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Abstract— This paper proposes a novel method of indepen-
dent component analysis (ICA), which we name higher-order
tensor ICA (HOT-ICA). We newly develop a robust microwave
multiple-input multiple-output (MIMO) radar system, in which
HOT-ICA performs separation of multiple-target signals to detect
respiration and heartbeat. In comparison with millimeter waves,
microwaves spread wider with diffraction and propagate even in
an environment with obstacles to reach targets. However, it often
requires more powerful signal separation because of its lower
resolution. HOT-ICA realizes high robustness in self-organization
of a separation tensor by utilizing channel information, i.e., the
information of physical-measurement circumstances concerning,
e.g., which transmitting/receiving antennas are used. In numerical
and living-human experiments, our HOT-ICA system effectively
separates the bio-signals successfully even in an obstacle-affecting
environment, which has been a difficult task. The results demon-
strate the significance of HOT-ICA in remote sensing. It fully
utilizes the high dimensionality of the separation tensor by
keeping the tensor structure unchanged to take advantage of
the measurement-circumstances information.

Index Terms— Complex-valued neural network, Doppler
radar, independent component analysis (ICA), multiple-input
multiple-output (MIMO) system.

I. INTRODUCTION

CONVENTIONAL heartbeat and/or respiration sensing
systems use contact-type electrodes attached to a human

body. However, recent vital-sign detectors sometimes employ
noncontact methods. After the first report of detection of
respiration using microwaves [1], there have been a lot of
research on respiration and heartbeat measurement based on
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Doppler radar. Some of them assumed line-of-sight (LOS)
situations [2], [3], [4], [5], [6], [7], while others worked
on non-line-of-sight (NLOS) conditions including search and
rescue in disasters such as earthquake rubble [8], [9], [10],
[11], [12], [13].

Multiple-input multiple-output (MIMO) configuration using
multiple transmitting and receiving antennas holds the ability
of target identification intrinsically. For example, a 24 GHz
frequency-modulation continuous-wave (FMCW) MIMO radar
detects respiration and heartbeat information for respective
targets by using target distances to separate the individu-
als [14]. However, the use of such a high frequency limits its
practical applications only within short-range LOS situations.
The difficulty is found also in ultrasound sensing systems [15].
A lower-frequency continuous-wave (CW) radar system has
the potential to realize target detection with a wider sensitive
area even including obstacles.

Environments having obstacles and multiple targets often
require separation of a target signal from others and noise.
A signal-source separation experiment in an X-band array
radar was reported [16], in which the heartbeat signal of
one target was separated from that of another one by using
beamforming successfully. However, a microwave having a
lower frequency possesses an advantage though their spatial
resolution is a little lower. Microwaves are capable of propa-
gating among obstructions because of their diffractive nature.
In such a case, blind source separation (BSS) is expected to
enhance the detection and identification ability.

BSS is a framework to estimate individual original signals
included in mixed signals based on signal information itself.
Independent component analysis (ICA) is a typical method in
BSS [17], [18], [19]. ICA eliminates noise and/or separates
targets by finding a separation matrix to linearly transform
mixed signals into unmixed ones based on signals’ statistical
property. ICA has been often employed in audio signal pro-
cessing in the frequency domain [20], [21], [22].

In the radar sensing and imaging field, an ICA system [11]
treated in-phase and the quadrature components obtained by
orthogonal detection as two real-number signals different from
each other. However, a pair of in-phase and orthogonal com-
ponents should be processed essentially as a single complex
signal [23], [24], [25]. This present paper also deals with
complex signals as an entity. In vital sensing, measurement
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environment often varies depending on target movement and
obstacles. We thus aim to process complex signals adaptively
in time-sequential observation [26], [27]. The scheme is called
online ICA.

Signal processing in measurement using MIMO configura-
tion leads to a construction of data tensor having multiple axes
involving path-category information, rather than a data vector
representing mixed signals evenly. A tensor data requires
a higher-order tensor for signal separation. Multilinear ICA
(MICA) was proposed for applying third-order tensors to ICA
processing [28], [29]. MICA uses higher-order singular value
decomposition (HOSVD) or higher-order orthogonal iteration
(HOOI) [30], [31], [32]. Their calculation is based on the
tensor decomposition proposed by Tucker [33]. MICA has
been positively evaluated for its separation effectiveness [34],
[35], [36], [37].

Though it is true that the methods such as HOSVD and
HOOI can process data tensors in the framework of MICA,
there is room for utilizing the nature of the higher-order
tensors further effectively. In MICA, the categories in the
data represented by the tensor axes are nullified by the
matricization treatment. It should be possible to realize tensor
ICA processing more meaningfully in such a manner that the
data categories represented by the axes remain undestructed
for enhanced separation performance.

This paper proposes such a method, namely, higher-order
tensor independent component analysis (HOT-ICA), which
realizes an effective use of the tensor structure representing
data categories such as respective origins of individual data
in their physical measurement. Previously, we presented the
HOT-ICA concept and its potential by presenting simulation
results with rough on-off control of separation-tensor-update
sensitivity in HOT-ICA [38]. Here, in this present paper,
we describe the details of HOT-ICA with enhanced discussion,
and also demonstrate its effectiveness in physical experiments
of respiration and heartbeat detection for multiple targets in an
environment with obstacles. In addition, we propose a more
sophisticated manner of the sensitivity control paying attention
to signal-to-noise ratios (SNRs). In the experiments, we com-
pare the results with those of a conventional method, namely,
complex-valued frequency-domain ICA (CF-ICA) [13].

This paper is organized as follows. Section II briefly
explains the theory of ICA and the Doppler radar. Section III
describes HOT-ICA, which is proposed in this paper.
Section IV shows the setup and results of numerical exper-
iments including large imbalance in received signals due to
obstacle existence in the measurement environment. Section V
presents physical experiments with living-human targets
to demonstrate the practical effectiveness of the proposed
HOT-ICA. Finally, Section VI concludes this paper.

II. MATHEMATICAL AND PHYSICAL BACKGROUND

A. ICA

A BSS situation is illustrated in Fig. 1 (a). Here we assume
an instantaneous mixing process. ICA estimates unmixed
original signals based only on received signal information.

Fig. 1. Conceptual illustrations of (a) general BSS, Doppler radar for
(b) single and (c) multiple targets, and (d) the construction of our proposed
MIMO radar system (VNA: vector network analyzer, PC: personal computer,
SW: switch).

Suppose that P receivers observe mixed signals x(t) ∈ CP×1

originating from independent complex signals s(t) ∈ CP×1.
This situation is expressed with a mixing matrix A ∈ CP×P as

x(t) = As(t). (1)

It is desired to find a separation matrix B ∈ CP×P that
transforms mixed signals x(t) ≡ [x1(t) · · · xP(t)]T into sta-
tistically independent signals y(t) ≡ [y1(t) · · · yP(t)]T, where
[· · · ]

T denotes transposition, as

y(t) = Bx(t). (2)

Each signal in y(t) corresponds to one of the original sig-
nals s(t) ≡ [s1(t) · · · sP(t)]T. ICA optimizes the separation
matrix B.

Basically, ICA algorithm consists of two parts, namely,
whitening and independence maximization. Whitening is a
transformation which makes the data uncorrelated with one
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Fig. 2. Processing flow of (a) CF-ICA and (b) HOT-ICA.

another, its mean be 0, and the variance be 1. This process
is closely related to principal component analysis (PCA). The
independence maximization transforms the uncorrelated data
to independent signals. Note that uncorrelatedness mentioned
above does not necessarily mean independence. For evaluat-
ing independence, nonlinear uncorrelatedness is often used.
That is, if arbitrary variables y1 and y2 are independent, the
following relation holds for arbitrary two nonlinear functions
h1 and h2:

E{h1(y1)h2(y2)} = E{h1(y1)}E{h2(y2)}. (3)

Thus, we can determine the degree of independence by the
degree of satisfaction of (3). In other words, it is estimated
that y1 and y2 are independent if h1(y1) and h2(y2) are uncor-
related. In actual algorithms, kurtosis, hyperbolic function such
as tanh, or another polynomial is used.

B. Doppler Radar Having a Single Transmitting and
Receiving Antennas Respectively

Fig. 1 (b) shows a measurement scene of a Doppler radar.
A microwave radiated from transmitting antenna Tx propa-
gates to a target. After backscattered on the body surface,
it is received by a receiving antenna Rx. A CW Doppler
radar discussed here is a system that detects body surface
displacement d caused by respiration and heartbeat.

The phase φ(t) of the received microwave of frequency ft

is expressed in terms of the target displacement d(t) as

φ(t) = 2π ft t +
4πd(t)
λ

+ φ0 (4)

where λ and φ0 represent the wavelength and the phase offset,
respectively. The displacement is detected as the phase change
of the microwave obtained by phase-sensitive detection. Typ-
ically, human respiration and heartbeat cause displacement of
about 0.5 cm and less than 1 mm, respectively.

III. PROPOSAL OF HIGHER-ORDER TENSOR
INDEPENDENT COMPONENT ANALYSIS (HOT-ICA)

Fig. 1 (c) is a conceptual illustration showing a measurement
scene of a MIMO Doppler radar to observe multiple targets.

Fig. 3. Structures of signals in (a) conventional ICA processing (e.g. MICA
and CF-ICA) and (b) HOT-ICA processing.

First, a microwave radiated from transmitting antenna Tx1
propagates to a target area. Backscattered waves are received
by receiving antennas Rx1, · · · , Rxn, · · · , RxN . A next
microwave is radiated from transmitting antenna Tx2 and
received in the same way. In such a manner, the measurement
proceeds with transmitting antennas changed in turn.

Fig. 1 (d) shows the total system construction. The sys-
tem consists of transmitting and receiving antennas, a vector
network analyzer (VNA), switches (SWs), and a personal
computer (PC) to control the VNA and the SWs, and to process
the obtained data by the proposed HOT-ICA.

HOT-ICA is based on CF-ICA, which processes complex
signals in the frequency domain [13]. The processing flow of
CF-ICA is shown in Fig. 2 (a). The ICA model described
below is independent of the microwave frequency since the
relative bandwidth of the microwave CW radar signal is very
small in the case of respiration and/or heartbeat measurement.
In time-domain ICA, the separation matrix B self-organizes
for time-series signals that are fed one after another. On the
other hand, CF-ICA uses short-time Fourier Transform (STFT)
to convert time-domain signals into the frequency domain.
It can improve separation performance by limiting the signal
frequency band to the minimum containing target signals. Let
the mixed signal phase be φn(t) and the separated signal phase
be ψi (t). The time-domain phase signals φ(t) ≡ [φn(t)] and
ψ(t) ≡ [ψi (t)] have time-series STFT spectra expressed as

Φ(ω, td) = [8n(ω, td)]

=

[
LSTFT−1∑
τ=0

φn(τ + td S)e− jωτ

]
, (5)

Ψ (ω, td) = [9i (ω, td)]

=

[
LSTFT−1∑
τ=0

ψi (τ + td S)e− jωτ

]
(6)

where LSTFT is the length of the Fourier window, S is the
moving step of the window, and td is the discrete time. After
self-organization, an optimized separation matrix B works as

Ψ (ω, td) = B(td)Φ(ω, td). (7)

In the instantaneous mixing situation, the separation matrix
obtained in the frequency domain becomes identical to that
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in the time domain because of the Fourier-transform (FT)
linearity.

The separation algorithm is based on so-called equivariant
adaptive separation via independence (EASI) [27]. EASI is
a method to simultaneously execute the two ICA processes
described in Section II-A, whitening and independence maxi-
mization, as a single update process with an updating fraction
expressed as

1B = −µ[ΨΨ H
− I + g(Ψ )Ψ H

− Ψ g(Ψ )H]B (8)

where Ψ H denotes Hermite conjugate of Ψ . As mentioned
before, B does not depend on frequency.

Fig. 3 shows structures of mixed signals in general. Con-
ventional methods such as CF-ICA deal with mixed signals
in all Txm–(human target)–Rxn channels evenly, as shown in
Fig. 3 (a).

Fig. 3 (b) represents the signal structure in HOT-ICA [38].
In contrast to conventional ICA, we construct the framework
of HOT-ICA in such a manner that the information represented
by the mixed-signal category is undestructed and kept as it is.
Then, instead of (7), we express the separation in HOT-ICA
by a fourth-order separation tensor B(td) ∈ Cpt ×pr ×pt ×pr for
second-order signal tensors 8(ω, td) ∈ Cpt×pr and 9(ω, td) ∈

Cpt×pr as

9(ω, td) = B(td)8(ω, td) (9)

or, by using elements in the tensors, as

9(ω, td)(α,β) =

pt∑
γ=1

pr∑
δ=1

B(td)(α,β,γ,δ)8(ω, td)(γ,δ) (10)

where α and γ are indices originating from transmitting
antennas, while β and δ are related to receiving antennas.
We extend the updating formula (8) to HOT-ICA using tensors
as

1B(α,β,γ,δ) =

pt∑
ε=1

pr∑
ζ=1

W (α,β,ε,ζ )B(ε,ζ,γ,δ) (11)

where W = [W (α,β,ε,ζ )
] ∈ Cpt ×pr ×pt ×pr is an updating weight

tensor, and we define it as

W (α,β,γ,δ)
= −µ

[
9(α,β)9

(γ,δ)
− I (α,β,γ,δ)

+g
(
9(α,β)

)
9
(γ,δ)

+9(α,β)g
(
9
(γ,δ)

)]
(12)

where 9 denotes the conjugate of 9. We also define I =

[I (α,β,γ,δ)] ∈ Cpt ×pr ×pt ×pr as

I (α,β,γ,δ) =

{
1 (α = γ ∩ β = δ),

0 (α ̸= γ ∪ β ̸= δ).
(13)

When we construct a MIMO system, it is inevitable that
respective antennas have various conditions and/or situations
different from one another depending on the environment. For
example, an amplifier for receiver connected to an antenna
may be relatively noisy or defective. In such a case, we should
improve the robustness of the overall self-organizing pro-
cess. This can be achieved by reducing the updating weight
associated with the defective channel. HOT-ICA can realize

this adjustment as follows. We break down the updating
formula (11). By representing updating tensor components
related to channels of respective transmitting and receiving
antennas Tx1-Rx1, Tx1-Rx2, · · · , Txm-Rxn, · · · , TxM-RxN
(1 ≤ m ≤ M), (1 ≤ n ≤ N ) as 1B

Tx1−Rx1
, 1B

Tx1−Rx2
, · · · ,

1B
Txm−Rxn

, · · · , 1B
TxM−RxN

, we can express total update

tensor 1B as

1B = 1B
Tx1−Rx1

+1B
Tx1−Rx2

+ · · · +1B
TxM−RxN

(14)

where each 1B is defined as

1B(α,β,γ,δ)Txm−Rxn =

pt∑
ε=1

pr∑
ζ=1

W (α,β,ε,ζ )
Txm−Rxn B(ε,ζ,γ,δ). (15)

This representation is possible in HOT-ICA, which keeps
tensor axes meaningful. The updating weight tensor W is
represented as

W (α,β,ε,ζ )
Txm−Rxn =

{
W (α,β,ε,ζ ) ((ε = m) ∩ (ζ = n))
0 ((ε ̸= m) ∪ (ζ ̸= n)). (16)

The coefficient ηTxm−Rxn determines the updating magnitude
in self-organization. As an example, in Channel Tx1-Rx1,
ηTx1−Rx1 (0 ≤ ηTxm−Rxn ≤ 1) is the coefficient for updat-
ing W

Tx1−Rx1
. We can obtain a new tensor W′

Txm−Rxn
∈

Cpt ×pr ×pt ×pr having an adjusted updating gain, or sensitivity
as

W′

Txm−Rxn
= ηTxm−Rxn W

Txm−Rxn
. (17)

We describe the details to determine ηTxm−Rxn in
Section IV-B2.

In this way, HOT-ICA can adjust the self-organizing sensi-
tivity for some of the components associated with respective
channel situations. This is very effective for measurements
employing the MIMO configuration. Conventional methods
such as CF-ICA cannot perform this adjustment.

Note that tensor calculation in HOT-ICA is different from
that in MICA based on the Tucker decomposition which
requires matricization. HOT-ICA keeps the data-tensor struc-
ture without nullifying the channel categorization. Hence,
HOT-ICA is capable of adaptive signal-source separation every
time receiving antennas acquire signals even including possi-
ble changes in the measurement environment, resulting in an
enhanced robustness. Note also that this proposal is extendable
to a processing for n-th order mixed- and unmixed-signal
tensors by use of a 2n-th order separation tensor.

IV. NUMERICAL EXPERIMENTS

A. Experimental Setup

We conduct numerical experiments by assuming a CW
MIMO Doppler radar front-end for signal-source separation
based on HOT-ICA. The radar frequency is 2.4 GHz. Fig. 4
shows the placement of antennas and targets. The numbers
of transmitting antennas Tx and receiving antennas Rx are
pt = pr = 3, and the number of targets (humans: H)
is 4. In HOT-ICA it is not necessary to know the number
of original signals in advance. It separates the signals of
an upper-limit number, which is identical to the channel
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TABLE I
PARAMETERS RELATED TO RESPIRATION AND HEARTBEAT OF EACH TARGET

Fig. 4. Placement of transmitting and receiving antennas, Txm and Rxn,
and target humans Hk.

number. At the humans, the body moves periodically due to
respiration and heartbeat, and the Doppler radar detects the
body surface displacement. Then, complex-valued signals are
finally obtained. The signals consist of not only the signals
originating from the targets but also various noise.

In Fig. 4, an obstacle is placed between targets and antennas.
The obstacle has an effect on the received signals. We assume
a case that it changes the magnitude of the signals received
at antennas Rx1, Rx2, and Rx3 by −3 dB, −1 dB, and 0 dB,
respectively.

In the experiments in this section, L̄Txm–Hk denotes the aver-
age distance from a transmitting antenna Txm (1 ≦ m ≦ 3)
to a target Hk (1 ≦ k ≦ 4), and L̄Hk–Rxn represents that from
a target Hk to a receiving antenna Rxn (1 ≦ n ≦ 3). The
direction angle from transmitting antenna Txm to target Hk
is θTxm–Hk , and the arrival angle from target Hk to receiving
antenna Rxn is θHk–Rxn . In the following equations, we use
GTxm and GRxn representing the gains of transmitting and
receiving antennas which have same directivity patterns as
shown later in Section V, and σ indicating the scattering
coefficient of the human body for the electromagnetic waves.
The antenna radiation pattern (see Fig. 8 in Section V) and
backscattering coefficient (Table II referred to later) were
obtained by measurement. Though the value of σ depends
on the angle of incidence and scattering, and the human-body

TABLE II
PARAMETERS FOR HOT-ICA AND PROCESSING

shape is complex and varies among individuals, we treat it
roughly as a constant in these numerical experiments.

We determine the original signal model s(t) ∈ C4×1 as

s(t) =


sH1(t)
sH2(t)
sH3(t)
sH4(t)

 =


exp( jwH1(t))
exp( jwH2(t))
exp( jwH3(t))
exp( jwH4(t))

 (18)

where wH1(t), wH2(t), wH3(t) and wH4(t) are

wH1(t) = ar1 sin(2π fr1 t)+ ah1 sin(2π fh1 t), (19)
wH2(t) = ar2 sin(2π fr2 t + π/6)

+ ah2 sin(2π fh2 t + π/6), (20)
wH3(t) = ar3 sin(2π fr3 t + 3π/4)

+ ah3 sin(2π fh3 t + 3π/4), (21)
wH4(t) = ar4 sin(2π fr4 t + π)

+ ah4 sin(2π fh4 t + π) (22)

expressing respiration and heartbeat signals of four humans
with their amplitudes and frequencies shown in Table I.

The received signals Erec = [E (m,n)
rec ] ∈ Cpt ×pr are repre-

sented as

Erec(t)(m,n) =

4∑
k=1

GTxm

exp
(

j2π LTxm–Hk (t)
λ

)
LTxm–Hk(t)

· σGRxn

exp
(

j2π LHk–Rxn(t)
λ

)
LHk–Rxn(t)

 (23)

where LTxm–Hk(t) and LHk–Rxn(t) are written as

LTxm–Hk(t) = L̄Txm–Hk − wHk(t) cos θTxm–Hk, (24)

LHk–Rxn(t) = L̄Hk–Rxn − wHk(t) cos θHk–Rxn. (25)

In the present experiments, the received signals Erec and
noise V = [V (m,n)

] ∈ Cpt ×pr result in mixed signals x(t) =

[x(t)(γ,δ)] as

x(t) = Erec(t)+ ρV (26)
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Fig. 5. Spectra of (a-⋆) mixed signals, (b-⋆) signals separated by CF-ICA, and (c-⋆) signals separated by HOT-ICA in the last time window for the setting
of three transmitting and three receiving antennas in the environment with an obstacle.

Fig. 6. Heartbeat spectra of (a-⋆) signals separated by CF-ICA and (b-⋆) signals separated by HOT-ICA in the last time window for the setting of three
transmitting and three receiving antennas in the environment with an obstacle.
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where ρ is noise magnitude and V (m,n) is a noise tensor
following the normal distribution with a mean of 0 and a
variance of 1.

The parameters of HOT-ICA are shown in Table II.
We receive signals for about 177 s. The sampling frequency
is fs = 11.3 Hz, and there are 2000 data points. With the
STFT of window size LSTFT = 256, resulting in a frequency
resolution of 0.044 Hz. Moving step is S = 2, and the total
number of STFT outputs is 872. Then, time index d for the
discrete time td ranges from d = 0 to D = 871. In the self-
organization, we process signals only in the target frequency
band fmin– fmax including respiration and heartbeat.

B. Comparison of CF-ICA and HOT-ICA

1) CF-ICA: Figs. 5 (a-⋆) and (b-⋆) show the spectra of
mixed and separated signals, respectively. The vertical axis
represents the signal magnitude normalized in such a way that
the maximum signal magnitude in each row becomes unity,
and the horizontal axis indicates the frequency. Figs. 5 (a-⋆)
present the mixed signal spectra 8(tD) at the last time window
obtained by microwaves transmitted by Tx1 and received by
Rx1, denoted as (Tx1, Rx1) as well as those by (Tx1, Rx2),
(Tx1, Rx3), (Tx2, Rx1), (Tx2, Rx2), (Tx2, Rx3), (Tx3, Rx1),
(Tx3, Rx2), and (Tx3, Rx3) in the order from left to right.
These graphs include the original signals scattered by the four
targets, the measurement environment, and the sum of the
noise at receiving amplifiers.

To make it easier to compare the separation performance of
the conventional method (CF-ICA) and the proposed method
(HOT-ICA), the spectra including target signals are placed on
the left-hand side in Figs. 5 (b-⋆), (c-⋆) and Figs. 6 (a-⋆), (b-⋆).
Thus, the target signals appear in Sep. 1-4 and only noise are in
Sep. 5-9. We define an index of rejection ratio rR = A1/A2 by
using the first peak amplitude A1 (desired) and the second
peak amplitude A2 (undesired) in each spectrum, and used it
to compare the experimental results of the proposed method
with those of the conventional method.

In these figures, upper inset frequency values show the
frequencies of primary peaks in respective graphs while lower
inset values present those of the second peaks. In each of
Figs. 5 (b-1), (b-2), (b-3), and (b-4), we can observe a
large primary peak in the signal magnitude. The frequen-
cies of the primary peaks correspond to those of respiration
of respective targets shown in Table I, and we find that
the primary peak represents respiration. Note that a pair
of respiration and heartbeat signals of each target appear
simultaneously in a single spectrum (see Figs. 5 (b-1), (b-3),
and (b-4)). Other spectra in Figs. 5 (b-5)–(b-9) present
noise only.

Figs. 6 (a-⋆) show the spectra of Figs. 5 (b-⋆) in the
heartbeat-frequency band only. In Figs. 6 (a-1), (a-3) and (a-4),
the heartbeat signals of targets H1, H3, and H4 are separated,
respectively. However, as we can see from Fig. 6 (a-2), the
heartbeat signal is not well separated. The primary peak show
1.24 Hz.

2) HOT-ICA: Figs. 5 (c-⋆) show the results of HOT-ICA,
in which we can control updating sensitivity, in the same

Fig. 7. Antenna array configuration.

environment. In this update, we considered that the degree of
influence of W

Txm−Rxn
on 1B

Txm−Rxn
should be adjusted to

be proportional to the reliability of individual received signals,
and that the reliability is evaluated as their SNRs. In calcula-
tion of a SNR, the signal amplitude in a spectrum is basically
determined by the maximum peak height, normalized by the
all-spectrum maximum peak height shown in Figs. 5 (a-⋆),
while the noise has almost the same levels for all the spectra.
Accordingly, we define the coefficient ηTxm−Rxn in (17) as the
ratio of the magnitude of the peak signal in each Txm-Rxn
spectrum to the maximum one in all the spectra. In such a
manner, the reduction of desired signals and/or the increase
of noise are detectable in the front-end so that the updating
sensitivity can be controlled automatically.

In Figs. 6 (b-1)–(b-4), the heartbeat signals of targets
H1–H4 are separated, respectively. In contrast with the
CF-ICA results in Fig. 6 (a-2), the signal separated by HOT-
ICA in Fig. 6 (b-2) has the heartbeat-signal peak of target H2
as the primary one (1.10 Hz) correctly.

The rejection ratios rR of the heartbeat signals separated by
using CF-ICA in Figs. 6 (a-1)–(a-4) are 8.72 dB, (failure),
6.55 dB and 7.30 dB, respectively, while those by using
HOT-ICA in Figs. 6 (b-1)–(b-4) are 4.97 dB, 2.15 dB,
8.23 dB and 8.04 dB, respectively. Though CF-ICA separates
H1 better than HOT-ICA, HOT-ICA separates H2, H3 and
H4 better than CF-ICA. We find that the separation perfor-
mance of HOT-ICA is superior to that of the conventional
method.

HOT-ICA can include the sensitivity control to respec-
tive components of the updating weight tensor W. In other
words, it realizes direct control of the parameters in the self-
organizing dynamics. This successful increase of robustness
reveals the significance of keeping the signal categorization in
HOT-ICA.

V. PHYSICAL EXPERIMENTS

A. Experimental Setup

We physically perform the experiments described in
Section IV with living-human targets and real existence of
an obstacle. Fig. 7 is a photo showing the placement of the
MIMO antennas. Fig. 8 represents the directivity (gain) of
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Fig. 8. Directivity (gain) of transmitting and receiving antennas measured
at about 1.5 m away corresponding to the following experiments.

Fig. 9. Arrangement of the subjects.

the antennas. We set four targets and arrange them as shown
in Fig. 9. The distance from the MIMO antennas to the
targets is about 1.5 m. The respiration frequencies of targets
H1, H2, H3 and H4 are approximately 0.19 Hz, 0.13 Hz,
0.16 Hz, and 0.10 Hz, respectively. The obstacle is placed
30 cm away from the antenna Rx1 as shown in Fig. 10.
The obstacle is aluminum foil, and its size is approximately
25 cm × 25 cm.

Simultaneously with the observation, we measured the sub-
jects’ heartbeat by using contact-type pulse sensors and an
oscilloscope. Then, we found that the heartbeat frequencies
of targets H1, H2, H3 and H4 are approximately 0.97 Hz,
0.88 Hz, 1.09 Hz, and 0.97 Hz, respectively.

B. Comparison of CF-ICA and HOT-ICA

1) CF-ICA: This section shows the results of CF-ICA
processing in the physical experiments. Figs. 11 (a-⋆), (b-⋆),
and (c-⋆) represent the mixed-signal spectra 8(tD), spec-
tra separated by CF-ICA 9(tD), and those by HOT-ICA
9(tD), in the same way as that of Figs. 5 in Section IV-B1.
In Fig. 11 (a-⋆), the signals are mixed in all the spectra. In the
signal magnitude in Figs. 11 (b-1)–(b-4), we can observe large
primary peaks, which are respiration frequencies of targets
H1–H4, respectively. They correspond to the actual respiration
frequencies.

Spectra shown in Figs. 12 (a-⋆) include the heartbeat
signals separated by CF-ICA. According to Section IV-B1,
the heartbeat signal of a target should appear in the same
graph as the respiration signal of the same target. That is,
Figs. 12 (a-1)–(a-4) represent the heartbeat signals of targets

Fig. 10. Obstacle placed in front of the antennas.

H1 (0.97 Hz), H2 (0.88 Hz), H3 (1.09 Hz), and H4 (0.97 Hz),
respectively. However, only one signal (H3) coincides with the
measurement result obtained by the pulse sensor. In addition,
H1, H2, H3 are unseparated. Then, the processing is unsuc-
cessful in total.

2) HOT-ICA: Figs. 11 (c-⋆) show the results of HOT-
ICA with sensitivity control in relation to channels having
transmitting and receiving antennas Tx1-Rx1, Tx1-Rx2, · · · ,
Tx3-Rx3 in the same environment as that in Section V-B1.
In the signal magnitude in Figs. 11 (c-1)–(c-4), we can
observe large primary peaks, which coincide with the actual
respiration frequencies of targets H1, H2, H3, and H4,
respectively.

Spectra shown in Figs. 12 (b-⋆) include the heartbeat signals
separated by HOT-ICA. Figs. 12 (b-1)–(b-4) represent the
heartbeat signals of targets H1 (0.95 Hz), H2 (0.86 Hz), H3
(0.86 Hz), and H4 (1.33 Hz), respectively. We observed that
the heartbeat frequencies for targets H1 and H2 are exactly
correct within a resolution unit.

For targets H3 and H4, which are near the obstacle,
the heartbeat frequencies are somewhat different from the
measurement result of the pulse sensor. The respiration sig-
nal originates mainly from abdominal movement, while the
heartbeat signal can come from not only the chest but
also neck artery, back of the hand, and so on. In addi-
tion, the strength of the heartbeat signal is very small.
Thus, it is not easy to measure the heartbeat clearly in
general. However, our HOT-ICA system is successful in
part.

As described above, HOT-ICA is capable of including the
control of sensitivity to respective components of the updating
weight tensor W. This operation is realizable only in HOT-
ICA because its process reflects the measurement physics, i.e.,
it preserves the categorization of data unlike the conventional
tensor methods. The results of physical experiments showed
the significance of HOT-ICA framework.

VI. CONCLUSION

This paper proposed HOT-ICA. It is a new signal-separation
method suitable for categorized data obtained by the measure-
ment for human respiration and heartbeat employing a CW
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Fig. 11. Spectra of (a-⋆) mixed signals, (b-⋆) signals separated by CF-ICA, and (c-⋆) signals separated by HOT-ICA in the last time window for the setting
of three transmitting and three receiving antennas in the environment with an obstacle.

Fig. 12. Heartbeat spectra of (a-⋆) signals separated by CF-ICA and (b-⋆) signals separated by HOT-ICA in the last time window for the setting of three
transmitting and three receiving antennas in the environment with an obstacle.

MIMO Doppler radar, where the physical Tx or Rx in the
measurement corresponds to each axis of the tensor. We con-
ducted numerical experiments as well as physical experiments.
We set an obstacle in the measurement environment, which

causes the attenuation of target signals and the decrease of
SNR, and compared the separation performances of proposed
HOT-ICA with conventional CF-ICA. As a result, we found
that HOT-ICA is more robust to the obstacle existence than
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conventional CF-ICA, leading to more flexible observation in
various measurement situations. This robustness is achieved by
HOT-ICA’s signal processing dynamics that preserves the cat-
egories in the data to realize more powerful self-organization
ability.
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