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Abstract—Replay attacks are among the most well-known
attacks against vote privacy. Many e-voting systems have been
proven vulnerable to replay attacks, including systems like Helios
that are used in real practical elections.

Despite their popularity, it is commonly believed that replay
attacks are inefficient but the actual threat that they pose to vote
privacy has never been studied formally. Therefore, in this paper,
we precisely analyze for the first time how efficient replay attacks
really are.

We study this question from commonly used and complemen-
tary perspectives on vote privacy, showing as an independent
contribution that a simple extension of a popular game-based
privacy definition corresponds to a strong entropy-based notion.

Our results demonstrate that replay attacks can be devastating
for a voter’s privacy even when an adversary’s resources are very
limited. We illustrate our formal findings by applying them to a
number of real-world elections, showing that a modest number
of replays can result in significant privacy loss. Overall, our work
reveals that, contrary to a common belief, replay attacks can be
very efficient and must therefore be considered a serious threat.

I. INTRODUCTION

Electronic voting, or e-voting, is a reality. Systems for
e-voting are nowadays used for political elections all over
the world, for example, in Australia, Brazil, Estonia, India,
Switzerland, or the US. Furthermore, in line with the gen-
eral shift toward remote technologies, numerous institutions
(e.g., academic organizations such as ACM, IACR, or SIAM)
employ e-voting systems to mitigate physical barriers and
increase voter turnout.

The two most fundamental properties for secure e-voting are
(end-to-end) verifiability and (vote) privacy. Verifiability [17]
enables external and internal observers to detect and reject
falsely computed election results, even when the underlying
cause is an unknown programming error or malicious behavior
of some of the participants. Privacy [5] guarantees that all data
published during an election (including data for proving the
integrity of the final result) does not leak more information on
the single voters’ choices than what can be derived from the
public (unbiased) election result.

Designing secure e-voting systems is very challenging, with
a long and rich history going back to the 1980’s [4]. Since
then, numerous e-voting systems have been proposed which
aim to provide both verifiability and privacy (see, e.g., [1, 13–
16, 34, 36, 37]), sometimes with additional security proper-

ties such as receipt-freeness [13] or coercion-resistance [16].
Some of these e-voting systems have been and are used in
practice, for example for political elections in Australia [11],
Estonia [38], Switzerland [40], and the US [12], or for non-
political ones, such as IACR elections [25], to name just a
few.

It is crucial to protect the voters’ privacy not only against
passive observers but also against adversaries who control
some of the protocol participants (e.g., voters or tallying
authorities) and who let these corrupted participants actively
deviate from their specified roles in order to undermine privacy
of some or all (uncorrupted) voters. Guaranteeing privacy in
the face of such active adversaries is a common standard which
(most) modern e-voting systems aim to provide. However, it
turned out that numerous e-voting systems fall short of this
goal in their respective threat scenarios, including seminal
systems like Helios (see [7, 10, 18]), Civitas (see [24, 27]), or
Prêt à Voter (see [10]).

One of the most prominent classes of attacks against
privacy—if not the most prominent one—are replay attacks
(see, e.g., [7, 13, 18, 19, 24]) to which many e-voting systems
have been proven vulnerable (e.g., [1, 8, 16, 34, 36, 37]).
Roughly speaking, a replay attack works as follows. The
adversary, who controls some corrupted voters, targets an
uncorrupted voter whose privacy he wants to undermine. The
adversary waits until the targeted voter has submitted her ballot
and reads it from the public bulletin board. Then the adversary
instructs (some of) the corrupted voters to submit (possibly a
re-randomization of) the same ballot the targeted voter had
submitted before. If, in a particular e-voting system, these
replayed ballots are not discarded prior to tallying, then the
targeted voter’s choice is amplified in the public election result.
Because the adversary now obtains more information about
the targeted voter’s choice than what he could derive from an
unbiased election result, vote privacy is undermined.

Despite their popularity, the risk of replay attacks is often
regarded as a “largely theoretical” [39] issue, even in the
scientific community. In publications which unveil replay
attacks against vote privacy of an e-voting system, the effect
of replay attacks is typically illustrated for extreme cases only,
e.g., elections with just two honest voters [10] or with many
corrupted ones who all replay a single voter’s ballot [19].
While such completely artificial toy examples can be useful
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to explain why privacy is formally broken, they seemingly
suggest that replay attacks do not pose a serious threat. It
is therefore not surprising that, for instance, in response to
the replay attack against Helios [1] discovered in [18], Helios
Voting replied that “the risk of this attack being successfully
carried out is low, as it requires ”wasting” a number of votes to
compromise the privacy of one voter”, concluding that, most
likely, replay attacks would not matter [23]. This—as we shall
see, fallacious—perspective may also explain why the latest
version of Helios [1] (used, e.g., for IACR elections [25])
has not yet been patched to defend against the replay attacks
discovered in [7].

Indeed, at first glance, it seems necessary to replay a
targeted voter’s ballot many times in order to significantly
amplify this voter’s choice in the final result. However, some-
what surprisingly, this common conjecture has never come
under close scrutiny. The study by Cortier and Smyth [18] is
the only previous work which attempted (in Section III.C) to
analyze how replay attacks scale, but the authors considered
a “definitive mathematical analysis” as future work because
their underlying model was “rather naı̈ve” [18].

In this work, we challenge the abovementioned conjecture
for the first time, both rigorously and extensively, from two
established and complementary perspectives on vote privacy.
We precisely measure how efficient replay attacks really are,
i.e., how much the affected voter’s privacy loss increases
depending on the number of replays. In particular, we show
that replay attacks can be devastating for a voter’s privacy even
when an adversary’s resources are highly limited so that he can
(or is willing to) replay a targeted voter’s ballot only very few
times. This observation disproves a common conjecture that
vote privacy would only be at risk if the number of replays
was high. Our novel insights are immediately relevant for the
security of real elections because e-voting systems vulnerable
to replay attacks have been, are, and most likely will be used in
practice (e.g., the latest version of Helios for IACR elections).

A. Our contributions

a) Categorization of replay attacks (Sec. II): We begin
by reviewing the scientific literature to extract all replay
attacks against vote privacy that have been published to date.
We categorize these attacks into different classes, depending
on their specific forms. Our extensive presentation highlights
that replay attacks play a central role in modern secure e-
voting, which demonstrates the importance of our subsequent
analysis.

b) Efficiency analysis based on the KTV vote privacy
definition (Sec. IV): We first formally analyse the efficiency
of replay attacks using the vote privacy definition by Küsters,
Truderung, and Vogt [30], hereafter called the KTV privacy
definition (Sec. III). The KTV privacy definition is not only
established and widely used (see, e.g., [3, 9, 28, 29, 32]) but
it proves particularly useful for our purposes because it allows
us to measure the loss of vote privacy and thus the efficiency
of replay attacks.

We first define an ideal functionality for an e-voting pro-
tocol which allows the adversary to replay a targeted voter’s
ballot nrepl times, and compute the KTV privacy loss of this
protocol. We obtain a useful reduction from the privacy loss
for a general election to that for an election with only three
candidates.

This allows us to analyze how the ideal privacy loss is
affected by the number of replays nrepl. As we shall see, even
for small numbers of nrepl, the privacy loss can be devastating.
We illustrate our abstract results with a number of realistic
examples.

c) A new entropy-based vote privacy definition (Sec. V):
A limitation of the KTV privacy definition [30] (observed for
instance in [5]) is that it only measures privacy with respect
to a specific security game, namely the adversary’s ability to
guess between two possible votes. In particular this means that
for the ideal functionality (including replays) the privacy loss
is (as we will see in Section IV) entirely determined by the
two least popular candidates, with the other candidates having
no effect whatsoever.

Entropy-based measures of vote privacy (e.g., [6, 35]) pro-
vide a complementary view because they consider privacy with
respect to a variety of goals for the adversary. Unfortunately,
as we will explain in Sec. V, they are limited in various ways
which make them difficult to apply in practice to analyse
concrete elections.

In Sec. V, we propose a simple extension of the KTV
vote privacy definition, which we show is equivalent to a
computational version of a strong entropy-based notion. This
is independent of the replay attack setting, and serves to some-
what unify the KTV and strong entropy-based approaches.

We show that our novel definition can be efficiently and
accurately estimated for the ideal functionality using Monte
Carlo methods, and so we are able to use it to study the
efficiency of replay attacks from an entropy-based perspective
complementary to the game-based perspective of the KTV
definition.

d) Analysis of real-world elections (Sec. VI): In order to
complement our formal analysis, we study how replay attacks
would scale in practical elections. We therefore apply our
formal results to publicly available data of political elections
in Estonia, Germany, the UK, and the USA. In this way, we
can realistically simulate to which degree vote privacy would
decrease if in such elections replay attacks had been executed.
Our “field test” confirms the gist of our abstract results: even
if the number of replays is very low, vote privacy can be
undermined significantly.

B. Structure of the paper

The structure of our paper essentially follows our con-
tributions as presented above. In Sec. II, we categorize all
replay attacks described in the literature. In Sec. III, we recall
the KTV privacy definition as well as the ideal privacy loss
a voting protocol can achieve w.r.t. the KTV definition. In
Sec. IV, we study the efficiency of replay attacks based on
the KTV privacy definition. In Sec. V, we propose our new
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entropy-based vote privacy definition, describe its relationship
to the KTV definition, and show that it can be efficiently
estimated for the ideal functionality of Sec. IV. In Sec. VI,
we illustrate our theoretical results using concrete election data
from political elections and discuss the consequences of our
insights.

II. CATEGORIZATION OF REPLAY ATTACKS

We provide the first comprehensive categorization of all
replay attacks against vote privacy described in the literature.
We identified three different variants of replay attacks: basic
replay attacks, homomorphic replay attacks, and re-voting
replay attacks. We summarize our insights at the end of the
section.

A. Basic replay attacks

In its most basic form, a replay attack works as follows.
Assume that we have nV voters and that the adversary aims to
break privacy of some voter Vobs, the voter under observation.
We assume that the adversary controls a number nd

V of further
voters. The adversary waits until Vobs has submitted her ballot
bobs, containing her secret choice cobs, to the bulletin board.
The adversary reads bobs from the bulletin board and instructs
all of his corrupted voters to submit Vobs’s ballot bobs as well.
If, due to the specification of the e-voting scheme invoked,
all nd

V + 1 identical ballots bobs, . . . , bobs are tallied, then the
public election result contains nd

V additional votes for Vobs’s
choice cobs. By this, Vobs’s choice is amplified in the final
result and thus her vote privacy is undermined.

Numerous e-voting schemes have been proven vulnera-
ble against this basic version of replay attacks. Cortier and
Smyth [18] demonstrated that basic replay attacks are possible
in Helios [1], in the voting scheme by Sako and Kilian [36],
and in the one by Schoenmakers [37]. The basic replay attacks
against these voting schemes can be prevented by rejecting
(partially) duplicated ballots.

B. Homomorphic replay attacks

Even if duplicated ballots are rejected in order to protect
against basic replay attacks (see above), it may be possible to
exploit malleability of the underlying cryptographic primitives
in order to execute (more subtle) replay attacks. In what
follows, we explain the general idea of such homomorphic
replay attacks.1 E-voting schemes with homomorphic tallying
assume that voters’ ciphertexts are re-randomizable, i.e., it
is possible to transform ciphertext e = Enc(pk,m; r) into
ciphertext e′ = Enc(pk,m; r′) without knowledge of the secret
key sk, plaintext m, or randomness r. In a homomorphic
replay attack, the adversary re-randomizes the observed voter’s
ballot bobs into nd

V ballots b1, . . . , bnd
V
. Because the ballots

bobs, b1, . . . , bnd
V

are mutually distinct (with overwhelming
probability if the encryption scheme is semantically secure),
they will all be tallied even if ballot duplicates are strictly
removed. By this, analogously to the basic replay attack (see

1We restrict our attention to the ballots’ ciphertexts and put further
primitives (signatures etc.) aside for simplicity.

above), the observed voter’s privacy is undermined because all
ballots bobs, b1, . . . , bnd

V
contain Vobs’s choice cobs.

Several e-voting schemes are vulnerable to such ho-
momorphic replay attacks, for example the one by Lee
et al. [34] (pointed out by Dreier, Lafourcade and
Lakhnech [19]), or the one by Blazy, Fuchsbauer, Pointcheval,
and Vergnaud [8] (pointed out by Chaidos, Cortier, Fuchs-
bauer, and Galindo [13]) which is the predecessor of Bele-
niosRF [13].

In order to protect against homomorphic replay attacks,
many e-voting schemes employ zero-knowledge proofs (ZKPs)
of knowledge which each voter uses to prove that she knows
the plaintexts (and randomness) in the ciphertexts of her ballot.
By this, a corrupted voter can no longer re-randomize the
observed voter’s ballot because he is not able to come up
with a (valid) proof of plaintext knowledge.

Typically, e-voting schemes employ ZKPs of knowledge
which are non-interactive, i.e., where the voter does not
communicate with the verifier while proving knowledge (and
correctness) of her encrypted choice. To construct such non-
interactive ZKPs, most (modern) e-voting schemes use the
Fiat-Shamir transformation [20]. However, as we will recall
in what follows, applying the Fiat-Shamir transformation cor-
rectly is non-trivial.

Bernhard, Pereira, and Warinschi [7] demonstrated that great
care has to be taken when the Fiat-Shamir transformation is
used. Bernhard et al. showed that the Fiat-Shamir transforma-
tion in the implementation of Helios [1] is too weak because
the hash function does not take the statement to be proven as
input. Therefore, a voter’s ZKP in Helios [1] is in fact not
a proof of knowledge, enabling an adversary to still execute
homomorphic replay attacks.

C. Re-voting replay attacks

Bursuc, Dragan, and Kremer [10] explained that, even if
(partial) ballot duplicates are strictly removed and a (correct)
ZKP of knowledge is used (see above), replay attacks against
Helios [1] are still feasible if the ballot box is corrupted. We
note that, in principle, this replay attack is not restricted to the
case of Helios. In what follows, we describe the idea of this
replay attack, which is due to P. B. Rønne originally (according
to [10]).

If the adversary controls the ballot box (i.e., the server
to which voters send their ballots), it can claim that the
ballot casting of the voter under observation Vobs was not
successful. The voter under observation may then try a second
attempt with the same vote cobs. This way, the adversary
obtains two different ballots bobs, b′obs, both containing the
observed voter’s vote cobs. Now, the adversary can submit bobs
on behalf of one of the corrupted voters, whereas the voter
under observation Vobs submits b′obs. Because bobs and b′obs do
not contain identical entries (with overwhelming probability
due to the semantic security of the underlying cryptographic
primitives), they will both be in the input of the tallying phase.
The attack can be repeated several times to obtain more ballots
of Vobs’s vote cobs. By this, analogously to the basic replay
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attack (see above), the observed voter’s privacy is undermined.
The attack could, for example, be prevented by including each
voter’s ID in the statement to be proven, in particular in the
hash of the Fiat-Shamir transformation.

D. Summary

Our comprehensive presentation demonstrates that replay
attacks are a recurrent and often subtle issue in the construc-
tion and employment of secure e-voting systems, even when
deliberately designed to protect against them. While some
pitfalls making replay attacks possible are straightforward to
solve (e.g., removing duplicates), others are more subtle and
require very close attention (e.g., using strong Fiat-Shamir
transformations). Based on our systematic literature review,
we conjecture that, despite its popularity, the threat of replay
attacks is a recurrent issue of e-voting. It is therefore important
to precisely understand the risk that replay attacks pose to the
crucial property of vote privacy. In the remainder of this paper,
we provide the first formal analysis of this fundamental threat.

III. KTV VOTE PRIVACY DEFINITION

The first part of our formal analysis of replay attacks
(Sec. IV) is based on the vote privacy definition proposed
by Küsters, Truderung, and Vogt [30], hereafter called the
KTV (privacy) definition. We explain the motivation for this
privacy definition and the formal definition itself in Sec. III-B,
after first recalling the underlying computational model in
Sec. III-A. In Sec. III-C, we recall the best possible privacy
loss an arbitrary voting protocol can achieve according to the
KTV privacy definition; this ideal privacy loss is expressed as
a parameterized formula that we will use to precisely measure
the efficiency of replay attacks in Sec. IV.2

A. Computational model

We briefly recall the computational model of the KTV
privacy definition, in particular the notions of processes,
protocols, instances, and properties. We refer to [30] for full
technical details.

a) Process: A process is a set of probabilistic
polynomial-time interactive Turing machines (ITMs, also
called programs), which are connected via named tapes (also
called channels). We write a process π as π = p1∥ · · · ∥pl,
where p1, . . . , pl are programs. If π1 and π2 are processes, then
π1∥π2 is a process, provided that the processes are connectible:
two processes are connectible if common external channels
have opposite directions (input/output). A process π where all
programs are given the security parameter ℓ is denoted by
π(ℓ). The processes we consider are such that the length of a
run is always polynomially bounded in ℓ. A run is uniquely
determined by the random coins used by the programs in π.

2What we call privacy loss in this work was in the original paper [30]
called privacy level. Because the privacy bound δ is higher when more private
information is leaked, we prefer to use the term privacy loss for δ.

b) Protocol: A protocol P specifies a set of agents (also
called parties or protocol participants) and a set of channels
these agents can communicate over. Moreover, P specifies, for
every agent a, a set Πa of all programs the agent a may run
and a program π̂a ∈ Πa, the honest program of a, i.e., the
program that a runs if a is honest, and hence, follows the
protocol.

c) Instance: Let P be a protocol with agents a1, . . . , an.
An instance of P is a process of the form π = (πa1

∥ . . . ∥πan
)

with πai
∈ Πai

. An agent ai is called honest in the instance π
if and only if πai = π̂ai . A run of P (with security parameter
ℓ) is a run of some instance of P (with security parameter
ℓ); we consider the instance to be part of the description of
the run. An agent ai is honest in a run r, if r is a run of an
instance of P with honest ai.

d) Property: A property γ of P is a subset of the set of
all runs of P. By ¬γ we denote the complement of γ.

e) Negligible, overwhelming, δ-bounded: As usual, a
function f from the natural numbers to the interval [0, 1]
is negligible if, for every c > 0, there exists ℓ0 such that
f(ℓ) ≤ 1

ℓc for all ℓ > ℓ0. The function f is overwhelming if
the function 1− f is negligible. A function f is δ-bounded if,
for every c > 0 there exists ℓ0 such that f(ℓ) ≤ δ+ 1

ℓc for all
ℓ > ℓ0.

B. Privacy definition
The KTV privacy definition [30] formalizes privacy of an

e-voting protocol as the inability of an adversary πA to distin-
guish whether some voter Vobs, the voter under observation
who runs her honest program, voted for choice cj or choice
cj′ . Unlike binary privacy notions according to which a voting
protocol either does or does not protect privacy (see [5]), the
KTV privacy definition measures the privacy loss a voting
protocol provides. Being able to measure vote privacy, in
particular to measure the loss of vote privacy due to attacks,
is crucial for the purposes of our paper (see Sec. IV).

To be more precise, according to [30], a voting protocol
provides δ-privacy if any adversary πA is able to distinguish
whether Vobs voted for cj or cj′ with probability at most
δ; or, to phrase it differently, if any adversary’s advantage
is δ-bounded. To define the KTV privacy notion formally,
we first introduce the following notation for an arbitrary e-
voting protocol P. Given a voter Vobs and choice c, we
consider instances of P that induce a set of processes of the
form (π̂Vobs

(c)∥π∗∥πA) where π̂Vobs
(c) is the honest program

of the voter Vobs under observation who takes c as her
choice, π∗ is the composition of programs of the remaining
parties in P, and πA is the program of the adversary. Let
Pr[(π̂Vobs

(c)∥π∗∥πA)
(ℓ) 7→ 1] denote the probability that the

adversary writes the output 1 on some dedicated tape in a
run of (π̂Vobs

(c)∥π∗∥πA) with security parameter ℓ and some
choice c, where the probability is taken over the random coins
used by the parties in (π̂Vobs

(c)∥π∗∥πA).
Now, the intuition described above is formally defined as

follows.
Definition 1 (Vote Privacy [30]): Let P be a voting protocol,

Vobs be the voter under observation, and δ ∈ [0, 1]. Then, P
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achieves δ-privacy, if for all possible choices cj , cj′ and all
adversaries πA (implicitly on input (cj , cj′)) the difference∣∣∣Pr[(π̂Vobs(cj)∥π

∗∥πA)
(ℓ) 7→ 1]−Pr[(π̂Vobs(cj′)∥π

∗∥πA)
(ℓ) 7→ 1]

∣∣∣
is δ-bounded as a function of the security parameter 1ℓ.

In other words, the privacy loss δ is an upper bound of
an arbitrary adversary’s advantage to distinguish whether Vobs

voted for cj or cj′ . Clearly, δ = 0 would be desirable but
typically we have δ > 0, even for an ideal e-voting protocol
with a completely passive adversary. The reason is that in
many real-world elections, there exist choices which are picked
only with low probability, for example unpopular candidates
or unreasonable rankings (e.g., the green party is ranked first
and the coal mining party next to it). Now, in most e-voting
systems, including all systems mentioned in Sec. II, the final
election result consists of the number of votes for each choice.
Therefore, if the voter under observation Vobs chooses cj
or cj′ but all other voters vote for one (or both) of these
choices with low probability only, then Vobs’s choice is not
hidden sufficiently well—in the worst case, Vobs’s choice is
completely revealed.

C. Ideal privacy
Since we have seen that the privacy loss δ is typically not

perfect, the following questions are obvious: What is the best
possible privacy loss that can be achieved in a given election?
How does this ideal privacy loss depend on basic parameters,
such as the number of voters or the voters’ preferences? These
questions have been answered precisely in [30] and we will
recall the results in what follows. These results will be the
foundation of our formal analysis of replay attacks in Sec. IV.

a) Ideal voting protocol: In order to have a lower bound
on the privacy loss for all voting protocols, Küsters et al. [30]
derived a formula for the privacy loss an ideal voting protocol
provides.3 Let us describe this ideal voting protocol, denoted
by Ipriv, starting with the parameters it depends on:

• Number of choices nC : The set C = {c1, . . . , cnC
}

consists of all possible choices cj that a voter can choose.
• Number of honest voters nh

V: We denote the number of
voters which cannot be corrupted, the honest voters, by
nh
V.4

• Voting distribution p⃗: Each honest voter Vi picks her
choice according to the distribution p⃗ over C, i.e. p⃗[l]
is the probability that an honest voter chooses cl.5

The ideal voting protocol Ipriv(C, nh
V, p⃗) works as follows.

For each of the nh
V honest voters Vi, the ideal voting protocol

3The ideal privacy loss derived in [30] is formulated for result functions that
reveal the complete tally, i.e., number of votes for each choice. Subsequently,
a more general ideal privacy loss was derived in [28] which is formulated for
arbitrary result functions, including tally-hiding result functions that may, for
instance, only reveal the winner but nothing else. Because all e-voting systems
mentioned in Sec. II employ a result function which returns the complete tally,
we restrict our attention to the ideal privacy loss derived in [30].

4The number of dishonest voters is not relevant for result functions that
reveal the full tally because an adversary can derive the “honest” election
result by subtracting the dishonest voters’ choices from the final election
result.

5In slight abuse of notation we identify p⃗ and its probability mass function.

Ipriv(C, nh
V, p⃗)

Parameters:
• Finite set C ⊂ Z
• Number of honest voters nh

V

• Probability distribution p⃗ over C
On (setup) from S do:

1) res← 0|C|

2) b0, b1 ← 0
3) Return success

On (init, honest) from S do:
1) ∀i ∈ {1, . . . , nh

V}:
If (⋆

p⃗←− C) = j, set resj ← resj + 1
2) b0 ← 1
3) Return success

On (setChoice, (j, j′)) from S do:
1) If j, j′ /∈ C, return ⊥.
2) If (⋆ $←− {0, 1}) = 0, set resj ← resj + 1,

else set resj′ ← resj′ + 1
3) b1 ← 1
4) Return success

On (compute) from S do:
1) If b0 · b1 = 0, return ⊥.
2) Return res

Fig. 1. Protocol of ideal voting functionality.

Ipriv chooses Vi’s choice according to p⃗. For the voter under
observation Vobs, the ideal voting protocol expects as input a
tuple of choices (cj , cj′) from the adversary, and then picks
one of them uniformly at random. Eventually, Ipriv returns
the result res ∈ N|C| which contains the number of votes for
each choice made by all honest voters and by the voter under
observation. The protocol Ipriv(C, nh

V, p⃗) is formally defined
in Fig. 1.

b) Ideal privacy loss: We now recall from [30] how the
privacy loss δideal of the ideal voting protocol Ipriv(C, nh

V, p⃗)
can be expressed as a parameterized formula δideal

C,nh
V,p⃗

. Recall
that we defined the privacy loss of a voting protocol by the
(level of) inability to distinguish whether the voter under
observation Vobs voted for choice cj or choice cj′ (Defini-
tion 1). Now, the intuition behind the definition of δideal

C,nh
V,p⃗

is
as follows. If the adversary, given a final election result res,
wants to decide whether the observed voter voted for choice
cj or cj′ , then the best strategy of the adversary is to opt for
cj′ if and only if the output res is more likely if the voter voted
for choice cj′ . In order to capture this intuition formally, we
introduce the following terminology.

Let Al
res denote the conditional probability that the choices

made by the honest voters and by the voter under observation
yield the final result res, under the condition that the voter
under observation Vobs chooses cl. The probability Al

res can
be expressed as follows using the multinomial distribution:
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Al
res =

nh
V!∏nC

j=1 res[j]!
·

 nC∏
j=1

p⃗[j]res[j]

 · res[l]
p⃗[l]

(1)

where res[j] is the number of votes for choice cj . We can now
define the set of outputs res for which it is more likely that
the voter voted for choice cj′ as follows:

M∗
j,j′ = {res : Aj

res ≤ Aj′

res}. (2)

The intuition of the ideal privacy loss described above is
formally captured by the following definition:

δidealC,nh
V,p⃗

= max
j,j′∈{1,...,nC}

∑
res∈M∗

j,j′

(Aj′

res −Aj
res). (3)

The following theorem (Theorem 3 of [30], proved in Ap-
pendix C of the eprint version [31]) states that the loss δideal

C,nh
V,p⃗

is indeed optimal for the ideal voting protocol Ipriv(C, nh
V, p⃗).

As a consequence, no voting protocol can achieve a better
privacy loss than δideal

C,nh
V,p⃗

.
Theorem 1 ([30]): The ideal protocol Ipriv(C, nh

V, p⃗)
achieves a privacy loss of δideal

C,nh
V,p⃗

. Moreover, it does not
achieve δ′-privacy for any δ′ < δideal

C,nh
V,p⃗

.

IV. EFFICIENCY ANALYSIS BASED ON THE KTV VOTE
PRIVACY DEFINITION

In this section, we formally study the efficiency of replay
attacks using the KTV privacy definition. First, in Sec. IV-A
we focus on capturing the effect of replay attacks. We define
a suitable ideal functionality for a voting protocol whose
only flaw is that it allows the adversary to execute a replay
attack. We characterise its KTV privacy loss analogously to the
characterisation for the truly ideal protocol (without replays)
in [30] (Theorem 2). Because this characterisation is not
computationally tractable, we then show a reduction to an
election with only three candidates (Theorem 3), and obtain a
tractable formula which we use to demonstrate the devastating
effect of even a small number of replays on realistically-sized
example elections.

Based on these insights, in Sec. IV-B we then study the
efficiency of replay attacks in general: we analyse (Theorem
4) how the ideal privacy loss behaves asymptotically in the
number of replayed ballots nrepl and the number of honest
voters nh

V, in particular for fairly small values of nrepl.

A. Ideal privacy loss

We analyse the ideal privacy loss if the adversary can replay
the observed voter’s choice nrepl times. To this end, we modify
the ideal voting functionality Ipriv(C, nh

V, p⃗) (Fig. 1) so that
it adds the observed voter’s choice (1 + nrepl) times to the
final result, instead of only once. The resulting ideal voting
functionality with nrepl replays Ipriv(C, nh

V, p⃗, nrepl) is defined
in Fig. 2; note that Ipriv(C, nh

V, p⃗) = Ipriv(C, nh
V, p⃗, 0). By

Ipriv(C, nh
V, p⃗, nrepl)

Parameters:
• Finite set C ⊂ Z
• Number of honest voters nh

V

• Probability distribution p⃗ over C
• Number of replays nrepl

On (setup) from S do:
1) res← 0|C|

2) b0, b1 ← 0
3) Return success

On (init, honest) from S do:
1) ∀i ∈ {1, . . . , nh

V}:
If (⋆

p⃗←− C) = j, set resj ← resj + 1
2) b0 ← 1
3) Return success

On (setChoice, (j, j′)) from S do:
1) If j, j′ /∈ C, return ⊥.
2) If (⋆ $←− {0, 1}) = 0, set resj ← resj+1+nrepl,

else set resj′ ← resj′ + 1+nrepl

3) b1 ← 1
4) Return success

On (compute) from S do:
1) If b0 · b1 = 0, return ⊥.
2) Return res

Fig. 2. Protocol of ideal voting functionality which allows for replaying the
observed voter’s choice nrepl times. The differences between the original ideal
voting protocol (Fig. 1) and the one presented here are highlighted in red.

using the ideal voting functionality Ipriv(C, nh
V, p⃗, nrepl), we

can model exactly that the adversary is able to execute only
a replay attack with nrepl replays but no other kind of privacy
attack. This means that the privacy loss δideal

C,nh
V,p⃗,nrepl

provided
by Ipriv(C, nh

V, p⃗, nrepl) is a lower bound for the privacy loss
of any voting protocol in which the adversary can replay the
observed voter’s choice nrepl times.

In what follows, we first derive a representation of the
ideal privacy loss δideal

C,nh
V,p⃗,nrepl

which is conceptually similar
to the ideal privacy loss without replays δideal

C,nh
V,p⃗

, as defined
in Eq. 1 (Sec. III-C). We observe that δideal

C,nh
V,p⃗,nrepl

is indeed
the privacy loss of the ideal voting functionality with re-
plays Ipriv(C, nh

V, p⃗, nrepl) (Theorem 2). We then derive an
alternative representation of δideal

C,nh
V,p⃗,nrepl

which reduces vote
privacy (under the KTV definition) from dependence on all
nC possible choices to dependence only on the two most
unpopular choices (Theorem 3).

a) First representation: Analogously to Al
res (Sec. III-C),

let Al,nrepl
res be the probability of obtaining result res under the

condition that the voter under observation voted for candidate
l, where now her ballot is replayed nrepl times. Note that
Al

res = Al,0
res . It is easy to see that we have

A
l,nrepl
res =

nh
V! · p[1]res[1] · . . . · p[l]res[l]−nrepl−1 · . . . · p[nC ]

res[nC ]

res[1] · . . . · (res[l]− nrepl − 1) · . . . · res[nC ]

184



=
nh
V!∏nC

j=1 res[j]!
·

 nC∏
j=1

p⃗[j]res[j]

 · ∏nrepl

ν=0(res[l]− ν)

p⃗[l]nrepl+1

=

∏nrepl

ν=1(res[l]− ν)

p⃗[l]nrepl
·Al

res

Now, analogously to M∗
j,j′ in Sec. III-C, we define

M
∗,nrepl

j,j′ =
{

res : Aj,nrepl
res ≤ A

j′,nrepl
res

}
to be the set of all events that occur with higher likelihood
under the condition that the observed voter chose cj′ than
under the condition that she chose cj .

We thus obtain our first representation of the ideal privacy
loss with nrepl replays, as follows:

δidealC,nh
V,p⃗,nrepl

= max
j,j′∈{1,...,nC}

∑
res∈M

∗,nrepl

j,j′

(A
j′,nrepl
res −A

j,nrepl
res ). (4)

The following theorem states that the loss δideal
C,nh

V,p⃗,nrepl
is

indeed optimal for the ideal voting protocol with nrepl replays.
This means that no voting protocol which is subject to a replay
attack with nrepl replays can achieve a better privacy loss than
δideal
C,nh

V,p⃗,nrepl
.

Theorem 2: The ideal protocol Ipriv(C, nh
V, p⃗, nrepl) achieves

a privacy loss of δideal
C,nh

V,p⃗,nrepl
. Moreover, it does not achieve δ′-

privacy for any δ′ < δideal
C,nh

V,p⃗,nrepl
.

The proof of Theorem 2 is exactly the same as the proof of
Theorem 1, with Aj

res replaced by A
j,nrepl
res throughout.

Note that the formula in (4) for Ipriv(C, nh
V, p⃗, nrepl) involves

maximising over O(n2
C) terms, each of which is a sum

consisting of |M∗,nrepl

j,j′ | summands. In general |M∗,nrepl

j,j′ | will
have size comparable to the number of possible results, which
is a multinomial coefficient of order (nh

V)
nC−1. This is clearly

intractable for large elections, so before we can analyse the
efficiency of replay attacks for real-world elections, we will
need to do some work to put (4) into a more tractable form.

b) Second representation: We now show that for the
ideal functionality of Fig. 2, the definition of the KTV privacy
loss can be greatly simplified. Recall that in Definition 1, we
measure privacy as the adversary’s maximum advantage over
all possible choices cj , cj′ to successfully distinguish whether
the voter under observation voted for cj or cj′ . Our reduction
states that in fact this is equal to the adversary’s advantage
in distinguishing only between a vote for the least popular
choice cj and a vote for the second least popular choice cj′ ,
i.e., those choices for which p⃗[j] and p⃗[j′] are the two lowest
probabilities. This holds both for the cases with and without
replay attacks (since the latter is a special case of the former
with nrepl = 0).

Theorem 3: Let j, j′ be such that p⃗[j] ≤ p⃗[j′] ≤ p⃗[l] for all
l ̸= j. Then, the ideal privacy loss is given by the following
identity:

δidealC,nh
V,p⃗,nrepl

=
∑

res∈M
∗,nrepl

j,j′

(A
j′,nrepl
res −A

j,nrepl
res ).

In order to prove Theorem 3 we will first show the technical
Lemma 1. Lemma 1 states that for each choice of j and j′, the
corresponding term in the max of equation (4) only depends
on three probabilities - p⃗[j], p⃗[j′] and one “dummy” probabil-
ity p⃗[j, j′] = 1− p⃗[j]− p⃗[j′] that collects the probabilities of
all the other choices.

The formula (5) of Lemma 1, combined with Theorem 3,
gives an explicit expression for the ideal privacy loss as a
sum of at most nh

Vnrepl terms. This means that we are now
comfortably able to analyse real-world-sized elections, as we
do later in this section and in Sec. VI.

We will introduce a new variable Tt,j,j′ which will be used
to state Lemma 1 below. Let j, j′ ∈ C. For each t ∈ N, let
Tt,j,j′ be a natural number that satisfies

nrepl∏
ν=0

r − ν

p⃗[j]nrepl+1
≤

nrepl∏
ν=0

t− r − ν

p⃗[j′]nrepl+1

for all r ≤ Tt,j,j′ and
nrepl∏
ν=0

r − ν

p⃗[j]nrepl+1
≥

nrepl∏
ν=0

t− r − ν

p⃗[j′]nrepl+1

for r > Tt,j,j′ . Note that 0 ≤ Tt,j,j′ ≤ t certainly exists since∏nrepl

ν=0
r−ν

p⃗[j]nrepl+1 is monotonic in r. To simplify the notation
we will sometimes omit the j, j′ and just write Tt.
Tt,j,j′ describes the point at which the sign of A

j′,nrepl
res −

A
j,nrepl
res switches. It allows us to replace the summation over

M
∗,nrepl

j,j′ by a summation over all possible outcomes. We can
then use standard properties of probability distributions to
remove all but two probabilites.

Lemma 1: Let j, j ∈ C and Tt as before. Then for p⃗[j, j′] :=
1− p⃗[j]− p⃗[j′]∑

res∈M
∗,nrepl

j,j′

(A
j′,nrepl
res −A

j,nrepl
res ) = (5)

nh
V∑

t=0

p⃗[j, j′]n
h
V−t

(
nh
V

t

) min{Tt+nrepl+1,t}∑
r=max{Tt+nrepl+1−nrepl,0}

(
t

r

)
p⃗[j]rp⃗[j′]t−r.

Proof. We give only a short sketch, with many details
relegated to the Appendix in Lemma 2. To simplify notation
we write δjj′ for

∑
res∈M

∗,nrepl

j,j′
(Aj′

res−Aj
res). First observe that

δjj′ = δj′j since M
∗,nrepl

j,j′ and M
∗,nrepl

j,j′ are complimentary up
to a trivial intersection that does not contribute to δjj′ or δj′j .
More precisely, writing MNres

nt
V

for the multinomial probability
density function

MNres
nt
V
=

nt
V!∏nC

j=1 res[j]!

 nC∏
j=1

p⃗[j]res[j]

 ,

we have that

nt
V!δjj′

nh
V!

=
∑

res∈M
∗,nrepl

j,j′

∏nrepl

ν=0(resj − ν)

p⃗[j]nrepl+1
MNres

nt
V
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Fig. 3. KTV privacy loss δ for the ideal protocol with 10 candidates and the
uniform vote distribution. Note that the y-axis is on a log scale.

implies that nt
V!

nh
V!
(δjj′ − δj′j) is equal to

∑
res

(∏nrepl

ν=0(resj − ν)

p⃗[j]nrepl+1
−
∏nrepl

ν=0(resj′ − ν)

p⃗[j′]nrepl+1

)
MNres

nt
V
= 0

where the sum is over all possible results (without abstention),
i.e.

∑nC

l=0 res[l] = nh
V + nrepl + 1 = nt

V. We also used that
the two conditional probability distribution (one w.r.t. to the
choice j, one w.r.t. to the choice j′) are each normed. Now
δjj′ = δj′j and δjj′ =

δjj′+δj′j
2 lead to the more symmetric

representation

δjj′ =
nh
V

2 · nt
V!

∑
res

∣∣∣∆res,nrepl

j,j′

∣∣∣ ·MNres
nt
V
.

with ∆
res,nrepl

j,j′ =
∏nrepl

ν=0 (res[j]−ν)

p⃗[j]nrepl+1 −
∏nrepl

ν=0 (res[j′]−ν)

p⃗[j′]nrepl+1 . By moving
the p⃗[j], p⃗[j′] out of the product we can sum over all res[l]
for j ̸= l ̸= j′ under the restriction that

∑
j ̸=l ̸=j′ res[l] =

nt
V − t for t = res[j] + res[j′]. Furthermore, we can then

consider the multinomial distribution with nt
V − t trials and

(nC − 2) probabilities q⃗ := (p⃗[j, j]−1p⃗[l])j ̸=l ̸=j′ . Using the
norm 1 property of this probability distribution, we get a term
that depends only on j and j′.

δjj′ =

nt
V∑

t=0

∑
res[j]+res[j′]=t

∣∣∣∆res,nrepl

j,j′

∣∣∣ · nh
V!p⃗[j]

res[j]p⃗[j′]res[j′]

2 · (nt
V − t)!res[j]!res[j′]!

·
∑

∑
j ̸=l ̸=j′ res[l]=nt

V−t

p⃗[j, j′]n
t
V−t(nt

V − t)!∏
j ̸=l ̸=j′ res[l]

∏
j ̸=l ̸=j′

q⃗[l]res[l]

=

nt
V∑

t=0

t∑
r=0

∣∣∣∆res,nrepl

j,j′

∣∣∣ · nh
V!p⃗[j, j

′]n
t
V−tp⃗[j]rp⃗[j′]r−t

2 · (nt
V − t)!r!(t− r)!

where ∆
res,nrepl

j,j′ is defined as before with res[j] = r, res[j′] =
t − r. Finally the definition of Tt allows us to replace the
absolute value to retrieve (5). For more details see Lemma 2.

Proof of Theorem 3. By definition δjj′ is smooth in
p⃗[j]+ p⃗[j′]. Hence its representation in (5) is smooth and it is
enough to compute the differential on intervals where Tt,j,j′ is
constant. After differentiating (5) w.r.t. p⃗[j]+ p⃗[j′] we see that
δjj′ decreases, i.e. becomes maximal if p⃗[j]+ p⃗[j′] is minimal.
For a more detailed version, see Appendix A.

In Fig. 3, we give some concrete values of the ideal privacy
loss with replays δideal

C,nh
V,p⃗,nrepl

for different numbers of honest

voters nh
V and replays nrepl. We model an election in which

the votes of the honest voters are uniformly distributed; this is
the distribution that minimises δ, and for any other distribution
the privacy loss would be even greater. Observe from Fig. 3
that even if the adversary replays the observed voter’s choice
only very few times in relation to the total number of voters,
the observed voter’s privacy can be reduced dramatically
(corresponding to a dramatically higher value of δ). As we will
prove in the remainder of this section, this is no coincidence.
In fact, we will show that replay attacks are very efficient in
general.

B. Asymptotics

In the first part of our analysis, we focused on the effect of
replay attacks: our results in Sec. IV-A state which privacy loss
can be achieved ideally if an adversary replays the observed
voter’s choice nrepl times. Based on these results, we now
precisely analyze the efficiency of replay attacks, i.e., how vote
privacy decreases asymptotically depending on the number of
replays nrepl.

Our main result on the efficiency of replay attacks is
Theorem 4. Its proof is based on the explicit representation
of the ideal privacy loss from Theorem 1. In what follows,
we will first deduce Theorem 4 and eventually illustrate it for
specific settings.

We use the terminology introduced in Sec. IV-A. We remark
first, that one can choose⌊

tp⃗[j]

p⃗[j] + p⃗[j′]

⌋
≤ Tt ≤

⌊
tp⃗[j]

p⃗[j] + p⃗[j′]

⌋
+ nrepl + 1

for p⃗[j] ≤ p⃗[j′]. In particular, the coefficients in the inner
sum surround the expected value E(Xj) := tp⃗[j]

p⃗[j]+p⃗[j′] . Now
we can use the Integral Limit DeMoivre-Laplace theorem
for multinomial distributions (see, e.g., [22]) to represent the
asymptotic behaviour in terms of the multivariate Gaussian
over the hypersurface given by the condition

∑3
i=1 ri = nh

V

for r1 = r, r2 = t− r, r3 − nh
V − t as follows:

nh
V∑

t=0

p⃗[j, j′]n
h
V−t

(
nh
V

t

) min{Tt+nrepl+1,t}∑
r=max{Tt+nrepl+1−nrepl,0}

MNr,t−r
t

≈
√
q⃗[j]q⃗[j′]q⃗[j, j′]

2πnh
V

√
p⃗[j]p⃗[j′]p⃗[j, j′]

∫ nh
V

0

∫ E(Xj)+
nrepl+1

2

E(Xj)−
nrepl+1

2

e
−
∑3

i=1x
2
i (r,t)drdt

where we used

x1(r, t) =
r − nh

Vp⃗[j]√
nh
Vp⃗[j]q⃗[j]

, x2(r, t) =
t− r − nh

Vp⃗[j
′]√

nh
Vp⃗[j

′]q⃗[j′]
,

x3(r, t) =
nh
V − t− nh

Vp⃗[j, j
′]√

nh
Vp⃗[j, j

′]q⃗[j, j′]
, q⃗ = 1− p⃗.

We can isolate the terms for r and t to get√
q⃗[j, j′]

2πnh
Vp⃗[j]p⃗[j

′]

∫ nrepl+1

2

−
nrepl+1

2

e
−r2

q⃗[j,j′]
2πnh

V
p⃗[j]p⃗[j′] dr
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≈ (nrepl + 1)

√
q⃗[j, j′]

2πnh
Vp⃗[j]p⃗[j

′]
+O


nrepl + 1√

nh
V

3
 (6)

Since the remaining term

1√
2πnh

Vp⃗[j, j
′]q⃗[j, j′]

∫ nh
Vp⃗[j,j

′]

−nh
V q⃗[j,j

′]

e−t2/(2πnh
Vp⃗[j,j

′]q⃗[j,j′])dt

converges to 1 for nh
V →∞, our approximation (6) describes

the asymptotics of the whole term.6

From what we have shown above, we obtain the following
central result.

Theorem 4 (Asymptotics): Let C, nh
V, p⃗, nrepl be as above.

Let nrepl = o

(√
nh
V

)
.7 Then, we have that

δidealC,nh
V,p⃗
∼ nrepl + 1√

nh
V

. (7)

Intuitively, Theorem 4 essentially states that the KTV pri-
vacy loss of an election with nh

V honest voters and nrepl replays
is the same as that of an election with nh

V

(nrepl+1)2 voters but no
replays. Loosely speaking, by replaying the targeted voter’s
choice nrepl times, it is as though the adversary could “reduce”
the number of honest voters from nh

V down to nh
V

(nrepl+1)2 . This
is perhaps a more intuitive way to evaluate privacy loss than
a change in a numerical measure which may be difficult to
interpret without context (although we should emphasise that
it is equally dependent on the threat model embedded in the
KTV definition).

To give some concrete examples, again with 10 candidates
and a uniform distribution: in an election with 10 honest
and no corrupted voters (and hence no replays possible) the
adversary wins the privacy game with probability δ = 0.533.
In an election with 100 voters, the adversary needs to control
as few as 3 out of 100 voters (and submit replays on their
behalf) in order to have a similar advantage > 1

2 in the privacy
game. In an election with 1000 voters, as few as 9 out of
1000 voters suffice for the same purpose. At the same time, in
the last two elections with 100 respectively 1000 voters, vote
privacy is mostly preserved without replays (δ = 0.177 and
δ = 0.056). Altogether, we can conclude that replay attacks
can be devastating even if the adversary controls only a tiny
fraction of all voters.

V. STRONG VOTE PRIVACY

An important limitation of the KTV privacy definition is
that it only considers vulnerability with respect to a very
specific goal, namely for the adversary to guess between two
possible votes (which earns it a rating of ‘too limited’ in the
survey article [5]), and a similar limitation applies to most

6Our series approximation becomes weak for n2
repl ≥ nh

V. Obviously δjj′
is bounded by 1.

7Observe that nrepl ≪
√

nh
V covers the interesting cases because the

privacy loss is obviously close to 1 for large nrepl.

game-based definitions. Various works have sought to address
this by considering entropy-based privacy definitions, most
notably [6] and [35] (we note that the game-based vote privacy
definitions in the line of [5], which are often used to formally
analyse vote privacy—see, e.g., [5, 10, 13, 26]—reduce to the
entropy-based approach, as proven in [5]). In this section we
will show that a simple extension of the KTV definition, which
we term ‘strong vote privacy’, is equivalent to a computational
version of a strong entropy-based definition.

A. Related work

In [6] at CCS 2012, the authors propose a family of
entropy-based privacy definitions, parametrised by a number
of modeling choices that must be made: firstly, we fix a
distribution on the votes, both of the observed voter and the
innocent third parties; secondly, we fix a ‘target function’
that the adversary is interested in learning, for example the
observed voter’s vote; thirdly, we must choose an ‘entropy
notion’ to measure the adversary’s success in learning the
target information, for example the ‘average min-entropy’,
which measures the adversary’s ability to guess the value of
the target function with a single guess. The privacy measure
is then the posterior vulnerability of the target function with
respect to the chosen entropy notion (for the examples just
mentioned, that is the probability that the adversary will
correctly guess the observed voter’s vote after seeing the
election). The setting of a computationally bounded adversary
is dealt with indirectly, by saying that the vulnerability of
an output distribution is the minimum vulnerability among
distributions computationally indistinguishable from the true
distribution.

The assumption that we know in advance the voting
behaviour of the innocent third-party voters may well be
reasonable—we can estimate this based on opinion polls and
the results of previous elections—and the same assumption is
made both in the KTV definition and in our definition below.
The same assumption for the observed voter is more problem-
atic, since the adversary may well choose to attack a highly
atypical voter about whom they possess side-information (for
example, someone who is known or suspected to belong to an
opposition group). Note, however, that some such assumption
seems inevitable in any measure focusing exclusively on
posterior vulnerability, since in the case that the observed
voter follows a point distribution (i.e. the adversary has total
knowledge of her vote) any target function will be totally
compromised.

The choice of target function may also be far from straight-
forward: while the observed voter’s vote is certainly very
reasonable, it may not be the only thing the adversary could
care about. For example, if candidates are grouped into parties
the adversary may only care about which party a voter voted
for, or in the case of ranked choice voting the adversary may
care about who the voter ranked first. Again some assumption
of this kind seems necessary in any posterior vulnerability
measure, since for instance a target which is a constant
function will trivially be compromised.
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Finally, the choice of entropy notion may not be entirely
clear, but we agree with the use of average min-entropy be-
cause of its clear operational interpretation as the adversary’s
best single guess for the target.

The idea of the adversary’s target function is further de-
veloped in [35], which considers the voting system as a
communication channel from the voters to the result, and
applies ideas from the theory of Quantified information flow,
in particular the notion of g-leakage. The idea is to define a
set W of possible guesses for the adversary, and then a gain
function g :W×C → [0, 1] quantifying the adversary’s reward
for making guess w ∈ W where the true choice was c ∈ C. We
can then define vulnerability with respect to g as the maximum
possible expected payoff for a single guess by the adversary,
and the g-leakage as the ratio of the vulnerabilities before
and after seeing the tally. The authors show how to represent
natural targets for the adversary (such as a specific voter’s
vote, or the number of voters whose vote the adversary can
guess) by suitable gain functions and illustrate this for small
toy example elections.

However, the framework of [35] also has a number of
important limitations. It does not attempt at all to consider
either adversaries who may interact during the protocol, or
computationally bounded adversaries. It is still parametrised
by choices of both gain function and vote distribution. Indeed,
this is some sense inevitable in that we cannot hope to quantify
loss of privacy by the overall capacity of the channel (which
would be the supremum over possible gain functions and
vote distributions), because the tally does reveal substantial
information about the joint distribution of the voters’ votes—
this is the whole point of running an election!

B. Strong vote privacy

The key idea for our definition is to think of the voting
system not as a channel from the votes of all the voters, but
rather as a noisy channel from the vote of the observed voter,
with noise coming from the random votes of the innocent
third-party voters. This means that we can measure the loss
of vote privacy as the min-entropy capacity of this channel,
and so we can consider the maximum over all possible gain
functions and all possible priors on the observed voter.

In order to allow for interactive and computationally
bounded adversaries, we will phrase our definition not in the
language of channels and information flow, but directly using
the operational interpretation of min-entropy, in terms of the
maximum advantage that can be gained by a computationally
bounded interactive adversary—essentially an interactive and
computational version of g-leakage as discussed above.

Definition 2 (Strong vote privacy): Let P be a voting proto-
col, Vobs be the voter under observation, and δ ∈ [0, 1]. Then,
P achieves strong δ-privacy, if for all possible probability
distributions π over the set of choices C, all finite sets W
and ‘gain functions’ g : C × W → [0, 1] and all adversaries
πA the ratio∑

i,w π(ci) Pr[(π̂Vobs
(ci)∥π∗∥πA)

(ℓ) 7→ w]g(ci, w)

maxw
∑

i π(ci)g(ci, w)

is (1+ δ)-bounded as a function of the security parameter 1ℓ.
Remarkably, it turns out that this is equivalent to a simple

strengthening of the KTV privacy definition:
Definition 3 (Strong vote privacy, II): Let P be a voting

protocol, Vobs be the voter under observation, and δ ∈ [0, 1].
Then, P achieves strong δ-privacy, if for all adversaries πA

the sum ∑
i

Pr[(π̂Vobs
(ci)∥π∗∥πA)

(ℓ) 7→ ci]

is (1+ δ)-bounded as a function of the security parameter 1ℓ.
The proof of this equivalence, which will be the main

theorem of this section, is essentially a computational and
interactive version of the ‘miracle’ theorem of QIF, Theorem
5.1 of [2]. We first note that Definition 3 is indeed an extension
of the KTV definition:

Proposition 1: KTV vote privacy (Definition 1) is equivalent
to Definition 3 with the adversary πA restricted to two possible
outputs.

Proof. Let πA have outputs {cj , cj′}. Then∑
i

Pr[(π̂Vobs
(ci)∥π∗∥πA)

(ℓ) 7→ ci]

= Pr[(π̂Vobs
(cj)∥π∗∥πA)

(ℓ) 7→ cj ]

+ Pr[(π̂Vobs
(cj′)∥π∗∥πA)

(ℓ) 7→ cj′ ]

= Pr[(π̂Vobs
(cj)∥π∗∥πA)

(ℓ) 7→ cj ]

+
(
1− Pr[(π̂Vobs

(cj′)∥π∗∥πA)
(ℓ) 7→ cj ]

)
= Pr[(π̂Vobs

(cj)∥π∗∥πA)
(ℓ) 7→ cj ]

− Pr[(π̂Vobs
(cj′)∥π∗∥πA)

(ℓ) 7→ cj ] + 1,

as required.
It trivially follows that the KTV privacy loss is a lower

bound for the strong privacy loss, and that for two-candidate
elections the definitions are equivalent.

We now establish the main theorem:
Theorem 5: Definitions 2 and 3 are equivalent.

Proof. Trivially Definition 2 implies Definition 3 (takeW = C,
π the uniform distribution and g(c, c′) = 1 if c′ = c and 0
otherwise).

To prove the converse implication, let W and g be fixed,
and let πA be an adversary for which the quantity in Definition
2 exceeds 1+ δ′ > 1+ δ infinitely often. Write A(ℓ)(ci, w) =
Pr[(π̂Vobs

(ci)∥π∗∥πA)
(ℓ) 7→ w].

Our task is now to construct an adversary πA′ for which
the quantity in Definition 3 exceeds 1 + δ′′ infinitely often,
for some δ′′ > δ. The general idea is for πA′ to imitate πA,
except that at the end when πA would output w ∈ W , we will
have πA′ output the ci which maximises A(ℓ)(ci, w).

Note, however, that the values of A(ℓ)(ci, w) are an infite
family of data (parametrised by ℓ), and so it is not possible to
‘hard-code’ them into the finite specification of the adversary
πA′ . It is therefore necessary for πA′ to estimate them on-the-
fly, by simulating the behaviour of (π̂Vobs

(ci)∥π∗∥πA)
(ℓ) for

each ci.
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Define the adversary πA′ as follows: first simulate
(π̂Vobs

(ci)∥π∗∥πA)
(ℓ) with ℓ2|W| trials for each ci to obtain es-

timates Ã(ci, w) for A(ℓ)(ci, w). By the Chernoff bound on the
sample mean we have that |Ã(ci, w)−A(ℓ)(ci, w)| < 1/|W|

√
ℓ

with probability at least 1− 2−ℓ. Then πA′ behaves as πA (in
the real run of the protocol), and when πA would output w,
πA′ outputs the ci which maximises Ã(ci, w).

By the definition of πA we have that infinitely often

(1+δ′)max
w

∑
i

π(ci)g(ci, w) ≤
∑
i,w

π(ci)A
(ℓ)(ci, w)g(ci, w)

≤
∑
w

[(
max

i
A(ℓ)(ci, w)

)∑
i

π(ci)g(ci, w)

]

≤
∑
w

[(
max

i
A(ℓ)(ci, w)

)(
max
w

∑
i

π(ci)g(ci, w)

)]

=

(∑
w

max
i

A(ℓ)(ci, w)

)(
max
w

∑
i

π(ci)g(ci, w)

)
,

and hence we have that
∑

w maxi A
(ℓ)(ci, w) ≥ 1 + δ′ for

infinitely many ℓ.
Writing ϕ(w) for the ci which maximises Ã(ci, w), we have

for these ℓ∑
i

Pr[(π̂Vobs
(ci)∥π∗∥πA′)(ℓ) 7→ ci]

=
∑
i

∑
w

A(ℓ)(ci, w)1ci=ϕ(w)

=
∑
w

A(ℓ)(ϕ(w), w)

≥
∑
w

(
Ã(ϕ(w), w)− 2−ℓ − 1/|W |

√
ℓ
)

=
∑
w

max
i

Ã(ci, w)−
(
|W|2−ℓ + 1/

√
ℓ
)

≥
∑
w

max
i

A(ℓ)(ci, w)− 2
(
|W|2−ℓ + 1/

√
ℓ
)

≥ 1 + δ′ − 2
(
|W|2−ℓ + 1/

√
ℓ
)

ℓ→∞−−−→ 1 + δ′.

C. Monte Carlo estimation

Precise analysis of strong vote privacy for the ideal func-
tionality discussed above is rather less straightforward than for
the KTV definition (partly since unlike the latter it depends
on the entire distribution of the honest voters, rather than only
with respect to the two least popular candidates). However, for
the ideal replay attack functionality in which the adversary’s
only action is to make a guess based on the output tally it
is possible to obtain fairly accurate estimates by Monte Carlo
methods, as we now show. The first observation is that the
optimal output is one which can be easily simulated.

Proposition 2: For a protocol for which the adversary’s
output is a function on some finite set of tallies T , the sum in
Definition 3 is maximised by the ‘maximum likelihood adver-
sary’, which on tally t outputs the vote ci which maximises
pT |C(t|ci) (breaking ties arbitrarily).
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Fig. 4. Strong privacy loss δ for the ideal protocol with 10 candidates and
the uniform vote distribution.

Proof. We have∑
i

Pr[(π̂Vobs
(ci)∥π∗∥πA)

(ℓ) 7→ ci] =
∑
i

∑
t

p(t|ci)1πA(t)=ci

=
∑
t

p(t|πA(t)) ≤
∑
t

max
c

p(t|c)

=
∑
i

Pr[(π̂Vobs
(ci)∥π∗∥πÃ)

(ℓ) 7→ ci]

as required, where πÃ is the maximum likelihood adversary.
Note that the maximum likelihood adversary can be easily

implemented for the ideal protocol of the previous section: for
an election with k candidates, nrepl replay voters, and honest
voters who cast their votes with probabilities (p1, . . . , pk), for
a tally t = (m1, . . . ,mk) we have

p(t|ci) =
(

m1 + . . .+mk − (nrepl + 1)

m1, . . . ,mi−1,mi − (nrepl + 1),mi+1, . . . ,mk

)
pm1
1 . . . p

mi−1

i−1 p
mi−(nrepl+1)
i p

mi+1

i+1 . . . pmk

k .

By computing this for each ci, we can find πÃ(t) for given t.
Now observe that if ci is uniformly distributed, and t is

drawn according to p(·|ci) then we have that 1πÃ(t)=ci ∼
Bernoulli((1 + δ)/k), where δ is the privacy loss of Def. 3.

Then to estimate δ we repeatedly sample ci uniformly at
random and simulate a tally t with the observed voter (hence
also the replay voters) voting for ci, and then check whether
πÃ(t) = ci. If this occurs with frequency ρ then kρ − 1 is
an unbiased estimator for δ with standard error at most (1 +
δ)/
√
n (where n is the number of trials).

Figure 4 shows the privacy loss of the ideal functionality for
an election with 10 candidates and various numbers of honest
and replay voters (with the honest voters voting according to
the uniform distribution). Figure 5 shows a direct comparison
of our definition with the KTV definition, for elections with
between 2 and 10 candidates. All estimates in this section
and in Section VI are with 10,000,000 trials, so standard error
< 0.0005.

VI. ANALYSIS OF REAL-WORLD ELECTIONS

In order to complement our formal analysis, we study how
replay attacks would scale in practical elections. We therefore
apply our formal results to publicly available data of political
elections in Estonia, Germany, the UK, and the USA. In this
way, we can realistically simulate to which degree vote privacy
would decrease if in such elections replay attacks had been
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Fig. 5. Comparison of privacy losses for strong privacy and KTV privacy,
for an election with 10000 honest voters, 10 replays and 2–10 candidates,
uniform distribution.

executed. Our “field test” confirms the gist of our abstract
results: even if the number of replays is very low, vote privacy
can be undermined significantly.

In the remainder of this section, we first discuss the mod-
eling assumptions used for our analysis (Sec. VI-A), then
describe our real-world examples and the results of our sim-
ulations (Sec. VI-B). Finally we discuss these results, explain
why they confirm our theoretical analysis, and elaborate on
the consequences of our new insights (Sec. VI-C).

A. Modeling assumptions

Throughout all of our analysis we, like Küsters, Truderung
and Vogt in [30], assume that the adversary’s knowledge about
the actions of the honest voters is represented by a vector of
vote probabilities p⃗, with the individual voters’ votes drawn
independently according to this distribution (other prior works
in the literature [6, 35] base their examples on the simple
but unrealistic assumption of a uniform prior). In applying
this analysis to real-world elections, there are two similar-
seeming but conceptually distinct issues to address: whether it
is reasonable to think that the adversary knows this probability
distribution, and how we as analysts estimate this distribution
in order to perform the privacy analysis.

An important feature of all the elections we consider is that
they are national elections for which results are published at
the constituency or even per-polling station level. This means
that if voters were nationally homogeneous then the adversary
could easily discover the vote distribution p⃗ by just averaging
the results of the constituencies other than the one in which
he executed the replay attack.

Of course, in reality electorates are almost never nationally
homogeneous, and there will be systematic variation between
North and South, East and West, rich and poor regions, and so
on. The adversary’s goal, therefore, is to estimate the distribu-
tion p⃗ for the specific constituency (or polling district) he has
attacked, using only the results from other constituencies (and
perhaps also results from previous elections). Fortunately for
him, there is a well-established technique in political science,
called Multilevel Regression and Poststratification (MRP) [21],
to predict the local result based on a combination of national
polls, local demographic factors and previous results. It is
difficult for us to make quantitative statements about the
accuracy that could be achieved, since political scientists are
generally interested in making predictions before the election
using opinion polls rather than with access to actual results

outside the target constituency (and a full implementation
would be far beyond the scope of this paper). Howerver, recent
examples (e.g. [33]) are able to obtain local-level predictions
with typical error comparable to the sampling uncertainty of
national opinion polls, so it seems reasonable to expect (or at
least fear) that with access to the actual national results (rather
than only polls) fairly precise estimates could be obtained of
the local underlying vote distribution.

The second task, for us as analysts to estimate the vote
probabilities in order to perform the analysis, is considerably
simpler. Unlike the adversary we have access to the actual
results in the relevant area (unpolluted by replay attacks), and
so we can use the proportion of votes cast for each candidate
as an unbiased estimator of the underlying vote probabilities.

B. Examples

We use public data from political elections in Estonia,
Germany, the UK, and the USA, to simulate the potential
privacy loss if these elections had been conducted using an
e-voting scheme vulnerable to replay attacks.8

In each of these elections, the partial election result of
each polling station/area was published. We use these partial
results to analyse the efficiency of replay attacks because it is
reasonable to assume that an adversary knows in which partial
result a targeted voter’s choice is included. For each election,
we chose a polling station/area where the number of votes was
close to the overall average of votes per polling station/area.
Our results are summarized in Fig. 6.

Estonia Germany UK US
KTV SP KTV SP KTV SP KTV SP

0 0.266 0.485 0.103 0.187 0.003 0.003 0.222 0.331
1 0.502 1.076 0.204 0.389 0.006 0.006 0.426 0.695
5 0.950 3.811 0.560 1.354 0.017 0.017 0.875 2.103

10 0.999 6.235 0.839 2.698 0.031 0.032 0.992 3.034

Fig. 6. Ideal privacy losses with nrepl = 0, 1, 5, 10 replays based on real
election data from Examples 1–4. “KTV” denotes KTV privacy definition
and “SP” denotes strong privacy definition.

Example 1 (Estonia, Riigikogu Election 2019): In the
Riigikogu (parliamentary) elections in 2019, 561,141 votes
were cast in total. The number of polling stations was
451, which results in 1,244 votes per polling stations on
average. In this example, we choose polling station S53P
in Mustamäe linnaosa where 1,404 valid votes were cast.9

The public partial election result at this polling station was
(14, 233, 22, 82, 9, 210, 31, 702, 5, 92, 4).10

Example 2 (Germany, Landtag Election 2021): In the
Landtag (parliamentary) election in the state of Rhineland-
Palatinate in 2021, 1,922,579 votes were cast in total. The
number of polling stations was (roughly) 2,300, which results

8We published our implementation at http://hdl.handle.net/10993/51209.
9See https://rk2019.valimised.ee/en/voting-result/

local-municipality-0482-voting-result.html (accessed 11.04.2022).
10The public election result is even more fine-grained because the number

of votes per candidate on each party list is revealed. We aggregated the number
of votes for each party list and consider adversaries who merely know the
aggregated result; this makes our overall argument only stronger.
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in < 836 votes per polling station on average. In this example,
we choose polling station Pluwig where 855 votes were cast.11

The public partial election result at this polling station was
(291, 253, 34, 35, 141, 27, 74).

Example 3 (UK, EU Referendum 2016): In the EU refer-
endum in the UK 2016, 33,551,983 votes were cast in total.
The number of areas was 382, which results in 87,832 votes
per area on average. In this example, we choose the area
of Kingston-upon-Thames (London) where 85,270 votes were
cast.12 The public partial election result at this polling station
was (52533, 32737).

Example 4 (USA, Presidential Election 2020): For the US
presidential election in 2020, we were not able to determine
the number of polling stations nationwide, so we focused
on the results of one state, namely Massachusetts. Here, the
average number of votes per polling station was (roughly)
1,500. In this example, we choose the polling station for
Precinct 13 of Ward 1 in Boston, where 1,430 votes were
cast.13 The public partial election result at this polling station
was (995, 404, 12, 5, 9).

C. Discussion

Observe that for the Estonian, German and US elections,
which have many candidates, even a very small number of
replays would have a devastating impact on vote privacy. For
example, in the Estonian election even a single replay already
has a substantial effect, and with only 5 replays privacy is
almost completely lost (similarly for Germany and the US 1–5
replays compromise privacy, and 5–10 destroy it completely).

On the other hand, in the UK Brexit referendum, which has
only two ‘candidates’ and far more votes at the most granular
reporting level, we see that the effect of up to 10 replays is
far less. This example also illustrates most clearly the result
of Theorem 4 that the KTV privacy loss scales approximately
proportionately to nrepl + 1, which we also see in the small-δ
regions of the other examples (we also see the consequence of
Proposition 1 that for a two-candidate election the KTV and
strong privacy losses agree, apart from stochastic sampling
error).

The referendum results should not make us too complacent,
however, because in fact the number of replays required to
obtain a KTV privacy loss δ > 1/2 is just 196—equivalent to
just 0.2% of the total number of votes.

It is interesting to compare the results for the US election
with the UK results, because these are both elections for which
the vast majority of votes went to just two candidates, but the
privacy loss for the US is much greater than for the UK (by a
factor of approximately 70). The number of votes in the UK
example exceeds that in the US by a factor of approximately
60; Theorem 4 tells us that the KTV privacy loss δ scales as

11See https://www.wahlen.rlp.de/de/ltw/wahlen/2021/ergebnisse/
2242350410700.html (accessed 11.04.2022).

12See https://www.electoralcommission.org.uk/
who-we-are-and-what-we-do/elections-and-referendums/
past-elections-and-referendums/eu-referendum (accessed 11.04.2022).

13See https://electionstats.state.ma.us/elections/view/140751/filter by
county:Suffolk (accessed 11.04.2022).

1/
√

nh
V, and so the discrepancy in total votes predicts a ratio

of approximately only
√
60 ≈ 8, leaving around a factor of

10 still to explain. The reason for this remaining difference is
that both the KTV and strong privacy definitions are heavily
(in the case of strong privacy) or entirely (in the case of KTV
privacy) influenced by the least popular candidates, and so the
fact that the US election has a few very unpopular candidates
has a large effect.

It may seem odd or even undesirable that the measured loss
of privacy should be so heavily influenced by the small number
of voters who support minority parties. However, we would
argue that ballot privacy must mean privacy for all voters.
Indeed, it may well be supporters of unpopular candidates
who are at most risk of stigmatisation or reprisals; note that
the adversary does not have to choose the targeted voter at
random, but can choose to target someone they already suspect
of supporting a minority position.
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Ezzahra El Orche, Rémi Géraud-Stewart, David Nac-
cache, Peter B. Rønne, Peter Y. A. Ryan, and Hugo
Waltsburger. Time, Privacy, Robustness, Accuracy: Trade
Offs for the Open Vote Network Protocol. IACR Cryptol.
ePrint Arch., page 1065, 2021.

[4] Josh Daniel Cohen Benaloh. Verifiable Secret-Ballot
Elections. PhD thesis, 1987.
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[17] Véronique Cortier, David Galindo, Ralf Küsters, Jo-
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APPENDIX A
PROOFS

Lemma 2: Let j, j ∈ C. For each t ∈ {0, . . . , nh
V +

nrepl + 1} let Tt,j,j′ ∈ N be the largest number such that∏nrepl

ν=0
Tt,j,j′−ν

p⃗[j]nrepl+1 ≤
∏nrepl

ν=0
t−Tt,j,j′−ν

p⃗[j′]nrepl+1 . Then for p⃗[j, j′] :=

1− p⃗[j]− p⃗[j′]

nt
V∑

t=0

t∑
r=0

∣∣∣∆res,nrepl

j,j′

∣∣∣ · nh
V!p⃗[j, j

′]n
t
V−tp⃗[j]rp⃗[j′]r−t

2 · (nt
V − t)!r!(t− r)!

(8)

=

nh
V∑

t=0

p⃗[j, j′]n
h
V-t
(
nh
V

t

) min{Tt+nrepl+1,t}∑
r=max{Tt+nrepl+1-nrepl,0}

(
t

r

)
p⃗[j]rp⃗[j′]t-r

with ∆
res,nrepl

j,j′ =
∏nrepl

ν=0 (r−ν)

p⃗[j]nrepl+1 −
∏nrepl

ν=0 (t−r−ν)

p⃗[j′]nrepl+1 .
Proof. We first remove the absolute value to get

t∑
r=0

∣∣∣∆res,nrepl

j,j′

∣∣∣ · p⃗[j]rp⃗[j′]t−r

r!(t− r)!
(9)

=

Tt∑
r=0

∆
res,nrepl

j,j′ · p⃗[j]
rp⃗[j′]t−r

r!(t− r)!
−

t∑
r=Tt+1

∆
res,nrepl

j,j′ · p⃗[j]
rp⃗[j′]t−r

r!(t− r)!

Check that the term is 0 for Tt ≤ t < nrepl+1 and r ≤ Tt, t−
r ≤ t. By index shifting we get for the different summands
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of ∆res,nrepl

j,j′ and −∆res,nrepl

j,j′ for t ≥ nrepl + 1:

Tt∑
r=0

∏nrepl

ν=0(t− r − ν)

p⃗[j′]nrepl+1/t!
MNr,t−r

t

=

min{Tt,t−nrepl−1}∑
r=0

MN
r,t−r−nrepl−1
t−nrepl−1

(t− nrepl − 1)!

Tt∑
r=0

∏nrepl

ν=0(r − ν)

p⃗[j]nrepl+1/t!
MNr,t−r

t

=

Tt−nrepl−1∑
r=0

MN
r,t−r−nrepl−1
t−nrepl−1

(t− nrepl − 1)!

t∑
r=Tt+1

∏nrepl

ν=0(t− r − ν)

p⃗[j′]nrepl+1/t!
MNr,t−r

t

=

t−nrepl−1∑
r=Tt+1

MN
r,t−r−nrepl−1
t−nrepl−1

(t− nrepl − 1)!

t∑
r=Tt+1

∏nrepl

ν=0(r − ν)

p⃗[j]nrepl+1/t!
MNr,t−r

t

=

t−nrepl−1∑
r=max{Tt−nrepl,0}

MN
r,t−r−nrepl−1
t−nrepl−1

(t− nrepl − 1)!

Combining these terms shows that (9) is equal to

2

min{Tt,t−nrepl−1}∑
r=max{Tt−nrepl,0}

MN
r,t−r−nrepl−1
t−nrepl−1

(t− nrepl − 1)!

Thus (8) becomes

nt
V∑

t=nrepl+1

nh
V!p⃗[j, j

′]n
t
V−t

(nt
V − t)!

min{Tt,t−nrepl−1}∑
r=max{Tt−nrepl,0}

MN
r,t−r−nrepl−1
t−nrepl−1

(t− nrepl − 1)!

Another index shift shows the equality in (8):

nh
V∑

t=0

nh
V!p⃗[j, j

′]n
h
V−t

(nh
V − t)!

min{Tt+nrepl+1,t}∑
r=max{Tt+nrepl+1−nrepl,0}

MNr,t−r
t

t!

Proof of Corollary 3. Note that by definition δjj′ is smooth
in p⃗[j] + p⃗[j′]. Hence its representation in (5) is also smooth
and it is enough to compute the differential on intervals where
Tt is constant. We will differentiate (5) w.r.t. p⃗[j] + p⃗[j′] to
see that δjj′ decreases, i.e. becomes maximal if p⃗[j] + p⃗[j′] is
minimal. We get ∂

∂(p⃗[j]+p⃗[j′])f(p⃗[j], p⃗[j
′]) with f(p⃗[j], p⃗[j′]) =

(1− p⃗[j]− p⃗[j′])n
h
V−t(p⃗[j])r(p⃗[j′])t−r to(

r

2p⃗[j]
+

t− r

2p⃗[j]
− nh

V − t

p⃗[j, j′]

)
f(p⃗[j], p⃗[j′])

Hence we get the three terms:

−
nh
V−1∑
t=0

(
nh
V

t

)
p⃗[j, j′]n

h
V−t−1
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V − t)−1

min{Tt+nrepl+1,t}∑
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MNr,t−r
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1

2

min{Tt+nrepl+1,t}−1∑
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(
t

r

)
(t− r) · p⃗[j′]−1 MNr,t−r

t

1

2

min{Tt+nrepl+1,t−1}∑
r=max{Tt+nrepl+1−nrepl,0}

(
t

r

)
(t− r) · p⃗[j′]−1 MNr,t−r

t

The last two terms are 0 for t = 0 and we can shift them by
t 7→ t + 1. Adding all resulting terms almost all summands
cancel out. If Tt+nrepl+1 = Tt+nrepl+2 we get remaining terms
(up to a positive factor)

−
(

t

rt,↑

)
p⃗[j]rt,↑ p⃗[j′]t−rt,↑+

(
t

rt,↓ − 1

)
p⃗[j]rt,↓−1p⃗[j′]t−rt,↓+1

where rt,↑ = Tt+nrepl+1 and rt,↓ = Tt+nrepl+1 − nrepl.14 The
term is negative if∏nrepl

ν=0(t+ nrepl + 1 + Tt+nrepl+1 − ν)

p⃗[j′]nrepl+1

−
∏nrepl

ν=0(Tt+nrepl+1 − ν)

p⃗[j]nrepl+1
≥ 0

which is true by definition. Analogously for Tt+nrepl+1 + 1 =
Tt+nrepl+2:15(

t

rt,↑

)
p⃗[j]rt,↑+1p⃗[j′]t−rt,↑−1 −

(
t

rt,↓

)
p⃗[j]rt,↓ p⃗[j′]t−rt,↓

which is again negative if∏nrepl

ν=0(t+ nrepl + 1 + Tt+nrepl+1 − ν)

p⃗[j′]nrepl+1

−
∏nrepl

ν=0(Tt+nrepl+1 − ν)

p⃗[j]nrepl+1
≥ 0.

Hence the derivative is non-positive which shows that δjj′

becomes maximal if p⃗[j], p⃗[j′] ≤ p⃗[k] for all k ∈ C.

14Note that we still get the same term for rt,↑ = t. For rt,↓ = 0 the
positive term drops off.

15For rt,↓ = 0 we get the same term, for rt,↑ = t the positive term drops
off.
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