
Beware of Greeks bearing entanglement? Quantum
covert channels, information flow and non-local

games

David Mestel

University of Luxembourg

david.mestel@uni.lu

Abstract—Can quantum entanglement increase the capacity
of (classical) covert channels? To one familiar with Holevo’s
Theorem it is tempting to think that the answer is obviously
no. However, in this work we show: quantum entanglement
can in fact increase the capacity of a classical covert channel,
in the presence of an active adversary; on the other hand,
a zero-capacity channel is not improved by entanglement, so
entanglement cannot create ‘purely quantum’ covert channels;
the problem of determining the capacity of a given channel in
the presence of entanglement is undecidable; but there is an
algorithm to bound the entangled capacity of a channel from
above, adapted from the semi-definite hierarchy from the theory
of non-local games, whose close connection to channel capacity
is at the core of all of our results.

Index Terms—covert channels, information flow, quantum
information

I. INTRODUCTION

Suppose that you are processing sensitive data using a

computer. How do you know that your computer was not

given to you in a state of quantum entanglement with an

eavesdropping adversary? This is a situation that (unlike the

presence of Greek soldiers) cannot be detected by any local

experiment. It does not require the victim to be using any kind

of quantum technology.1

Fortunately, the presence of entanglement does not of itself

jeopardise the privacy of one’s data. This is due to the ‘non-

signalling’ property of entanglement: although the adversary

is able to obtain non-classical correlations with the victim’s

measurement outcomes, this does not allow him to deduce any-

thing about what those measurements were (otherwise distant

entanglement would enable faster-than-light communication).

But what if the adversary also has access to some legitimate

interaction with the victim, such as use of a shared resource? Is

it possible for entanglement to create a covert channel where

none would otherwise exist, or to increase the power of an

existing channel? The purpose of the present work is to address

this question.

Holevo’s Theorem [1] states (in relevant part) that entan-

glement cannot increase the classical Shannon capacity of a

The author is supported by FNR under grant INTER
FNRS/15/11106658/SeVoTe.

1Although we must acknowledge that it would require the adversary to have
technical capabilities beyond those publicly known, since holding systems in
superposition is currently a sensitive, fragile and usually short-lived affair.

purely classical discrete memoryless channel. It is therefore

tempting to assume that this means the answer to the above

question is ‘no’; however, as we shall see, in fact the picture

is rather more complex.

An abstracted representation of a system which may or may

not give rise to a covert channel is shown in Figure 1. A

victim, Alice, interacts with some system C, to which access

is also given to an eavesdropper, Bob. Bob may only receive

messages from the system (a passive adversary), or he may

also be able to send messages (an active adversary). We say

that a covert channel exists if Bob is able to learn something

about Alice’s actions from his observations; this is set out

formally in the classic paper of Goguen and Meseguer [2].

Note that we make the assumption that Alice is actively

trying to convey information to Bob. This may be because she

(perhaps a malicious process) is trying to exfiltrate data across

what should be an information flow barrier. Alternatively she

may be an innocent victim (in this situation the covert channel

is often called a ‘side-channel’), but if her behaviour is not

specified then a conservative analysis must assume that she

could behave as if trying to exfiltrate data.

It may be, however, that the question just of whether Bob

can learn anything is too crude, and we may be interested in

how much information can reach Bob from Alice; this is the

subject of the field of ‘Quantitative Information Flow’ (QIF).

The original approach [3] was to compute the Shannon mutual

information between Alice’s actions and Bob’s observations,

but it was pointed out by Smith [4] that this is usually

inappropriate. This has given rise to extensive study of various

possible measures of information flow; see the recent book [5].

However, in this work we will mainly (with the exception of

Section VI) be agnostic as to the choice of measure, subject

to mild reasonableness conditions.

The goal of QIF is essentially to analyse Figure 1 in

quantitative fashion. The goal of this paper is to extend this

analysis to the situation where Alice and Bob may share entan-

glement. We define information flow in this setting and then

address some fundamental questions. Can entanglement make

any difference? Can we tell how much? Can entanglement

introduce covert channels where none existed before?
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Fig. 1. An abstracted system

Overview

The structure of this paper is as follows. In Section II

we set out basic concepts and definitions, for both classical

information flow and quantum entanglement. In Section III

we define an entangled version of information flow. We

then introduce the reader to ‘non-local games’, an important

concept from Quantum Information Theory that provides the

technical machinery for many of our results, and show by

a simple reduction from a certain game (the ‘CHSH game’)

that it is possible for entangled capacity to exceed classical

capacity (Theorem 10). In Section IV, on the other hand,

we show that if a channel has zero classical capacity then

it also has zero entangled capacity (Corollary 14), and so it is

not possible for entanglement to introduce ‘purely quantum’

covert channels. In Section V, we consider the problem of

computing the entangled capacity of a given channel, and show

using the very recent breakthrough result MIP∗ = RE [6]

that the problem of computing this capacity, even to within a

constant factor approximation, is undecidable (Theorem 18).

More positively, in Section VI we show that the Semi-Definite

Programming (SDP) methods [7] for bounding the value of

non-local games can be adapted to give upper bounds for

entangled channel capacity. Finally in Section VII we reflect

on the connection between covert channel capacity and non-

local games, and consider future directions for quantum QIF.

Related work

As far as we are aware, the only work which has attempted

to extend QIF into the quantum realm is the paper of Américo

and Malacaria [8]. This studies a rather different setting, in

which Alice sends to Bob a quantum state ρx which is a

(specified) function of the secret value x ∈ X ; Bob is then

allowed to apply a single measurement of his choice from a

fixed set of allowed measurements, and the question is how

much Bob can learn about the secret x according to various

measures of information flow. This is of course only relevant

to a network in which quantum states can be passed around.

The question of communication channels and their capac-

ity is of course central to information theory, and quantum

information theory is a huge topic in modern physics (see

for instance [9]). However, perhaps surprisingly the present

setting of the classical capacity of a classical fully interactive

multi-round channel assisted by entanglement has not as far as

we can tell been previously studied (see also the more recent

survey [10]). This may be because physicists are generally

more interested in quantum channels (which allow quantum

states to be sent and received), or in the effect of entangle-

ment on the quantum capacity of classical channels (which

surprisingly can be positive due to the technique of ‘quantum

teleportation’). Additionally, the idea of a fully interactive

channel may not seem particularly ‘physical’, since it is fairly

far from the classic setting of a noisy communication medium;

on the other hand such a situation is common in the setting of

covert channels or side-channels arising from use of a shared

resource or interaction with a common system.

II. PRELIMINARIES

A. Classical information flow

Although many different models (at varying levels of ab-

straction) have been used in other works to represent the

behaviour of the system, for this paper we will adopt a

simple abstract model, a finite-round version of the model

from the author’s prior work [11] (and a multi-round version

of the model used in [12]). We assume that Alice and Bob

interact with the system over k rounds, at each round sending

a message drawn from finite sets A and B respectively,

and receiving in return messages from finite sets X and Y
respectively. The behaviour of the system is then specified

just by functions determining the probability distribution on

output messages, based on the actions that have occurred up

to that point:

Definition 1. An n-round abstract interactive channel (n-IC)
is given by finite sets A,B,X ,Y and an n-tuple (f1, . . . , fn)
of functions

fi : (A× B × X × Y)i−1 × (A× B)→ D(X × Y).
Note that D(X × Y) denotes the space of probability

distributions on the set X ×Y . Note also that no generality is

lost by using the same finite sets for each round of interaction:

to represent a system using sets Ai,Bi,Xi,Yi at round i, take

A = �iAi (the disjoint union of the Ai), and similarly for

B,X and Y . Choose arbitrary ai ∈ Ai and bi ∈ Bi, and set

the images of the fi to be supported only on Xi × Yi and

treat inputs at round i which are not in Ai (respectively Bi)

as though they were ai (respectively bi).
A simple example of such a system is a fair resource

scheduler, which receives requests from Alice and Bob and

(if both ask to use the resource) allocates the resource to

whichever has received it fewer times in the past (breaking

ties randomly). This has A = B = X = Y = {0, 1},
and fi(t, (1, 0)) = (1, 0), fi(t, (0, 1)) = (0, 1), fi(t, (0, 0)) =
(0, 0), and

fi(t, (1, 1)) =

⎧⎪⎨
⎪⎩
(1, 0), if #X (t) < #Y(t)
(0, 1), if #X (t) > #Y(t))
1
2 (1, 0) +

1
2 (0, 1), if #X (t) = #Y(t),

where #X (t) and #Y(t) denote the number of positions in

t where the third (respectively fourth) co-ordinate is 1, and

(x, y) ∈ D(X × Y) denotes the point distribution supported

at (x, y). This system clearly does give rise to information

leakage, because by always requesting use of the resource
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Bob is able to (imperfectly) learn about whether Alice has

requested it.

Given the specification of a channel C, we are interested in

the possible ways Alice and Bob may interact with the system,

which we denote by their strategies. Clearly Alice is unable

to see the messages passing between the system and Bob, and

so her strategy at each step is represented by a function on

the transcript of her interaction so far; similarly for Bob.

Definition 2. Let C = (A,B,X ,Y, (f1, . . . , fn)) be an n-IC.
A classical A-strategy (respectively B-strategy) for C is a tuple
(g1, . . . , gn) of functions

gi : (A×X )i−1 → D(A),
respectively hi : (B×Y)i−1 → D(B). Denote the sets of such
strategies by SA and SB respectively.

Having thus fixed the strategies followed by Alice and Bob,

we obtain a probability distribution on traces of the system ex-

ecution: writing sA = (g1, . . . , gn) and sB = (h1, . . . , hn) we

have that the trace t = ((a1, b1, x1, y1), . . . , (an, bn, xn, yn))
occurs with probability

n∏
i=1

gi(πA(ti−1))(ai)hi(πB(ti−1))(bi)fi(ti−1, (ai, bi))(xi, yi),

writing ti for the ith prefix of t and πA and πB for the projec-

tions onto (A × X )∗ and (B × Y)∗ respectively representing

Alice and Bob’s views of the system. We denote the trace

produced by strategies sA and sB by the random variable

TsA,sB .

Now that we have defined the behaviour of the system

and the parties, we are able to talk about information flow.

We assume there is some secret about which Bob wishes

to learn, which we will denote by the random variable K;

Alice’s strategy may depend in some way on the value of

K. The question is, how much more does Bob know about

K after the interaction than before? As outlined in Section

I there are various possible ways to measure this, so our

definition (essentially the formalism of [13]) is parameterised

by a ‘vulnerability measure’ V on probability distributions.

Before he and Alice interact with the system, Bob’s knowl-

edge of the secret will be limited to the prior distribution of

the random variable K; we quantify this knowledge by the

vulnerability of this distribution according to the vulnerability

measure V, which we denote by V(K).
On the other hand, after the interaction Bob will have

observed some trace t consisting of the messages passing

between him and the system, and this allows him to up-

date his beliefs about the secret to the posterior distribution

K|πB(T ) = t (recall that Bob is only able to observe the

projection of the whole system trace T onto (B × Y)n, since

he does not see the messages passing between the system and

Alice). In quantitative terms his knowledge of the secret is

given by V(K|πB(T ) = t); we call the expected value of

this quantitiy the ‘posterior V-vulnerability’ and the expected

difference between prior and posterior V-vulnerability (that is

the expected amount of information gained by Bob) the ‘V-

leakage’ of the channel with the given prior distribution on

K.

Definition 3. Let C be an n-IC, and K a random variable
taking values on the set K. Let φA : K → SA and
sB ∈ SB. Let V be any vulnerability measure. The posterior

V-vulnerability of K under (C, φA, sB) is given by

VV(K, (C,φA, sB))
= Et∼πB(TφA(K),sB

)V
(
K|πB(TφA(K),sB ) = t

)
.

The V-leakage of K under (C, φA, sB) is given by

LV(K, (C, φA, sB)) = VV(K, (C, φA, sB))− V(K).

Note that the posterior distribution K|πB(TφA(K),sB ) = t
is straightforwardly given by Bayes’ theorem

pK|πB(TφA(K),sB
)(k|t) =

pπB(TφA(K),sB
)|K(t|k)pK(k)

pπB(TφA(K),sB
)(t)

.

Some important examples of vulnerability measures:

• Shannon entropy: V(K) = −H1(K) =∑
k pK(k) log(pK(k)). This gives a measure of

leakage corresponding to mutual information.

• Min-entropy [4]: V(K) = −H∞(K) = logmaxk pK(k).
This has a natural operational interpretation, as (log of)

the multiplicative improvement in Bob’s probability of

guessing the value of K in one try.

• g-vulnerability [14]: this is a family of vulnerability

measures, parameterised by a finite set of guesses W
Bob can make, and a ‘gain function’ g : W × K →
[0, 1] giving the reward to Bob for making guess w
if the true value was k. Then the expected value of

Bob’s multiplicative gain is given by V-leakage with

V(K) = logmaxw pK(k)g(w, k). We may also be

interested in Bob’s additive gain, which is given by

V(K) = maxw pK(k)g(w, k) (omitting the log).

The definition of V-leakage can be expressed more con-

cisely using an analogue of Shannon mutual information

(which gives the asymptotic capacity of a binary symmetric

channel), parametrised by the vulnerability measure V: if we

define

IV(X;Y ) = Ey∼Y V(X|Y = y)− V(X)

then we have that

LV(K, (C, φA, sB)) = IV(K;πB(TφA(K),sB )).

Note that if V is Shannon entropy then IV is Shannon mutual

information; this is symmetric in X and Y but IV is not in

general symmetric for other vulnerability measures.
We then define the V-capacity of the channel to be the

maximum possible V-leakage over all possible secrets K and

all possible behaviours for Alice and Bob.

Definition 4. Let C be an n-IC. The classical V-capacity of

C is given by

LV(C) = sup
K

sup
φA:K→SA,sB∈SB

LV(K, (C, φA, sB)).
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Throughout this paper, we will consider only vulnerability

measures satisfying three healthiness conditions, which hold

for all reasonable measures and which we will need to use

in order to prove some of our results later on (in particular

for the proof of Theorem 17). The first healthiness condition

we will call the composition inequality. Informally, this says

that if we have a composition of channels X → Y → Z then

the capacity of the channel from X to Z is not greater than

that of those from X to Y and from Y to Z. Clearly this is a

property that any sensible vulnerability measure should have.

More formally, for random variables X,Y, Z, we say that

they form a Markov chain, and write X → Y → Z if we

have pX,Y,Z(x, y, z) = pX(x)pY |X(y|x)pZ|Y (z|y) (note that

this property is symmetric, so that X → Y → Z if and

only if Z → Y → X; see [15] Section 2.8). We say that

a vulnerability measure V satisfies the composition inequality

if for every Markov chain X → Y → Z we have

IV(X;Z) ≤ sup
Y ′|X′=Y |X

IV(X
′;Y ′)

and

IV(X;Z) ≤ sup
Z′|Y ′=Z|Y

IV(Y
′;Z ′).

This fact for Shannon entropy vulnerability follows from

the data-processing inequality ( [15], Theorem 2.8.1), and for

min-entropy is Theorem 6 of [16]. Note that the first inequality

without the supremum (which would bound information flow

rather than capacity) can fail for min-entropy vulnerability (see

Example 7 of [16]), but both hold for Shannon entropy.

The second healthiness condition we will require is that

the vulnerability of a Bernoulli random variable is (strictly)

less if it is closer to uniform. That is, if ρ, ρ′ ∈ [0, 1] with

|ρ− 1/2| < |ρ′ − 1/2| then we have

V(Ber(ρ)) < V(Ber(ρ′)),

where Ber(ρ) is the Bernoulli distribution with parameter ρ.

The third and final assumption we make about V is that

if we have a binary symmetric channel then the best way to

use it is to send a uniformly random bit. More concretely, we

assume that if (X,Y ) is a binary symmetric channel with error

probability p then IV(X;Y ) maximised when X ∼ Ber(1/2),
in which case the posterior is Ber(1− p), so we assume

IV(X;Y ) ≤ V(Ber(1− p))− V(1/2).

A consequence of the composition inequality is that without

loss of generality we may assume that Alice employs a

deterministic strategy: indeed, we may consider her source of

randomness to be a random variable X (so that she employs

a deterministic strategy on K × X), and then we have that

K → K × X → πB(T ) is a Markov chain, so the capacity

of the channel given by her deterministic strategy on K ×X
is at least that of the original strategy. Once we have that

Alice uses a deterministic strategy we may assume that |K|
is at most the size of the set of functions (A × X )<n → A,

which in particular is bounded. We can similarly show that

Bob can be assumed to use a deterministic strategy (assume

his randomness is resolved before the interaction and pick the

value of the seed leading to the greatest leakage), and so the

set of possible strategies is finite and the classical capacity of

a given channel is computable.

Returning to the toy example of the fair scheduler described

near the beginning of this section, we can easily see that this

has postive V-capacity under any vulnerability measure V sat-

isfying the healthiness conditions. Indeed, let K ∼ U({0, 1}),
and let Bob’s strategy sB be given by hi(t) = 1 for all i, t
(that is, Bob always asks to use the resource). Define strategy

s0 for Alice by gi(t) = 0 for all i, t (never asking for the

resource) and strategy s1 by gi(t) = 1 for all i, t (always

asking for the resource). For k ∈ {0, 1}, let φA(k) = sk.

Now if K = 0 then Bob will always receive 1 from the

system. If n ≥ 2 then by fairness if K = 1 then Bob

will always receive a 0 at least once, and so we have that

K|πB(TφA(K),sB ) is a point distribution for both K = 0 and

K = 1, and so

LV(C) ≥ LV(K, (C, φA, sB))
= V(Ber(1))− V(Ber(1/2))

> 0

by the second healthiness condition.

If n = 1 then if K = 1 Bob will receive a 0 or a 1

uniformly at random. Hence if he receives a 0 he can deduce

with certainty that K = 1, but if he receives a 1 then his

posterior is that K = 0 with probability 1
2/(

1
2 +

1
4 ) =

2
3 and

K = 1 with probability 1
3 . Hence we have

LV(C) ≥ LV(K, (C, φA, sB))
=

(
1
4Ber(1) +

3
4Ber(2/3)

)− V(Ber(1/2)

> 0,

again by the second healthiness condition. Of course these

lower bounds for LV(C) are not tight; the optimal strategy and

maximum leakage will depend on the choice of vulnerability

measure V.

B. Entanglement

We give here a very brief introduction to the theory of

quantum states and quantum measurements; a more detailed

introduction can be found in [17].

A quantum system is represented by a complex Hilbert

space H (that is, a complex inner product space such that the

distance metric is continuous); for most of this work (except

Section VI) we will assume that H is finite-dimensional, and

so H ∼= C
n for some n. A qubit is a system H = C

2 and

we write {|0〉 , |1〉} an orthonormal basis for H (the ‘standard

basis vectors’).

A state of the system is a unit vector |ψ〉 ∈ H (more

precisely this is a ‘pure state’; we will not need to consider

mixed states in this work). If H = H1 ⊗H2 then we say that

|ψ〉 ∈ H is separable if |ψ〉 = |ψ1〉⊗|ψ2〉 for some |ψ1〉 ∈ H1

and |ψ2〉 ∈ H2; otherwise we say that |ψ〉 is entangled.

What does it mean to make a measurement on a system H?

In this work we will consider only projective measurements;
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that is, measurements such that performing the measurement

twice is the same as performing it once (this is without loss of

generality since we will never care about the exact dimension

of our Hilbert spaces and by the Naimark dilation theorem any

measurement can be expressed as a projective measurement on

a larger Hilbert space).

By an orthogonal projective measurement over H (hereafter

just ‘measurement’) we mean a collection of Hermitian oper-

ators {Ei}i∈I over H, where I is the set of measurement

outcomes, satisfying the following properties:

(i) for each i, E2
i = Ei (each Ei is a projection),

(ii) EiEj = 0 for all i 
= j (orthogonality), and

(iii)
∑

i∈I Ei = I the identity operator.

When we apply the measurement {Ei}i∈I to state |ψ〉, we

obtain result i with probability 〈ψ|Ei|ψ〉 (where 〈ψ| = |ψ〉∗ ∈
H∗ is the dual vector to |ψ〉); note that this is a probability

distribution by condition (iii).

Some examples of measurements (on a single cubit) are

measurement in the standard basis, {|0〉 〈0| , |1〉 〈1|}, and

measurement in the ‘Hadamard basis’, {(|0〉 + |1〉)(〈0| +
〈1|)/2, (|0〉−|1〉)(〈0|−〈1|)/2}, at an angle π/4 to the standard

basis.

Note that measurements compose, so that if {Ei}i∈I
and {Ej}j∈J are projective measurements then so is

{EiEj}(i,j)∈I×J , corresponding to measuring J followed by

I. Note that measurements do not in general commute, so

that {EiEj} will give different results to {EjEi}. This is the

essential difference between quantum and classical measure-

ment, and gives rise to the famous ‘uncertainty principle’ in

quantum mechanics.

III. ENTANGLED CHANNEL CAPACITY

A. Definition

We will now consider information flow in the situation in

which Alice and Bob may share entanglement. This means

that it is no longer possible to consider their strategies entirely

separately: they share some entangled state |ψ〉, and at each

step make measurements on their own part of the state (which

may depend on the history of their own communication with

the system up to that point), and choose a message to send

to the system according the the result of the measurement.

Alice’s choice of measurements, but not Bob’s, may also

depend on the value of the secret K. Note that without loss

of generality we may assume that each measurement consists

of one projection for each element of A (respectively B),

since any post-processing of the measurement result into a

(possibly random) choice of message can be incorporated into

the measurement.

Definition 5. Let C be an n-IC, and K a random variable
taking values on the set K. A quantum joint strategy for C is
a pure state |ψ〉 in a finite-dimensional complex Hilbert space
H = HA ⊗HB, and sets {Ak,t} and {Bt′} such that

(i) for every k ∈ K and every t ∈ (A×X )i with 0 ≤ i < n,
Ak,t = {Ak,t

a }a∈A is a measurement over HA, and

(ii) for every t′ ∈ (B×Y)i with 0 ≤ i < n, Bt′ = {Bt′
b }b∈B

is a measurement over HB.
Denote the space of such strategies by S∗C,K .

We again denote the trace produced by strategy s with secret

k by the random variable Ts,k. What is the probability that Ts,k
takes the value t = ((a1, b1, x1, y1), . . . , (an, bn, xn, yn))?
Whereas before in the classical case this was given by the

product of the relevant classical probabilities corresponding

to the execution t from the functions defining the strategies

of Alice and Bob and the behaviour of the machine, now

for Alice and Bob we must find the probability that the

corresponding sequences of measurements result in the correct

outcomes. This is given by the norm on |ψ〉 of the product of

the corresponding projections; on the other hand, since the

system itself is purely classical its probability is still given by

multiplying the relevant probabilities.

Denote by Ak
t and Bt the projections corresponding to Alice

and Bob taking the actions corresponding to trace t at each

step; that is

Ak
t = Ak,((a1,x1),...,(an−1,xn−1))

an
Ak,((a1,x1),...,(an−2,xn−2))

an−1

. . . Ak,((a1,x1))
a2

Ak,∅
a1

Bt = B
((b1,y1),...,(bn−1,yn−1))
bn

B
((b1,y1),...,(bn−2,yn−2))
bn−1

. . . B
((b1,y1))
b2

B∅b1 .

Writing ti for the ith prefix of t as before, we have that the

probability that Ts,K takes the value t is given by

〈ψ|Ak
t ⊗Bt|ψ〉

n∏
i=1

fi(ti)(xi, yi),

where the fi are the functions specifying the channel behaviour

from Definition 1.

As in the classical case, we then say that the information

leakage from Alice to Bob LV(K, (C, s)) is given by the

increase in V-vulnerability from the prior to Bob’s posterior

distribution after the interaction, for our preferred choice of

vulnerability measure V.

Definition 6. Let C be an n-IC. The entangled V-capacity of

C is given by

L∗
V
(C) = sup

K
sup

s∈S∗C,K
LV(K, (C, s)),

where LV(K, (C, s)) is defined equivalently to Definition 3.

Trivially L∗
V
(C) ≥ LV(C) for any channel C. We will write

Δ∗
V
(C) for the ‘quantum advantage’

Δ∗
V
(C) = L∗

V
(C)− LV(C).

We will say that C is a purely quantum channel if L∗
V
(C) >

LV(C) = 0.

With this as our central definition, in the remainder of this

paper we will investigate some of its fundamental questions,

in particular: is it possible to have Δ∗
V
(C) > 0? Is it possible

to have LV(C) = 0 but L∗
V
(C) > 0? Given a channel C, can
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we compute L∗
V
(C)? Given that (as we shall see) the answer to

the previous question is ‘no’, can we at least get some bounds

on it?

B. Non-local games

The key technical ingredient for many of the results of

this paper is the observation that the entangled capacity of

interactive channels has a close connection with the theory of

non-local games. This is a formalism that highlights and in

some sense allows us to measure the inherently ‘contextual’

nature of quantum mechanics: that is, that it is possible for two

parties sharing entanglement to accomplish tasks that would be

impossible for separated parties under any purely local theory

of physics.

The basic setup is that we have two players, Alice and

Bob, playing a (co-operative) game with a referee. The referee

begins by sending Alice and Bob a message drawn (prob-

abilistically) from finite sets A and B respectively. Alice

and Bob must then respond with messages from sets X and

Y respectively. The referee then determines according to a

specified function D whether Alice and Bob have won or lost

the game; we are interested in the highest probability with

which Alice and Bob can win, which we call the ‘value’ of

the game. (One could also consider games with more players

or more rounds, but we will not need to for this work.)

Definition 7. A two-player one-round non-local game is a
tuple G = (A,B,X ,Y, D, μ), where A,B,X and Y are finite
sets, μ ∈ D(A × B) is some probability distribution and D :
A×B×X ×Y → {0, 1} is the decision function, determining
whether Alice and Bob are considered to have won or lost the
game.

A classical strategy s for G comprises a pair of functions
f : A → D(X ) and g : B → D(Y). Write

val(G, s) =
∑

a,b,x,y

μ(a, b)f(a, x)g(b, y)D(a, b, x, y)

for the win probability of strategy s, and

val(G) = sup
s

val(G, s),

the classical value of G.

It is easy to show that in fact Alice and Bob’s optimal

win probability can be obtained with purely deterministic

strategies, so that without loss of generality we may assume

f(a)(x), f(b)(y) ∈ {0, 1} for all a, b, x, y.

What if Alice and Bob are given access to entanglement?

As for channels, we allow Alice and Bob to share some

quantum state |ψ〉 ∈ HA ⊗ HB. The strategy must specify

a measurement taking values on X for each message Alice

could receive; similarly for Bob.

Definition 8. Let G = (A,B,X ,Y, D, μ) be a game. A
quantum strategy for G is a pure state |ψ〉 in a finite-
dimensional complex Hilbert space H = HA ⊗HB, and sets
{Aa} and {Bb} such that for every a ∈ A, Aa = {Aa

x}x∈X is

a measurement overHA, and for every b ∈ B, Bb =
{
Bb

y

}
y∈Y

is a measurement over HB.
For strategy s as above, let

val(G, s) =
∑

a,b,x,y

μ(a, b) 〈ψ|Aa
x ⊗Bb

y|ψ〉D(a, b, x, y).

Then the entangled value of G is given by

val∗(G) = sup
s

val(G, s).

The original example of a non-local game is the CHSH
game [18], which we denote GCHSH . In this game, the

messages sent and received by Alice and Bob each consist

of a single bit. The judge sends each player a uniformly

random bit a, b; they each reply with a single bit x, y. The

players’ goal is to arrange that if a = b = 1 then x and y
are different, and otherwise x and y are equal. Formally, we

have A = B = X = Y = {0, 1}, μ = U(A× B) the uniform

distribution and D(a, b, x, y) = 1ab=x⊕y .

It is fairly easy to see that if Alice and Bob are restricted

to classical strategies then they cannot do better than just both

always returning 0 (say). Since a = b = 1 occurs only with

probability 1/4, this means that they win with probability 3/4.

On the other hand, as we see in Proposition 9, if Alice and

Bob are given access to entangled strategies then they can win

with probability cos2(π/8) ≈ 0.85 > 0.75.

Proposition 9. We have

val∗(GCHSH ) ≥ cos2(π/8) ≈ 0.85 > val(GCHSH ) = 3/4.

Proof. It is easy to check that the optimal classical strategy is

for Alice and Bob to always send 0, which has win probability

3/4. We exhibit an entangled strategy with win probability

cos2(π/8). Let HA = HB = C
2 and |ψ〉 = (|0〉 ⊗ |0〉+ |1〉 ⊗

|1〉)/√2. For θ ∈ [−π, π] we will write |θ〉 = cos θ |0〉 +
sin θ |1〉, and [θ] = |θ〉 〈θ|. Let A0

0 = [0], A0
1 = [π/2], A1

0 =
[π/4], A1

1 = [3π/4], B0
0 = [π/8], B0

1 = [5π/8], B1
0 = [−π/8]

and B1
1 = [3π/8]. One can check that this strategy has win

probability cos2(π/8).

This game (implemented with Alice and Bob sufficiently

separated as to preclude communication between them) has

been used to show experimentally that despite Einstein’s

qualms the behaviour of the universe is in fact inherently non-

local, since the players can obtain a winning strategy higher

than that attainable in any purely local theory.

C. Quantum advantage

We now show, using a channel derived from the CHSH

game, that it is possible for entanglement to increase channel

capacity. Essentially we define a channel which plays the

CHSH game with Alice and Bob, and if they win rewards them

by transmitting a single bit of information. Since entanglement

increases the probability with which they can win the game,

it increases the capacity of the channel.

Concretely, define CCHSH to be a two-round interactive

channel with A = {0, 1} × {0, 1} and B = X = Y = {0, 1}.
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Define f1(a, b) = U(X × Y) (that is, Alice and Bob’s first

round inputs are ignored), and

f2((a1, b1, x, y), ((a2,a
′
2), b2))

=

{
(0, a′2) if a2 ⊕ b2 = xy

(0, U({0, 1})) otherwise.

Theorem 10. Let V be a vulnerability measure. We have

L∗
V
(CCHSH ) ≥ V(Ber((1 + cos2(π/8))/2)− V(Ber(1/2))

> LV(CCHSH ) = V(Ber(7/8))− V(Ber(1/2)).

Proof. For the lower bound on L∗
V
(CCHSH ), let HA = HB =

C
2 and |ψ〉 = (|0〉⊗ |0〉+ |1〉⊗ |1〉)/√2. Let K be uniformly

distributed on {0, 1}. Let Ak,() = B() = {I, 0, . . .}. Let

A
k,(a1,x)
(a,k) = Ax

a and B
(b1,y)
b = By

b from the proof of

Proposition 9, and A
k,(a1,x)
(a,1−k) = 0. Now since a2⊕b2 = xy with

probability cos2(π/8) we have that y2 = k with probability

cos2(π/8) + (1− cos2(π/8))/2 = (1+ cos2(π/8))/2. Condi-

tional on observing y2, Bob’s posterior probability that k = y2
is ((1 + cos2(π/8))/2) · (1/2)/(1/2) by Bayes’ theorem (see

the formula immediately below Definition 3), so the posterior

vulnerability is V(Ber((1 + cos2(π/8))/2)), as required.

For the upper bound on LV(CCHSH ), we have that without

loss of generality Alice and Bob employ deterministic strate-

gies, and so it is a finite check to establish that their optimal

strategy is a2 = b2 = 0 and a′2 = k with K ∼ U({0, 1}),
giving leakage V(Ber(7/8))− V(Ber(1/2)) as required. The

strict inequality follows from the second healthiness condition

on V.

IV. PURELY QUANTUM CHANNELS

In this section, we will show that it is not possible for

entanglement to increase the capacity of a channel with

zero classical capacity. In fact we do this by showing the

slightly stronger result that a zero-classical-capacity channel

has zero capacity even if Alice and Bob are allowed strategies

involving any ‘non-signalling’ correlations—that is, such that

Bob’s choice at a particular stage does not in itself convey

information for him, and similarly for Alice (recall that all

correlations resulting from entanglement are non-signalling;

but not all non-signaling correlations can be produced using

entanglement). In mathematical terms this corresponds to

saying that the marginal distribution on Bob’s next action

(respectively Alice’s) is independent of the history of Alice’s

(respectively Bob’s) part of the interaction.

Definition 11. Let C be an n-IC, and K a random variable. A
generalised strategy s for C is a tuple (g1, . . . , gn) of functions

gi : K × (A× B × X × Y)i−1 → D(A× B).
We say s is non-signalling if

(i) for every k, k′ ∈ K and t, t′ ∈ (A× B × X × Y)n with
πB(t) = πB(t

′), we have ∀b ∈ B∑
a∈A

gi(k, ti)(a, b) =
∑
a∈A

gi(k
′, t′i)(a, b)

for every i, and
(ii) for every k ∈ K and t, t′ ∈ (A × B × X × Y)n with

πA(t) = πA(t
′), we have ∀a ∈ A∑

b∈B
gi(k, ti)(a, b) =

∑
b∈B

gi(k, t
′
i)(a, b)

for every i.

For a vulnerability measure V we define V-leakage under

strategy s as before, and the supremum of such leakage under

all non-signalling strategies as the non-signalling V-capacity,

which we denote Lns
V
(C).

Every quantum joint strategy is a non-signalling strategy,

with

gi(k, ti)(a, b) = 〈ψ|(Ak,πA(ti−1)
a Ak

ti−1
)⊗ (B

πB(ti−1)
b Bti−1

)|ψ〉 .
Hence for any channel C we have

Lns
V
(C) ≥ L∗

V
(C) ≥ LV(C). (1)

Note that this inequality can be strict: for example, it is easy

to show that non-signalling correlations allow Alice and Bob to

win the CHSH game with probability 1, and so (as we will see

in Theorem 17 in Section V below) we have Lns
V
(CCHSH ) ≥

V(Ber(1))− V(Ber(1/2)) > L∗
V
(CCHSH ).

The reason for considering this broader class of strategies

is that they can be analysed in an abstract linear-algebraic

manner. Define the set DA = [(A × X )<n → A], the set of

functions (A×X )<n → A, and similarly DB = [(B×Y)<n →
B]. A channel gives a map

c : DA ×DB → D(B × Y)n,
where c(f, g) is the probability distribution on Bob’s traces if

Alice behaves according to f and Bob behaves according to

g.

To accommodate probabilistic behaviour by Alice and Bob,

we extend the function c by linearity to a linear map

C : RDA ⊗R RDB → R(B × Y)n,
where RX is the free real vector space over the set X .

Note that C is ‘trace-preserving’, where the trace of a vector

v is the trace of the linear map u �→ 〈u, v〉v, or in more

concrete terms tr(
∑

i ciei) =
∑

i ci, where the ei are the

canonical basis vectors.

Observe that RDA is canonically isomorphic to [(A ×
X )<n → RA], and similarly RDB to [(B × Y)<n → RB],
which extend to a canonical isomorphism between RDA ⊗R

RDB and [(A × B × X × Y)<n → R(A × B)]. By currying

Definition 11 and observing that D(A × B) ⊂ R(A × B) we

see that a generalised strategy corresponds to a map

s : K → RDA ⊗R RDB.
The payoff to all this is that we get a clean characterisation

of the property that the marginal distribution on Bob’s strate-

gies cannot depend on the value of the secret, which turns out

to suffice for the theorem.
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Lemma 12. Let s be a non-signalling generalised strategy.
Then we have that trA(s(k)) is constant for all k, where trA
is the ‘partial trace’ function

trA : RDA ⊗R RDB → RDB,
the linear function generated by f ⊗ g �→ g for f ∈ DA, g ∈
DB.

Proof. Let k, k′ ∈ K. By condition (i) of Definition 11 we

have for every trace prefix ti and every b ∈ B that∑
a∈A

〈s(k)(ti), a⊗ b〉 =
∑
a∈A

〈s(k′)(ti), a⊗ b〉 (2)

(where we define (f ⊗ g)(ti) = f(πA(ti)) ⊗ g(πB(ti)) and

extend by linearity).

Now trivially we have

s(k) =
∑

f∈DA,g∈DB
〈s(k), f ⊗ g〉f ⊗ g

and so

s(k)(ti) =
∑
f,g

〈s(k), f ⊗ g〉(f ⊗ g)(ti)

=
∑
f,g

〈s(k), f ⊗ g〉f(ti)⊗ g(ti)

(dropping the πA and πB for conciseness).

Hence∑
a∈A

〈s(k)(ti), a⊗ b〉

=
∑
a

∑
f,g

〈s(k), f ⊗ g〉〈f(ti)⊗ g(ti), a⊗ b〉

=
∑
f,g

〈s(k), f ⊗ g〉〈f(ti),
∑

aa〉〈g(ti), b〉

=
∑
f,g

〈s(k), f ⊗ g〉〈g(ti), b〉, (3)

since f ∈ DA and so f(ti) ∈ A so 〈f(ti),
∑

a a〉 = 1.

Note that another characterisation of trA is

trA(ξ) =
∑
f,g

〈ξ, f ⊗ g〉g

(trivially true on the basis vectors f ′⊗g′ and hence by linearity

true in general), and hence we have

trA(s(k))(ti) =
∑
f,g

〈s(k), f ⊗ g〉g(ti).

Combining this with (3) and (2) gives that

〈trA(s(k))(ti), b〉 = 〈trA(s(k′))(ti), b〉
for all b, and hence that trA(s(k))(ti) = trA(s(k′))(ti) for all

ti and so trA(s(k)) = trA(s(k′)), as required.

Note that our ‘partial trace’ trA is indeed a classical ana-

logue of the familiar partial trace from quantum information

theory.

We are now ready to prove the main theorem of this section,

that non-signaling strategies cannot increase the capacity of a

channel with zero classical capacity.

Theorem 13. Let C be an n-IC and V a vulnerability measure.
Then

LV(C) = 0⇒ Lns
V
(C) = 0.

Proof. Let C be an n-IC with Lns
V
(C) > 0, so in particular

there exists a non-signalling strategy s : {0, 1} → RDA ⊗R

RDB with C(s(0)) 
= C(s(1)).
We claim that there must exist f, f ′ ∈ DA and g ∈ DB such

that c(f, g) 
= c(f ′, g) (equivalently C(f ⊗ g) 
= C(f ′ ⊗ g)),
and hence C has positive classical capacity.

Indeed, supposing the contrary for each g ∈ DB there exists

yg ∈ D(B × Y)n such that C(f ⊗ g) = yg for all f ∈ DA.

Write

s(0) =
∑

f∈DA,g∈DB
cf,gf ⊗ g

s(1) =
∑

f∈DA,g∈DB
c′f,gf ⊗ g.

Since s is non-signalling, by Lemma 12 for all g ∈ DB we

have ∑
f∈DA

cf,g =
∑

f∈DA
c′f,g.

But then

C(s(0)) = C
⎛
⎝∑

f,g

cf,gf ⊗ g
⎞
⎠

=
∑
g

⎛
⎝∑

f

cf,g

⎞
⎠ yg

=
∑
g

⎛
⎝∑

f

c′f,g

⎞
⎠ yg

= C(s(1)),
a contradiction.

Combining Theorem 13 with inequality (1) gives the corre-

sponding result for entangled capactiy.

Corollary 14. Let C be an n-IC and V a vulnerability
measure. Then

LV(C) = 0⇒ L∗
V
(C) = 0.

V. NON-COMPUTABILITY OF ENTANGLED CAPACITY

In this section we will show that the problem of computing

the entangled capactity of a given channel, even approximately,

is RE-complete—that is, as hard as the halting problem.

The key ingredient is Theorem 15, the recent breakthrough

result of Ji, Natarajan, Vidick, Wright and Yuen which shows

that computing the entangled value of a given non-local game

is RE-complete. This was formerly a notorious open problem,

because a proof of undecidability would resolve in the negative
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Tsirelson’s problem (asking whether the ‘commuting operator’

model—see Section VI—could produce the same correlations

as the tensor product model described in Section III-B), which

was known to be equivalent [19] to a famous open problem

in the theory of operator algebras, the ‘Connes embedding

problem’, open since 1976 [20].

Theorem 15 ( [6], Theorem 12.7). The problem of ap-
proximating val∗(G) for a given G is RE-complete. More
precisely, the problem of determining whether a given G has
val∗(G) = 1 or val∗(G) ≤ 1/2, given that one of these is the
case, is RE-complete.

In order to apply this to entangled channel capacity, we

show how to associate to any non-local game G a channel CG
such that the entangled capacity of CG and the entangled value

of G are related by an explicit formula. This shows that the

problem of computing entangled values of games is reducible

to the problem of computing entangled capacity of channels,

which shows that the latter is also RE-complete.

Informally, for a game G, we will define CG as the channel

that does the following:

1) Send messages x ∈ X and y ∈ Y to Alice and Bob

respectively, drawn according to the distribution μ
2) Receive messages a ∈ A and b ∈ B from Alice and Bob

respectively, together with a bit u ∈ {0, 1} from Alice

3) If D(x, y, a, b) = 1 send the bit u to Bob; otherwise send

Bob a uniformly random bit.

Definition 16. For a game G = (A,B,X ,Y, D, μ), define the
2-round abstract interactive channel CG to comprise the tuple
of finite sets (A× {0, 1},B,X ,Y × {0, 1}) and the functions
(f1, f2), where

f1((a, u), b)(x, (y, v)) = μ(x, y)1v=0,

and

f2(((a1, u1), b1,x1, (y1, v1)), ((a2, u2), b2)) =

(x0, (y0, u1 ⊕X(1−D(x1, y1, a2, b2)))),
where X ∼ Ber(1/2) and x0 and y0 are arbitrary fixed
elements of X and Y respectively.

The main theorem of this section is that the entangled

capacity of CG is that given by the obvious strategy of setting

u equal to the value of the secret and following an optimal

strategy for G.2

Theorem 17. Let G be a game, and V a vulnerability measure.
Then

L∗
V
(CG) = V(Ber((1 + val∗(G))/2))− V(Ber(1/2)).

Proof. We prove separately matching upper and lower bounds

for L∗
V
(CG). The lower bound is trivial: given an entangled

strategy for G achieving win probability p = val∗(G)− ε, set

K ∼ Ber(1/2) and have Alice and Bob execute the strategy

2Or rather strictly speaking the supremum of strategies corresponding to
near-optimal strategies for G.

for G, with Alice sending the value of K as her additional bit

u.

Conditional on observing the value v, the posterior proba-

bility that K = v is

p/2 + (1− p)/4
p/2 + (1− p)/2 = (1 + p)/2.

Hence the posterior vulnerability is V(Ber((1 + p)/2)),
and this strategy achieves leakage V(Ber((1 + p)/2)) −
V(Ber(1/2)), as required.

For the upper bound, let s be a strategy for CG achieving

leakage l. Let the random variable U be the bit sent by Alice,

V the bit received by Bob and W = D(x, y, a, b), the event

that they ‘win’ the game.

By considering each s(k) as a strategy for G, we have that

p = max
k

pW |K(1|k) ≤ val∗(G).

Now, we have that K → (U,W ) → V is a Markov

chain, but since the event that W = 1 may depend on K
in an uncontrolled way we do not have that K → U → V
is a Markov chain. Our strategy will be to show that the

dependence of V on K can be ‘factored through’ a random

variable U ′ so that K → U ′ → V is a Markov chain and

(U ′, V ) is a binary symmetric channel with error probability

(1− p)/2.

Indeed, for k ∈ K we must have V |K = k ∼ Ber(ρk) for

some ρk (this follows just from that fact that V |K = k is a

{0, 1}-valued random variable). In particular, we have

ρk = pV |K(1|k)
= pW |K(1|k)pU |K(1|k)

+ pW |K(0|k)
pU |K(1|k) + pU |K(0|k)

2

= pW |K(1|k)pU |K(1|k) +
pW |K(0|k)

2

∈
[
pW |K(0|k)

2
, 1− pW |K(0|k)

2

]
. (4)

Now, putting

U ′|K = k ∼ Ber

(
p+ 2ρk − 1

2p

)

and

V = U ′ ⊕ Ber

(
1− p
2

)

independently of K, we have that V |K = k ∼ Ber(ρk) for all

k, as required (since one can check that the xor of Bernoulli

random variables with parameters (p+2ρk − 1)/2p and (1−
p)/2 is a Bernoulli random variable with parameter ρk). Note

that by (4) and the fact that pW |K(0|k) = 1 − pW |K(1|k) ≥
1− p, we have that 0 ≤ (p+ 2ρk − 1)/2p ≤ 1.
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Now since K → U ′ → V forms a Markov chain and

(U ′, V ) is a binary symmetric channel with error probability

(1− p)/2, by the composition inequality for V we have that

l = IV(K;V ) ≤ sup
V ′|U ′′=V |U ′

IV(U
′′;V ′)

≤ V(Ber((1 + p)/2))− V(Ber(1/2))

≤ V(Ber((1 + val∗(G))/2))− V(Ber(1/2)),

as required.

Note that Theorem 10 is a special case of the lower bound

in Theorem 17, with G = GCHSH .

Combining Theorem 17 with Theorem 15 gives the result

that computing the entangled capacity of a given channel is

undecidable. Note that the gapped problem is clearly in RE,

because we can explicitly enumerate entangled strategies and

accept if we find one with capacity above the lower threshold.

Theorem 18. Let V be a vulnerability measure. The problem
of determining whether a given channel C has L∗

V
(C) ≥ δ+

V

or L∗
V
(C) ≤ δ−

V
, given that one of these is the case, is RE-

complete, where δ+
V
> δ−

V
are the constants

δ+
V
= V(Ber(1))− V(Ber(1/2))

δ−
V
= V(Ber(3/4)− V(Ber(1/2)).

Note, for instance, that for min-entropy vulnerability we

have δ+
V
= log2 2 = 1 and δ−

V
= log2(3/2) ≈ 0.58, and

for Shannon entropy vulnerability we have δ+
V
= H2(1/2) −

H2(1) = 1 and δ−
V
= H2(1/2)−H2(3/4) ≈ 0.19.

VI. SDP UPPER BOUNDS

In this section, we will show how upper bounds for en-

tangled capacity, under the min-entropy vulnerability measure

V = −H∞, may be obtained using semidefinite programming.

This is by analogy to a similar method [7] for non-local games.

We first introduce semidefinite programming and outline the

technique of [7], and then show how it may be adapted to

obtain bounds on entangled min-entropy channel capacity.

A. The SDP hierarchy

Semidefinite programming (SDP) [21] is a technique from

numerical optimisation. A semidefinite progamming problem

(for us; there are many equivalent formulations) is specified

by an objective matrix A and constraints given by matrices

A1, . . . , An and scalars a1, . . . , an, and consists of the fol-

lowing optimisation:

maximise A •M
subject to M � 0

Ai •M = ai ∀i,
where • is the Frobenius product M •N =

∑
ij MijNij , and

M � 0 means that M is positive semidefinite—that is, M is

Hermitian with all its eigenvalues non-negative; equivalently,

M is Hermitian and we have v∗Mv ≥ 0 for any vector v. We

say that a problem is feasible if there exists an M satisfying the

constraints (ignoring the objective). The benefit of formulating

a problem in this way is that the optimisation can be performed

(to specified precision) in polynomial time, and indeed in a

way which is usually efficient in practice. Note that it is easy to

show that within this form we may introduce additional scalar

variables together with arbitrary linear equality or inequality

constraints with the entries of M , and we will allow ourselves

to do this freely below.

The SDP hierarchy, introduced in the seminal paper [7],

uses SDP to obtain an infinite sequence of stronger and

stronger constraints on quantum behaviours, which impor-

tantly are tight in the limit: that is, if a behaviour is not

quantum then this will be detected at some finite level of

the hierarchy. The catch is that the notion of ‘quantum’ used

is not the usual one of Alice and Bob having their own

parts of the system, but rather that they share some infinite-

dimensional Hilbert space, and the only constraint is that all

of Alice’s measurements should commute with all of Bob’s.

This is called the ‘commuting operator’ model, and is clearly

a generalisation of the usual tensor product model (since if

the system takes the form HA ⊗ HB with Alice and Bob’s

measurements being only on HA and HB respectively then

clearly their measurements commute); Tsirelson’s conjecture

asserted that the two models were equivalent, but this was

refuted as a consequence of the recent result MIP∗ = RE [6].

More concretely, a behaviour means a collection of prob-

ability distributions P (x, y) ∈ D(A × B) for each (x, y) ∈
(X×Y), for some finite sets A,B,X ,Y . We want to determine

whether or not there exists some complex Hilbert spaceH (not

necessarily finite-dimensional), a state ψ ∈ H and measure-

ments {Ex
a}a∈A, {Ey

b }b∈B for each x ∈ X and y ∈ Y (for

Alice and Bob respectively) such that Ex
a and Ey

b commute

for every x, a, y, b, and such that we have

P (x, y)(a, b) = 〈ψ|Ex
aE

y
b |ψ〉 .

Suppose that such a set of measurements does exist. Then

we can consider a matrix Γ whose rows and columns are

indexed by formal products of our operators Ex
a , E

y
b , and

whose entries are given by

ΓS,T = 〈ψ|S†T |ψ〉 .
This matrix is positive semidefinite, since for any vector v =∑

S vSeS (with basis vectors eS) we have

v†Γv =
∑
S,T

v∗S 〈ψ|S†T |ψ〉 vT

= 〈ψ|(∑SvSS)
†(
∑

T vTT )|ψ〉
= ‖∑T vTT |ψ〉‖2
≥ 0.

The matrix Γ is infinite, so to formulate a finitary SDP

problem we must take a finite subset of its rows and columns:

let the matrix Γi consist of those rows and columns of Γ
corresponding to formal products of at most i operators. We

consider the problem whose constraints are that Γi � 0,

together with additional constraints on the entries of Γi aris-

ing from the commutativity, orthogonality and idempotence
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properties of the operators, and also from the desired values

of P (x, y)(a, b) = 〈ψ|Ex
aE

y
b |ψ〉. Clearly the Γi arising from

a set of measurements realising the behaviour will be a

feasible solution to this problem, but the highly non-trivial

main theorem of [7] (Theorem 8) is that the converse is also

true: if the problem is feasible for all i then a suitable set of

measurements exists. Hence in particular if the behaviour is

not quantum then we will find that the problem is infeasible

for some i.
Instead of specifying a fixed behaviour, we can also formu-

late some objective as a function of the 〈ψ|Ex
aE

y
b |ψ〉 (or rather

the corresponding entries of Γi), and then the optimal values

for increasing i will give a sequence of tighter and tighter

bounds, converging to the true optimum in the commuting

operator model. This is the main technique for bounding the

entangled value of non-local games (see Section III-B), and

this is what we will adapt below to obtain bounds on entangled

min-entropy capacity.

B. Bounds on min-entropy capacity

As discussed above, to apply SDP techniques we will need

to consider min-entropy capacity in the commuting operator

model, which is stronger than the entangled model (Definition

6) but weaker than the non-signalling model (Definition 11).

Whereas in the entangled model we specified that the Hilbert

space on which Alice and Bob made their measurements could

be separated into a part HA held by Alice and a part HB held

by Bob, we will now drop this assumption and assume only

that the measurements made by Alice commute with those

made by Bob.

Definition 19. Let C be an n-IC, and K a random variable
taking values on the set K. A commuting operator joint strategy

for C is a pure state |ψ〉 in a (possibly infinite-dimensional)
complex Hilbert space H, and sets {Ak,t} and {Bt′} such
that

(i) for every k ∈ K and every t ∈ (A×X )i with 0 ≤ i < n,
Ak,t = {Ak,t

a }a∈A is a measurement over HA,
(ii) for every t′ ∈ (B×Y)i with 0 ≤ i < n, Bt′ = {Bt′

b }b∈B
is a measurement over HB, and

(iii) for every k, t, t′, a, b we have Ak,t
a Bt′

b = Bt′
b A

k,t
a .

Denote the space of such strategies by Sco
C,K .

As usual we can define V-leakage and V-capacity Lco
V
(C).

Note that any entangled strategy is trivially a commuting

operator strategy; on the other hand a commuting operator

strategy is still non-signalling and so we have

Lns
V
(C) ≥ Lco

V
(C) ≥ L∗

V
(C) ≥ LV(C). (5)

The basic idea is that as before we consider a matrix Γ
with entries 〈ψ|S†T |ψ〉, where S and T are formal products

(of bounded length) of the operators defining our strategy. The

additional ingredient is that we are able to express the objective

of min-entropy capacity as a linear function of the entries of

Γ, or rather more precisely as a linear function of additional

scalar variables which are subject to linear constraints. This

is done using the formula for min-entropy capacity given as

Proposition 5.1 of [22].

This formula states that if we have a (non-interactive)

channel defined by a conditional probability matrix pY |X then

we have

sup
X
I−H∞(X;Y ) =

∑
y∈Y

max
x∈X

pY |X(y|x), (6)

where the supremum is over probability distributions for X ,

with Y obeying the conditional probabilities pY |X(y|x).
Fixing strategies (i.e. sets of operators) for Alice and Bob

fixes the conditional distribution πB(TφA(K),sB )|K, whose

values we will see can be expressed as linear functions of the

entries of Γ. We then have that Lco
−H∞(C) is the supremum

of I−H∞(K;πB(TφA(K),sB ) over all choices of strategies and

all distributions for K, so in particular by (6) the capacity

corresponding to a given choice of strategies is given by∑
t∈(B×Y)n

max
k

pπB(TφA(K),sB
)|K(t|k).

Note that max is not a linear (or indeed convex) relation,

and so this cannot be expressed directly in our SDP problem.

However, since K and (B × Y)n are finite sets, we can just

exhaust over ‘guessing functions’ g : (B×Y)n → K, with the

SDP for each maximising
∑
p(t|g(t)).

Let C be an n-IC, K a finite set and g : (B × Y)n → K.

Define the semidefinite programming problem Pi(C,K, g) by

the following variables:

• a matrix Γ, with entries ΓS,T for all strings S, T in

symbols Ak,t
a , Bt′

b , 0 and 1 of length at most i; ΓS,T

represents 〈ψ|S†T |ψ〉
• variables pt|k for each trace t ∈ (B × Y)n and each

k ∈ K, representing the probability of observing trace

t conditional on the secret value K = k,

and objective

maximise
∑

t∈(B×Y)n

pt|g(t).

The first constraints arises from the fact that all of the pt|k
represent probabilities, and as discussed above the matrix Γ is

positive semidefinite.

• for all t, k, 0 ≤ pt|k ≤ 1
• Γ � 0

The next constraints arise from the properties that Γ should

have if it is the matrix arising from some set of operators: for

instance we will have 〈ψ|I|ψ〉 = 1 and 〈ψ|0|ψ〉 = 0. More

generally, if strings S, T and U, V are such that (interpreting

the strings as products of operators) the orthogonality, idem-

potence and commutativity properties force S†T = U†V then

we should have ΓS,T = ΓU,V .

• Γ1,1 = 1 and Γ0,0 = 0
• ΓS,T = ΓU,V whenever S†T = U†V under the following

relations: (Ak,t
a )† = Ak,t

a = (Ak,t
a )2 and (Bt′

b )
† = Bt′

b =
(Bt′

b )
2; Ak,t

a Bt′
b = Bt′

b A
k,t
a ; Ak,t

a Ak,t
a′ = 0 for all a′ 
= a
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and Bt′
b B

t′
b′ = 0 for all b′ 
= b; and S1 = S = 1S and

S0 = 0 = 0S for all S

The final constraints express that the pt|k are indeed the

conditional probabilities according to the formula in Section

III-A. Note that these are linear in the SDP variables, since

the fi(ti)(xi, yi) are fixed constants.

• for all s ∈ (B × Y)n and k ∈ K, we have

pt|k =
∑

s:t=πB(s)

ΓAk
s ,Bs

n∏
i=1

fi(si)(xi, yi),

with Ak
t and Bt the products as defined in Section III-A.

Write opt(Pi(C,K, g)) for the optimal value of Pi(C,K, g),
and let opti(C,K) = maxg opt(Pi(C,K, g). Then we have

that this converges to the commuting operator min-entropy

capacity of C.

Theorem 20. Let C be an n-IC. Then

Lco
−H∞(C) = lim

i→∞
log opti(C, (B × Y)n).

Proof. First observe that without loss of generality we may

take K = (B × Y)n: indeed, if |K| > |(B × Y)n| then

there will elements k ∈ K which are never Bob’s optimal

guess after the interaction, and assigning probability to these

elements in the prior clearly cannot increase min-entropy

leakage. The upper bound on Lco
−H∞(C) is then immediate,

since a commuting operator strategy for C gives a feasible

solution for Pi(C, (B × Y)n, g) for all i as described above

(with g(t) = argmaxk pπB(TφA(K),sB
)|K(t|k)).

The lower bound is more delicate. First note that there are

only finitely many possible values for g and so by passing to a

subsequence we may assume that g is fixed. We then proceed

essentially by the proof of Theorem 8 of [7]. This shows that

if we have a sequence of feasible solutions (say with optimal

values vi), whose Γ matrices we denote Γi, then (viewing the

Γi as living in the space of infinite matrices whose entries

are indexed by all strings S and T , extending Γi with zeros

as necessary), there is a pointwise convergent subsequence

whose limit is (say) the infinite matrix Γ∞, and moreover

there exists an (infinite-dimensional) Hilbert space H, state

|ψ〉 ∈ H and collection of operators Ak,t
a and Bt′

b such that

Γ∞S,T = 〈ψ|S†T |ψ〉 for all S, T .

Now all of the pt|k are probabilities and so are contained in

the compact set [0, 1]. Hence passing to a further subsequence

we may assume that all the pt|k converge, and by continuity of

the constraints we have that their limit, say p∞t|k is a valid set of

conditional probabilites for the strategy corresponding to the

operators obtained in the previous paragraph, with advantage∑
t p
∞
t|g(t) = limi→∞ vi, as required.

Note that for j > i we have that any solution for

opt(Pj(C,K, g)) restricts to a solution for opt(Pi(C,K, g))
with the same value of the objective, and so the

log opti(C, (B × Y)n) are a descending sequence of upper

bounds for Lco
−H∞(C).

By (5), the log opti(C, (B×Y)n) also give upper bounds for

L∗−H∞(C). By Theorem 18 there exist channels C such that

Lco
−H∞(C) > L∗−H∞(C) (since otherwise we could simulta-

neously enumerate upper bounds from above and entangled

strategies from below) and so the upper bounds do not

converge to the true value of L∗−H∞(C), but since the question

of whether such channels exist is equivalent to the Connes

Embedding Problem which was open for more than 40 years,

it seems reasonable to expect that this will not arise in practice.

VII. CONCLUSIONS

A. Interactive channels and non-local games

In this work we have shown that there is a close connection

between the communication capacity of interactive channels

and the value of non-local games. In particular in Theorem 17

we have shown that for every game there exists a channel such

that the entangled capacity of the channel corresponds to the

entangled value of the game (and the same argument would

give corresponding results for other classes such as commuting

operator or non-signalling strategies).

What about going the other way? For the particular case of

min-entropy capacity, it does seem that one could transform a

channel into a (multi-round) game, essentially by having Bob

guess the value of the secret at the end (modulo the technical

issue of the prior probability distribution over secrets not being

specified a priori); one could do the same for other g-leakage

measures, using randomness outside the control of Alice and

Bob to represent rewards between 0 and 1. On the other hand

it is difficult to see how to do this for general vulnerability

measures, including in particular Shannon entropy—how can

one express this as simple acceptance or rejection of a tran-

script?

It thus seems that interactive channel capacity is in some

sense a generalisation of non-local games, where non-local

games correspond specifically to capacity with respect to g-

leakage measures. Since non-local games have given rise to

such a beautiful and useful theory, it seems reasonable to

wonder whether a similarly rich theory may be available for

other leakage measures. A promising starting point would

seem to be the Shannon entropy measure, which is on the

one hand a natural measure but on the other not (so far as we

can tell) encompassed by non-local games.

B. Quantum QIF

The formulation of quantitative measures of information

flow was the beginning, not the end, of the subject of QIF.

Similarly, although this paper formulates a definition of en-

tangled information flow and addresses some fundamental

theoretical questions, it certainly does not claim to answer

all the questions which are necessary to assess to what extent

information leakage assisted by entanglement may constitute a

threat in practice. In particular, the systems we have considered

have mainly been rather artificial, constructed from non-local

games specifically to have the properties we want. In the

future it will be necessary to analyse more realistic systems to

determine whether they may be affected by entanglement. This

is likely to require handling less abstracted models than that

described in Section II-A, and finding pragmatic algorithms
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which are more efficient in practical cases than that described

in Section VI.

Finally, we do not by any means intend to suggest that ap-

proaches in the style of [8], in which the channels themselves

may be quantum, are anything other than equally important

as future directions for QIF in the quantum realm. Quantum

networks may well become extremely relevant in the near

or medium-term future, and indeed quantum key distribution

systems already exist. We hope that in the future it may

be possible to extend the approach of this paper to that

setting, perhaps by extending Fig 1 to allow quantum states

as messages.
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