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Abstract— In this article, we present a nonlinear system model
to evaluate the impact of circuit nonlinearities on spurs in
millimeter-wave frequency-modulated continuous-wave (FMCW)
radar system-on-chips. The developed model includes the har-
monics of the frequency multiplier, nonlinearity of the power
amplifier (PA) and low-noise amplifier (LNA), the switching
operation of the receiver (RX) mixer, the limited bandwidth of
the PA, LNA, transmitter (TX) and RX antennas, as well as the
TX-to-RX leakage. The developed nonlinear model can be used
to derive the frequency and amplitude of spurs in the radar
IF spectrum. The major insights about the impact of different
nonlinearities and their interactions are as follows: 1) harmonics
of the frequency multiplier appear as spurs in the IF spectrum; 2)
PA can be driven in its nonlinear region to mitigate the harmonics
generated by the frequency multiplier; 3) bandwidth of the TX
and RX systems should be limited to attenuate the undesired
harmonics; and 4) interaction between the TX-to-RX leakage
signal and the LNA nonlinearity can lead to spurs close to the
target echo in the IF spectrum.

Index Terms— Chirp signal, frequency-modulated continuous-
wave (FMCW) radar, spurs, millimeter-wave, nonlinearity, self-
interference, sensing, system-on-chip (SoC).

I. INTRODUCTION

MILLIMETER-WAVE (mm-wave) high-resolution radars
have attracted extensive interests to enhance their per-

formance and leverage their underutilized potentials for a
plethora of emerging applications. These radars, extensively
explored as automotive sensors, e.g., advanced driver assis-
tance systems (ADAS) and autonomous driving [1], [2], pro-
gressively find their way in other applications. These include
medical imaging, vital signs monitoring, gesture recognition
for human-machine interaction [3], internet of things (IoT)
sensors, smart buildings, industrial transport, and robotics.

Recently, extensive developments of mm-wave radar
system-on-chip (SoC) have been reported [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23]. Continuous-wave radar architectures,
especially frequency-modulated continuous-wave (FMCW),
are widely used in mm-wave bands. Several designs have been
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realized using CMOS, silicon-on-insulator (SOI), and silicon-
germanium (SiGe) processes, operating at different mm-wave
frequencies: 60 GHz, 77 GHz, 76–81 GHz, 140 GHz, and 200–
300 GHz [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19]. The radar range resolution can be
improved by operating at higher mm-wave bands to exploit the
available wide bandwidth (1R ∝ 1/B). A fine range resolution
of 54 µm has been achieved using a 250-GHz autodyne
FMCW radar implemented in a 55-nm SiGe process [7].
The radar angular resolution can be enhanced using the
multi-input multi-output (MIMO) system architecture (18 ∝

1/NTX NRX) [24], [25]. An angular resolution of 1◦ has been
reported in [15] for a 77/79 GHz phase-modulated continuous-
wave (PMCW) radar composed of 12 transmitter (TX) and
8 receiver (RX) channels fabricated using a 28-nm CMOS
process. Moreover, 4D gesture sensing has been realized using
a 60-GHz FMCW MIMO radar system [4].

Signal generation for high-resolution mm-wave FMCW
radars can be quite challenging as a result of stringent
requirements on bandwidth, phase noise, jitter, and spurs.
The chirp signal can be generated using all-digital or hybrid
analog-digital phase-locked loops (PLLs) [31], [32], [33], [34].
Several phase noise and jitter models for the PLL-based
FMCW radars have been developed [35], [36], [37], [38].
The chirp nonlinearity effects [28] can be mitigated using
digital error correction or calibration techniques. In mm-wave
bands, the PLL is usually followed by a frequency multiplier
to transform the reference signal to ultimate frequency. The
mm-wave frequency multipliers suffer from a low harmonic
rejection ratio (HRR) and, as a result, their output harmonics
can pass through the radar bandwidth and manifest as spurs
in the detected signal spectrum [39].

Furthermore, the nonlinearity of the power amplifier (PA)
and low-noise amplifier (LNA) can affect the harmonics level,
especially at low supply voltages of nanoscale CMOS pro-
cesses (e.g., < 1 V). The TX-to-RX leakage signal can drive
the RX circuitry (especially the LNA) into gain compression.
A comprehensive nonlinear model is, therefore, essential to
derive requirements on the circuit components of the FMCW
radar for efficient circuit and system designs.

In this article, which is an extension of preliminary results
in [40], we present a nonlinear system model for FMCW
radars. The model includes several important effects: har-
monics of the frequency multiplier, nonlinearity of the PA,
LNA, the switching operation of the RX mixer, the limited
bandwidth of the TX and RX, the stop-band rejections of the
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TX, RX, and IF filter, and the TX-to-RX leakage. Moreover,
interactions between different nonlinearities are considered in
the model. The developed model can be used to estimate the
frequency and amplitude of spurs in the radar IF spectrum
without the need for time-consuming system and circuit sim-
ulations.

The paper is structured as follows. In Section II, the
nonlinear model for FMCW radars is presented. The analysis
of the radar TX and RX systems is provided in Section III.
This is followed by simulations and discussion in Section IV.
Finally, the concluding remarks are presented in Section V.

II. NONLINEAR SYSTEM MODEL OF FMCW RADAR

A. Principles of FMCW Radar

Architecture of a mm-wave FMCW radar system is shown
in Fig. 1. The reference chirp signal is generated at a lower
frequency (e.g., 10 GHz) and then is transformed using a
frequency multiplier to the ultimate mm-wave band. This
approach is useful to achieve lower phase noise in the ref-
erence signal. The reference signal can be generated using
a chirp PLL, while the frequency multiplier can be realized
either as a separate circuit or co-integrated with the PLL
as an harmonic extractor. The reference signal has a linear
time-dependent frequency which can be described as

fref(t) = f0 + St 0 ≤ t ≤ Tc, (1)

where f0 is the chirp initial frequency, S = B/Tc is the chirp
frequency slope and B is its bandwidth. Tc denotes the chirp
repetition period.1 The instantaneous phase of the chirp signal
can be derived as

8ref(t) = 2π

∫
fref(t)dt = 80 + 2π f0t + π St2. (2)

The multiply-by-N frequency multiplier ideally generate a
chirp signal with a frequency of N fref(t). This signal features
the bandwidth of N B, the frequency slope of N S, and a
repetition period of Tc, the same as the reference signal.

The frequency multiplier output signal is amplified by a
PA and is transmitted through the TX antenna. The PA is
operated in nonlinear mode to achieve high efficiency, while
no nonlinearity constraint is usually imposed on the PA in
FMCW radars as it should amplify a constant-envelope signal.

The transmitted signal illuminates the target and reflected
back toward the radar receiver. The received signal is related
to the transmitted signal as follows:

xRX(t) = G R xTX(t − τR), (3)

where G R is the attenuation factor and τR denotes the radar
signal time-of-flight (ToF). Using the radar range equation,
G R can be derived as

G R =

(
GA,TXGA,RXLsysσλ2

(4π)3 R4

) 1
2

, (4)

where GA,TX and GA,RX are gain of the TX and RX antennas,
Lsys is the total system loss, σ is the target radar cross

1It is assumed that the frequency has a sharp return to f0 at t = T +
c .

In practice, the return takes a nonzero time Tr , but usually Tr ≪ Tc .

Fig. 1. Architecture of the mm-wave FMCW radar system.

section (RCS), λ is the signal wavelength, and R is the target
range [29]. Furthermore, ToF for a static target at the (initial)
range R0 with respect to the radar is given by

τR0 =
2R0

c
. (5)

For a moving target, a Doppler frequency shift is also intro-
duced in the received signal, fD = 2 N f0v/c. This can be
modeled by using a time-dependent ToF as follows:

τR(t) =
2(R0 + vt)

c
, (6)

where v is the radial velocity of the target in the direction
moving away from the radar.

The received signal is amplified by an LNA and then is
mixed by a replica of the frequency multiplier output signal.
The mixer output signal, after passing through the IF bandpass
filter (BPF), has an instantaneous phase of

8IF(t) = N8ref(t) − N8ref(t − τR(t)), (7)

which roughly represents a sinusoidal waveform with the
frequency of

fIF = (N S)τR0 + fD =

(
2N S

c

)
R0 +

(
2N f0

c

)
v. (8)

The target range and velocity can be extracted from the IF
spectrum using a two-dimensional Fast Fourier Transform
(FFT). The range is detected by applying the FFT to each
chirp of the chirp sequence (fast chirp), while the velocity is
derived from the FFT of the chirp sequence (slow chirp) as
shown in Fig. 1 [25], [26].

B. FMCW Radar Nonlinear Model

There are several important nonlinear effects in the FMCW
radar system which can degrade its performance, e.g., reduced
sensitivity, limited dynamic range, and false targets. Some
effects are explored in the literature [27], including the chirp
nonlinearity [28], jitter [35], phase noise [36], [37], harmonics
of the reference signal [39], while some circuit nonlinearities
require special attention in emerging integrated radar systems.
Therefore, a nonlinear system model which properly captures
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Fig. 2. Proposed nonlinear system model for mm-wave FMCW radar.

the circuit nonlinearities and interactions of different nonlinear
effects with each other can be very valuable for efficient design
of a mm-wave FMCW radar SoC.

We propose a nonlinear system model for mm-wave FMCW
radars as shown in Fig. 2. The main effects included in this
model are as follows.

1) Output Harmonics of the Frequency Multiplier: The fre-
quency multiplier generates harmonics other than the desired
N-th harmonic of the reference signal. We neglect spurs
generated by the reference circuits, e.g., fractional-N PLL,
direct digital synthesizer (DDS). Spurs estimation and miti-
gation methods for different types of frequency synthesizers
are extensively investigated in the literature [41], [42], [43],
[44]. In this paper we focus on spurs generated by the radar
blocks. Therefore, the level of harmonics depends on the
multiplier circuit structure, frequency band, the chirp band-
width, quality factor of passive components, and features of
the integrated circuit process. HRR levels in the order of ∼ 30–
50 dBc are reported in mm-wave bands using different circuit
structures, e.g., harmonic tuning, harmonic mixing, push-push,
and injection locking [47], [48], [49], [50], [51]. In practical
mm-wave FMCW radars however it is difficult to achieve
a high HRR, typically > 20 dBc, across a wide modulation
bandwidth, particularly if the frequency multiplication factor
is large and more harmonics should be suppressed. The output
signal of the frequency multiplier can be considered as

xout,MUL(t) =

∞∑
k=1

ak cos[k8ref(t)]. (9)

It is assumed that the harmonics are in phase to simplify
the analysis.2 In practice, only a few harmonics close to the
desired harmonic N needs to be considered. This depends
on bandwidth of the multiplier and subsequent TX circuits

2The phase difference between the harmonics can be controlled through
circuit design techniques to mitigate undesired harmonics and improve the
HRR of the frequency multiplier.

(i.e., PA and TX antenna) and the frequency difference of
the harmonics. Furthermore, it is assumed that HRR of the
frequency multiplier remains constant across the bandwidth.

2) Nonlinearity of the PA: In FMCW radars, the PA nonlin-
earity is usually overlooked as its input signal has a constant
amplitude. However, the PA nonlinearity can be important
when we consider the harmonics of the reference signal. The
PA nonlinearity results in spectral regrowth which spreads the
harmonics in a wide bandwidth and can alter their relative
amplitude with respect to the fundamental signal [30]. As a
result, HRR in output of the PA can be different with HRR in
output of the frequency multiplier. We consider the third-order
polynomial output-input characteristic for the PA as follows

xout,PA(t) = α1,PAxin,PA(t) + α3,PAx3
in,PA(t). (10)

It is assumed that the PA is realized as a differential circuit
and even-order harmonics of its output signal are negligible.
For a typical compressive output-input characteristic, α1,PA
and α3,PA have opposite signs. Furthermore, the input-referred
1-dB compression point of the PA can be related to the
polynomial coefficients as [30]

P1dB,PA =
4
3
β

∣∣∣∣α1,PA

α3,PA

∣∣∣∣, (11)

β = 1 − 10−
1
20 ≈ 0.11. (12)

A constant P1dB,PA is assumed across the bandwidth to sim-
plify the analysis.

3) Bandwidth of the PA and TX Antenna: Bandwidth of
the PA determines how output harmonics of the frequency
multiplier reach to the TX antenna and are transmitted to
the target.3 We use two transfer functions Hin,PA( jω) and
Hout,PA( jω) to model the frequency response of the PA input
and output matching networks, as shown in Fig. 2. The two

3Spectrum of chirp signal is dependent on its time-bandwidth product Tc B.
For large values, e.g., Tc B > 100, it approaches a rectangular shape with
bandwidth of B [52].
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Fig. 3. Three scenarios for the number of harmonics which can pass through
the transmitter bandwidth.

transfer functions are necessary to properly model the spectral
components which can enter the PA nonlinear core and the
spurs present at the PA output signal. The PA bandwidth
is practically limited by its output matching network which
provides the optimal load resistance to the transistors to
achieve the maximum output power or efficiency. The PA
output and TX antenna frequency-domain transfer functions
can therefore be merged and modeled as the TX frequency
response

HTX( jω) = Hout,PA( jω)HANT,TX( jω). (13)

The TX output signal xTX(t) is achieved after applying
HTX( jω) on the fundamental and harmonic components of
the PA output signal xout,PA(t). Three possible scenarios are
shown in Fig. 3.4 Fig. 3(a) shows the case that the TX has
a narrow bandwidth (BTX) or spacing between harmonics is
too wide, i.e., BTX < 2 f0. In this condition, only the desired
harmonic N should be considered as the other harmonics
are substantially suppressed. In Fig. 3(b), the TX bandwidth
allows transmission of the harmonic N and two adjacent
harmonics N ± 1 (i.e., 2 f0 < BTX < 4 f0). Finally, as shown
in Fig. 3(c), when the TX has a wide bandwidth or harmonic
spacing is narrow, i.e., BTX > 4 f0, several harmonics fall
within the TX bandwidth. In this paper, we consider the
case where only adjacent harmonics are located in the TX
bandwidth [Fig. 3(b)] to simplify the derivations. It is also
assumed that in practical conditions Hin,PA has a bandwidth
close to that of Hout,PA and variations in the amplitude response
of the PA and TX antenna are ignored. In practice, usually the
harmonics close to the main output harmonic have the largest
relative magnitude and cannot be directly filtered. The insights
that will be provided can be extended to the general case of
multiple harmonics located in the TX bandwidth. The relative
attenuation of the harmonic k can be derived as

ATX,k =
|HTX( jkω0)|

|HTX( j Nω0)|
, (14)

which is dependent on the frequency difference between the
signal components, the quality factor of on-chip passive ele-
ments used in the PA circuit, and the TX antenna bandwidth.
In the condition that the harmonics N ± 1 are too close to the
harmonic N, ATX ≈ 1.

4) TX-to-RX Leakage Signal: The leakage signal from the
TX to RX, arising from coupling between their antennas
or coupling through the chip substrate, can have a power
much higher than the received signal power which desensitizes
the RX circuits (especially the LNA) and masks the target.

4The practical condition B ≪ f0 is applied.

Therefore, the leakage cancellation is an important challenge
in FMCW radar SoC. The leakage cancellation in the order
of ∼ 30–50 dB has been achieved using different approaches
developed for integrated radar systems [5], [6], [18], [19],
[20], [21], [22]. The imperfect leakage cancellation can limit
performance of the radar system. We use the following model
to describe the received signal:

xRX(t) = G R xTX(t − τR) + GL xTX(t − τL), (15)

where GL is a factor indicating strength of the leakage signal
and τL is its delay relative to the TX signal. The parameters
GL and τL are independent of the target range, while G R

and τR are range-dependent. As a result, the significance of
the leakage can be different for short and long target ranges.
Moreover, it is assumed that the leakage signal power remain
constant across the bandwidth of interest.

5) Nonlinearity of the LNA: The LNA nonlinearity can
become important for close targets with strong reflected signal
or when there is a large leakage signal. In these conditions,
the LNA can experience severe gain compression or even
saturation. Furthermore, the LNA nonlinearity can change the
relative amplitudes of the harmonics in the TX signal. We use
a third-order polynomial, similar to the PA, to describe the
LNA nonlinearity:

xout,LNA(t) = α1,LNAxin,LNA(t) + α3,LNAx3
in,LNA(t). (16)

This can be used to derive a limit on the minimum target
range (i.e., maximum G R), the maximum tolerable leakage
signal, and the required input-referred 1-dB compression point
of the LNA, P1dB,LNA. We assume a constant P1dB,LNA over
the bandwidth to simplify the derivations, while in a realistic
implementation it can change with frequency.

6) Bandwidth of the LNA and RX Antenna: Bandwidth
of the LNA and RX antenna determines the received signal
harmonics which can reach to the mixer. The LNA is mod-
eled by two transfer functions Hin,LNA( jω) and Hout,LNA( jω)

which respectively model the frequency responses of the input
and output matching network (Fig. 2). The LNA bandwidth
is mainly limited by its input matching network which is
responsible for providing the optimum noise matching to
the transistor. The RX antenna and the LNA input transfer
functions can therefore be effectively modeled by an RX
transfer function

HRX( jω) = Hin,LNA( jω)HANT,RX( jω). (17)

We use the model shown in Fig. 3(b) for the RX frequency
response (the same as for the TX). It is assumed that band-
width of Hout,LNA is close to that of Hin,LNA. Moreover,
variations in the LNA and RX antenna amplitude across the
bandwidth are neglected.

The harmonic components can be present in both of the
received and leakage signals. We consider the fundamental
component N and its adjacent harmonics N ± 1. The relative
attenuation of the harmonic k is given by

ARX,k =
|HRX( jkω0)|

|HRX( j Nω0)|
. (18)
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7) Switching Operation of the Mixer: The mixer mainly
downconverts the LNA output signal by mixing it with a
replica of the multiplier output signal. The IF BPF passes the
frequency band fIF,min ≤ f ≤ fIF,max, where fIF,min and fIF,max
respectively correspond to the minimum and maximum target
range. The mixer switching operation leads to intermodula-
tion distortion (IMD) components, which can mix different
harmonics present in the reference signal and the LNA output
signal to produce some spectral components in the IF band.

8) Bandwidth and Attenuation of the IF Filter: The IF filter
is modeled as an BPF in Fig. 2, while it is practically realized
as a leakage cancellation high-pass filter (HPF) followed by
an anti-aliasing low-pass filter (LPF) [8], [9]. These two filters
can have different circuit implementations. The IF BPF has a
bandwidth which covers the IF frequencies corresponding to
the minimum to maximum target ranges, i.e., fIF,min ≤ f ≤

fIF,max, while its lower cut-off frequency can be much lower
than fIF,min to meet the leakage cancellation requirements. It is
assumed that the IF BPF provides an attenuation of AIF,L in
its lower stop band and AIF,H in the upper stop band.

The IF filter, as well as the TX and RX equivalent filters, can
exhibit amplitude variations in their pass band. In the condition
that the chirp signal bandwidth is much narrower than the
filter bandwidth, e.g., N B ≪ BTX in Fig. 3(b), such variations
can be neglected. However, if bandwidth of the chirp signal
is comparable with the filter bandwidth, e.g., N B ∼ BTX in
Fig. 3(a), these variations can distort the chirp signal and lead
to undesired amplitude and phase modulations.

C. Model Limitations

The proposed model for mm-wave FMCW radars inevitably
has some limitations arising from higher order imperfections
which are excluded for the sake of clarity but can have some
implications under certain practical conditions. We briefly
discuss the most important effects which should be taken into
account for an accurate evaluation of the radar performance.

1) A broadband frequency multiplier can exhibit large vari-
ations in the amplitude of the fundamental and harmon-
ics across the bandwidth [48], [49]. This behavior cannot
be described by a constant HRR across the bandwidth.
In this case, an average or worst-case HRR can be used
in the developed radar model.

2) The largest harmonics of the frequency multiplier can
be other than the adjacent harmonics N ± 1. These har-
monics usually are located far from the center frequency
of the circuits and are attenuated by the PA, LNA,
and TX/RX antennas. Nevertheless, a slightly revised
analysis can be applied in this case.

3) The nonlinear properties of the PA and LNA can sig-
nificantly change across the radar bandwidth. Using a
frequency-dependent P1dB however will make the system
analysis intractable. It is possible to use an average
P1dB across the bandwidth to achieve more accurate
results. In the forthcoming analysis, it is assumed that
the leakage signal power is not such high that saturates
the LNA circuit. This permits the LNA nonlinearity to

be modeled by a third-order polynomial to simplify the
derivations and obtain intuitive results.

4) Spurs in the reference signal are neglected in the analysis
to focus on the spurs generated by the radar. In a radar
SoC with integrated chirp synthesizer, e.g., a fractional-
N PLL, the spurs can be produced through different
mechanisms including the quantization noise and its
downconversion by the nonlinear phase detector [41],
self modulation and quantization noise folding [42].
A more complete radar model should also include
impacts of the incoming spurs.

III. ANALYSIS OF FMCW RADAR SYSTEM

We use the nonlinear system model for FMCW radar to
investigate spectral contents of signals at the output of the
TX, the input of the RX, and the IF.

A. Analysis of Transmitter

The frequency multiplier output signal is generally given
by (9). We consider the desired harmonic N and two adjacent
harmonics N ± 1. Furthermore, it is assumed that the two
harmonics have the same amplitude to simplify the derivations
(in the worst-case condition, this amplitude can be considered
as the largest amplitude of two harmonics). Therefore, the
multiplier output signal can be written as5

xout,MUL(t) = aN[cos(N8) + kref cos[(N ± 1)8]], (19)

where aN is amplitude of the desired harmonic N, kref is
relative amplitude of the harmonics N ± 1 with respect to the
harmonic N, and 8 = 8ref(t) is the instantaneous phase of
the reference signal. The notation cos[(N ± 1)8] = cos[(N +

1)8] + cos[(N − 1)8] is used to simplify mathematical
derivations. The parameter kref is related to HRR of the
frequency multiplier as H R R = −20 log10(kref). This signal
appears as the input signal of the PA, with a scaled amplitude
Ain due to power division between the PA and mixer. Using the
PA nonlinear characteristic (10) with the frequency multiplier
output given by (19) as its input signal, it can be shown that
the PA output signal xout,PA(t) has spectral components at N8,
3N8, (N ±1)8, (N ±2)8, (N ±3)8, (3N ±1)8, (3N ±2)8,
and (3N ± 3)8. This indicates that the PA output spectrum
which includes the main component spans from (N − 3)8 to
(N +3)8, which is three times wider than the input spectrum
span (spectral regrowth).

We assume that the TX bandwidth allows transmission
of the desired harmonic N and its two adjacent harmonics
N ± 1 with the same relative attenuation of ATX,N±1 = ATX.
The TX system, in the strict sense, is a dynamic nonlinear
system which its rigorous analysis requires the use of nonlin-
ear approaches, e.g., the Wiener series [53]. These methods
however will result in complicated derivations [30, Ch. 2].
Instead, we use a simplified approach where the TX system
is decomposed into a frequency-independent nonlinear model
followed by a linear band-limited frequency response (see
Fig. 2).

5It is assumed that there is no phase offset between the three harmonics to
simplify theoretical derivations.
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Therefore, using (10), (19), and applying the discussed
transmitter’s bandwidth limitations, the transmitted signal can
be derived as6

xTX(t) = aTX[cos(N8) + kTX cos[(N ± 1)8]], (20)

where aTX and kTX are given by

aTX = α1,PA Ain +
3
4
(1 + 6k2

ref)α3,PA A3
in, (21)

kTX =

(
α1,PA Ain +

9
4 (1 + k2

ref)α3,PA A3
in

α1,PA Ain +
3
4 (1 + 6k2

ref)α3,PA A3
in

)
ATXkref. (22)

The PA usually has a compressive nonlinear gain behav-
ior which requires α1,PA and α3,PA to have opposite signs.
Therefore, using (11), α3,PA can be expressed as α3,PA =

−(4/3)βα1,PA/P1dB,PA. The input power of the PA can be
related to its input signal amplitude as Pin,PA = A2

in. Using
these relations and applying the practical condition k2

ref ≪ 1,
(21) and (22) can be simplified to

aTX ≈ α1,PA Ain

(
1 − β

Pin,PA

P1dB,PA

)
, (23)

kTX ≈

(
1 − 3β

Pin,PA
P1dB,PA

1 − β
Pin,PA

P1dB,PA

)
ATXkref. (24)

It is noted that the harmonics level at the output of the PA is
also dependent on gain compression7 and frequency response.
This indicates that in certain conditions, dependent on the
quality factor of on-chip passive elements and the operating
frequency, a filter can be embedded in the PA circuit [45] or
in the antenna radiating structure [46] to further suppress the
undesired harmonics.

It is noted that always kTX < kref, indicating that the
harmonics level is decreased at output of the TX. For Pin,PA =

P1dB,PA, kTX ≈ 0.75ATXkref, leading to ∼ 2.5 dB lower har-
monics. This insight indicates that it is beneficial to drive the
PA in nonlinear region to mitigate harmonics generated by the
frequency multiplier and to improve the PA efficiency.

B. Analysis of Receiver

The received signal is composed of the target echo signal
and the TX-to-RX leakage signal as indicated by (15). If we
consider the frequency multiplier signal as (19), the three
harmonics N and N ± 1 will be present in xTX(t) and, as a
result, in both the echo and leakage signals. We consider two
cases to provide useful insights.

1) No Leakage Signal: In the condition that the leakage
signal is negligible, GL ≪ G R , and assuming that the RX
bandwidth only allows the harmonics N and N ± 1 to pass,
while the harmonics N ±1 are attenuated by the factor of ARX,

6If we consider a second-order nonlinearity term in the PA characteristic,
α2,PAx2

in,PA(t), it can be shown that it will generate spectral components at
DC, 2N8, (2N ± 1)8, and (2N ± 2)8. Fortunately, these components fall
outside of the PA bandwidth.

7In general, the input power can be normalized to the n-dB compression
point of the PA by redefining β as β = 1 − 10−

n
20 .

the LNA output signal can be derived as

xout,LNA(t)

= aout,LNA[cos[N8(t − τR)] + kRX cos[(N ± 1)8(t − τR)]],

(25)

where aout,LNA and kRX are given by

aout,LNA ≈ α1,LNAG RaTX

(
1 − β

Pin,LNA

P1dB,LNA

)
, (26)

kRX ≈

(
1 − 3β

Pin,LNA
P1dB,LNA

1 − β
Pin,LNA

P1dB,LNA

)
ARXkTX. (27)

It is noted that the harmonics level is scaled based on (24) and
(27) as the reference signal experiences nonlinearity of the PA
and LNA.

This signal is mixed with the frequency multiplier output
signal. The mixer generates the second-order nonlinear com-
ponents at N [8(t) ± 8(t − τR)], (N − 1)[8(t) ± 8(t − τR)],
and (N +1)[8(t)±8(t −τR)]. Generally, the mixer switching
operation leads to spurs with an instantaneous phase which is a
linear superposition of two terms from the set N8(t), N8(t −
τR), (N ±1)8(t), (N ±1)8(t − τR). From these components,
only m N [8(t)−8(t −τR)], m(N −1)[8(t)−8(t −τR)], and
m(N + 1)[8(t)−8(t − τR)] (where m ∈ Z) can pass through
the IF BPF, while other components with a spectrum at higher
frequencies are suppressed. For m = 1, these components are
amplified by the mixer conversion gain, while for m ≥ 2 they
are attenuated. Therefore, the IF signal can be derived as

xIF(t) = aIF[cos[N91(t)] + krefkRX cos[(N ± 1)91(t)]],
(28)

where aIF = Gc,mixaout,LNA is amplitude of the main IF
component, Gc,mix is the mixer conversion gain, and 91(t)
is defined as

91(t) = 8(t) − 8(t − τR). (29)

This reveals two important results. First, the spurs level at the
IF is lower than the original harmonics level of the reference
signal. Using (24) and (27), kIF = krefkRX can be derived as

kIF ≈

(
1 − 3β

Pin,LNA
P1dB,LNA

1 − β
Pin,LNA

P1dB,LNA

)(
1 − 3β

Pin,PA
P1dB,PA

1 − β
Pin,PA

P1dB,PA

)
ARX ATXk2

ref. (30)

The second result is that the IF spectrum includes a spectral
component at N SτR and two extra components at (N ±1)SτR ,
as shown in Fig. 4(a), where

fIF1 = N SτR, (31)
fIF2 = (N + 1)SτR, (32)
fIF3 = (N − 1)SτR . (33)

These extra components can lead to overlap between the IF
spectra of the echo signals for two close targets and degrade
the range resolution of the radar.
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Fig. 4. A typical IF spectrum for single target corresponding to fIF1: (a) with
the reference signal harmonics, (b) with the reference signal harmonics and
the TX-to-RX leakage.

2) With Leakage Signal: In the presence of leakage signal,
the RX system can be considered as a dual-input nonlinear
system [54]. The nonlinear interactions between the two input
signals can lead to the generation of extra spur components.
The LNA input signal is composed of the echo and leakage
signals

xin,LNA(t) = xecho(t) + xleak(t), (34)

where the echo and leakage signals are respectively given by

xecho(t)

= G RaTX[cos[N8(t − τR)] + kTX cos[(N ± 1)8(t − τR)]],

(35)
xleak(t)

= GLaTX[cos[N8(t − τL)] + kTX cos[(N ± 1)8(t − τL)]].

(36)

The RX system can be modeled as shown in Fig. 5, where the
LNA nonlinearity is considered as two paralleled sub-blocks
with characteristics of y = α1x and y = α3x3. The
LNA frequency response which was modeled by the linear
transfer function HRX( jω) can be placed in two paralleled
paths. We are interested in the components that can pass
through the LNA bandwidth and after mixing with one of
the terms in the frequency multiplier signal (9), i.e., N8(t)
or (N ± 1)8(t), can pass the IF BPF to appear in the
IF spectrum. The linear sub-block generates two signals
α1,LNAxecho(t) and α1,LNAxleak(t) which have the same spectral
components as in (35) and (36). The nonlinear sub-block,
however, produces four signals α3,LNAx3

echo(t), α3,LNAx3
leak(t),

3α3,LNAx2
echo(t)xleak(t), and 3α3,LNAxecho(t)x2

leak(t).
Using the practical approximation k2

TX ≪ 1, it can be shown
that the nonlinear term α3,LNAx3

echo(t) includes the spectral
components of N8(t − τR), (N ± 1)8(t − τR), 3N8(t −

τR), and (3N ± 1)8(t − τR).8 Similarly, the nonlinear term
α3,LNAx3

leak(t) includes the spectral components of N8(t−τL),
(N ± 1)8(t − τL), 3N8(t − τL), and (3N ± 1)8(t − τL).
As we have assumed that the RX frequency response allows
only the spectral components N f0 and (N ± 1) f0 to pass [see
Fig. 3(b)], these two nonlinear terms only generate the spectral
components N8(t − τR), (N ± 1)8(t − τR), N8(t − τL), and
(N ± 1)8(t − τL), with modified amplitudes.

The other nonlinear terms 3α3,LNAx2
echo(t)xleak(t) and

3α3,LNAxecho(t)x2
leak(t) can produce new spectral components

at linear suppositions of 8(t −τR) and 8(t −τL). Specifically,

8It can be shown that if X = cos(nx)+k cos[(n ±1)x] where k2
≪ 1, then

X3
≈ (3/4) cos(nx)+(9k/4) cos[(n±1)x]+(1/4) cos(3nx)+(3k/4) cos[(3n±

1)x].

it can be shown that the spectral components generated by
x2

echo(t)xleak(t) which can pass through the RX band are
located at N8(t − τL), (N ± 1)8(t − τL), and 2N8(t −

τR) − N8(t − τL).9 Similarly, xecho(t)x2
leak(t) leads to the

spectral components at N8(t − τR), (N ± 1)8(t − τR), and
N8(t − τR) − 2N8(t − τL).

It can be shown that the LNA output signal can be approx-
imately derived as10

xout,LNA(t)

≈ G RaTX[C1 cos[N8(t − τR)]

+ C2 cos[(N ± 1)8(t − τR)]

+ C3 cos[N8(t−τL)]+C4 cos[(N ± 1)8(t−τL)]

+ C5 cos[2N8(t − τR) − N8(t − τL)]

+ C6 cos[N8(t − τR) − 2N8(t − τL)]], (37)

where the coefficients C1–C6 are given by

C1 = α1,LNA Ain +
3
4
(1 + 2r2)α3,LNA A3

in, (38)

C2 = α1,LNA AinkTX +
3
4
(3 + 2r2)α3,LNA A3

inkTX, (39)

C3 = rα1,LNA Ain +
3
4
(2r + r3)α3,LNA A3

in, (40)

C4 = rα1,LNA AinkTX +
3
4
(2r + 3r3)α3,LNA A3

inkTX, (41)

C5 =
3
4

rα3,LNA A3
in, (42)

C6 =
3
4

r2α3,LNA A3
in. (43)

The parameter r is the amplitude ratio of the leakage to the
target echo signal, which can also be related to the power ratio
of the leakage to the echo signal as

r =
GL

G R
=

(
Pleak

Pecho

) 1
2

. (44)

The leakage signal, according to (38), tends to push the
LNA more into the gain compression. Furthermore, as can
be inferred from (37), the leakage introduces new undesired
spectral components in the LNA output which will be trans-
lated to the IF band. The parameter Ain in (38)–(43) denotes
amplitude of the echo signal at the LNA input. The total input
power of the LNA, including the echo and leakage signals, can
be estimated as Pin,LNA ∝ (1 + r2)A2

in. The harmonics level
kRX = C2/C1 can be derived as

kRX ≈

[
1 + r2

− β
(
3 + 2 r2

) Pin,LNA
P1dB,LNA

1 + r2 − β
(
1 + 2r2

) Pin,LNA
P1dB,LNA

]
ARXkTX. (45)

The IF signal can be derived by mixing the LNA output
signal (37) with the multiplier output signal (9), which after

9It can be shown that if X = cos(nx)+ k cos[(n ±1)x] and Y = cos(ny)+

k cos[(n ± 1)y] where k2
≪ 1, then X2Y ≈ (1/2) cos(ny) + (k/2) cos[(n ±

1)y] + (1/4) cos(2nx ± ny) + (k/4) cos[2nx ± (n ± 1)y] + (k/2) cos[(2n ±

1)x ± ny] + k cos(ny ± x).
10In these derivations, it is assumed that k2

TX ≪ 1 which is valid in most
practical conditions.
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Fig. 5. RX nonlinear system model used to evaluate leakage signal effects.

considering the IF BPF, can be written as

xIF(t) ≈ aIF[C1 cos[N91(t)] + C2kref cos[(N ± 1)91(t)]

+ C3 cos[N92(t)] + C4kref cos[(N ± 1)92(t)]

+ C5 cos[N93(t)] + C6 cos[N94(t)]], (46)

where 91(t) is defined in (29) and 92,3,4(t) are given by

92(t) = 8(t) − 8(t − τL), (47)
93(t) = 8(t) − 28(t − τR) + 8(t − τL), (48)
94(t) = 8(t) + 8(t − τR) − 28(t − τL). (49)

The first and second terms in (46) indicate the presence of
spurs at fIF1 = N SτR and fIF2,3 = (N ± 1)SτR . Similarly, the
following three spurs are generated by the third and fourth
terms of (46)

fIF4 = N SτL , (50)
fIF5 = (N + 1)SτL , (51)
fIF6 = (N − 1)SτL , (52)

The last two terms in (46) lead to two spurs at

fIF7 = N S|2τR − τL |, (53)
fIF8 = N S|τR − 2τL |. (54)

The relative magnitudes of these components can be derived
using (38)–(44) and (46). The IF BPF can also attenuate some
of the undesired components when they are located out of
its passband fIF,min ≤ f ≤ fIF,max. A typical IF spectrum
is shown in Fig. 4(b). The frequency spacing between the
desired component fIF1 and other undesired components is
dependent on the target range and the multiplication factor of
the frequency multiplier. For typical ranges, τL ≪ τR (τL is
an electrical delay while τR is the signal round trip between
the radar and target), and the leakage effect can be negligible
if its amplitude is not such high that saturates the LNA. For
short-range targets, however, τL can be close to τR , and can
mask the target echo if the leakage signal is large. The spectral
components fIF2,3 can be too close to the desired component
when the frequency multiplication factor N is large

fIF2,3

fIF1
= 1 ±

1
N

. (55)

The spur level can be derived using (24), (45), and (46) as

kIF ≈

[
1 + r2

− β
(
3 + 2r2

) Pin,LNA
P1dB,LNA

1 + r2 − β
(
1 + 2r2

) Pin,LNA
P1dB,LNA

][
1 − 3β

Pin,PA
P1dB,PA

1 − β
Pin,PA

P1dB,PA

]
× ARX ATXk2

ref. (56)

This includes reference harmonic levels, relative leakage
signal magnitude, nonlinearities of the PA and LNA, as well
as limited bandwidth of the TX and RX. In the condition that
the PA and LNA are operated in their linear power range
(Pin,PA ≪ P1dB,PA and Pin,LNA ≪ P1dB,LNA), the spurs level
in the IF is derived as

kIF ≈ ARX ATXk2
ref. (57)

This indicates that to achieve a specific spurs level in the
IF band, e.g., −80 dB, neglecting harmonics attenuation by
the TX and RX (ATX ≈ ARX ≈ 1), the required HRR
of the frequency multiplier is 40 dBc. If TX and RX can
provide 10 dB harmonic attenuation (ATX = ARX = 10 dB),
the required HRR will be 30 dBc, which is more practical
in mm-wave bands. It is straightforward to show that both
the first and second terms in the brackets of (56) are always
smaller than 1, and decrease by increasing Pin,LNA or Pin,PA.
Therefore, the PA and LNA nonlinearities tend to reduce the
harmonics levels. For example, if the LNA and PA are operated
at their P1dB, each reduces kIF by 2.5 dB. Furthermore, the
first term of (56) is a function of r , which for Pin,LNA =

P1dB,LNA, if r is varied from zero to a large number, it will
change from (1 − 3β)/(1 −β) to 1 (i.e., ≈ 2.5 dB). Therefore,
impact of the leakage signal on this IF spur is not significant.
However, it will be shown shortly that the leakage signal can
generate other IF spurs which whose amplitude is significantly
dependent on the leakage signal power.

The spectral components fIF4,5,6 can be normalized to the
main fIF1 component frequency as

fIF4

fIF1
=

τL

τR
, (58)

fIF5,6

fIF1
=

(
1 ±

1
N

)
τL

τR
, (59)
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which are usually located at low frequencies in the practical
τL ≪ τR condition. The spectral component fIF4 have a
relative amplitude of C3/C1 with respect to the main IF
component, while for fIF5,6 components this is given by
(C4/C1)kref. However, these spurs are usually located at
low frequencies and can be significantly suppressed by the
lower-band attenuation of the IF BPF AIF,L. Therefore, the
spurs levels after passing through the IF filter can be derived
as

kIF,II =

[
1 + r2

− β
(
2 + r2

) Pin,LNA
P1dB,LNA

1 + r2 − β
(
1 + 2r2

) Pin,LNA
P1dB,LNA

]
r AIF,L, (60)

kIF,III =

[
1 + r2

− β
(
2 + 3 r2

) Pin,LNA
P1dB,LNA

1 + r2 − β
(
3 + 2r2

) Pin,LNA
P1dB,LNA

]
rkIF AIF,L. (61)

The attenuation AIF,L is practically realized using an HPF
with very low cut-off frequency [8], [9]. If τL and τR are
comparable, these components can be close to fIF1,2,3.

The spectral component fIF7 can be normalized to fIF1 as

fIF7

fIF1
=

∣∣∣∣2 −
τL

τR

∣∣∣∣, (62)

which is close to 2 fIF1 for small τL . The relative magnitude
of fIF7 to fIF1 is |C5|/C1. Furthermore, in the condition that
fIF7 is higher than the upper cut-off frequency of the IF BPF
(i.e., fIF7 > fIF,max), it will be attenuated by AIF,H (see Fig. 2).
Therefore, the spur level is kIF,IV = (|C5|/C1)AIF,H, which can
be derived as

kIF,IV ≈

[
βr Pin,LNA

P1dB,LNA

1 + r2 − β
(
1 + 2r2

) Pin,LNA
P1dB,LNA

]
AIF,H. (63)

If fIF7 is inside the IF BPF band (i.e., fIF7 < fIF,max),
AIF,H = 1 should be assumed. In this case, the spur fIF7
can be collocated with another target range within Rmin to
Rmax which cannot be suppressed by the IF BPF. The spectral
component fIF7 which is a result of interaction between the
TX-to-RX leakage and the LNA nonlinearity is independent
of the reference harmonics and can have either a higher or
lower magnitude compared to the spurs fIF2,3. This should be
mitigated by increasing attenuation of the IF BPF in the upper
stop-band (if fIF7 > fIF,max), suppressing the leakage signal,
or decreasing the LNA nonlinearity [see (63)].

The spectral component fIF8 can be normalized to fIF1 as

fIF8

fIF1
=

∣∣∣∣1 − 2
τL

τR

∣∣∣∣, (64)

which is close to fIF1 for small τL . The relative magnitude of
fIF8 to fIF1 is given by kIF,V = |C6|/C1 which can be derived
as

kIF,V ≈

[
βr2 Pin,LNA

P1dB,LNA

1 + r2 − β
(
1 + 2r2

) Pin,LNA
P1dB,LNA

]
. (65)

This can also be higher or lower than kIF and should be
mitigated by reducing the leakage signal and the LNA nonlin-
earity. The component fIF8 is close to the main component in
the IF band and unlike the component fIF7 cannot be easily
suppressed by the IF BPF [see Fig. 4(b)]. A summary of the IF

TABLE I
SUMMARY OF THE IF SPURS’ FREQUENCY AND AMPLITUDE

spurs’ frequency and relative amplitude (Fig. 4) is presented
in Table I.

In Fig. 6, the spurs level kIF, kIF,II, kIF,III, kIF,IV, and
kIF,V are shown versus the relative leakage signal power,
10 log10(Pleak/Pecho). It is assumed that kref = 0.1, ATX =

ARX = 1, and the PA and LNA are operated at their P1dB.
In Fig. 6(a), where AIF,L = AIF,H = −20 dB, at low relative
leakage power levels the maximum spur level is kIF which
is generated by the harmonics of the frequency multiplier.
However, for relative leakage power levels roughly ≥ −20 dB,
the spur level kIF,II will become greater, which is a result
of interaction between the leakage signal and the LNA non-
linearity. In Fig. 6(b), the IF filter features higher stop-band
attenuation AIF,L = AIF,H = −40 dB. In this case, the spurs
level kIF,II, kIF,III, and kIF,IV are attenuated by 20 dB. The kIF is
the largest spur at low leakage power levels, kIF,V dominates
in the medium leakage power ranges around 0 dB, while kIF,II
is the dominant spur in the large leakage power levels. It can
be concluded that a low reference harmonics level kref is a
necessary but not sufficient condition to achieve a low IF
spurs level. The IF filter should also provide high stop-band
attenuation (AIF,L and AIF,H).

In Fig. 7, the maximum spur level is shown versus the rel-
ative leakage signal power for four sets of system parameters.
It is assumed that ATX = ARX = 1. The PA and LNA are
driven in their P1dB. It is noted that a low kref leads to low
IF spurs when the leakage signal is small. In the presence of
strong leakage signals, however, high attenuation should be
provided by the IF filter to suppress the extra spurs.

The developed theory can provide design guidelines for
the required stop-band attenuation of the IF BPF for a given
relative leakage power. Using (56) and (60), the required AIF,L
to meet the condition kIF,II < kIF can be derived. Moreover,
the required AIF,H can be derived using (56) and (63) to satisfy
kIF,IV < kIF.

C. Radar Dynamic Range

The radar dynamic range (DR) can be used as a practical
measure of the radar performance. It can be derived as the
difference between the RX signal power and its noise floor
(DRnoise) when noise is dominant or as the difference between
the signal power and the maximum spur level (DRspur) when
the spur power is higher than the noise floor. The radar DR
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Fig. 6. Spurs level versus the relative leakage signal power.
(a) AIF,L = AIF,H = −20 dB, (b) AIF,L = AIF,H = −40 dB. It is assumed
that kref = −20 dB (= 0.1) and ATX = ARX = 0 dB. The PA and LNA are
operated at their P1dB.

Fig. 7. Maximum spurs level versus the relative leakage signal power. It is
assumed that ATX = ARX = 0 dB. The PA and LNA are operated at their
P1dB.

can be maximized by limiting the largest spur below the noise
floor, i.e., DRspur = DRnoise, which can be derived as

−20 log10(kIF,max) = PRX,max + 174−N F − 10 log10(Bn),

(66)

where kIF,max is the maximum spur level in the IF band,
PRX,max is the maximum input power of the RX (can be
considered as P1dB,LNA), N F is the RX noise figure, and Bn

is the effective noise bandwidth (Bn = 1/Tc). This condition
can be used to determine acceptable harmonics level at output
of the frequency multiplier, the TX-to-RX leakage power, and
nonlinearity of the PA and LNA.

Fig. 8. Spectrogram of the 140-GHz chirp signal with 5 GHz bandwidth.
The × 8 frequency multiplier includes harmonics at (N ±1) fref with −20 dBc
power level (kref = 0.1).

TABLE II
COMPARISON OF THE THEORETICAL AND SIMULATION RESULTS FOR IF

SPURS LEVEL kIF . THE SYSTEM PARAMETERS ARE kRef = 0.1, Pin,PA =

P1dB,PA , Pin,LNA = P1dB,LNA

IV. SIMULATIONS AND DISCUSSIONS

A. Simulation Setup

The developed nonlinear system model for FMCW radars
is verified through Keysight Advanced Design System (ADS)
and MATLAB simulations. The TX and RX circuits including
their nonlinearity and bandwidth limitation are modeled in the
ADS and MATLAB. The reference signal is a 17.5-GHz chirp
waveform with 625 MHz bandwidth and 3.2 µs duration. The
× 8 frequency multiplier transforms the reference signal to a
140-GHz chirp with 5 GHz bandwidth, while it includes two
harmonics at (N ± 1) fref. Spectrogram of the chirp signal
is shown in Fig. 8, where the harmonics level is −20 dBc
(kref = 0.1). A high level of harmonics is intentionally used to
investigate its effects on the radar performance. It is assumed
that ATX = ARX = 1. The down-converted signal at IF is
sampled, is passed through a digital filter and, subsequently,
the FFT processing is performed to extract the spectrum,
range, and Doppler information.

B. Radar IF Spectrum

The FMCW radar with the developed nonlinear model
is considered for detecting a target located at the range of
R = 10 m. The radar IF spectrum for different sources of
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Fig. 9. Impact of circuit nonlinearities on radar IF spectrum. (a) Frequency
multiplier, (b) frequency multiplier and PA, (c) frequency multiplier and LNA,
(d) frequency multiplier, PA, and LNA. The × 8 frequency multiplier includes
harmonics at (N ± 1) fref with −20 dBc power level (kref = 0.1). The PA and
LNA are operated at their P1dB.

Fig. 10. Impact of the TX-to-RX leakage on radar IF spectrum. r = GL/G R
denotes relative amplitude of the leakage signal to the target echo and τL is
the leakage signal delay with respect to the TX signal. The × 8 frequency
multiplier has −20 dBc harmonics level. The PA and LNA are operated at
their P1dB.

nonlinearity included in the model is shown in Fig. 9. The
IF frequency is mapped to the target range. The IF BPF and
the window effect are not applied to enable a fair comparison
between theory and simulations. The main spectral component
fIF1 corresponds to the range of R = 10 m, while the spectral
components fIF2,3 are related to the ranges (1 ± 1/N )R =

8.75 m, 11.25 m. In Fig. 9(a), only the frequency multiplier
harmonics with kref = 0.1 are included. The IF harmonics
level reads −40.3 dBc, which is close to the theoretical value
of 20 log10(k

2
ref) = −40 dBc. The effect of frequency multiplier

Fig. 11. Impact of circuit nonlinearities on the Range-Doppler diagram.
(a) Frequency multiplier, (b) frequency multiplier, PA, and LNA. The main
target highlighted by the yellow circle is located at (R, D) = (10 m, 10 m/s),
while other high-power areas corresponding to the spurs are indicated by
arrows.

and PA nonlinearity is shown in Fig. 9(b), while Fig. 9(c)
indicates the effect of the frequency multiplier and LNA non-
linearity, and Fig. 9(d) demonstrates the effect of the frequency
multiplier, PA, and LNA nonlinearities. The PA and LNA
are operated at their P1dB. Simulation and theoretical results,
derived using (30), are compared in Table II. The difference
between the theory and simulation results is ≤ 0.5 dB up to
the relative leakage power of 0 dB. The discrepancy however
increases to ∼ 2–3 dB for higher relative leakage power levels.
This is due to the approximations used in the theory and
the finite resolution of numerical simulations. Therefore, the
developed model can provide fairly accurate results without
using time-consuming system simulations.

The radar IF spectrum in the presence of TX-to-RX leakage
is shown in Fig. 10. The relative leakage signal amplitude is
increased from r = 0.01 in Fig. 10(a) to r = 0.1 and r = 1 in
Fig. 10(b) and Fig. 10(c), respectively. The leakage signal
delay τL = 0.1 ns is much smaller than the target echo delay.
Therefore, in practice, the low-frequency spectral components
associated with the leakage will be highly suppressed by
the IF BPF. Other than the two spectral components fIF2,3,
another spur is also observed at fIF7. The relative amplitude
of this component, e.g., in Fig. 10(c), is −24.6 dBc. This is
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Fig. 12. Impact of the TX-to-RX leakage on the Range-Doppler diagram.
(a) τL = 0.1 ns, r = 0.1, (b) τL = 2 ns, r = 0.1. All system nonlinearities
are included. The main target highlighted by the yellow circle is located at
(R, D) = (10 m, 10 m/s), while other high-power areas corresponding to the
spurs are indicated by arrows.

close to the theoretical value of 20 log10(kIF,III) = −23.6 dBc.
In Fig. 10(d), the leakage signal delay is increased to τL =

2 ns in order to observe the spur fIF8. This is close to the
main component and its magnitude is larger than that of the
components fIF2,3. The leakage signal should therefore be
attenuated through increasing the TX-RX isolation to achieve
low spectral components at fIF7,8.

C. Radar Range-Doppler Diagram

The radar Range-Doppler diagram can provide insights
about the effects of circuit nonlinearities on the features of
detected target(s). It is assumed that the radar operates over
1–80 m target range and ±50 m/s maximum target velocity.
The target initial range and velocity are respectively 10 m and
10 m/s. The IF BPF provides high out-of-band attenuation
over the bandwidth fIF,min and fIF,max. The transmitted signal
is composed of 128 chirps.

In Fig. 11(a), the Range-Doppler diagram is shown when
only the frequency multiplier harmonics are included in the
radar nonlinear model. The maximum power level is read
around the point (R, D) = (10 m, 10 m/s) which indicates
that the radar can provide high detection probability for

the target. However, the relatively high power levels around
(8.75 m, 10 m/s) and (11.25 m, 10 m/s) (shown in light green)
indicate a probability of false alarm close to these points.
In Fig. 11(b) where the PA and LNA nonlinearity are also
included, the light green areas around (8.75 m, 10 m/s) and
(11.25 m, 10 m/s) have been shrunk. This indicates a lower
false alarm probability as a result of the reduced IF band
spurs level (by ≈ 5 dB). In Fig. 12, effects of the TX-to-RX
leakage are illustrated when all of the system nonlinearities are
included. For the leakage signal delay of τL = 2 ns, a light
green area appears between 9–10 m close to the main target
area. This is a result of the spectral component fIF8 which can
increase the false alarm probability.

V. CONCLUSION

We presented a nonlinear system model for millimeter-
wave frequency-modulated continuous-wave (FMCW) radar
system-on-chips (SoC). The model included harmonics of the
frequency multiplier, nonlinearity of the power amplifier (PA),
low-noise amplifier (LNA), and the switching operation of the
mixer, as well as impact of the TX-to-RX leakage signal. The
developed model can predict the frequency and amplitude of
spurs in the radar IF spectrum prior to the circuit design.
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