
difference was used as the MSE of the method for both hori-
zontal and vertical polarization, as shown in Tables II and III,
respectively. The results clearly demonstrate that CD with
p = 2 consistently exhibits the lowest MSE, indicating that
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Fig. 7. Differential phase; (a) Benchmark, (b) CAN, (c) Gradient Descent, (d) ADMM, (e) CD (p = 2), and (f) CD (p = 6).

TABLE II
MSE OF THE HORIZONTAL REFLECTIVITY VALUES FOR DIFFERENT FILTER AND WAVEFORM PAIRS

TABLE III
MSE OF THE VERTICAL REFLECTIVITY VALUES FOR DIFFERENT FILTER AND WAVEFORM PAIRS

the proposed methodology can effectively produce reflectivity
values that closely match the benchmark.

Based on the results of the experiment on real data, one can
conclude that mismatched ISL is the most reliable or robust

metric for designing waveform and filter pairs in weather
radar applications. The CD technique exhibits superior per-
formance compared to other methods, particularly in terms of
mismatched ISL, which could be the reason for its excellent
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Fig. 8. Correlation coefficient; (a) Benchmark, (b) CAN, (c) Gradient Descent, (d) ADMM, (e) CD (p = 2), and (f) CD (p = 6).

results, even inside of the blind range. This observation can
be investigated further by calculating the phase shift in the
returned signal, which is related to the wind velocity using
pulse pair processing. Note that the phase of the backscattered
signal received at the radar varies significantly from pulse
to pulse due to the individual drop returns. However, the
mean Doppler shift provides a precise indication of the radial
velocity inside the weather sample volume if a sufficient
number of returns are integrated (typically several pulses). The
radial velocity for the benchmark, CAN, GD, and the proposed
methods is depicted in Figure 5. When the obtained results
are compared to the benchmark, it is clear that the proposed
methods can estimate precisely the radial velocity. However,
depending on the method used, there may be some deviations
from the actual values. To verify this behavior, we have
included an example of the angle cut at 7.0807 degrees
for the reflectivity and radial velocity plots in Figure 4 and
Figure 5, respectively. These angle cut plots can be found in
Figure 6. Upon observing this figure, it is evident that CD
(p = 2) provides the best match with the benchmark in both
reflectivity and radial velocity values. However, ranking the
other approaches is more challenging, as it is also reflected
in Tables II and III. Additionally, note that Tables II and III
present average metrics for each dataset, while Figure 6 offers
angle cuts, providing a more detailed perspective on the
performance.

E. Polarimetric Variables

In addition to reflectivity and Doppler, two other parameters
related to weather sensing include the differential phase and
the correlation coefficient. The differential propagation phase,
φD P , is defined as the phase difference between horizontally
and vertically polarized signals, and can be expressed as:

φD P = ̸ ⟨Sh S∗v ⟩ (88)

where Sh and Sv are the complex amplitudes of the horizon-
tally and vertically polarized signals, respectively. The values
of φD P reveal information about the nature of the scatterers
being sampled. Correlation coefficient (also referred to as ρhv

or ρ) provides a measure of the consistency of the shapes and
sizes of drops within the radar beam6, and can be expressed
as:

ρhv =
|⟨Sh S∗v ⟩|√
⟨|Sh |

2⟩⟨|Sv|
2⟩

. (89)

where ⟨·⟩ denotes averaging over the radar pulse volume.
A higher value of correlation coefficient shows a higher
consistency in the size and shape of drops, while a lower value
indicates greater variability in shapes and sizes. The correla-
tion coefficient can further help for distinguishing between

6The correlation coefficient ρ is a dimensionless quantity that provides
a measure of the degree of correlation between the horizontal and vertical
polarizations of the radar signal.
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meteorological and non-meteorological objects, finding the
melting layer, identifying giant hail, exploring tornadic debris,
and checking the quality of other dual polarization products.

The differential phase and the correlation coefficient are
dependent on the transmit waveform and receive filters; though
not optimized directly, the following example shows effects of
pulse compression on estimating these parameters. Figure 7
and Figure 8 indicate respectively φD P and ρhv of the returned
signal for the benchmark and generated data using pulse
compression via CAN, GD, and the proposed methods, respec-
tively. These figures show that the radar moment estimation
using the optimized waveform and filter pair obtained by CD
(p = 2) is close to the benchmark differential phase and corre-
lation coefficient, indicating that the optimized subpulse-filter
pairs are of high quality in weather radar applications.

VI. CONCLUSION

For the purpose of implementing a successful pulse com-
pression on weather radar, we proposed an optimization-based
method. Through the proposed method, the transmitted codes
and the extended filter are jointly designed, which guaran-
tees that the pulse compression will possess a low sidelobe
level and further a better estimation of the meteorological
reflectivity. The results obtained through real data demonstrate
the efficacy of the proposed approach and the improvement
brought by this well-designed pulse compression technique.
Despite the fact that ADMM successfully reduces MSE,
the CD-based range sidelobe optimization actually performs
better in real-weather radar applications. Future research may
explore the development of waveforms that are optimized for
both full and partial correlation sidelobe levels.
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