
Collusion-Preserving Computation
without a Mediator∗

Michele Ciampi

University of Edinburgh

michele.ciampi@ed.ac.uk

Yun Lu

University of Edinburgh

Y.Lu-59@sms.ed.ac.uk

Vassilis Zikas

Purdue University

vzikas@cs.purdue.edu

Abstract—Collusion-free (CF) and collusion-preserving (CP)
protocols enrich the standard security offered by multi-party
computation (MPC), to tackle settings where subliminal com-
munication is undesirable. However, all existing solutions make
arguably unrealistic assumptions on setups, such as physical
presence of the parties, access to physical envelopes, or extreme
isolation, where the only means of communication is a star-
topology network. The above state of affairs remained a limitation
of such protocols, which was even reinforced by impossibility
results. Thus, for years, it has been unclear if and how the
above setup assumptions could be relaxed towards more realistic
scenarios. Motivated also by the increasing interest in using
hardware tokens for cryptographic applications, in this work
we provide the first solution to collusion preserving computation
which uses weaker and more common assumptions than the state
of the art, i.e., an authenticated broadcast functionality and access
to honestly generated trusted hardware tokens. We prove that
our protocol is collusion-preserving (in short, CP) secure as long
as no parties abort. In the case of an aborting adversary, our
protocol still achieves standard (G)UC security with identifiable
(and unanimous) abort.

Leveraging the above identifiability property, we augment our
protocol with a penalization scheme which ensures that it is
not profitable to abort, thereby obtaining CP security against
incentive-driven attackers. To define (and prove) this latter result,
we combine the Rational Protocol Design (RPD) methodology by
Garay et al. [FOCS 2013] with the CP framework of Alwen
et al. [CRYPTO 2012] to derive a definition of security in the
presence of incentive-driven local adversaries which can be of
independent interest. Similar to existing CP/CF solutions, our
protocol preserves, as a fallback, security against monolithic
adversaries, even when the setup (i.e., the hardware tokens) is
compromised or corrupted. In addition, our fallback solution
achieves identifiable and unanimous abort, which we prove are
impossible in previous CP solutions.

I. INTRODUCTION

Subliminal communication channels in protocols allow par-

ties to embed extra information into protocol messages, often

without being detected. The existence of subliminal channels

is problematic in several applications of secure computation.

In large-scale distributed systems, for instance, subliminal

channels could allow two parties to coordinate their actions

(i.e., collude) even if they may not have been aware of each

other in advance. Such collusions have severe consequences

in game theoretic applications, where stability, e.g., Nash

equilibrium, is defined in terms of isolated strategies. An

∗A full version of this paper can be found on IACR ePrint Archive [1].
MC: Research supported in part by H2020 project PRIVILEDGE #780477.
YL: Research supported in part by Sunday Group. VZ: Research supported
in part by Sunday Group and by the NSF grant no. 2055599.

example is the prototypical application of distributed cryptog-

raphy, namely, playing poker in a distributed manner [2]. An

MPC protocol which allows collusions changes the rule of the

game —think of playing poker against colluding opponents.

In the quest to combine game theory and cryptography, a

number of works [3]–[7] put forth new security notions, and

in particular the notion of collusion-freeness (CF). Analogous

to simulation-based security, where a protocol is “secure” if

the view of the adversary (controlling corrupt parties) can

be emulated by a simulator, a protocol is collusion-free,

if the view of individual corrupt parties can be emulated

by individual non-colluding simulators. However, collusion

freeness is impossible when parties are connected by pairwise

communication channels—this is straightforward to see since

such channels can directly be used for coordination.
The above led to the proposal of alternative models that en-

able collusion freeness. The common feature of these models

is that, unlike traditional cryptographic definition that assume

a worst-case monolithic adversary, these alternative models

consider isolated/local adversaries.1 The two most typical

models are assuming players are physically collocated, have

access to a semi-trusted “ballot box,” and can communicate

publicly via (physical) envelopes [3], [4], or assuming that

parties are connected to a semi-trusted party (via standard

communication channels) called the mediator [6], [7] in a star

network topology. Roughly, in each round, the mediator per-

forms a two-party computation with each party individually,

in order to prevent subliminal communication between parties.
Unfortunately, collusion-freeness, as a standalone definition,

is not enough to limit collusion when parties can be engaged

in multiple protocols. As argued by Alwen et al. [8], unlike

what one might expect, a CF protocol (secure according to

the definition of [6], [7]) does not necessarily preserve its

“collusion-freeness” when composed with other protocols.

Alwen et al. gives the following simple counter-example.

Suppose a CF protocol is augmented with the following: it

allows two parties A and B to collude only if party B can

provide the correct (randomly-generated at run-time) λ-bit

password, but the password is given only to party A. The

protocol remains CF, since B can only guess the password with

negligible probability. However, if through executing another

protocol party A can communicate λ-bits to B, then A can send

1Notably local adversaries are a generalization of the monolithic-adversary
model; indeed, the latter can be captured by giving local adversaries the ability
to communicate through the (assumed) network (cf. [5], [7]).

211

2022 IEEE 35th Computer Security Foundations Symposium (CSF)

© 2022, Michele Ciampi. Under license to IEEE.
DOI 10.1109/CSF54842.2022.00013

20
22

 IE
EE

 3
5t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

78
-1

-6
65

4-
84

17
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

48
42

.2
02

2.
99

19
67

8

the password and collusion-freeness is lost. This limitation

motivated [8] to introduce the notion of collusion-preserving

computation (CP). Intuitively, this notion can be seen as a

universally composable (UC) [9] extension of CF, designed to

explicitly address the above issue. (An alternative model cap-

turing collusion-preserving universally composable computa-

tion via local adversaries was concurrently and independently

proposed by Canetti and Vald [5].) As a concrete example,

suppose a protocol Π is CP, and suppose while executing Π
,

a corrupt party pi uses an external communication channel to

send another party pj a message m (e.g. a secret value only

pi knows). CP ensures that knowing m does not allow pj to

gain even more information in Π, such as pi’s input or output,

other than information already implied by m. Importantly,

CP supports composition and it is modeled with respect to

arbitrary communication resources.

Continuing the line of works in the mediated model, [8] con-

structed a collusion-preserving (CP) protocol, which achieves

the following fallback guarantee: Assuming a global aug-

mented common reference string (ACRS) functionality [10],

when parties are arranged in a star topology with the mediator

in the center, there exists a protocol which (1) CP emulates

any given functionality if the mediator is honest, and (2)

remains GUC secure [10]—i.e., secure with abort according

to the monolithic-adversary definition—even if the mediator

gets corrupted.

On the downside, the CP protocol of [8] in the mediated

model presents several limitations. First, it is straightforward to

prove that desirable properties such as fairness and identifiable

abort are impossible in the mediated model when the mediator

might get corrupted (we refer to the full version [1] for more

details). This can lead to undesirable situations—such as a

poker tournament where a player can always abort the game

when he realizes he is losing, without being identified as a

cheater. Second, the protocol (compiler) from [8] takes explicit

steps to ensure that an abort does not allow parties to correlate

their strategies, by making sure that an abort is observable only

in a final round that is deterministically fixed at the beginning

of the protocol. However, this means that their solution cannot

be used to compute reactive functionalities, since a party can

signal by means of aborting in an intermediate output (in the

full version we provide a description of a concrete collusion

strategy which this allows). Lastly, the protocol is not round-

efficient. Having a deterministic upper bound on the number

of rounds means that, if the goal is to unanimously decide on

whether or not an abort occurred even in the fallback setting

where the mediator is compromised, the protocol always needs

a linear number of rounds. This is true because a generic

compiler for such a functionality would imply deterministic

broadcast which needs linearly many rounds [11]. In fact,

in the [8] compiler, each round is emulated by a round-

robin sequential interaction of each party with the mediator,

yielding an additional linear multiplicative blowup in the round

complexity.

In this work we circumvent several of the limitations of [8]

and extend its applicability towards a framework for collusion-

preserving protocols over public networks. To our knowledge,

this is the first work proposing a solution that breaks the

deadlock of collusion-free/preserving computation, which was

believed to only apply to the mediated model or require

physical presence of parties in the same room. Concretely,

our solution replaces the mediator by the strictly weaker

(as we argue later) assumption of an authenticated broadcast

channel and honestly generated hardware tokens. As we will

show later (Sec. III): (1) Capturing such hardware tokens

in a collusion preserving framework is non-trivial (2) Our

protocols achieve CP when the adversary does not abort (and

in fact CP is impossible with the broadcast channel when

the adversary can abort). To disincentivize aborts, we show

how to leverage the publicly identifiable abort (Section V-1)

property of our protocol to concretely penalize (e.g., via the

blockchain) aborting parties. The fact that our protocol is

CP means that any external communication introduced by

the blockchain will not lead to even more correlation in our

protocol. To capture incentive-driven attackers in a composable

manner, we combine and extend the CP framework with

the Rational Protocol Design (RPD) methodology [12]. We

believe that both our treatment of hardware tokens in CP,

and our incentives model which we term RPD-CP, can be of

independent interest.
As fallback in case the hardware tokens may be compro-

mised, our proposed protocol protects the inputs of honest

parties and ensures identifiable (unanimous) 2 abort while

guaranteeing termination (cf. [13]). This is the analogue—

in the token-hybrid setting with a broadcast channel—of the

fallback property of [6]–[8] which preserves privacy against

a corrupted mediator at the center of a a star-network. In

fact, our fallback is stronger than what the mediated-model

permits [8]; indeed, the star-network topology makes it im-

possible to obtain identifiable (unanimous) abort against a

corrupted mediator. The reason is that since the mediator

controls the communication, it is impossible to correctly detect

if a malicious party did not sent a message, or if it is the

malicious mediator is pretending that an honest party has

stopped replying (we refer to the full version [1] for the formal

arguments).
1) Overview of our contributions: We now present our

contributions in more detail. The goals of our work are to

construct CP protocols that (1) replace the mediator-centered

star-topology network by weaker resources which are closer

to modern communication networks, (2) achieve stronger

fallback security properties and (3) ensure CP computation of

even reactive functionalities by proving that incentive-driven

attackers will not abort, in a security model that incurs the

negative cost of abort to the adversary. These goals bring

the theory of CP closer to capturing real world applications

such as a decentralized-dealer poker game. For reference, a

comparison of our results to [4] and [6], [8] can be found in Ta-

ble I. In more detail, our protocol emulates CP functionalities,

2Recall that security with unanimous abort guarantees that either all or none
of the honest parties receive the output while identifiable abort ensures any
party causing an abort can be identified (and excluded from future executions).

212

including those with private actions, when no abort occurs. We

disincentivize aborts via a concrete penalization scheme and in

addition, we achieve fallback security maintaining identifiable

abort (and unanimous abort). That is, even when hardware

tokens are compromised and the parties are allowed to abort

we still retain standard GUC security. The abort column in the

table specifies the number of bits of subliminal communication

possible when an abort happens.

As a first step towards our goals, we show how to construct

a collusion-preserving protocol ΠHT allowing n parties to CP

emulate any given CP-well-formed functionality—intuitively

these are CP versions of well-formed functionalities [14]

which, when everyone gets corrupted, give up on collusion

preservation (c.f. [1]). Our protocol uses as resources (1)

honestly generated stateful trusted hardware tokens (HTs)

and (2) an authenticated broadcast channel available during

protocol execution3. Our protocol, which can CP-emulate any

functionality as long as no abort occurs, improves upon the

CF-protocol of [4], which is also based on broadcast but is

not CP and does not emulate games with private actions (i.e.

actions that are not publicly observable). We note that our

protocol, analogously to that of [4], remains (G)UC secure

with identifiable abort (though not collusion free) in case

of abort. We remark that ΠHT only requires two (broadcast)

communication rounds unlike that of [4] or [8]. Furthermore,

unlike the mediator from [8], tokens do not need to know

in advance what computation they will be used for, and only

need to be initialized with correlated randomness independent

of the protocol, discussed in the overview of our techniques.

The protocol ΠHT only offers security guarantees when

the tokens are uncompromised. This is arguably a strong

assumption since in reality the adversary may attempt to break

the security of the tokens. For this reason we present a protocol

compiler ΠHT-FBS which on input a (standard (G)UC secure)

protocol with unanimous or identifiable abort, outputs a proto-

col with the same CP guarantees as ΠHT and, additionally, pre-

serves (G)UC security properties (i.e., security with unanimous
or identifiable abort, respectively) of the compiled protocol,

even when hardware tokens are compromised. Specifically,

even if the memory/code of corrupt parties’ tokens can be

read/reprogrammed and the secret keys of honest parties’

tokens are leaked, the protocol is still (G)UC secure. This

improves upon the fallback security of [8] where, due to model

idiosyncrasies, these properties are impossible to achieve when

the mediator is corrupted, even with honest majority (also in

this case the reason is that the mediator has full control of

the network, for more detail we refer to the full version). We

note that ΠHT-FBS, even with the extra fallback guarantee, has

round complexity that is still lower than the mediated-model

solution of [8].

We believe that the above corruption model for the fallback

solution is quite realistic, and captures most of the attacks that

have been performed on hardware tokens. For this reason, our

3The broadcast channel used in this work guarantees that messages are
always delivered to the parties [15], [16].

Channel,
assumption

Id-abort
(fallback)

U-abort
(fallback)

Private
actions Abort

Lepinski et al., STOC 2005 Broadcast+physical presence of parties,
physical envelopes

� � � poly(λ) bits

Alwen et al., Crypto 2009
Alwen et al., Crypto 2012

Star topology,
honest mediator

� � �
Ω(log λ) bits for

reactive functionalities

This work Authenticated Broadcast,
hardware tokens

� � � Disincentivized

TABLE I
COMPARISON WITH EXISTING APPROACHES. ID-ABORT: IDENTIFIABLE

ABORT, U-ABORT: UNANIMOUS ABORT.

main theorems are proven in this corruption model. However,

for sake of completeness, we will also briefly sketch how

to construct a protocol that preserves (G)UC security even

in the case where also the tokens of the honest parties are

fully compromised (i.e., the memory/code of any token can

be read/reprogrammed). However, this protocol will require a

higher communication complexity, and we lose the property

of identifiable abort.

As an additional contribution, we combine the Rational

Protocol Design (RPD) [12], [17] framework with CP and

define a new model termed RPD-CP. Within this model we

define a CP-security notion collusion preserving attack payoff
(in short, CPAP), which intuitively corresponds to security

against any combination of incentive-driven local adversaries.

We identify a natural class of utilities under which non-

aborting strategies are strictly dominant in ΠHT and ΠHT-FBS.

That is, these protocols are collusion-preserving according

to CPAP against adversaries bounded by this utility. We

believe that RPD-CP can be used to derive formal composable

versions of security statements with fair-compensation [18]–

[22] which we think is an interesting future direction. Finally

we propose a concrete penalization mechanism, which may be

implemented via e.g., the blockchain, that induces utilities in

the above class. Combining this with the notion of CPAP, we

can prove that any adversary who maximizes its revenue (or at

least minimizes loss) will not abort, making our protocol CP

secure against such adversaries. We note in passing that the

ability of the CP security definition to make formal statements

in the presence of a global blockchain demonstrates the power

of the CP definition. Indeed, such a CP statement concretely

treats the protocol-independent communication as an external

channel; what CP ensures then is that the protocol does not

increase the information communicated through this external

medium. Thus, informally, if one can devise an equilibrium in

an ideal poker game (with a trusted dealer), where the players

can also access the blockchain, then by adapting the results

from [8] we can prove that this equilibrium would be preserved

when the poker dealer is replaced by our CP protocol.

2) Organization of the paper.: Sec. III: Overview of our

constructions and main techniques. Sec. IV: Preliminaries.

Sec. V: Protocol ΠHT for CP functionalities assuming tokens,

broadcast and no abort. Sec. V-A: Protocol ΠHT-FBS with

fallback GUC security against compromised tokens. Sec. VI:

New framework RPD-CP for defining CPAP—security of

CP protocols against rational attackers. Sec. VI-B: Proof

our protocols ΠHT and ΠHT-FBS are CPAP secure. Sec. VI-C:

Penalization scheme to make the utilities defined in Sec. VI

213

concrete.

II. RELATED WORKS AND DISCUSSIONS

A. Collusion Freeness and Preservation

We extend the comparison of our work with existing results

on collusion freeness (CF) and preservation (CP). The work

of Lepinski et al. [4] achieves collusion-freeness for parties

that communicate with a broadcast channel, assuming access

to a physical primitive called “envelopes”. They motivate the

use of envelopes by proving that with only (authenticated)

broadcast channels, CF is impossible, even when the adversary

does not cause the computation to abort. The idea is that

corrupted parties can share the same random tape before the

start of protocol execution. Since all messages are sent through

broadcast, all corrupted parties will have the same view and

thus emulate a monolithic adversary. In our work, parties also

communicate via a broadcast channel, but we circumvent this

impossibility since the random tape of a corrupted party is not

decided by the party himself, but by a hardware token (whereas

Lepinski et al. generate randomness through coin-tossing and

hide the result in envelopes).

Using stateful hardware tokens, we can also circumvent

another impossibility result of Lepinski et al., that CF pro-

tocols with private actions/inputs are not possible even with

envelopes. The impossibility comes from the corrupted parties

being able to see (different) protocol messages that different

private actions generate, and choosing his private action such

that the resulting messages convey subliminal information

about the private action itself. However, stateful hardware

tokens can be programmed to prevent users from changing his

input. That is, ensure parties cannot see messages generated

by different inputs. Thus, our protocol remains CP even

with private actions. As described in the introduction, in the

mediated model, [6], [7] achieve CF and [8] achieves CP.

In [5] the authors consider the notion of UC security with local

adversaries. This notion is more general than the notion of CP

as it captures more security flavors and more sophisticated

corruption models. In particular, the notion introduced in [5]

capture the scenario where there are independent of clusters

of corrupted party, whereas [8] assume that each adversary

works in isolation.

1) Authenticated Broadcast Assumption: We compare au-

thenticated broadcast with assumptions from previous works.

Existing works on CF and CP either require parties to be

present in person [4]—to pass around physical envelopes, or

rely on restricted star-topology communication networks [6],

[8]. These assumptions are used far less than the (authenti-

cated) broadcast channel common in MPC literature, and have

been criticized as overly restrictive and/or unrealistic.

In particular, the physical presence assumption of [4] makes

the resulting protocols inapplicable to the standard crypto-

graphic setting, where the protocol is played by interactive

Turing machines (ITMs). Similarly, the mediated model [6],

[8] requires both complete isolation of the parties and a special

star-network topology where the mediator (at the center) is re-

quired to both preserve the privacy of the communication and

generate (pseudo)randomness—these requirement are proven

to be necessary for CP in the mediated model [8]. This is

in contrast to the less demanding assumption of authenticated

broadcast combined with honestly generated hardware tokens,

which not only we believe is more natural—authenticated

broadcast is a standard assumption in the cryptographic pro-

tocols literature and trusted hardware is a far less exotic

assumption than it used to be, but is also formally weaker

as discussed in Section II-C.

As in previous works, if our communication resource (i.e.

broadcast) is malicious (e.g., allows undetectable communi-

cation between corrupt parties) then our protocols are no

longer CP. (In fact it is easy to verify that such undetectable

communication would make CP infeasible.) Nonetheless, anal-

ogous to “fallback” security in the CP setting with a corrupted

mediator [8], our protocol still preserves its standard (G)UC

security guarantees under a malicious broadcast resource (see

Section V-A2).

B. Playing Games over the Blockchain

The question of playing games such as poker over the

Internet has recently attracted considerable attention, fueled

by the new capabilities introduced by smart-contract-enabled

(cryptocurrency) blockchains, such as Ethereum. In a nutshell,

this technology makes it possible to ensure that parties cannot

avoid paying their bid amount when they lose without the need

of a trusted escrow—by having them commit their bids on the

blockchain, in a smart contract that releases them to anyone

that presents evidence of winning. Furthermore, the same

technology enables a mechanism that punishes cheating—or

early aborting—by making parties commit collateral that they

can only claim if evidence is presented that they completed

their protocol. This method of penalization has been used by,

e.g., [18]–[22], which gave rise to a number of proposals

for decentralized poker protocols [23], [24]. However, all

these works use standard multi-party computation, thus even

players who do not know each other can collude via protocol

messages.

C. Stateful Tamper-Resilient Hardware Tokens

Previous works (e.g. [25]–[32]) have based (UC-)secure

protocols on stateful, tamper-resilient hardware. In addition

to theory, trusted hardware such as Intel’s SGX ([33]–[35])

and Bitcoin Hardware Wallets, have also been deployed in

real life. The protocol of Lepinski et al. [4] is based on

physical envelopes, a kind of trusted hardware as well. They

constructed CF (though not CP) protocols for games with

public actions, where parties pass around such envelopes.

We extend the application of hardware tokens by presenting

the first (in our knowledge) collusion-preserving protocol

based on stateful trusted hardware tokens. We emphasize

that while improving upon the limitations and impossibilities

of previous works, we do not remove the need for trust

completely. However, instead of relying on a trusted mediator

to achieve CP, we replace it with authenticated broadcast

(discussed in Section II-A1) and trusted hardware tokens.

214

Intuitively, these assumptions are weaker than the mediator,

since an honest mediator in a star topology can act as a

broadcast channel and as a set of hardware tokens. In fact

in the full version [1] we prove a formal separation of the

assumption of a trusted mediator from the one used here (i.e.,

the combination of broadcast and honestly generated hardware

tokens) demonstrating that our assumption is indeed strictly

weaker than that of a trusted mediator ; in particular we show

that a trusted mediator allows for CP even in the presence of

an aborting adversary, which is impossible in our setting.

With trusted tokens, we improve upon the solution of [4] by

achieving composition, games with private actions, and only

requiring parties to broadcast messages instead of physically

exchanging tokens. We also circumvent the impossibilities

of previous works in collusion-preservation, as discussed in

the introduction. To improve the practicality of our solutions,

in Section V-A we propose protocols that provide fallback

security in case of compromised tokens (we discuss two levels

of severity of compromise), as well as address practical issues

in implementation (Section V-2).

Below, we detail the properties of our token assumption. We

follow the approach of [27] to model hardware tokens as ideal

functionalities. Our tokens require the following properties:

• Stateful: The token has internal memory which may be

read/updated.

• Trusted and Tamper-resilient: The token manufacturer

is trusted, and no one except the token itself can read

or write its contents. In Section V-A we also sketch

solutions (with some trade-offs) which preserve GUC

security given untrusted or non-tamper-resilient tokens.

• Isolated from its creator: Only the token owner can query

and get the outputs generated by the token. In particular,

we require that no other parties may communicate with

the token.

The formalism of isolated, tamper-resilient and stateful

hardware tokens was introduced by [26]. There, the creation

process of a token is described by a “wrapper” functionality

which allows parties to store and run (possibly several) ITMs

representing the code and memory of tokens. The wrapper

functionality models malicious token creators in the protocol.

However, to achieve CP, we assume that all the parties hold

honestly-generated tokens that share some common private

information. Thus, following [27], we model each token

as a ideal functionality without using the wrapper. Proving

collusion-preservation based on hardware tokens presents sev-

eral unique technical challenges. We detail these issues and

their solutions in Section III.

III. OVERVIEW OF OUR TECHNIQUES

Let P be a set of parties who wish to compute a function

f in a collusion-preserving way. We assume that each party

pi ∈ P has access to a hardware token (HT) HTi. All HT’s

contain as secret information pseudo-random function’s (PRF)

keys k0, k1 and a master secret key msk (a secret key for a

strong signature scheme). The public interface of the hardware

tokens is represented by the master public key mpk for msk.

We refer to the party pn ∈ P as the leader. Moreover, each

execution of the protocol is uniquely identified by a session

id sid ∈ N.
a) Collusion preserving protocol via HT and non-

aborting adversary with broadcast: Roughly, our first protocol

ΠHT works as follows: Each party pi ∈ P − {pn} sends his

input, encrypted by his token HTi, to a designated leader party.

Upon receipt, the leader gives these messages, along with his

own input, to his own token. The token then computes the

output, which the leader forwards to the other parties.

In more detail, each token HTi uses R0 ← PRF(k0, sid)
as randomness to generate an encryption key sk. In addition,

it uses R1 ← PRF(k1, sid||i)4 to generate a pair of session

signing-verification (sigki, vki) keys for a strong signature

scheme and certifies them by signing vki||sid||i with the

master secret key msk thus obtaining certi.
5 We refer to

the encryption key sk as the session encryption key and to

(sigki, vki) as the session signing-verification keys6. Note that

the session encryption key sk is common to all the hardware

tokens (since all the tokens share the same PRF keys).7

After the session keys have been generated, the hardware

token HTi encrypts his input xi, signs this encrypted value

together with f using sigki, and sends the encryption, the sig-

nature, and the certificate certi over the broadcast channel. The

leader pn collects all the encrypted values and signatures, and

gives them to his hardware token HTn along with his input xn,

the function f , and sid. His hardware token HTn first checks

that all certificates and signatures are valid and the inputs

are consistent with the function f . Then, if all the checks

are successful, HTn generates, as described earlier, the session

encryption key sk and decrypts all the encrypted inputs of the

other parties using sk (we recall that the PRF key k0 is shared

among all the hardware tokens). Using everyone’s (decrypted)

inputs x1, . . . , xn, , HTn evaluates y1, . . . , yn = f(x1, . . . , xn)
and for i = 1, . . . , n − 1 encrypts yi using sk and signs the

(concatenation of the) encrypted values together with f using

sigkn. The encryptions and the signature uses randomness

generated from evaluating PRF(k1, sid||n). Finally, the leader

pn propagates the output of HTn on the broadcast channel.

Each party pi, upon receiving a message, forwards it to HTi,

which verifies the certificate, the signature, and the consistency

between f and sid. If the checks are successful then HTi uses

sk to decrypt and output yi.
Using hardware tokens allows us to achieve the following:

1) generate fresh randomness and session keys for each new

session id sid, that are hidden from the parties themselves,

and 2) certify that each sid is used only once. Intuitively, for

1), the randomness used in the computation must be hidden

from the parties themselves to achieve CP over broadcast. A

4As an abuse of notation we refer to the identity of a party pi with i.
5We use || as the concatenation operator.
6Unless otherwise specified, a signing-verification key always refers to a

session signing-verification key.
7Intuitively, we use session-keys instead of the master secret key because

these keys will be leaked to the simulator. Leaking the master secret key
would completely compromise the token. A more detailed discussion follows
later this section.

215

concrete example to demonstrate why hiding the randomness

is important: Suppose a party Alice has access to a (limited)

external channel and uses it to send this randomness to

another party Bob. If, for example, the randomness is used

as Alice’s decryption key in the protocol, Bob now can also

decrypt messages directed towards Alice, since Bob sees these

encrypted messages over broadcast. This breaks CP as the

limited external communication led to additional information,

e.g., Alice’s output, to be leaked to Bob. For 2), to restrict

any sid to one-time use, our stateful hardware token stops

replying when a sid is used more than once. This is necessary

to prevent an adversary from using the same sid (thus the

same randomness) to evaluate different inputs. Otherwise, he

can send a subliminal message by picking an input where, for

example, the resulting encrypted message has its first two bits

equal to the first two bits of his input—breaking collusion-

preservation. This adversarial strategy was indeed observed

in [4], limiting the games they consider to those with publicly

observable actions. The proof that that ΠHT is CP for non-

aborting adversaries intuitively comes from the fact that ΠHT

is deterministic given the tokens (which fixes the PRF and

msk keys) and the sid we use. We note that while this may

appear contradictory (i.e., to obtain a secure protocol you need

entropy [36]), our protocol achieves security and collusion-

preservation as the tokens generate fresh (pseudo)randomness

for each sid (which is used only once). ΠHT also enjoys

identifiable abort, and more interestingly, any external party

observing the execution of the protocol without participating

it can identify malicious behavior, by verifying signatures of

messages on the channel. Following [22] we refer to this

property as publicly identifiable abort. To reduce the amount

of token memory required for checking that each sid is used

only once, we propose two alternate solutions in Section V-2.

b) Tokens in collusion-preserving computation: One may

wonder why hardware tokens cannot directly use their master

secret key to authenticate protocol messages. The reason lies

in the locality restrictions that the CP model places on the

ideal world adversary (the simulator). Specifically, CP requires

the existence of a local simulator Si for each adversarial

party pi, and mandates that simulators cannot communicate

with each other except if the environment explicitly allows

them to. Thus, setups (in our case, tokens) which naturally

introduce correlations between parties are tricky to define and

use, especially when the protocol is executed over a broadcast

channel. To understand the issue, one needs to observe that in

a protocol over a broadcast channel, all parties expect to see

exactly the same messages from this channel. Indeed, one of

the novelties of our work is to show how in the real-world,

i.e., in the protocol execution, the correlations embedded in

the tokens can be leveraged to ensure that every (honest-

protocol) broadcast message is predictable by any token.

However, this correlation in the views inherently requires the

simulators’ views to be correlated in some way, in order to

generate the same exact protocol messages. For instance, if

S1 (the ideal world adversary with 1 as their ID) reports to

the environment that he broadcasted message m in round ρ
,

then each Sj should also report to the environment that they

heard this message. However, for this we need to allow the

simulators to correlate their response. A naive first approach

would be to allow them to interact over some underlying

communication network. However, this defeats the purpose of

collusion preservation, as it explicitly introduces a venue of

arbitrary correlations/collusion. A second approach would be

to also offer the simulators access to correlated tokens. But this

leads to a new technical issue: In order to simulate the token-

hybrid protocol, our simulator needs to have extra control of

the hardware tokens (e.g., be able to program it). In fact, such

asymmetry between the capabilities of the adversary and the

simulator is proven necessary in various related settings (e.g.,

programmable random oracle).

We tackle the above issue by considering the hardware token

as a (global) setup functionality and embedding a trapdoor

inside. To ensure that only the simulators in the ideal world can

use the trapdoor, we employ a technical trick inspired by [37]

for the global random oracle. At a very high level, the trapdoor

allows the simulators to produce the same signed messages,

making their views on protocol messages consistent. Specifi-

cally, it gives access to a set of pre-computed messages which

contain no information about the input of the parties. These

messages are indistinguishable from the messages that would

be generated in the real world and are properly signed with

respect to the n signing-verification session keys as they would

be in a real world execution. For example, for the protocol we

have just described, the trapdoor would allow the simulator to

get a set of encryptions of 0, all authenticated with respect to

the corresponding signing-verification session keys. To unable

such a mechanism, we introduce a token global-functionality

that allows functionalities registered to it to send a special

command (Trapdoor, sid). The registered functionalities can

then relay the trapdoor information it receives to its simulators,

allowing them to complete their simulations.

Most importantly, this trapdoor information remains useless

for other protocols, preserving composability with other CP

protocols. More concretely, consider an extension F� of

F , which behaves exactly as F but accepts an additional

command GetTrapdoor from the ideal world adversary. In

the simulation each simulator can send to F� the command

(GetTrapdoor, sid). Upon receiving this command, F� sends

(Trapdoor, sid) to the token functionality if and only if sid is

equal its session id. The token functionality, upon receiving

the command (Trapdoor, sid) from F�, sends to F� the

trapdoor information (e.g., the authenticated encryptions of 0).

When F� receives a reply from the token functionality, it is

forwarded to the simulator. Note that we leak only messages

that can be used within a specific session id, since they are

signed using signing key that are bonded to one session id.

Indeed, as discussed previously, for each session we create

new session (e.g., signature) keys that are valid only within

that specific session.

The mechanism described above is quite natural as in the

real world the parties are allowed to see signed messages pass-

ing on the channel and determine their actions based on these

216

messages. The same should be allowed in the ideal world.

Hence, we enhance the ideal functionality F by constructing

F� which acts exactly as F as described above.

c) Collusion preservation with fallback security: Despite

being simple and optimal in terms of round complexity, the

protocol ΠHT above suffers from a big limitation. That is, if the

hardware tokens are corrupted (e.g., the secret keys are leaked

by the token manufacturer) then not only the CP-property

is lost, but we cannot even guarantee to protect the honest

parties’ inputs. To rectify this issue we propose a protocol

ΠHT-FBS that protects the input of the honest parties (in a

standard GUC-security sense) even in the case where: 1) the

adversary knows all the secret keys of the hardware tokens

(including those held by honest parties) and 2) the malicious

parties can arbitrarily modify or replace their own hardware

tokens.

This protocol achieves a similar fallback security as the

original collusion preserving protocol in the mediated model:

When tokens are not compromised—and aborts are either

excluded or deterred by means of incentives (see below)—then

the protocol is collusion-preserving; and in any case (i.e., even

when tokens are compromised) the protocol remains (G)UC

secure—i.e., any profile of adversaries can be simulated by

a monolithic simulator. We refer to a protocol that has such

security guarantees as a fallback secure protocol.

Our fallback protocol guarantees also identifiable abort and

unanimous abort for functionalities that guarantee termination,

even when tokens can be broken. Interestingly, these properties

are impossible to achieve in the analogous scenario of a

corrupted mediator in the mediated model. To obtain such a

protocol we use as a main building block a protocol ΠMPC

that is secure against a malicious adversary and which enables

identifiable (unanimous) abort. Each token computes protocol

messages on behalf of its owner. In addition, the randomness

used is jointly decided by the owner of the token and by the

token itself.

More precisely, it is the XOR of the randomness produced

by the hardware token, and a random string given at run-

time by the token’s owner. Intuitively, this means even if an

honest party’s token leaks its secret keys, it will still use an

honestly-generated random string in the protocol. Thus, the

party’s input is protected by the security of the underlying

MPC protocol, even if a token’s secret keys are leaked. On the

other hand, if all hardware tokens are uncompromised, then

the randomness of any party in the MPC protocol becomes

unknown and untamperable to everyone. Thus, no malicious

party can send subliminal messages without being detected

and causing an abort.

For sake of completeness, we also sketch a protocol which,

although less round-efficient and without identifiable abort,

preserves standard (GUC) security even when tokens are

fully compromised—that is, not trusted, isolated, nor tamper-

resilient. This is a stronger version of a “compromised” token

since the adversary may read the contents or even change the

behavior of honest parties’ tokens. We make a simple alteration

to our solution: Any computation performed by the token, will

instead be done via a secure two-party protocol between the

token and its owner. In more detail, each party pj runs a secure

2-party protocol with his token, to obtain the next message

of the protocol ΠMPC. When tokens are uncompromised, the

behavior of this solution is the same as in our original solution,

achieving CP. When tokens are compromised, fallback security

follows from the security of 2-party protocol which ensures the

tokens learn nothing. This solution, however, cannot achieve

identifiable abort against fully-compromised tokens since any

token can, e.g., be forced to stop any interactions. This also

means the solution can only implement functionalities with

abort, even with honest majority.

d) How to deal with aborting adversaries: We note that

the above CP-protocols cannot prevent, for example, a corrupt

poker player from simply sending an encrypted message “I

have an ace of spades; let’s collude!” over the broadcast

channel. While the protocol could detect such invalid messages

and abort, this attack already breaks CP and seem unavoid-

able if no assumptions are made on the network topology

(e.g., the mediated model [6]–[8]) and on the honesty of

the network nodes. In this work we circumvent the above

issue by considering an incentive-driven (rational) attacker.

That is, we define a security notion called CPAP (collusion

preserving attack payoff secure) that captures the fact that

some adversarial actions—in our case aborts—are not “for

free” and instead incur a negative payoff. For example, as

our protocols have (publicly) identifiable abort, a judge in the

poker game example can identify and penalize an adversarial

party causing the abort. Similar to the rational protocol design

(RPD) framework [12], CPAP considers a CP-well-formed

functionality F , and a relaxed functionality 〈F〉 that acts the

same as F except it explicitly includes weaknesses that allow a

simulator to collude or abort. Then, we define a value function

v mapping the joint view of a set of simulators8 interacting

with the relaxed functionality 〈F〉 and the environment Z ,

to a real-valued payoff. Intuitively, the real utility gained/lost

by a set of adversaries for a given protocol is the payoff

maximized over all environments, and minimized over all sets

of simulators that successfully emulate the adversaries in the

environment. For our CP protocols, we show that collusion

always causes the real world execution to abort (and identify

a corrupt party). Thus, when the cost of abort exceeds the

gains from colluding, a rational attacker will never collude

(otherwise simulator can trigger an abort in 〈F〉)—intuitively

it means that our protocol implements F for rational attackers.

e) From “ideal” to “real” payoffs.: In Sec. VI-C we

construct a penalization protocol Πpen which runs the com-

putation of our CP protocols ΠHT or ΠHT-FBS, and in addition

penalizes the adversary when he colludes (which can be done

only by triggering an abort). For a natural class of utilities for

the protocol designer and attacker, Πpen enjoys both CPAP and

CPIC, following similar arguments as in Sec. VI-B.

8Recall that in CP, adversaries are not monolithic, so we consider a set of
adversaries/simulators instead of one single adversary/simulator.

217

IV. PRELIMINARIES

We denote the security parameter by λ and use “||” as

concatenation operator (i.e., if a and b are two strings then

by a||b we denote the concatenation of a and b). For a finite

set Q, x
$←− Q denotes a sampling of x from Q with uniform

distribution. When it is necessary to refer to the randomness

r used by and algorithm A we use the following notation:

A(·; r). We denote with [n] the set {1, . . . , n}, with F an

arbitrary (but fixed) finite field and with N the set of non-

negative integers. We assume familiarity with the notions

of secure-function evaluation, strong signatures, secret key

encryption, negligible functions and pseudorandom functions

and refer to the full version for more detail.

1) Security with identifiable (unanimous) abort: In this

work we consider the notion of secure function evaluation

(SFE) with identifiable abort. This notion allows the com-

putation to fail (abort), but ensures that when this happens

all the honest parties are informed about it, and they also

agree on the index i of some corrupted party pi ∈ P [38].

We denote the ideal functionality for the evaluation of the

function f that captures the property of identifiable abort

with Ff
IDA (where IDA stands for identifiable abort). We also

consider the notion of unanimous abort. This guarantees that

either all or none of the honest parties abort. We denote the

ideal functionality for the evaluation of the function f that

captures the property of unanimous abort with Ff
UNA (where

UNA stands for unanimous abort). We refer to the full version

for formal definitions of Ff
IDA and Ff

UNA. We refer to [39]

for a detailed discussion of the notions of security with non-

unanimous (aka selective), unanimous, and identifiable abort,

and their relation.

We will assume synchronous computation, i.e., our proto-

cols proceed in rounds, where in each round: the uncorrupted

parties generate their messages for the current round, as

described in the protocol; then the messages addressed to the

corrupted parties become known to the adversary; then the

adversary generates the messages to be sent by the corrupted

parties in this round; and finally, each uncorrupted party

receives all the messages sent in this round. Although our

treatment is in the (G)UC setting, to avoid overcomplicating

the exposition, we will use the standard round-based language

of [40], [41] to specify our protocol. Notwithstanding, such

specifications can be directly translated to the synchronous UC

model of Katz et al. [13] by assuming a clock functionality

and bounded (zero) delay channels. We refer the interested

reader to [13] for details.

2) Collusion-preserving computation: We now recall the

notion of collusion-preserving computation proposed in [8],

which we refer the reader to for a more thorough discussion

on CP. For n the number of parties and I ⊆ [n], denote by AI
the set of adversaries, i.e. ITMs {Ai}i∈I , where Ai denotes

the adversarial strategy of party pi. In collusion-preserving

computation, instead of one monolithic adversary/simulator,

we consider a set of (independent) PPT adversaries and simu-

lators. In more detail, we require the following:

- Split adversaries/simulators: Instead of a monolithic

adversary/simulator we consider a set of n (independent)

PPT adversaries A[n] = {Ai, i ∈ [n]}, where Ai corre-

sponds to the adversary associated with the player i (and

can corrupt at most this party). We also ask that for each

Ai ∈ A[n] there exists an (independent) simulator Simi,

who only has access to Ai.

- Corrupted-Set Independence: We also require that the

simulators do not depend on each other. In other words

the code of Simi is the same for any set of adversaries

A[n] and B[n] as long as Ai = Bi.

Similar to the GUC framework (but in contrast to plain UC)

we distinguish between two types of functionalities: resources,

denoted with capital calligraphic font as in R, and shared

functionalities, denoted with an additional over-line as in Ḡ.

Formally, a resource R maintains state only with respect to

a single instance of a protocol, while a shared functionality

Ḡ can maintain state across protocol instances. For example,

concurrent executions can maintain shared state via e.g., a

global CRS or global PKI as long as they are modeled as

shared functionalities. However, although concurrent instances

of a protocol π may use the same resource R, the behav-

ior of R in one execution of π must be independent of

all other executions of π (and more generally of all other

concurrent protocols instantiated by the environment). For

clarity, in the remainder of this work we will usually refer

to shared functionalities simply as setup, and protocols that

share state across executions only through some setup Ḡ as Ḡ-
subroutine respecting. We denote by CP-EXECRΠ,A,Z the output

of the environment Z in the execution of Π with adversaries

A := A[n] in the R-hybrid model. We say that a protocol

Π is R-exclusive if it makes use of no resources or shared

functionality other than R. We note that unlike (G)UC, CP

limits parties to communicate with at most one single instance

of the resource. Intuitively, if F is a one-bit channel, then

the simulator only using one instance of F has a completely

different meaning in terms of collusion-preservation to the

simulator using unlimited calls to F .

Definition 1 (Collusion Preservation [8]). Let Ḡ be a setup, R
and F be n-party resources, Π be a {Ḡ,R}-exclusive protocol
and φ be a {Ḡ,F}-exclusive protocol (both with n parties).
Then we say that Π collusion-preservingly (CP) emulates φ
in the {Ḡ,F}-hybrid world, if there exists a collection of effi-
ciently computable transformations Sim = {Sim1, . . . , Simn}
mapping ITMs to ITMs such that for every set of adversaries
A = {A1, . . . ,An}, and every PPT environment Z the
following holds: CP-EXEC

Ḡ,R
Π,A,Z ≈ CP-EXEC

Ḡ,F
φ,Sim(A),Z

Following [8], we distinguish between the notion of em-
ulation and its special case realization. For a functionality

F we denote by DFi the ith dummy F-hybrid protocol

which simply acts as a transparent conduit between the ith
honest and adversarial interfaces of F and the environment

Z . Specifically, DFi forwards all messages it receives from Z
to the F (where the choice of adversarial or honest interface is

218

specified by Z) and vice-versa. If for functionality F , an R-

hybrid protocol π CP-emulates DFi then we say that π realizes
F (in the R-hybrid world).

3) Rational protocol design: The goal of the rational pro-

tocol design framework (RPD) [12], [17] is to model security

of protocols against incentive-driven attackers. In RPD, a

protocol designer D engages in an attack game with an attacker

A. The designer first chooses a n-party protocol Π ∈ ITMn.

Then based on Π, the attacker decides on an adversarial

strategy A to attack Π. Each pair (Π,A = A(Π)) (called

a strategy profile) induces a utility for the designer and the

attacker. Consistent with [12], we consider an attack game

GM, where M is the attack model M = (F , 〈F〉, vA), a

vector of parameters of the game. F is the functionality which

the designer would like to achieve, and 〈F〉 is a relaxed

version of F in the sense that it includes extra commands

that break certain security properties of F . The value function

vA allows us to define utilities of the attacker. It assigns payoffs

when certain events occur in the ideal world, such as when

the simulator uses the extra commands in 〈F〉 to help him

complete a successful simulation. Now, our goal is ensure that

it is not in the attacker’s best interest to force the simulator

to use weaknesses of 〈F〉. This is captured by the notion of

attack-payoff security. A protocol Π is attack-payoff secure if

no adversarial strategy attacking Π can achieve more utility

than an adversary attacking the “dummy” protocol that just

uses the functionality F (i.e. without weaknesses of 〈F〉). In

other words, Π is “as secure as” the dummy (trivially secure)

protocol in this model. As in [17], we can augmentM with the

designer’s value function vD, and consider whether the protocol

is incentive compatible for the designer.

V. CP MPC WITH NON-ABORTING ADVERSARIES

In this section we present our protocol ΠHT for any CP-well-

formed functionality under the following assumptions: 1) each

party has access to a hardware token (which we describe as

one global ideal functionality in Fig. 1) 2) all communication

is done over authenticated broadcast, and 3) adversarial parties

do not make the protocol abort. For simplicity we restrict

ourselves to non-reactive functionalities, also known as secure

function evaluation. (The general case can be reduced to

this case using a suitable form of secret sharing to maintain

the secret intermediate states of the reactive functionality.)

Moreover, we describe all our protocols in a round based,

synchronous manner, where messages sent in some round are

delivered by the beginning of the next round. We first introduce

some additional notation:

- sid ∈ N uniquely identifies an execution of ΠHT.

- Set of parties P = {p1, . . . , pn} running ΠHT compute

the function f .

- We call leader the party that is in charge to run a special

code and we assume w.l.o.g. that the leader is pn ∈ P .

- T HT denotes the global token functionality.

For our construction we use the following tools: Pseudo-

random functions: PRF0 : {0, 1}λ × {0, 1}λ → {0, 1}λ,

PRF1 : {0, 1}λ × {0, 1}2λ → {0, 1}4λ, PRF2 : {0, 1}λ ×

{0, 1}2λ → {0, 1}(n+2)λ, PRF3 : {0, 1}λ × {0, 1}λ →
{0, 1}(4n−2)λ; A strong unforgeable signature scheme Σ =
(Kgen, Sign,Ver); A secret-key encryption scheme ΠSK =
(Gen,Enc,Dec).

The global setup Ḡ is represented by the token functionality

T HT. We note that we use one functionality to emulate the

behavior of the hardware tokens held by the parties that run

the protocol. This token functionality replies to each party

pi ∈ P using the appropriate code and keys depending to the

identity of the calling party (i.e. the functionality discriminates

between leader and non-leader parties). To not overburden the

notation, in the formal construction we denote the identity

of a party pi ∈ P with i. Moreover, the token functionality

exports as public information the master public key mpk, and

keep as part of its secret state the master secret key msk
together with with the PRF keys K0,K1,K2,K3. The parties

are allowed to communicate only via a broadcast channel

denoted by B (c.f. [1] for formal definitions). We provide

a formal description of T HT in Fig. 1. The complete formal

description of the the protocol ΠHT for the non-leader party is

proposed in Fig. 2, and the protocol run by the leader parties

is provided in Fig. 3. We assume that the ideal functionality F
that we wish to realize is registered to the token functionality.

In addition, upon receiving the command (GetTrapdoor, sid),
F sends (Trapdoor, sid) to the token functionality if sid is

equal its session id, and forwards the answer to the ideal

adversary. We recall that this trapdoor allows us to capture

the broadcast channel, on which all parties see the exact same

signed messages. Equipping the ideal functionality with the

trapdoor command translates this real-world leakage in the

ideal world. We also recall that the functionality leaks to the

simulators messages that are valid within one specific session

without harming the token functionality globally. We now

prove that ΠHT is collusion-preserving against non-aborting

adversaries for well-formed functionalities. Formally, we prove

the following:

Theorem 1. Let Ḡ = T HT be the setup as defined above,
R = B (broadcast) and F be n-party resources where F
is a CP-well-formed functionality. Then the {Ḡ,R}-exclusive
protocol ΠHT (described by Fig. 2 and 3) CP realizes F in the
R-hybrid world assuming non-aborting adversaries.

Proof sketch. We refer to the full version for the full proof.

For simplicity we assume that only the leader is honest. To

prove this theorem, we need to show a collection of effi-

ciently computable transformations Sim = {Sim1, . . . , Simn}
that satisfy Definition 1. For i = 1, . . . n, the simulator

Si = Sim(Ai) queries (GetTrapdoor, sid) F� with command

(GetTrapdoor, sid). F� checks that sid is equal to its session

id. If so, then F� sends (Trapdoor, sid) to T HT. T HT then gen-

erates a set of encryptions of 0λ, a set of signing/verification

keys and uses them to authenticate these encryptions (see the

bottom of Fig. 1). We note that each simulator will obtain the

219

The token functionality is parameterized by a set of parties
P and by a list F of ideal functionality programs. The
functionality manages the keys (mpk,msk) for the signature
scheme Σ and the PRF keys K0,K1,K2,K3.
If I = (Get key, sid) is received return mpk to the caller.
Input phase for non-leader parties.
If I = (Input, sid, x, f) is received from a non-leader party
pj then do the following.

- If ctrsidj is not defined then define it and set ctrsidj ← 1
otherwise output ⊥ and stop.

- Compute R0 ← PRF0(K0, sid) and Kencsid ←
Gen(1λ;R0)

- Compute R1 ← PRF1(K1, sid||j) and parse R1 as 4
strings of λ bits each rs1||rs2||r1||r2.

- (sigksidj , vksidj)← Kgen(1λ; rs1)

- certj ← Sign(msk, vksidj ||sid||j; rs2)
- Compute x ← Enc(Kencsid, x; r1), σ ←

Sign(sigksidj , x||f ; r2) and output (x, f, vkj , σ, certj).

Input/output phase for the leader party.
If I = (Input, sid, xn, f, sid, (x1, vk1, σ1, cert1), . . . ,
(xn−1, vkn−1, σn−1, certn−1)) is received from the
leader party pn then check if for all j ∈ [n − 1]
Ver(vkj , xj ||f, σj) = 1 and Ver(mpk, vkj ||sid||j, certj) = 1.
If it is not, then output ⊥ and stop, otherwise act as follows.

- If ctrsidn is not defined then define it and set ctrsidn ← 1
else output ⊥ and stop.

- R2 ← PRF2(K2, sid||n) and parse R2 as n+ 2 strings
of λ bits each rs1||rs2||r1||r2|| . . . ||rn−1||r�.

- (sigksidn , vksidn)← Kgen(1λ; rs1)
- certn ← Sign(msk, vksidn ||sid||n; rs2)
- Compute R0 ← PRF0(K0, sid) and Kencsid ←

Gen(1λ;R0).
- For j = 1, . . . , n− 1 compute xj ← Dec(Kencsid, xj).
- Compute y1, . . . , yn ← f(x1, . . . , xn).
- For j = 1, . . . , n − 1 compute yj ←
Enc(Kencsid, yj ; rj).

- σ ← Sign(sigksidn , y1|| . . . ||yn−1||f ; r�);
- Output (y1, . . . , yn−1, f, vkn, σ, certn), yn

Output phase for non-leader parties. If I = (Output, sid, z)
is received, parse z as (y1, . . . , yn−1, f, vkn, σ, certn) and
do the following. If Ver(vkn, y1|| . . . ||yn−1||f, σ) = 1 and
Ver(mpk, vkj ||sid||j, certj) = 1 then compute and output
Dec(Kencsid, yj), output ⊥ otherwise.
Trapdoor. If I = (Trapdoor, sid) is received from an instance
of an ideal functionality in the list F then do the following.

- If ctrsidj is not defined then define it and set ctrsidj ← 1
otherwise output ⊥ and stop.

- Pick r1|| . . . ||rn−1||r′1|| . . . ||r′n−1||rs11||rs21|| . . . ||rs1n||rs2n ←
PRF3(K3, sid).

- For each i ∈ [n] (sigki, vki)← Kgen(1λ; rs1i), certi ←
Sign(msk, vki||sid||i; rs2i). For each j ∈ [n − 1] ej ←
Enc(pkn, 0

λ; rj), σj ← Sign(sigkj , ej ; r
′
j)

- For each j ∈ [n− 1] compute yj ← Enc(pkj , 0
λ; r′j)

- σn ← Sign(sigkn, y1|| . . . ||yn−1||f ||sid).
- Return to the calling instance
{vki, certi, σi}i∈[n], {ei, yi}i∈[n−1].

Fig. 1. The functionality T HT models the behaviour of the hardware tokens.

same set of ciphertexts and verification keys. This is crucial

for the proof to go through, as each individual simulator

Si internally runs the corrupted party pi, and it will act on

We assume that the party pj is registered to the token func-
tionality T HT and that it obtains mpk by querying it with
I = (Get key, sid). Each party is aware of the function that
will be computed f , of the identifier of each execution sid,
and of the parties involved in each of those executions P .
Input.

- The party pj on input (Compute, sid, x) sends
(Input, sid, x, f) to T HT.

- Upon receiving the answer X from T HT, if X = ⊥ then
pj outputs ⊥ and stops. Otherwise, pj sends X to pn.

Output. The party pj , upon receiving z =
(y1, . . . , yn−1, f, vkn, σ, certn) from pn sends
(Output, sid, z) to T HT. Upon receiving y from T HT, pj
outputs y.
Check-channel. The party pj inspects all messages that
are sent on the channel. If a message (m, f ′, vk, σ, cert)
is received from a party pi check if f = f ′ and
Ver(vki,m||f, σ) = 1 and Ver(mpk, vk||sid||i, cert) = 1. If
it is not, then output (⊥, pi) and stop.

Fig. 2. Protocol executed by the party pj .

Input/output
- The party pn on input (Compute, sid, xn)

collects messages from pj∈[n−1] and sends
I = (Input, xn, f, sid, (x1, vk1, σ1, cert1), . . . ,
(xn−1, vkn−1, σn−1, certn−1)) to T HT.

- Upon receiving the answer Y from T HT, if Y =
⊥ then output ⊥ and stop. Otherwise parse Y as
((m, f, vkn, σ, certn), y), send (m, f, vkn, σ, certn) to
all the parties in P and output y.

Check-channel. The party pj inspects all messages that
are sent on the channel. If a message (m, f ′, vk, σ, cert)
is received from a party pi check if f = f ′ and
Ver(vkj ,m||f, σ) = 1 and Ver(mpk, vk||sid||j, cert) = 1. If
it is not, then output (⊥, pi) and stop.

Fig. 3. Protocol executed by the leader party pn.

the behalf of the other n − 1 parties using the authenticated

cipthertexts received by F�. Si will also intercept all the

queries the party pi makes to T HT. Assuming that pi is non-

aborting, then at some point they will query T HT with their

input xi. Si now has the input of the corrupted party, and

he will use it to query the ideal functionality. In addition,

Si sends to pi (acting on the behalf of T HT) an encryption

of 0 authenticated with respect to the verification key vki.
Assuming that no party aborts, the simulation is successful

since the messages generated by the individual simulator on

the locally simulated broadcast channels are exactly the same

for all the parties (unless the adversary breaks the signature

scheme).

1) (Publicly) Identifiable abort: Another interesting prop-

erty enjoyed by ΠHT is identifiable abort. A protocol run by

a set of parties P is said to be secure with identifiable abort

if it either computes according to its specification, or it aborts

with the index of some corrupted party pi ∈ P —i.e., every

220

honest party learns the identity of a corrupted pi. In ΠHT the

adversary can only deviate from the protocol specification by

either sending a message authenticated with respect to a sid′

or f ′ not equal to the correct sid or f the honest parties use,

sending a message with an invalid signature or certificate, or

fail to send a message. Each event is verifiable by honest

parties, and even third parties not involved in the protocol.

Indeed, with the master public key mpk, sid and function

f , it is possible to claim who did abort in a run of ΠHT

by just inspecting its transcript. Formally, the protocol ΠHT

securely realizes the function Ff
IDA, where Ff

IDA involves n
parties. More interestingly, we can modify ΠHT to support an

additional party pn+1 which takes no input, does not send

any message and outputs a default value (e.g., 0). Since pn+1

knows the master public key mpk, she can check the validity

of the signature and the certificate. Hence, she is able to

identify an invalid message (in the case pn+1 is honest). That

is, our protocol allows an observer of the protocol execution

to identify a misbehaving party. Following [22] we refer to

this property as publicly identifiable abort, and to pn+1 as a

judge. The code of the judge can be used by anyone who has

the public setup and wants to follow the protocol execution and

decide who aborted the protocol given the parties’ messages.

2) Note on implementing T HT with real hardware tokens:
Following the approach of [27], we describe the behavior

of the hardware tokens (HTs) by means of a single ideal

functionality with a single set of shared keys. In particular,

the master signing/verification keys allow tokens and parties

to verify whether a message was signed by a hardware token.

In practice, such functionality can be replaced by tokens that

each has its own secret information (e.g., the HTs do not need

share the same master signing key). More precisely, only a

global master verification key needs to be shared among the

tokens. Each hardware token manages its own signing and

verification keys, mski and mpki, along with a certificate ci
which is a signature of mpki created by the HT manufacturer’s

global master secret key. An example of this approach is Intel

SGX processors, where each processor has a unique attestation

key and “endorsement certificate” from the manufacturer [42].

To authenticate a message, HT HTi signs it with its mski, and

sends the signature together with his master verification key

vki and the certificate ci. Anybody that has the global master

verification key can verify that the certificate ci is valid for

vki, and that the signature issued by HTi is valid w.r.t. vki.
Another important part of T HT is to ensure that the session

ID sid must not be reused in different protocol sessions. The

most simple solution stores all sids that the token has seen.

Thus, if the token cannot store more sids, it will not be able to

verify the freshness of new sids and must stop responding all

together. This in effect makes the token no longer usable for

our CP protocol. We present two alterations to improve upon

the space usage of the simple solution. First, the token can

transfer the burden of storing the sids to an external memory,

in a hash chain data structure [43]. The token stores the head

and tail of the hash chain, which ensures that no malicious

party can tamper with the sids on the external memory. The

solution only requires a small (i.e., constant in the number

of sids) amount of storage. However, verifying a sid requires

interaction with the external memory to retrieve the hash

chain—to use minimal space, the token may choose to retrieve

the chain one hash at a time. To eliminate interactions with

external memory, one may also opt for a Bloom filter [44].

This solution trades off the need for interaction with the

possibility (depending on the space allocated to the filter) of

falsely marking some sids as “used”. This however does not

impact security, as it is equivalent to the token having seen a

session with this sid.

A. Fallback solution when tokens can be compromised

While simple and optimal in terms of round complexity, the

protocol ΠHT cannot guarantee any form of security when the

hardware tokens are corrupted/compromised. In this section

we propose a CP protocol ΠHT-FBS that provides fallback

security (in a standard GUC-security sense) in the following

corruption model: 1) the secret keys of the tokens, including

those of honest parties, can be leaked and 2) the memory/code

of corrupt parties’ tokens can be read/modified completely. Let

F be the function that the parties wish to compute. For our

construction we use the following tools.

- Pseudo-random functions PRF0 : {0, 1}λ × {0, 1}2λ →
{0, 1}(2m+4)λ and PRF1 : {0, 1}λ × {0, 1}λ →
{0, 1}((m+3)n+1)λ

- A strong unforgeable signature scheme Σ =
(Kgen, Sign,Ver).

- A n-party MPC protocol ΠMPC = (Next1, . . . ,Nextn) that

GUC-realizes functionality F .

The global setup Ḡ is represented by the token functionality

T HT-FBS. Similar to the token functionality of the previous

section, T HT-FBS has a master public key mpk and a secret state

consisting of the corresponding master secret key msk and

the PRF keys K0,K1. We assume without loss of generality

that the setup required to run ΠMPC is part of T HT-FBS. We

denote our protocol with ΠHT-FBS (Fig. 5) and provide a formal

description of T HT-FBS in Fig. 4.

Security of ΠHT-FBS:

We summarize the properties of the protocol ΠHT-FBS.

1) If the hardware tokens are not compromised, and no party

aborts, then ΠHT-FBS is collusion-preserving.

2) If the hardware tokens are compromised and ΠMPC GUC

realizes Ff
AB with AB ∈ {IDA,UNA} , then ΠHT-FBS GUC

realizes Ff
AB

3) If the hardware tokens are not compromised (but the

malicious parties may abort), then ΠHT-FBS GUC realizes

the functionality F with publicly identifiable abort.

The properties 1 and 2 above enable the fallback security of

ΠHT-FBS. In addition, the second property states that in the case

of corrupted tokens, ΠHT-FBS inherits all the properties of ΠMPC

(e.g., identifiable abort). We note that if the MPC protocol

guarantees fairness (or even output delivery), this property

221

would be held by ΠHT-FBS as well. The third property states

that if an adversarial party aborts then the CP property might

be lost, but the input of the honest parties are protected. We

capture the case where the hardware tokens are compromised

by considering the token functionality T
HT-FBS

instead of

T HT-FBS. T
HT-FBS

extends T HT-FBS with the additional command

Tamper. If the adversary queries the token functionality with

Tamper then T
HT-FBS

leaks to the adversary its secret state

(i.e., the master secret key msk and the PRF keys). Given the

master secret key, the adversary can authenticate any message

he wants and therefore acts on the behalf of the hardware

token. To formally prove that ΠHT-FBS is fallback secure we

need to prove the following two lemmata.

Lemma 1. Let Ḡ = T HT-FBS be the setup, R = B (broadcast)
and F be n-party resources where F is a CP-well-formed
functionality. Then the {Ḡ,R}-exclusive protocol ΠHT-FBS (de-
scribed by Fig. 5) CP realizes F in the R-hybrid world
assuming that no parties abort.

Lemma 2. Let ΠMPC be a protocol that GUC-realizes the
n-party functionality FAB with AB ∈ {IDA,UNA} that exclu-
sively uses B as a resource. Let Ḡ = T

HT-FBS
and R = B then

∀A ∃Sim ∀Z EXEC
Ḡ,R
ΠHT-FBS,A,Z ≈ EXEC

Ḡ,FAB

Sim,Z

Theorem 2. Let Ḡ = T HT-FBS be the setup, R = B and F be
n-party resources where F is a CP-well-formed functionality.
Then, the {Ḡ,R}-exclusive protocol ΠHT-FBS (described by
Fig. 5) GUC realizes F IDA.

We refer to the full version for the formal proof of the above

lemmata and theorem.

1) Remark on fully-compromised tokens: As discussed in

the introduction, to achieve fallback security against fully-

compromised (that is, untrusted, non-tamper-resilient, non-

isolated) tokens, any computation performed by the token must

instead be done through a 2-party protocol between the token

and the party holding it. To be specific, this 2-party protocol

will implement the following functionality: On request to

compute: (1) if round � = 0: Take input xj from party pj
and K0,mpk,msk from pj’s token. It stores xj ,K0,mpk,msk.

(2) If � ≤ m: Take input the messages from the current round

from pj , if a message fails to authenticate then the token stops

and pj aborts. (3) Finally, output the next message (msg�j , · · ·)
as the token would, to pj .

2) Remark on malicious broadcast: We also give intuition

on what happens if our authenticated broadcast resource is

malicious. First, we will invariably lose CP, since a malicious

broadcast resource can provide a private communication chan-

nel for corrupt parties, trivially allowing collusion. However,

like with a malicious mediator in [8], we still achieve (G)UC

security without unanimous abort/fairness. This is an interest-

ing feature of our model and results: our security degrades

more gradually with respect to the underlying assumptions

than with a corrupted mediator. When only the tokens are

The functionality manages the keys (mpk,msk) for the signa-
ture scheme Σ. The functionality manages also the PRF keys
K0,K1.
If I = (Get key, sid) is received return mpk to the caller.
Input phase. If I = (Input, sid, xj , Rj) is received from some
party pj , then do the following,

- If ctrsidj is not defined, then define it and ctrsidj ← 1,
otherwise output ⊥ and stop.

- Compute Rsid
0 ← PRF0(K0, sid||j) ⊕ Rj and

parse Rsid
0 as (2m + 4) strings of λ bits

rs1j ||rs2j ||ρ1j || . . . ||ρm+1
j ||r1j || . . . ||rm+1

j .

- (sigksidj , vksidj)← Kgen(1λ; rs1j)

- certsidj ← Sign(msk, vkj ||sid||j; rs2j)
- Output the first message (msg1j , sid,Π

MPC, σ, vkj , certj),

where msg1j = Nextj(1
λ, xj , ρ

1
j ,⊥) and σ ←

Sign(sigkj , msg
1
j ||ΠMPC||�; r1j)

Next message function.
If I = (NextMsg, sid, {msg�i , σ�

i , vki, certi}i∈[n]) is received
from pj then do the following.

- If � > m or ctrapsidj = 1 then output ⊥ and stop, else
continue with the following steps.

- Parse Rsid
0 as rs1j ||rs2j ||ρ1j || . . . ||ρm+1

j ||r1j || . . . ||rm+1
j .

- Store msg�sid = {msg�i}i∈[n].

- For all i ∈ [n] check if Ver(vki, msg
�
i ||ΠMPC||�, σ�

i) = 1
and Ver(mpk, vki||sid||i, certi) = 1. If it is not then
output (pi,⊥) and stop. Otherwise continue with the
following steps.

- Set � ← � + 1, compute msg�j =

Nextj(1
λ, xj , ρ

�
j , msg

<�) with msg<� =

{msg�′i }i∈[n],�′<� where msg�
′

i is the message from pi
at round �′ that was stored in msg�

′
sid

- If � = m+ 1 then output yj ← msg�j
else, output (msg�j , sid,Π

MPC, σ�
j , vkj , certj), where

σ�
j ← Sign(sigksidj , msg�j ||ΠMPC||�; r�j).

Trapdoor. If I = (Trapdoor, sid) is received from an instance
of an ideal functionality in the list F then do the following.

- If ctrsidj is not defined, then define it, define ctrapsidj , set

ctrsidj ← 1 and ctrapsidj ← 1. Else output ⊥ and stop.

- Compute ρ||r11|| . . . ||rm+1
1 || . . . ||r1n|| . . . ||rm+1

n ||rs11||
rs21|| . . . ||rs1n||rs2n ← PRF1(K1, sid).

- For all i ∈ [n] (sigki, vki) ← Kgen(1λ; rs1i), certi ←
Sign(msk, vki||sid||i; rs2i).

- Use ρ to run the simulator of the MPC, S for the case
where there are no corrupted party.

- Let {msg�j}j∈[n],�∈[m] be the messages contained in
the transcript obtained by the MPC simulator S. For
all j ∈ [n] and � ∈ [m] computes σ�

j ←
Sign(sigkj , msg

�
j ||ΠMPC||�; r�j).

- Return {vki, certi}i∈[n], {msg�j , σ�
j}j∈[n],�∈[m]

Fig. 4. The functionality T HT-FBS models the behaviour of the hardware
tokens, in our fallback secure protocol ΠHT-FBS.

compromised but authenticated broadcast is honest, then we

have (G)UC security with identifiable abort—impossible with

a corrupt mediator. If broadcast is malicious then we lose

identifiable/unanimous abort and fairness—e.g., the malicious

broadcast can pass an unauthenticated invalid message to just

one honest party, making only this party abort, and it can also

222

We assume that the party pj is registered to the global token
functionality T HT-FBS and obtains mpk by querying it with I =
(Get key, sid).
Input and next message generation.

- The party pj on input (Compute, sid, x) samples uni-
form random Rj ∈ {0, 1}(2m+4)λ and sends I =
(Input, sid, xj , Rj ,Π

MPC) to T HT-FBS
j .

- For each � ∈ {1, . . . ,m}:
- Upon receiving message X from T HT-FBS

j check if
X = (⊥, pi′). If it is then output (⊥, pi′) and stop,
otherwise send X over broadcast.

- Collect message (msg�i , sid,Π
MPC, σ�

i , vki, certi) for
round � from each party pi ∈ [n]\{j} and send
(NextMsg, sid, {msg�i , σ�

i , vki, certi}i∈[n]) to T HT-FBS
j .

Output phase.
- Collect the message (msg�i , sid,Π

MPC, σ�
i , vki, certi) for

round � from each party pi ∈ [n]\{j} and send
(NextMsg, sid, {msg�i , σ�

i , vki, certi}i∈[n]) to T HT-FBS
j .

- Upon receiving yj from T HT-FBS
j output it.

Check-channel. The party pj inspects all messages that are
sent on the channel. If a message (m, sid,ΠMPC, σ, vk, cert) is
received from a party pi check if Ver(vki,m||ΠMPC||�, σ) = 1
and Ver(mpk, vk||sid||i, cert) = 1 for some � ∈ [m]. If it is
not, then output (⊥, pi) and stop.

Fig. 5. Protocol ΠHT-FBS followed by pj to achieve fallback security.

refuse to pass the output to honest parties. Intuitively, security

is preserved even with malicious broadcast since messages

from the tokens are encrypted and authenticated. If tokens are

in addition compromised, then our fallback protocol (when

based on a MPC protocol with (G)UC security in presence of

a malicious broadcast), also preserves security.

VI. CP MPC FOR RATIONAL ADVERSARIES

We start this section by using the RPD framework to

study the feasibility of implementing functionalities F in a

collusion preserving way, against incentive-driven attackers

that may even choose to abort the protocol. We extend the

RPD model to the case of collusion-preserving functionalities

(which we call RPD-CP). We prove that our protocols ΠHT

and ΠHT-FBS disincentivize collusion in this model, when there

is a sufficient penalty to the attacker for aborting. Recall that

ΠHT and ΠHT-FBS are CP against non-aborting adversaries, and

can (publicly) identify a corrupt party in case of an abort.

Finally, we show how this model can be applied in practice,

e.g. using the blockchain. In particular, we can abstract the

blockchain by means of an ideal functionality that allows

the parties to deposit collateral, which can be reclaimed on

the agreement of all parties. We provide a protocol Πpen that

uses this functionality to concretely penalize an attacker for

aborting ΠHT or ΠHT-FBS.

A. RPD-CP: Tuning RPD to the CP setting

a) The Attack Model: Following the RPD frame-

work [12], we capture collusion-preservation against incentive-

driven attackers, by considering attacks as part of an at-
tack game GM between a protocol designer D and attacker

The functionality interacts with a set of parties P =
{p1, . . . , pn}. It maintains a set of honest parties H ⊆ P ,
and a set of malicious parties I ⊆ P

- Upon receiving (COLLUDE, sid,m) from party pi ∈ I, send
message (SUB MSG, sid, pi,m) to pj , for all pj ∈ P − {pi}.

- Upon receiving (ABORT, sid) from a party pi, send
(ABORT, pi) to pj , for all pj ∈ P-{pi} and stop.

- Upon receiving a message that is consistent with the interface
of F act as F would do acting as a proxy between F and
the parties in P .

Fig. 6. 〈F〉 weakens F with commands COLLUDE and ABORT.

A. Here, D comes up with a protocol Π, and the attacker

A ∈ ITM generates a set of adversaries/adversarial strategies

A(Π) = A = {Ai}i∈I , I ⊆ [n] to attack it. The attacker’s

utility uA is then a function of the choice of protocol Π and

adversarial strategies A. The attack model M = (F , 〈F〉, vA)
(and vD, if we also consider the designer’s utility) encompasses

the parameters in this game—〈F〉 is the weaker version of

the functionality F we wish to implement. 〈F〉 explicitly

allows 1) CP to be broken by sending a colluding message to

other adversarial parties and 2) the adversarial parties to abort

and being identified by all the other parties that are running

the protocol. Note that in contrast to monolithic adversaries

and simulators, in CP the ideal adversarial parties do not

automatically share their views and must use 〈F〉 to collude

(see. Fig. 6). Lastly, the attacker’s utility uA is defined based on

a value function vA, which assigns payoffs to events occurring

in the ideal world—more details below.

1) Utility of the attacker A: The utility of the attacker uA is

a function mapping protocols and sets of adversaries, i.e. the

strategy profile (Π,A), to a real number. In our case, utility

depends on whether a set of simulators must collude via a

weakness in 〈F〉 in order to emulate A in Π, and whether the

simulators trigger an abort. More formally: First, we have a

value function vA, defined in the attack model, which maps the

views of the simulators and environment in the ideal world to

a real value. Then, we define the real payoff of a particular

A attacking the protocol, as the minimum payoff over all

simulators that can emulate A. Finally, uA(Π,A) is the real

payoff of A, maximized over all possible environments Z .

a) Ideal payoff of a set of simulators: In more de-

tail, we define the real-valued random variable ensemble

{v〈F〉,S,ZA (k, z)}k∈N,z∈{0,1}∗ (or v
〈F〉,S,Z
A for short) as the

random variable ensemble resulting from applying value func-

tion vA to the view of the environment Z and a set of simu-

lators S = {Si}i∈I in the ideal execution. The ideal expected

payoff of a particular set of simulators S with respect to Z is

defined as the expected value: U
〈F〉
IA (S,Z) = E(v

〈F〉,S,Z
A).

b) Real payoff of a set of adversaries: Recall that given

a setup Ḡ and resource R, a {Ḡ,R}-exclusive (that is, the

protocol only uses Ḡ,R) protocol Π realizes a CP-functionality

〈F〉 if, for all I ⊆ [n], and independent (rather than

monolithic) adversaries A = {Ai}i∈I , there exists a collection

223

of efficiently computable transformations from ITMs to ITMs

Sim = {Simi}i∈I such that the simulator Si = Simi(Ai)
emulates Ai. That is, the environment Z cannot distinguish

between the real world with A and resource R, and ideal

world with S = {Simi(Ai)}i∈I and 〈F〉. Let 〈F〉 be a CP

functionality and Π be a protocol. Denote CA as the class

of simulators S = {Si}i∈I that can emulate the adversarial

parties A = {Ai}i∈I for I ⊆ [n]. That is, for setup Ḡ and

resource R, CA =
{
Sim(A) = {Simi(Ai)}i∈I | ∀i ∈ I :

Simi an efficiently computable mapping from ITM to ITM,

∀Z : CP-EXEC
Ḡ,R
Π,A,Z ≈ CP-EXEC

Ḡ,〈F〉
Π,Sim(A),Z

}
. The expected

payoff of a set of adversaries and environment (A,Z) is

then defined as U
Π,〈F〉
A (A,Z) = infS∈CA{U 〈F〉IA (S,Z)}. The

attacker’s utility is then maximized over all environments Z ,

i.e., uA(Π,A) := Û
Π,〈F〉
A (A) = supZ∈ITM{UΠ,〈F〉

A (A,Z)}.
2) Utility of the protocol designer D: In [12], the attack

game is assumed to be zero-sum, i.e. the designer’s utility

uD = −uA. To remove this assumption, we follow the

methodology of a more recent work [17] to define uD. In

more detail, for each (Π,A), we must assign utility for

the designer using the same simulators and environments

as those used for the attacker. Let SA denote the class

of simulators that were used to obtain the utility of the

attacker, and ZA denote the class of environments max-

imizing the utility for simulators in SA. That is, SA ={
S ∈ CA : supZ∈ITM{U 〈F〉IA (S,Z)} = uA(Π,A)

}
and ZA ={

Z ∈ ITM : for some S ∈ SA , U
〈F〉
IA (S,Z) = uA(Π,A)

}
.

Then, let v
〈F〉,S,Z
D and U

〈F〉
ID (S,Z) be defined similar to

the payoffs v
〈F〉,S,Z
A and U

〈F〉
IA (S,Z) respectively. Again

following the definitions of [17], the real payoff of the

designer is U
Π,〈F〉
D (A,Z) = supS∈SA

{U 〈F〉ID (S,Z)}. The

utility of the designer is then uD(Π,A) := Û
Π,〈F〉
D (A) =

infZ∈ZA
{UΠ,〈F〉

D (A,Z)} We can extend the attack model with

the value function of the designer vD: M = (F , 〈F〉, vA, vD).
3) Attack-payoff security with collusion-preservation: Sim-

ilar to the definition of attack-payoff secure in [12], [17], we

define collusion preserving attack payoff (CPAP). Intuitively,

a protocol is CPAP with respect to an attack model M =
(F , 〈F〉, vA) if it enjoys security and collusion-preservation

under this model. That is, no attacker can gain more utility

from running our protocol, than running the dummy protocol

that uses a functionality F as a resource.

Definition 2 (CPAP). Let M = (F , 〈F〉, vA) be an attack
model and Π a {Ḡ,R}-exclusive protocol that realizes 〈F〉.
We say that Π is CPAP in M if supA∈ITM uA(Π,A)

negl
≤

supA∈ITM uA(Φ
F ,A) where ΦF is the dummy {Ḡ,F}-hybrid

protocol which forwards all inputs to and outputs from func-
tionality F .

To complete our framework, we also define ε-subgame-

perfect equilibrium from [12], and define CPIC similarly to

the definition of incentive compatible (IC) in [17]. Informally,

a strategy profile is an ε-subgame-perfect equilibrium if no

deviation could improve utilities by more than ε. Intuitively, a

protocol Π is incentive compatible when even the designer is

incentivized to stick with it.

Definition 3 (ε-subgame-perfect equilibrium [12]). Let GM be
an attack game. A strategy profile (Π, A(Π)) is an ε-subgame

perfect equilibrium in GM if the following conditions hold:
(1) for any Π′ ∈ ITMn, uD(Π′, A(Π′)) ≤ uD(Π, A(Π))+ ε, and
(2) for any A′ ∈ ITM, uA(Π, A′(Π)) ≤ uA(Π, A(Π)) + ε.

Definition 4 (CPIC). Let Π be a {Ḡ,R}-exclusive protocol
and Π be a set of polynomial-time {Ḡ,R}-exclusive protocols.
We say that Π is Π-CPIC in the attack model M iff for some
A ∈ ITM, (Π, A(Π)) is a ν(λ)-subgame perfect equilibrium on
the restricted attack game where the set of deviations of the
designer is Π.

B. ΠHT and ΠHT-FBS with incentives

In this section we show that the protocols ΠHT and ΠHT-FBS

presented in the previous sections are CPAP for a natural class

of utilities uA. For simplicity we consider the ideal function-

ality Ff for SFE parameterized by the function f : Fn → F

(this form is without loss of generality—see, e.g., [45]), which

we assume is a CP-well-formed functionality. We refer the

reader to the full version for a formal definition of Ff .

We consider the following events the value function vA is

concerned with. These are events defined on the views of

the environment, the (relaxed) CP-functionality 〈Ff 〉, and the

simulators S = {Si}i∈I , given adversaries A = {Ai}i∈I :

- Define the event Ecollude as follows: For some i ∈ I
and message m, the ith simulator Si sends the message

(COLLUDE, sid,m) to 〈Ff 〉.
- Define the event Eabort as follows: For some i ∈ I, party pi

aborts and is identified by all the parties as having aborted.

Now, we define the payoffs assigned by vA to the events above.

Denote by γcollude the utility for the attacker obtained by trig-

gering Ecollude. Denote by γabort the penalty incurred as result

of a malicious party being identified by the honest parties as an

aborting party. Then, the utility of the attacker is: uA(Π,A) =
supZ

{
infS∈CA

{
γcollude Pr[Ecollude]− γabort Pr[Eabort]

}}
Our protocol satisfies CPAP security under the condition

that the penalty of being identified as having aborted is

greater than the gain from sending a colluding message. In

Sec. VI-C, we will discuss a penalization scheme that makes

these penalties concrete.

Theorem 3. Let Ff be an ideal CP-well-formed functionality,
and 〈Ff 〉 be as defined in Fig. 6. Let vA be as defined above,
for any γcollude and γabort such that γabort > γcollude. Then
the protocol ΠHT described in Sec. V (and the protocol ΠHT-FBS

described in Sec. V-A) is CPAP secure in the attack model
M = (Ff , 〈Ff 〉, vA).

Proof sketch (see full version for full proof). To prove

this theorem we rely on the observation that ΠHT (ΠHT-FBS)

is collusion-preserving for Ff as long as nobody aborts.

Moreover, ΠHT and ΠHT-FBS achieve (publicly) identifiable

abort, since the only way subliminally communicate is by

224

sending a message which is incompatible with the protocol

description. Given the way we have set the payoffs, it is always

inconvenient for the adversary to trigger the collusion event

Ecollude, as it causes the abort event Eabort.

C. Realizing the incentives

The goal of this section is to create a penalization scheme

that translates the utilities defined above to concrete (mone-

tary) values. Below, we describe a simple protocol Πpen that

realizes a CP functionality F assuming no aborts, and disin-

centivizes aborts with penalization. As we show in Theorem 4

below, Πpen achieves CPAP, and is incentive compatible for the

designer (i.e. is CPIC), assuming the existence of one honest

party. The protocol assumes a functionality Fpen, which allows

each party to deposit a collateral of amount d (a parameter of

the functionality). Parties can reclaim their collateral if and
only if all parties send the functionality a RECLAIM message

(for more detail on Fpen, see the full version [1]). In Πpen,

honest parties only send RECLAIM if they do not detect an

abort during execution of ΠHT or ΠHT-FBS. The protocol Πpen

works as follows.

1) Each party sends (DEPOSIT) to Fpen, to deposit a

collateral of amount d. If the functionality returns

(DEPOSIT, 1), proceed. Otherwise, stop.

2) Run ΠHT (resp. ΠHT-FBS) (possibly multiple times for

reactive functionality, using secret sharing to maintain

secret intermediate state) on the broadcast channel B.

3) If ΠHT (resp. ΠHT-FBS) did not abort, then all parties send

(RECLAIM) to Fpen. Fpen ensures that parties receive their

deposits back if and only if everyone sends (RECLAIM).

We define below a class of utilities for the above protocol,

making the arguably natural assumption that the attacker (who

chooses the adversarial strategies for all corrupted parties)

cares about the sum of deposits lost/gained by all corrupt

parties, and similarly, the protocol designer cares about the

deposits of all honest parties. Let Ecollude be the event

the simulator sends a COLLUDE message in 〈F〉; EA
deposit(t)

(resp. ED
deposit(m)) is the event t corrupt (resp. m honest)

parties send (DEPOSIT) to Fpen and Fpen returns (DEPOSIT, 1);
EA
reclaim(t) (resp. ED

reclaim(m)) is the event where t corrupt

(resp. m honest) parties receive the message (RECLAIM, 1).
Sets CA,SA,ZA are defined in Section VI-A.

uA(Π,A) = sup
Z

{
inf
S∈CA

{
γcollude Pr[Ecollude]

−
∑
t∈[n]

td · Pr[EA
deposit(t)] +

∑
t∈[n]

td · Pr[EA
reclaim(t)]

}}

uD(Π,A) = inf
Z∈ZA

{
sup
S∈SA

{
− γcollude Pr[Ecollude]

−
∑

m∈[n]

md · Pr[ED
deposit(m)] +

∑
m∈[n]

md · Pr[ED
reclaim(m)]

}}

Informally, we show CPIC and CPAP by proving that the

strategy profile (Πpen,A), where the A is the passive adversar-

ial strategy that just follows Πpen (and does not collude/abort),

is an equilibrium solution. We observe that corrupt parties

know that if they try to gain more utility by colluding (and

thus abort), there is at least one honest party to ensure they

lose their collateral, which means they have no incentive to

deviate from Πpen. The protocol designer also has no incentive

to deviate from Πpen if the adversary is passive, which means

this strategy profile is an equilibrium.

Theorem 4 (Proof in [1]). Let F be an ideal CP-well-formed
functionality, and 〈F〉 be as defined in Fig. 6. Let vA and vD
be defined in the utility functions above, let td > γcollude
where t is the number of corrupt parties, and assume there is
at least one honest party. Then, the {Ḡ,R}-exclusive protocol
Πpen, where R is broadcast and Ḡ = T HT,Fpen (resp. Ḡ =
T HT-FBS,Fpen) :

- collusion-preservingly emulates the {Ḡ,F}-exclusive
protocol φ assuming the adversary does not abort,

- is CPAP secure in the attack model M, and
- is Π-CPIC in M.

Where M = (F , 〈F〉, vA, vD) and Π is the set of all protocols.

One could implement deposit/reclaim via, e.g., a smart

contract-enabled blockchain. We refer to [1] for further dis-

cussion on penalization and on how to avoid that also honest

parties are penalized in the case a misbehavior is detected.

REFERENCES

[1] M. Ciampi, Y. Lu, and V. Zikas, “Collusion-preserving computation
without a mediator,” Cryptology ePrint Archive, Report 2020/497, 2020,
https://eprint.iacr.org/2020/497.

[2] S. Goldwasser and S. Micali, “Probabilistic encryption and how to play
mental poker keeping secret all partial information,” in 14th Annual
ACM Symposium on Theory of Computing. ACM Press, May 1982,
pp. 365–377.

[3] M. Lepinski, S. Micali, C. Peikert, and a. shelat, “Completely fair sfe
and coalition-safe cheap talk,” in 23rd ACM Symposium Annual on
Principles of Distributed Computing, S. Chaudhuri and S. Kutten, Eds.
Association for Computing Machinery, Jul. 2004, pp. 1–10.

[4] M. Lepinski, S. Micali, and a. shelat, “Collusion-free protocols,” in 37th
Annual ACM Symposium on Theory of Computing, H. N. Gabow and
R. Fagin, Eds. ACM Press, May 2005, pp. 543–552.

[5] R. Canetti and M. Vald, “Universally composable security with local
adversaries,” in SCN 12: 8th International Conference on Security in
Communication Networks, ser. Lecture Notes in Computer Science,
I. Visconti and R. D. Prisco, Eds., vol. 7485. Springer, Heidelberg,
Sep. 2012, pp. 281–301.

[6] J. Alwen, J. Katz, Y. Lindell, G. Persiano, a. shelat, and I. Visconti,
“Collusion-free multiparty computation in the mediated model,” in Ad-
vances in Cryptology – CRYPTO 2009, ser. Lecture Notes in Computer
Science, S. Halevi, Ed., vol. 5677. Springer, Heidelberg, Aug. 2009,
pp. 524–540.

[7] J. Alwen, a. shelat, and I. Visconti, “Collusion-free protocols in the
mediated model,” in Advances in Cryptology – CRYPTO 2008, ser. Lec-
ture Notes in Computer Science, D. Wagner, Ed., vol. 5157. Springer,
Heidelberg, Aug. 2008, pp. 497–514.

[8] J. Alwen, J. Katz, U. Maurer, and V. Zikas, “Collusion-preserving
computation,” in Advances in Cryptology – CRYPTO 2012, ser. Lecture
Notes in Computer Science, R. Safavi-Naini and R. Canetti, Eds., vol.
7417. Springer, Heidelberg, Aug. 2012, pp. 124–143.

[9] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” Cryptology ePrint Archive, Report 2000/067,
2000, http://eprint.iacr.org/2000/067.

[10] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally composable
security with global setup,” in TCC 2007: 4th Theory of Cryptography
Conference, ser. Lecture Notes in Computer Science, S. P. Vadhan, Ed.,
vol. 4392. Springer, Heidelberg, Feb. 2007, pp. 61–85.

[11] D. Dolev and H. R. Strong, “Authenticated algorithms for byzantine
agreement,” SIAM Journal on Computing, vol. 12, no. 4, pp. 656–666,
1983.

225

[12] J. A. Garay, J. Katz, U. Maurer, B. Tackmann, and V. Zikas, “Rational
protocol design: Cryptography against incentive-driven adversaries,” in
54th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, Oct. 2013, pp. 648–657.

[13] J. Katz, U. Maurer, B. Tackmann, and V. Zikas, “Universally composable
synchronous computation,” in TCC 2013: 10th Theory of Cryptography
Conference, ser. Lecture Notes in Computer Science, A. Sahai, Ed., vol.
7785. Springer, Heidelberg, Mar. 2013, pp. 477–498.

[14] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally com-
posable two-party and multi-party secure computation,” in 34th Annual
ACM Symposium on Theory of Computing. ACM Press, May 2002,
pp. 494–503.

[15] M. Hirt and V. Zikas, “Adaptively secure broadcast,” in Advances
in Cryptology – EUROCRYPT 2010, ser. Lecture Notes in Computer
Science, H. Gilbert, Ed., vol. 6110. Springer, Heidelberg, May / Jun.
2010, pp. 466–485.

[16] J. A. Garay, J. Katz, R. Kumaresan, and H.-S. Zhou, “Adaptively secure
broadcast, revisited,” in 30th ACM Symposium Annual on Principles of
Distributed Computing, C. Gavoille and P. Fraigniaud, Eds. Association
for Computing Machinery, Jun. 2011, pp. 179–186.

[17] C. Badertscher, J. A. Garay, U. Maurer, D. Tschudi, and V. Zikas, “But
why does it work? A rational protocol design treatment of bitcoin,”
in Advances in Cryptology – EUROCRYPT 2018, Part II, ser. Lecture
Notes in Computer Science, J. B. Nielsen and V. Rijmen, Eds., vol.
10821. Springer, Heidelberg, Apr. / May 2018, pp. 34–65.

[18] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in Advances in Cryptology – CRYPTO 2014, Part II, ser.
Lecture Notes in Computer Science, J. A. Garay and R. Gennaro, Eds.,
vol. 8617. Springer, Heidelberg, Aug. 2014, pp. 421–439.

[19] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
“Secure multiparty computations on bitcoin,” in 2014 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, May 2014,
pp. 443–458.

[20] R. Kumaresan and I. Bentov, “Amortizing secure computation with
penalties,” in ACM CCS 2016: 23rd Conference on Computer and
Communications Security, E. R. Weippl, S. Katzenbeisser, C. Kruegel,
A. C. Myers, and S. Halevi, Eds. ACM Press, Oct. 2016, pp. 418–429.

[21] ——, “How to use bitcoin to incentivize correct computations,” in ACM
CCS 2014: 21st Conference on Computer and Communications Security,
G.-J. Ahn, M. Yung, and N. Li, Eds. ACM Press, Nov. 2014, pp. 30–41.

[22] A. Kiayias, H.-S. Zhou, and V. Zikas, “Fair and robust multi-party com-
putation using a global transaction ledger,” in Advances in Cryptology
– EUROCRYPT 2016, Part II, ser. Lecture Notes in Computer Science,
M. Fischlin and J.-S. Coron, Eds., vol. 9666. Springer, Heidelberg,
May 2016, pp. 705–734.

[23] R. Kumaresan, T. Moran, and I. Bentov, “How to use bitcoin to play
decentralized poker,” in ACM CCS 2015: 22nd Conference on Computer
and Communications Security, I. Ray, N. Li, and C. Kruegel, Eds. ACM
Press, Oct. 2015, pp. 195–206.

[24] I. Bentov, R. Kumaresan, and A. Miller, “Instantaneous decentralized
poker,” in Advances in Cryptology – ASIACRYPT 2017, Part II, ser.
Lecture Notes in Computer Science, T. Takagi and T. Peyrin, Eds., vol.
10625. Springer, Heidelberg, Dec. 2017, pp. 410–440.

[25] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “One-time programs,”
in Advances in Cryptology – CRYPTO 2008, ser. Lecture Notes in
Computer Science, D. Wagner, Ed., vol. 5157. Springer, Heidelberg,
Aug. 2008, pp. 39–56.

[26] J. Katz, “Universally composable multi-party computation using tamper-
proof hardware,” in Advances in Cryptology – EUROCRYPT 2007, ser.
Lecture Notes in Computer Science, M. Naor, Ed., vol. 4515. Springer,
Heidelberg, May 2007, pp. 115–128.

[27] J. Alwen, R. Ostrovsky, H.-S. Zhou, and V. Zikas, “Incoercible multi-
party computation and universally composable receipt-free voting,” in
Advances in Cryptology – CRYPTO 2015, Part II, ser. Lecture Notes in
Computer Science, R. Gennaro and M. J. B. Robshaw, Eds., vol. 9216.
Springer, Heidelberg, Aug. 2015, pp. 763–780.

[28] T. Moran and G. Segev, “David and Goliath commitments: UC computa-
tion for asymmetric parties using tamper-proof hardware,” in Advances
in Cryptology – EUROCRYPT 2008, ser. Lecture Notes in Computer
Science, N. P. Smart, Ed., vol. 4965. Springer, Heidelberg, Apr. 2008,
pp. 527–544.

[29] N. Döttling, D. Kraschewski, and J. Müller-Quade, “Unconditional
and composable security using a single stateful tamper-proof hardware
token,” in TCC 2011: 8th Theory of Cryptography Conference, ser.

Lecture Notes in Computer Science, Y. Ishai, Ed., vol. 6597. Springer,
Heidelberg, Mar. 2011, pp. 164–181.

[30] I. Damgård, J. B. Nielsen, and D. Wichs, “Universally composable
multiparty computation with partially isolated parties,” in TCC 2009:
6th Theory of Cryptography Conference, ser. Lecture Notes in Computer
Science, O. Reingold, Ed., vol. 5444. Springer, Heidelberg, Mar. 2009,
pp. 315–331.

[31] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia, “Founding
cryptography on tamper-proof hardware tokens,” in TCC 2010: 7th
Theory of Cryptography Conference, ser. Lecture Notes in Computer
Science, D. Micciancio, Ed., vol. 5978. Springer, Heidelberg, Feb.
2010, pp. 308–326.

[32] T. Nilges, “The cryptographic strength of tamper-proof hardware,” Ph.D.
dissertation, Karlsruhe Institute of Technology, 2015.

[33] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “IRON: Func-
tional encryption using intel SGX,” in ACM CCS 2017: 24th Conference
on Computer and Communications Security, B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, Eds. ACM Press, Oct. / Nov. 2017,
pp. 765–782.

[34] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi, G. Scerri,
and B. Warinschi, “Secure multiparty computation from SGX,” in FC
2017: 21st International Conference on Financial Cryptography and
Data Security, ser. Lecture Notes in Computer Science, A. Kiayias, Ed.,
vol. 10322. Springer, Heidelberg, Apr. 2017, pp. 477–497.

[35] M. Barbosa, B. Portela, G. Scerri, and B. Warinschi, “Foundations
of hardware-based attested computation and application to sgx,” in
2016 IEEE European Symposium on Security and Privacy (EuroSP).
Los Alamitos, CA, USA: IEEE Computer Society, mar 2016, pp.
245–260. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/EuroSP.2016.28

[36] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of
Computer and System Sciences, vol. 28, no. 2, pp. 270–299, 1984.

[37] R. Canetti, A. Jain, and A. Scafuro, “Practical UC security with a global
random oracle,” in ACM CCS 2014: 21st Conference on Computer and
Communications Security, G.-J. Ahn, M. Yung, and N. Li, Eds. ACM
Press, Nov. 2014, pp. 597–608.

[38] Y. Ishai, R. Ostrovsky, and V. Zikas, “Secure multi-party computation
with identifiable abort,” in Advances in Cryptology – CRYPTO 2014,
Part II, ser. Lecture Notes in Computer Science, J. A. Garay and
R. Gennaro, Eds., vol. 8617. Springer, Heidelberg, Aug. 2014, pp.
369–386.

[39] R. Cohen, J. A. Garay, and V. Zikas, “Broadcast-optimal two-round
MPC,” in Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part II, ser. Lecture Notes in Computer Science,
A. Canteaut and Y. Ishai, Eds., vol. 12106. Springer, 2020, pp. 828–
858. [Online]. Available: https://doi.org/10.1007/978-3-030-45724-2 28

[40] R. Canetti, “Security and composition of multiparty cryptographic
protocols,” Journal of Cryptology, vol. 13, no. 1, pp. 143–202, Jan.
2000.

[41] J. B. Nielsen, On protocol security in the cryptographic model. Citeseer,
2003.

[42] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086, 2016, http://eprint.iacr.org/2016/086.

[43] L. Lamport, “Password authentication with insecure communication,”
Commun. ACM, vol. 24, no. 11, p. 770772, Nov. 1981. [Online].
Available: https://doi.org/10.1145/358790.358797

[44] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, p. 422426, Jul. 1970. [Online].
Available: https://doi.org/10.1145/362686.362692

[45] Y. Lindell and B. Pinkas, “A proof of security of Yao’s protocol for two-
party computation,” Journal of Cryptology, vol. 22, no. 2, pp. 161–188,
Apr. 2009.

226

