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Abstract—Bounding the number of sessions is a long-standing
problem in the context of security protocols. It is well known
that even simple properties like secrecy are undecidable when
an unbounded number of sessions is considered. Yet, attacks on
existing protocols only require a few sessions.

In this paper, we propose a sound algorithm that computes a
sufficient set of scenarios that need to be considered to detect an
attack. Our approach can be applied for both reachability and
equivalence properties, for protocols with standard primitives
that are type-compliant (unifiable messages have the same type).
Moreover, when equivalence properties are considered, else
branches are disallowed, and protocols are supposed to be simple
(an attacker knows from which role and session a message comes
from). Since this class remains undecidable, our algorithm may
return an infinite set. However, our experiments show that on
most basic protocols of the literature, our algorithm computes a
small number of sessions (a dozen). As a consequence, tools for
a bounded number of sessions like DeepSec can then be used to
conclude that a protocol is secure for an unbounded number of
sessions.

I. INTRODUCTION

For several decades, decision procedures have been devel-

oped for the automatic analysis of security protocols. Various

security properties can be considered. Secrecy and authenti-

cation are usually formalized as reachability properties, while

anonymity, untraceability, and other privacy properties are ex-

pressed as equivalence properties. Such properties are known

to be undecidable in general [25]. However, if a bounded

number of sessions is considered, then reachability properties

as well as trace equivalence are decidable, see e.g. [32], [31],

[5], [10], [22].

In practice, attacks exploit only a few sessions. Let us

first clarify what we call sessions. A protocol defines several

roles (client, server, certificate authority, etc.). Each role is a

program that may be run several times, each run corresponds to

a session of the role. So the number of sessions will be the total

number of programs that can be run (once). Written in terms

of processes, this corresponds to the total number of processes

in parallel, with no replication. Up to our knowledge, extreme

cases are when 5-6 sessions are needed for an attack. For

example, the Triple Handshakes Attack on TLS [6] requires
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an honest client C and an honest server S that each runs 3 sub-

programs, yielding 6 sessions (or even less, depending on how

programs are divided). The traceability attack on electronic

passports [13] requires one honest run between the reader

and the passport and then a replay against a passport, thus 3

sessions. Hence a tempting heuristic is to conclude that either

an attack can be found within a few sessions, or the protocol is

secure. Unfortunately, there is absolutely no formal guarantee

that this is indeed the case. It is possible to construct protocols

for which an arbitrary number of sessions can be needed for

attacks. Hence, bounding the number of sessions is a long-

standing problem. The goal is to identify criteria, achieved in

practice, such that if there is an attack, then there is an attack

within an a priori bounded number of sessions.

Related work. Several results have studied this question.

• Sybille Fröschle [27] proposes a decidability result for

the “leakiness” property, that guarantees that all data are

either public or secret. This excludes protocols with tem-

porary secrets. [27] holds for typed protocols: an agent

expecting a nonce or a key cannot accept a ciphertext. The

considered primitives are encryption and concatenation

only.

• In [16], [21], the notion of typed protocols is relaxed

to consider type-compliance, that intuitively requires that

unifiable messages have the same type. While protocol

agents may receive arbitrary messages, type-compliance

ensures the existence of a well-typed witness when an

attack exists. In [16], [21], the notion of dependency

graph is introduced with the aim to characterize how

actions depend from the other ones. For protocols with

an acyclic dependency graph, the number of sessions

can be bounded and hence reachability and equivalence

properties are decidable. This result assumes protocols to

be simple (actions can be precisely identified) and else

branches are disallowed.

• [23] defines the notion of “depth-boundedness” that re-

stricts intuitively the number of nested encryptions. It is

shown that secrecy is decidable for depth-bounded pro-

tocols. As for [27], this does not cover equivalence prop-

erties. [24] generalizes the notion of depth-boundedness

to support a wider variety of cryptographic primitives.

All these results provide new decidability results: they

identify classes of protocols for which secrecy (and some-
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times equivalence) is decidable, for an unbounded number of

sessions and fresh nonces. In passing, they bound the number

of sessions. However, they do not provide explicit bounds or

the bounds are not practical. For example, [21] gives a bound

of 1019 sessions for the simple Denning-Sacco protocol and

the bound is even larger for more complex protocols.

Many other works have studied the analysis of security

protocols in a symbolic setting, aiming at reducing the search

space. Some approaches show that it is sufficient to consider

typed attack traces, where messages follow some format [3],

[15], [29]. Other results reason on the origination of messages

(see e.g. [28]).

Contribution. Our main contribution is to show that, under

assumptions similar to [21], it is possible to efficiently bound

the number of sessions. Our result holds both for reachability

and equivalence properties and for a generic class of equational

theories that encompasses standard cryptographic primitives

(symmetric and asymmetric encryption, signatures, hash). We

consider the class of protocols that are type-compliant, which

is intuitively guaranteed as soon as two encrypted messages of

the protocol cannot be confused. Type-compliance can often

be achieved by simply adding a tag, that indicates at which

step the message has been created. Such a tagging scheme is

usually considered as a good practice since it avoids attacks

and is shown to ensure type-compliance for protocols with

symmetric encryption and pairing [15]. Moreover, when equiv-

alence properties are considered, else branches are disallowed,

and protocols must also be simple, i.e. an attacker can identify

from which participant and which session a message originates

from.

Under these assumptions, we provide an algorithm that

explores the actions of a protocol and computes a bound on the

number of sessions needed for an attack. It is important to note

that our assumptions do not yield a decidable class, hence our

algorithm can also return that no bound could be found. On

the other hand, we do compute a bound for any protocol with

an acyclic graph as defined in [21], hence our algorithm covers

the decidable class introduced in [21]. Compared to [21], the

major difference is that we provide a small, usable, bound

where [21] is impractical. We also provide a bound in slightly

more cases but these additional cases cover contrived examples

only. Actually, instead of just a bound on the number of

sessions, our algorithm provides a list of scenarios that need to

be considered. Each scenario corresponds to a precise number

of replications of each role of the protocol, possibly truncated.

For example, maybe an attack needs two replications of role B

and only twice the two first steps of role A. This more precise

information can be helpful when running tools for the protocol

analysis.

We prove that our algorithm is correct: if there is an attack,

then there is an attack covered by one of the returned scenario.

The proof involves two main steps. First, we use the fact that

if there is an attack, then there is a well-typed attack, that is,

an attack where all the messages comply with the expected

format in the protocol. This result heavily relies on a previous

typing result [14], extended to else branches for reachability

properties. Then, in a second step, we need to show that our

algorithm explores all possible scenarios, that is, we show that

a well-typed attack of minimal size (minimal length and small

attacker steps) is necessarily covered by at least one of our

scenarios.

Implementation. We have implemented our procedure in a

tool HowMany that (i) first checks whether our assumptions, in

particular type-compliance, are satisfied, (ii) then recursively

computes, for each action of the protocol, how this action

can be reached from other steps of the protocol. This yields

the set of scenarios that need to be considered. If a loop

is detected, then no bound can be found. We experimented

our tool on several protocols of the literature. As already

noticed in [21], they all satisfy our assumptions, possibly

after tagging messages. For most protocols, HowMany can

find a bound of size 3 to 55 sessions, in the worst case. For

example, HowMany computes a bound of 3 sessions only for

the Denning-Sacco protocol, to be compared with the previous

1019 bound. Even in the case where 55 sessions may be needed

(for the Kao-Chow protocol), HowMany actually provides

finer grain information: one can either consider one scenario

with 55 sessions in parallel or, instead, 385 different scenarios

of at most 29 sessions each, and for which the analysis can

be done independently.

Discussion. Although they do not come with termination guar-

antees, tools like ProVerif [7] or Tamarin [30], dedicated to the

analysis of protocols for an unbounded number of sessions,

can already analyze efficiently the protocols considered in

our experiments. Hence, our first and main contribution is

theoretical: we hope to contribute to a better understanding on

the interplay between sessions and attacks. In particular, our

results show that yes, for standard protocols, it is possible to

find a reasonable bound on the number of sessions. Moreover,

our approach allows to extend the scope of existing tools de-

veloped for a bounded number of sessions such as Avispa [4],

Maude-NPA [26], DeepSec [12], or SAT-Equiv [19]. Despite

the state-explosion issue due to the intrinsic complexity (NP-

complete) of the bounded case, a major improvement has been

seen in the number of sessions that can be covered by these

tools. For example, DeepSec can analyze up to 10-50 sessions

for standard protocols of the literature. SAT-Equiv can even

analyze up to 60-400 sessions but covers a much smaller

fragment of protocols. Hence HowMany can be used as a

small add-on to these tools to conclude to the security of an

unbounded number of sessions when HowMany successfully

computes a bound. In our experiments, SAT-Equiv was able

to prove security for an unbounded number of sessions in all

cases, while DeepSec faces a time out (set to 24h) in about

15% of the cases and succeeds otherwise.

All files related to the implementation and case studies, as

well as the omitted proofs are available in [20].
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II. MODEL

A. Messages

As usual, messages are modeled with a term algebra. Private

data, such as private keys, private randomness and nonces,

are represented by a set of names N . Security protocols may

also use public data, like tags, or error messages, that are

represented by (public) constants of Σ0. Constants also model

other data known from the attacker, like corrupted private keys,

nonces generated by the attacker or her keys. For technical

reasons (related to the typing result [14]), the attacker is also

given non-atomic constants. We consider two sorts, atom and

bitstring. Any name in N is of the sort atom, while Σ0 is split

as Σ0 = Σatom
0 �Σbitstring

0 , where the constants in Σatom
0 are of

sort atom and the constants in Σbitstring
0 are of sort bitstring.

We assume an infinite number of names in N , constants

in Σatom
0 and constants in Σbitstring

0 , such that protocol agents

can always generate fresh nonces, and the attacker can always

generate new keys and create new messages. Messages (or

an unknown part of them) expected by a party of a protocol

are represented through variables in X . Another set W of

variables is used to refer to messages learnt by the attacker.

Most often, those messages result from an output. Typically,

variables in X are denoted x, y, z, whereas variables in W
are denoted w1,w2, . . . . Names in N are denoted n,m and k
or sk when they are keys, while constants are denoted a, b, c.
We refer to variables, names and constants through the generic

term of data, while the word atomic or atom shall be used only

for data of sort atom.

We also need to model cryptographic operations, like en-

cryption, decryption, mac, hash function,... These operations

are represented by function symbols. A signature Σ is a set

of function symbols with their arity. We distinguish between

three types of symbols. We consider constructor symbols like

encryption, in Σc, destructor symbols, like decryption, in Σd,

and test symbols, in Σtest, i.e. Σ = Σc�Σd�Σtest. The sets Σd

and Σtest do not contain constant symbols, i.e. function sym-

bols of arity 0. Given a signature Σ and a set of data D, the set

of terms built from Σ and D is denoted T (Σ, D). Constructor
terms on D are terms in T (Σc, D). We denote vars(u) the

set of variables that occur in a term u. A term is ground
if it contains no variable. Given a substitution σ, we denote

dom(σ) its domain, img(σ) its image, and uσ its application

to a term u. The positions of a term are defined as usual. Given

a term t, the function symbol occurring at position ε in t is
denoted root(t), and we denote St(t) the set of the subterms
of t. Two terms u1 and u2 are unifiable when there exists a

substitution σ such that u1σ = u2σ. The most general unifier

between u1 and u2 is denoted mgu(u1, u2).

Any constructor f comes with its sort, i.e.

f : (s1 × . . .× sn)→ s0

where n is the arity of f, s0 = bitstring, and si ∈
{atom, bitstring} for 1 ≤ i ≤ n. Given a constructor term

t ∈ T (Σc, D), p is an atomic position of t if it corresponds

to a position where an atom is expected, i.e., p = p′.i, t|p′ =
f(t1, . . . , tn), with f ∈ Σc : (s1 × . . . × sn) → s0 and

si = atom. We say that a constructor term t is well-sorted
if t|p ∈ N �X �Σatom

0 for any atomic position p of t, i.e. any
subterm is of the right sort.

Example 1. Public-key encryption, signature, and pair can be
modeled by considering Σex = Σex

c ∪ Σex
d ∪ Σex

test with:

• Σex
c = {aenc, pk, sign, vk, ok, 〈 〉};

• Σex
d = {adec, getmsg, proj1, proj2};

• Σex
test = {check}.

The symbols aenc and adec (both of arity 2) represent resp.
asymmetric encryption and decryption. The symbol pk (arity 1)
is the key function: pk(sk) is the public key associated to
the private key sk. Signatures are modeled with the symbol
sign (arity 2). We assume that the content of a signature can
be extracted (symbol getmsg of arity 1). Its validity can be
checked with check (arity 2). The symbol vk (arity 1) is again
a key function which modeled the verification key associated
to a signing key. Pairing is modeled using 〈 〉 (arity 2),
and projection functions are denoted proj1 and proj2 (both
of arity 1). The sort of our constructors are as follows:

aenc : bitstring × bitstring→ bitstring
pk : atom→ bitstring

sign : bitstring × atom→ bitstring
vk : atom→ bitstring
〈 , 〉 : bitstring × bitstring→ bitstring

Consider k, ska ∈ N and ekc ∈ Σ0 (all of sort atom), the
term u0 = aenc(sign(k, ska), pk(ekc)) is a constructor term
that represents an encryption (by the public key associated to
the private key ekc) of a signature. This private key is modeled
using a public constant, and is therefore known to the attacker.
The atomic position of u0 are p1 = 2.1 and p2 = 1.2, and
since ska and ekc are indeed atoms, u0 is well-sorted.

Our main result relies on a typing result established in [14],

and thus we need to consider a similar setting. In particular,

in [14], a notion of shape is introduced, whose purpose is

to describe the expected pattern of a message. For example,

if asymmetric encryption is represented by aenc(m, pk(k))
then it should not be applied to other keys, e.g. vk(k).
Formally, to each constructor function symbol f, we associate

a linear term f(u1, . . . , un) ∈ T (Σc,X ) denoted shf which

is called the shape of f. Shapes have to be compatible, i.e.

for any f(t1, . . . , tn) occurring in a shape, we have that

shf = f(t1, . . . , tn). A term is well-shaped if it complies with

the shapes, that is, any subterm of t, heading with a constructor
symbol f is an instance of the shape of f. More formally, a

constructor term t ∈ T (Σc,Σ0 ∪X ) is well-shaped if for any

t′ ∈ St(t) such that root(t′) = f, we have that t′ = shfσ
for some substitution σ. Given D ⊆ N ∪ Σ0 ∪ X , we denote

T0(Σc, D) the subset of constructor terms built over D that

are well-shaped and well-sorted. Terms in T0(Σc,N ∪Σ0) are
called messages.
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Example 2. Continuing Example 1, the shapes associated to
each constructor symbol are as follows:

aenc : shaenc = aenc(x1, pk(x2))
pk : shpk = pk(x2)

sign : shsign = sign(x1, x2)
vk : shvk = vk(x1)
〈 〉 : sh〈 〉 = 〈x1, x2〉

It is easy to see that these shapes are compatible. The term
u0 = aenc(sign(k, ska), pk(ekc)) is well-sorted and well-
shaped thus in T0(Σc,N ∪Σ0), whereas aenc(k, ekc) is well-
sorted but not well-shaped.

To model the effect of destructors, we use a set R of

rewriting rules built from Σ.

Example 3. The properties of the primitives given in Exam-
ple 1 are reflected through the following rewriting rules:

adec(aenc(x, pk(y)), y) → x
getmsg(sign(x, y)) → x

check(sign(x, y), vk(y)) → ok

proj1(〈x, y〉) → x
proj2(〈x, y〉) → y

Given a set R of rewriting rules, a term u can be rewritten
in v using R if there is a position p in u, and a rewriting rule

g(t1, ..., tn)→ t in R such that u|p = g(t1, . . . , tn)θ for some

substitution θ, and v = u[tθ]p, i.e. u in which the subterm at

position p has been replaced by tθ. Moreover, we assume that

t1θ, . . . , tnθ as well as tθ are messages, in particular they do

not contain destructor symbols. We consider sets of rewriting

rules that yield convergent rewriting systems. As usual, we

denote →∗ the reflexive-transitive closure of →, and u↓ the

normal form of a term u.

An attacker builds his own messages by applying public

function symbols to terms he already knows and that are

available through variables in W . Formally, a computation

done by the attacker is a recipe, i.e. a term in T (Σ,W �Σ0).

Example 4. The set of rewriting rules given in Example 3
yields a convergent rewriting system. We have that:

v = getmsg(adec(u0, ekc))→ getmsg(sign(k, ska))→ k

Therefore, we have that v↓ = k. The term R0 =
getmsg(adec(w1, ekc)) with w1 ∈ W is a recipe.

B. Protocols

Our process algebra is inspired from the applied pi calcu-

lus [1], [2]. Our setting allows both pattern matching on the

input construct and explicit filtering using the match construct.

We assume an infinite set Ch of channels and an infinite

set L of labels. We consider processes built using the following

grammar:

P, P1, . . . , Pj , Q :=
0 null process

| inα(c, u).P input

| outα(c, u).P output

| new n.P name generation

| P | Q parallel

| i : P phase

| !P replication

| new c′.out(c, c′).P channel generation

| matchxwith filtering

(u1 → P1 | . . . | uj → Pj)

where α ∈ L, u, u1, . . . , uk ∈ T0(Σc,Σ0�N �X ), c, c′ ∈ Ch,
n ∈ N , and i, j ∈ N. Given a process P , we denote fv(P )
the set of its free variables, i.e. those not bound by an input,

nor by a filtering in a match construct. A protocol is a process
with no free variable and with distinct labels.

Example 5. Consider the following process P :

P = in(c, x).matchxwith
(
f(y)→ out(c, ok)
| y′ → out(c, error)

)
This process represents an agent who is waiting for a message.
If the message received is of the form f(y) (for some value
of y), the constant ok will be sent. Otherwise, an error
message will be emitted. The match construct is used to model
conditional branching. We have that fv(P ) = ∅. Indeed, the
variable x is bound by the input construct, and y (resp. y′) is
bound by the filtering f(y) (resp. y′) in the match construct.

The construct inα(c, u) and outα(c, u) are the usual input

and output actions, except that they are now decorated with

labels α. These labels have no impact on the semantics of

processes. They are used to refer to a precise action of a

process and will be necessary to reason on the number of

sessions needed for an attack. The construct new n.P generates

a new name n and proceeds as P . The parallel composition

of two processes P and Q is built as P | Q. We consider

phases in our setting. They are useful to model protocols that

have several phases, for example some general setup followed

by the actual start of the main part of the protocol. A process

i : P may only react at phase i and can be discarded once the

phase is strictly greater than i.
As usual, replication of processes is denoted !P . We con-

sider a special construction to introduce a fresh public channel:

new c′.out(c, c′).P generates a new channel c′ and immedi-

ately publishes it on c. This is to allow for the generation of

public channels while private channels are not considered in

our setting. Finally, matchxwith (u1 → P1 | . . . | uj → Pj)
will try to unify the content of x with u1, . . . , uj (in order)

and will proceed as Pi as soon as one successful unification

is found for some ui.

Example 6. We consider a variant of the signature-based
Denning-Sacco protocol as given in [8]. The protocol aims at
ensuring the secrecy of the key k freshly generated by agent A
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and sent to B relying on signature and asymmetric encryption.
Informally, we have that:

A→ B : aenc(sign(k, ska), pk(ekb))

As shown in [8], this variant is vulnerable to an attack. Indeed,
a dishonest agent C may reuse a signature sign(kc, ska) sent
by A to him to fool an honest agent B (see Example 7 for
more details).

The two roles of A and B are represented by the following
processes:

PA = new k.outα1(c, aenc(sign(k, ska), pk(ekb)))

PB = inβ1(c, aenc(sign(x, ska), pk(ekb)))

where k, ska, ekb ∈ N and x ∈ X . Then, the whole protocol
is modeled by the parallel composition of these (replicated)
processes, with an extra process PK that reveals public keys
to the attacker, i.e.

PDS = 1 :!PA | 1 :!PB | 0 : PK

with PK = outγ1(c, pk(ekb)).outγ2(c, vk(ska)).
Of course, we may want to consider a richer scenario

involving a dishonest agent c. In this case, we can consider
in addition the following processes (here ekc ∈ Σ0):

P ′A = new k′.outα
′
1(c, aenc(sign(k′, ska), pk(ekc)))

P ′B = inβ
′
1(c, aenc(sign(x′, ska), pk(ekc)))

yielding to the protocol P ′DS = PDS | 1 :!P ′A | 1 :!P ′B .
Note that ekc is known to the attacker since ekc ∈ Σ0.

The operational semantics of a process is defined as a rela-

tion over configurations. A configuration is a tuple (P;φ;σ; i),
with i ∈ N, such that:

• P is a multiset of processes.

• φ is a frame, that is a substitution with a (finite) domain

dom(φ) ⊂ W , and such that img(φ) only contains

messages. Intuitively, φ corresponds to messages sent on

the (public) network.

• σ is a substitution such that fv(P) ⊆ dom(σ), and

img(σ) only contains messages. It represents the current

instantiation of protocol variables.

By abuse of notation, given a protocol P , we will write P for

the configuration ({P}, ∅, ∅, 0).

The relation
�−→ defining the operational semantics is de-

scribed in Figure 1 and follows the intended semantics. Note

that a process with a match is blocked if no possible match

is found in the list of ui. For the sake of conciseness, we

sometimes write P � P instead of {P} � P .
An action (or a step) is said visible when it is dif-

ferent from τ . The relation
�1...�n−−−−→ between configurations

(where �1 . . . �n is a sequence of actions) is defined as the

transitive closure of
�−→. Given a sequence of visible actions tr

and two configurations K and K′, we write K tr
==⇒ K′ when

there exists a sequence �1 . . . �n such that K �1...�n−−−−→ K′ and tr
is obtained from �1 . . . �n by erasing all occurrences of τ .

Given a configuration K = (P;φ;σ; i), we denote trace(K)
the set of traces defined as:

trace(K) = {(tr, φ′) | K tr
==⇒ (P ′;φ′;σ′; i′)

for some configuration (P ′;φ′;σ′; i′)}.
Note that, by definition of trace(K), we have that trφ↓ only

contains messages for any (tr, φ) ∈ trace(K).
Example 7. Continuing Example 6, we have that (tr0, φ0) ∈
trace(P ′DS) where:

tr0 = outγ1(c,w0).phase 1.out
α′

1(c,w1).in
β1(c, R1);

φ0 = {w0 	 pk(ekb),w1 	 aenc(sign(k, ska), pk(ekc))}

The recipe R1
def
= aenc(adec(w1, ekc),w0) means that the

attacker decrypts the message he received (from A) and he
re-encrypts it with the public-key of B. Note that R1φ0↓ =
aenc(sign(k, ska), pk(ekb)), and thus B will accept this mes-
sage thinking that the key k is a secret shared with him and
the agent A. However, we have that R0φ0↓ = k meaning
that this key is actually known by the attacker (with R0 =
getmsg(adec(w1, ekc))).

C. Equivalence

Some security properties are expressed as equivalence prop-

erties where the attacker wins if she can distinguish between

two scenarios. For example, Alice is traceable if an attacker

can distinguish the case where Alice is taking part several

times in a protocol from the case where different users are

involved.

First, we say that an attacker can distinguish between two

sequences of messages φ1 and φ2 if she can construct a test

that holds in φ1 and not φ2. She can also distinguish if some

evaluation (e.g. a decryption) succeeds in φ1 and not φ2.

Definition 1. Two frames φ1 and φ2 are in static inclusion,
written φ1 �s φ2, when dom(φ1) = dom(φ2), and:
• for any recipe R, we have that Rφ1↓ is a message implies

that Rφ2↓ is a message; and
• for any recipes R,R′ such that Rφ1↓, R′φ1↓ are mes-

sages, we have that: Rφ1↓ = R′φ1↓ implies Rφ2↓ =
R′φ2↓.

They are in static equivalence, written φ1 ∼s φ2, if φ1 �s φ2
and φ2 �s φ1.

Then we can define trace equivalence between configura-

tions K and K′: any trace of a configuration K should have

a corresponding trace in K′ with the same visible actions and

such that their frames are in static equivalence.

Definition 2. A configuration K is trace included in a config-
uration K′, written K �t K′ , if for every (tr, φ) ∈ trace(K),
there exists (tr′, φ′) ∈ trace(K′) such that tr =L tr′ (where
=L is equality without taking into account labels from L), and
φ �s φ

′. They are in trace equivalence, written K ≈t K′, if
K �t K′ and K′ �t K.

This notion of trace equivalence slightly differs from the

original one (given e.g. in [11]), where the frames are required
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IN (i : inα(c, u).P � P ;φ;σ; i) inα(c,R)−−−−−→ (i : P � P ;φ;σ � σ0; i)
where R is a recipe such that Rφ↓ is a message, and Rφ↓ = (uσ)σ0 for σ0 with dom(σ0) = vars(uσ).

OUT (i : outα(c, u).P � P ;φ;σ; i) outα(c,w)−−−−−−→ (i : P � P ;φ � {w 	 uσ};σ; i)
with w a fresh variable from W , and uσ is a message.

NEW (i : new n.P � P ;φ;σ; i) τ−→ (i : P{m/n} � P ;φ;σ; i)
where m ∈ N is a fresh name.

NULL (i : 0 � P ;φ;σ; i) τ−→ (P;φ;σ; i)
PAR (i : (P | Q) � P ;φ;σ; i) τ−→ (i : P � i : Q � P ;φ;σ; i)
REP (i :!P � P ;φ;σ; i) τ−→ (i : P ′ � i :!P � P ;φ;σ; i)

with P ′ a copy of P where bound variables are renamed.

OUT-CH (i : new c′.out(c, c′).P � P ;φ;σ; i) out(c,c′′)−−−−−→ (i : P{c′′/c′} � P ;φ;σ; i)
where c′′ is a fresh channel name.

MATCH ({i : matchxwith (u1 → P1 | . . . | uj → Pj)} � P ;φ;σ; i) τ−→ (i : Pj0 � P ;φ;σ � σ0; i)
where j0 is the smallest index such that xσ and uj0σ unify and σ0 = mgu(xσ, uj0σ).

MOVE (P;φ;σ; i) phase i′−−−−→ (P;φ;σ; i′) with i′ > i.

PHASE (i : i′ : P � P ;φ;σ; i) τ−→ (i′ : P � P ;φ;σ; i)
CLEAN (i : P � P ;φ;σ; i′) τ−→ (P;φ;σ; i′) when i′ > i.

Fig. 1. Semantics for processes

to be in static equivalence φ ∼s φ
′ instead of static inclusion

φ �s φ
′. Actually, these two notions of equivalence coincide

for determinate protocols [9], and in particular for the class

of simple protocols that will be introduced later on (see

Definition 9) when considering the case of equivalence.

III. ASSUMPTIONS

We consider two main assumptions in our setting. First,

we cannot consider arbitrary primitives. Instead, we propose a

generalization of decryption-encryption rules that allows us to

consider all standard primitives and a few additional ones. One

advantage of this generalization is not really its expressivity

(we are not much more general than the standard primitives)

but its flexibility. For example, encryption can be randomized,

several encryption or hash functions can be considered, etc.

We could consider a (long) list of decryption-like rules but

this would render the proofs unnecessarily cumbersome, with

dozen of cases to be considered. Our second main assumption

is the fact that protocols must be type-compliant, which

intuitively guarantees that each two encrypted messages of

the protocol that can be unified have the same type.

A. Shaped rewriting systems

Our main result relies on the fact that, thanks to [14], we

can consider only some particular form of traces (well-typed).

Hence we need to consider a similar setting. We consider

rewriting rules that apply a symbol in Σd � Σtest on top of

constructor terms that are linear, well-sorted, and well-shaped.

Moreover, we strictly control the non-linearity of the rules,

and we assume the standard subterm property, as recalled

below. More formally, our set R is divided into two parts,

i.e. R = Rd �Rtest, and for each symbol g ∈ Σd �Σtest, we

assume there is exactly one rule of the form l −→ r such that:

1) l = g(t1, . . . , tn) where each ti is either a variable or

equal to shroot(ti) up to a bijective renaming of variables;

2) either l is a linear term, or there is a unique variable x
with several occurrences in l and:

• l = g(f(t11, . . . , t
k
1), t2, . . . , tn);

• {x} ⊆ {tjx1 , t2, . . . , tn} ⊆ {x}∪{f(x) | f ∈ Σc} for
some jx;

• x occurs exactly once in tjx1 , in atomic position, and

does not occur in the other tj1 for j �= jx.

We denote lg −→ rg the rewriting rule in R associated to the

symbol g ∈ Σd�Σtest. Then, we assume that for any g ∈ Σtest,

the associated rule lg → rg is such that rg ∈ T0(Σc, ∅). In this

case, lg → rg is a rule of Rtest. When g ∈ Σd, we assume

that the associated rule g(t1, . . . , tn) → rg is such that rg is

a direct and strict subterm of t1, i.e. t1 = f(t11, . . . , t
k
1) with

f ∈ Σc, and rg = tj
′

1 for some j′ ∈ {1, . . . k}. In this case,

lg → rg is a rule of Rd.

Lastly, we assume the existence of at least one non linear

rule in R. This last assumption is needed for the typing result

stated and proved in [14], and is satisfied as soon as a rewriting

rule modeling e.g. symmetric (or asymmetric) encryption is

present in R. A rewriting system satisfying our conditions is

called a shaped rewriting system. In what follows, we only

consider shaped rewriting systems.

All standard primitives such as symmetric and asymmetric

encryption, signatures, mac, hash, can be modeled as shaped

rewriting systems. We can also consider a few more primitives.
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Example 8. The rewriting system given in Example 3 is a
shaped rewriting system. We can also consider encryption
schemes where 1 out of n keys suffices to decrypt, with
rewriting rules of the form:

adec1(aenc(y, pk(x), pk(x
′)), x) → y

adec2(aenc(y, pk(x
′), pk(x)), x) → y

However, adding a rewriting rule:

samekey(aenc(x1, pk(x)), aenc(x2, pk(x)))→ ok

allowing one to check whether two ciphertexts have been
produced relying on the same key does not satisfy our
requirements since the left-hand-side is not linear, and
aenc(x2, pk(x)) is not of the form f(x).

B. Type compliance

Intuitively, types allow us to specify the expected structure

of a message.

Definition 3. A (structure-preserving) typing system is a pair
(Δinit, δ) where Δinit is a set of elements called initial types,
and δ is a function mapping data in Σ0 � N � X to types τ
generated using the following grammar:

τ, τ1, . . . , τn = τ0 | f(τ1, . . . , τn) with f ∈ Σc and τ0 ∈ Δinit

Then, δ is extended to constructor terms as follows:

δ(f(t1, . . . , tn)) = f(δ(t1), . . . , δ(tn)) with f ∈ Σc.

Example 9. We consider the typing system (ΔDS, δDS) gener-
ated from the set ΔDS = {τska, τekb, τekc, τk} of initial types,
and such that:
• δDS(k) = δDS(k

′) = δDS(x) = δDS(x
′) = τk, and

• δDS(xx) = τxx for xx ∈ {ska, ekb, ekc}.
Consider a configuration K and a typing system (Δinit, δ),

an execution K tr
==⇒ (P;φ;σ; i) is well-typed if σ is a well-

typed substitution, i.e. every variable of its domain has the

same type as its image.

In [14], protocols are defined to be type-compliant if any

two unifiable encrypted subterms are of the same type. “En-

crypted” means any term headed by a constructor symbol that

cannot be opened freely, such as encryption. Conversely, some

constructors are transparent in the sense that they can be

opened without any extra information, such as pairs, tuples, or

lists. Formally, a constructor symbol f of arity n is transparent
if there exists a term f(Rf

1, . . . , R
f
n) ∈ T (Σ,�) such that for

any term t ∈ T0(Σ,Σ0 � N � X ) such that root(t) = f, we
have that f(Rf

1, . . . , R
f
n){�→ t}↓ = t.

We write ESt(t) for the set of encrypted subterms of t,
i.e. the set of subterms that are not headed by a transparent

function.

ESt(t) = {u ∈ St(t) | u is of the form f(u1, . . . , un)

and f is not transparent}

Since replicated processes can produce several messages

with a similar structure, we define the k-unfolding unfoldk(P )
of the replicated process P as a finite version of P such

that each replication has been unfolded exactly k times. For

instance, we have that unfold1(P ) is the process obtained

from P by simply removing the ! operator whereas unfold0(P )
is the process obtained from P by removing parts of the

process under a replication.

Example 10. The encrypted subterms occurring in the 2-
unfolding of P ′DS are:

• pk(ekb), vk(ska);
• sign(ki, ska), aenc(sign(ki, ska), pk(ekb));
• sign(xi, ska), aenc(sign(xi, ska), pk(ekb));
• sign(k′i, ska), aenc(sign(k

′
i, ska), pk(ekc));

• sign(x′i, ska), aenc(sign(x
′
i, ska), pk(ekc))

where indices i ∈ {1, 2} are used to distinguish
names/variables coming from different unfoldings. They are
given the same type: δDS(k1) = δDS(k2), etc

Definition 4. A protocol P is type-compliant w.r.t. a typing
system (Δinit, δ) if

• for every t, t′ ∈ ESt(unfold2(P )) we have that t and t′

unifiable implies that δ(t) = δ(t′).
• for every construction matchxwith (u1 → P1 | . . . |
uj → Pj) occurring in P , we have that δ(x) = δ(u1) =
. . . = δ(uj).

Example 11. Continuing our running example, we have
that P ′DS (and PDS as well) is type-compliant w.r.t. (TDS, δDS)
given in Example 9. Indeed, since ki, k′i, and xi, x′i (with
i ∈ {1, 2}) are given the same type, we have that any two
unifiable encrypted subterms occurring in unfold2(P

′
DS) (those

terms are listed in Example 10) have the same type.

Compared to [14], we have generalized the definition to the

match construct (see item 2 - Definition 4). We give here an

example showing that it was necessary to obtain a typing result

for reachability.

Example 12. Consider the process P introduced in Exam-
ple 5. Obviously, it is possible to reach out(c, ok) with the
trace tr = in(c, f(a)). Assume δ(x) = δ(y) = δ(y′) =
τ0 ∈ Δinit. As there is only one encrypted subterm in P , the
typing system satisfies the first item of Definition 4. However,
tr is not well-typed for P . More importantly, any trace that
allows to reach out(c, ok) must unify x and f(y). Thus, it
will only be well-typed if δ(x) = δ(f(y)). For a (structure-
preserving) typing system, it implies that δ(x) = f(δ(y)). In
particular, there is no well-typed attack trace for the typing
system we have defined. Note that the condition δ(x) = f(δ(y))
is guaranteed by the second item of Definition 4.

Extending the result of [14], we obtain that for any type-

compliant protocol, we can restrict our attention to well-typed

traces. We define tr obtained from tr by replacing any action

inα(c, R) by inα(c, _), any outα(c,w) by outα(c, _), while
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phase i and out(c, c′) actions are left unchanged. Intuitively,

we only keep the type of actions, and the channels.

Theorem 1. Let P be a protocol type-compliant w.r.t.
(Δ0, δ0). If P

tr
==⇒ (P;φ;σ; i) then there exists a well-typed

execution P tr′
==⇒ (P;φ′;σ′; i) such that tr′ = tr.

Of course, this theorem will have more effect when the type

system is as precise as possible, for example distinguishing

between several classes of constants or stating that some

variables can be typed as atomic constants.

Example 13. The execution corresponding to the trace given
in Example 7 is well-typed. Indeed, the resulting substitution
is σ = {x �→ k} and we have that δDS(x) = δDS(k) = τk.

IV. COMPUTATION OF A TIGHT BOUND

Our main contribution is a procedure that, given a proto-

col, computes a (tight) over-approximation of the number of

sessions that need to be considered to find an attack. More

precisely, to each trace corresponds a multiset of labels. Our

procedure computes (an over-approximation of) the possible

multisets of actions that can occur in minimal attack traces.

A. Dependencies

Message dependencies. One key step of our procedure con-

sists in inspecting, for each term output by the protocol,

what are the type of the terms that can be deduced from it.

More formally, given a type τ , we compute a set of tuples

(τ ′, p)#S. Intuitively, each tuple (τ ′, p)#S indicates that a

term of type τ ′ may be deduced, at position p, from terms of

type τ , provided the attacker knows some terms whose types

are contained in S (as multiset inclusion).

Definition 5. Given a type τ , we define ρ(τ) to be ρ(τ, ε, ∅)
where ρ(τ, p, S) is recursively defined as the set {(τ, p)#S}∪
E where E = ∅ when τ is an initial type. Otherwise, τ =
f(τ1, . . . , τk) and E is defined as:

E =
⋃

g(�1, . . . , �n) → rg ∈ Rd

θ = mgu(�1, f(τ1, . . . , τk))
i0 ∈ {1, . . . , k} is such that rg = �1|i0

ρ(τi0 , p.i0, S � {�2θ, . . . , �nθ})

Example 14. Let τmsg
def
= aenc(sign(τk, τska), pk(τekb)).

First the element (τmsg, ε)#∅ is in ρ(τmsg), and we are
left to compute ρ(sign(τk, τska), 1, {τekb}) since the rule
adec(aenc(y, pk(x)), x) → y is the only one that can be
applied to extract a message from a ciphertext. Then, we have
that:

ρ(sign(τk, τska), 1, {τekb}) =
{
(sign(τk, τska), 1)#{τekb}
(τk, 1.1)#{τekb}

}

This last element represents the fact that a message of type τk
can be extracted from a signature at position 1 using the rule
getmsg(sign(x, y))→ x, and this does not require additional
knowledge. The set ρ(τmsg) contains 3 elements.

In order to compute a tighter bound, we will sometimes

skip the computation of some dependencies, for some marked

position. A marked position of a protocol P w.r.t. a typing

system (Δ0, δ0) is a pair (α, p) where outα(c, u) is an output

action occurring in P , and p is a position of the term δ0(u).
For the rest of this section, we will assume given a set of

marked position and we will explain later on how to soundly

mark positions. By default, the reader may simply assume that

no position is marked.

Sequential dependencies. Another, simpler, type of depen-

dencies is sequential dependency: some action may occur

only if the previous steps of the same process have been

executed. We let pred(α) be the first visible action that occurs

before the action labeled by α. More formally, a process P
can be seen as a tree whose nodes are actions in(c, u),
out(c, u), new n, |, etc, and vertices are there to indicate the

continuation of the process. For instance, a node labeled with

the action “match x with” will have j sons representing the j
branches of the match construct. Then, given an action of the

form inα(c, u) (resp. outα(c, u′)), we denote pred(α) its first
predecessor that corresponds to an input/output of a message

(not a channel name). We have that pred(α) = ⊥ if there is

no such predecessor in the tree.

We also introduce the notion of cv-alien types, that are types
that do not appear as type of the constants and variables in

the protocol under study.

Definition 6. Consider a protocol P and a typing system
(Δ0, δ0). A type τh is cv-alien for P if τh is a type alien
w.r.t. the constants and variables of P , that is, τh �= δ0(a) for
any constant/variable a ∈ Σ0 ∪ X occurring in P .

We say that a term is cv-alien-free if it does not contain
any constant from Σ0 of cv-alien type. This notion is lifted to
traces, frames, configurations and executions as expected.

We will show that the attacker may only use cv-alien-free

terms since it is not useful to introduce constants whose type

does not appear in the protocol.

Example 15. Continuing our running example, we have that
τska and τekb are cv-alien type. Actually, we have that any type
but τk and τekc is a cv-alien type. Regarding τk, this comes
from the fact that δDS(x) = δDS(x

′) = τk (see Example 9).

B. Main procedure

We assume given a protocol P type-compliant w.r.t. a typing

system. We propose a procedure, denoted dep, that, given a

label α occurring in P , computes dep(α), a set of multisets

of labels. Each multiset of labels represents the sessions that

may be needed to reach label α.

We first introduce the operation ⊗ to compute some kind of

“cartesian product” on two sets of multisets. The result is not

a pair of multisets but instead we merge the two components
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of each pair to obtain a multiset. Formally,

{a1, . . . , ak} ⊗ {b1, . . . , bl} def
={

a1 � b1, a1 � b2, . . . , a1 � bl,
a2 � b1, a2 � b2, . . . , a2 � bl,

...

ak � b1, ak � b2, . . . , ak � bl
}

where a1, . . . , ak, b1, . . . , bl are multisets of labels. Note that

given a multiset set S, we have that: S⊗{∅} = {∅}⊗S = S,
and S ⊗ ∅ = ∅ ⊗ S = ∅.

We define inductively a family of functions depi on labels

and types as follows: depi(⊥) = {∅}; and
If α is an output, i > 0,

• dep0(α) = ∅,
• depi(α) = {{α}} ⊗ depi−1(pred(α)).

If α is an input of type τ , i > 0,

• dep0(α) = ∅,
• depi(α) = {{α}} ⊗ depi−1(pred(α))⊗ depi−1(τ).

The definition of depi is extended as expected to multisets:

depi(S) =
⋃
α∈S

depi(α)

When depi is applied to a type, we need a family of auxiliary

functions Si
out, inductively defined as follows, i ≥ 0:

Si
out(τ) =

⋃
outα(c, u) occurring in P

(τ, p)#{τ1, . . . , τn} ∈ ρ(δ0(u))
(α, p) not marked

(
depi(α)⊗ depi(τ1)⊗ . . .⊗ depi(τn)

)

Intuitively, Si
out(τ) explores all the possibilities to extract a

term of type τ . Then, we define dep0(τ) = ∅ when τ is a

cv-alien type; dep0(τ) = {∅} otherwise. The reason is that if

there is an attack trace, then there is one which is well-typed

and which does not involve any constant of cv-alien type.

Thus, there is no need to consider this case when exploring

all the possibilities to build a term having such a type, and thus

dep0(τ) = ∅. Otherwise, we have to consider the case where

the term of type τ is a constant known by the attacker, and this

does not lead to further dependencies, thus dep0(τ) = {∅}.
Finally, for any i > 0, we let:

• depi(τ) = dep0(τ) ∪ Si−1
out (τ) for an initial type τ ,

• depi(τ) = dep0(τ) ∪ Si−1
out (τ)∪(

{∅}⊗depi−1(τ1)⊗ . . .⊗ depi−1(τk)
)

for a non-initial type τ of the form f(τ1, . . . , τk).

Note that a set depi(α) can only increase with i. More

formally, for any type τ and any label α, we have that:

depi(τ) ⊆ depi+1(τ) depi(α) ⊆ depi+1(α)

Si
out(τ) ⊆ Si+1

out (τ)

since A1 ⊗ · · · ⊗An ⊆ B1 ⊗ · · · ⊗Bn when Ai ⊆ Bi.

β2 {β2, β1, α1}

β1 {β1, α1}

τk {∅}

α1{α1} τekb ∅

τmsg {α1}

α1{α1}

α1

sign(τk, τska)∅

...

pk(τekb)

τekb ∅

...

τk τska ∅

τk

τekbα1

τk τskaα1 τekb

τmsg

pk(τekb)sign(τk, τska)

τ dep0(τ) = ∅
pruning of the graph

x Set dep(x) = {Set}
...

does not need to be computed

Fig. 2. Computation of dep(β2).

Hence we define dep(τ) (resp. Sout(τ)) as the limit of the

depi(τ) (resp. Si
out(τ)), that is,

dep(τ) =
∞⋃
i=0

depi(τ) Sout(τ) =
∞⋃
i=0

Si
out(τ)

We see the interest of cv-alien type in the definition of dep0:
dep0(τ) = ∅ if τ is a cv-alien type. Hence, if no term of

type τ can be extracted from the outputs of the protocol (i.e.

Sout(τ) = ∅), we have that dep(τ) = ∅, and simplifications

arise since S ⊗ ∅ = ∅.
Example 16. Continuing our running example, we may want
to consider the secrecy of the key k as received by B. To
encode this property, we add an action at the end of process
PB , that checks whether the key can transit in clear on the
network, yielding process

P+
B = inβ1(c, aenc(sign(x, ska), pk(ekb))).inβ2(c, x).

We modify PDS accordingly (with P+
B ), yielding P+

DS. Note
that, even if P+

DS does not involve the dishonest agent c, the
protocol features replication, and thus the question of deciding
whether an action labelled β2 is reachable is not trivial.
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In order to compute dep(β2), we first remark that τska and
τekb are cv-alien types, as explained in Example 15. Therefore,
since Sout(τska) = Sout(τekb) = ∅, we have that dep(τska) =
dep(τekb) = ∅. Then, we have that Sout(sign(τk, τska)) = ∅,
and thus dep(sign(τk, τska)) = ∅.

We now follow the dep algorithm step by step, as illustrated
in Figure 2.

dep(β2) = {{β2}} ⊗ dep(β1)⊗ dep(τk)
= {{β2, β1}} ⊗ dep(τmsg)⊗ dep(τk)

Actually Sout(τk) = ∅, and thus dep(τk) = {∅}. We have
seen in Example 15 that τk is not of cv-alien type, and thus
dep0(τk) = {∅}.
We have also that:

dep(τmsg) = {∅} ⊗ dep(sign(τk, τska))⊗ dep(pk(τekb))
∪ Sout(τmsg).

To conclude, it is sufficient to see that:
• Sout(τmsg) = dep(α1) = {{α1}}; and
• dep(sign(τk, τska)) = {∅} ⊗ dep(τk)⊗ dep(τska)

∪ Sout(sign(τk, τska))
= ∅

Hence, finally, we have that dep(β2) = {{β2, β1, α1}}.
C. Correctness of the bound

We denote Label(tr) the multiset of labels (from L) occur-
ring in tr. The algorithm dep(α) computes an upper bound

of the actions/labels that need to be considered to reach some

action labeled α.

Theorem 2. Let P be a protocol type-compliant w.r.t. some
typing system (Δ0, δ0). Let α be a label of P and as-
sume (tr.�, φ) ∈ trace(P ) for some tr, �, φ such that
Label(�) = {α}. Then there exists tr′, �′, φ′, and A ∈ dep(α)
such that (tr′.�′, φ′) ∈ trace(P ) with Label(�′) = {α}; and
Label(tr′.�′) ⊆ A.

This theorem shows that it is sufficient to consider traces

with labels in dep(α) to access an action labeled by α. Secrecy
can easily be encoded with such an accessibility property,

introducing some special action α0 that can be reached only

if the secret is known to the attacker.

Example 17. Continuing our running example, and thanks to
Theorem 2, it is sufficient to consider one instance of PA, and
one instance of P+

B when looking for an attack on the secrecy
in P+

DS. In particular, no need to unfold replications more than
once, and no need to consider process PK .

Let us now consider a modified process P ′DS, that now
includes a session between the server, the initiator, and a
dishonest agent c. After applying dep recursively, we get:

dep(β2) =

{
{β2, β1, α1, α

′
1},

{β2, β1, α′1, α′1, γ1}

}

In other words, to analyze secrecy of k in this richer scenario,
we can restrict ourselves to two simple scenarios. The first
one requires only one instance of the roles P+

B , PA and P ′A.

The second one involves half of the process PK (only the
first action can be triggered), one instance of P+

B , and two
instances of P ′A (initiator role played by a with the dishonest
agent c).

We prove our Theorem 2 in two main steps.

(i) We first rely on type-compliance and the typing result

given in [14], extended here to deal with processes with match

construct. As stated in Theorem 1, this allows us to restrict

our attention to well-typed traces. Actually, we further show

that traces can be assumed to be cv-alien-free, and to only

involve simple recipes (some constructors are applied on top

of recipes that are almost destructor-only)1. Lastly, we show

that each message of such traces can be computed as soon as

possible (asap). Intuitively, recipes should refer to the earliest

occurrence of a message. More formally, we have that:

Definition 7. Let φ be a frame with a total ordering < on
dom(φ), and m be a message such that Rφ↓ = m. We say
that R is an asap recipe of m if R is minimal among the
recipes {R′ | R′φ↓ = m} for the following measure: for
any two recipes R and R′, we have R < R′ if, and only
if, vars#(R) <mul vars

#(R′), where vars#(R) denotes the
multiset of variables occurring in R, and <mul is the multiset
extension of <.

(ii) Second, our procedure dep is used to consider all the

possible ways of deducing a term of a certain type τ (or reach-

ing a specific action α). This is done by considering all the

sequential dependencies, and all the message dependencies.

For this, we heavily rely on the fact that our witness only

involves simple recipes. We thus know the shape of these

recipes, and compliance with types also imposes us some

restrictions that are exploited in our procedure.

D. Marking criteria

We mainly consider two marking criteria. First, we mark any

position p occurring in an output out(c, u) such that δ0(u)|p
is a public type.

Definition 8. Given a protocol P and a typing system
(Δ0, δ0). A type τp is public if for any name n occurring
in P , we have that δ0(n) �∈ St(τp).

Actually, a public type is a type for which all the terms

of this type are known by the attacker from the beginning

(in a well-typed cv-alien-free execution). Thus, we can safely

ignore those terms when computing dep.

Second, we also mark any position p occurring in an output

out(c, u) when an occurrence of u|p already occurs in the

process (before the output under consideration) and it was

less protected. The intuition is that an attacker who will try to

deduce each term as soon as possible, will never use this output

out(c, u) to extract u|p. We illustrate this second criterion

through an example.

1A formal defintion is given in Appendix
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Example 18. Consider the following process:

P = inα(c, senc(〈req, x〉, k)).outβ(c, senc(〈rep, x〉, k)).
We can safely mark (β, 1.2) corresponding to the term x which
is protected by k.

We formally show that our two marking criteria are sound,

namely that we can safely ignore marked positions in dep. In
other words, we show that Theorem 2 still holds with these

two criteria.

V. EXTENSION TO EQUIVALENCE PROPERTIES

We can also bound the number of sessions in case of

equivalence properties. We however consider a more restricted

class of protocols, without the match construct (hence without

else branches) and with a simple structure: each process emits

on a distinct channel. This corresponds to the case, common

in practice, where sessions can be identified, for example with

session identifiers. More formally, we consider the class of

simple protocols.

Definition 9. A simple protocol P is a protocol of the form

!new c′1.out(c1, c
′
1).B1 | . . . | !new c′m.out(cm, c

′
m).Bm

| Bm+1 | . . . | Bm+n

where the channel names c1, . . . , cn, cn+1, . . . , cn+m are pair-
wise distinct, and each Bi with 1 ≤ i ≤ m (resp. m < i ≤
m+n) is a ground process on channel c′i (resp. ci) built using
the following grammar:

B := 0 | inα(c′i, u).B | outα(c′i, u).B | new n.B | j : B
where u ∈ T0(Σc,Σ0 ∪N ∪ X ), α ∈ L, and j ∈ N.

Note that our definition of simple protocol assumes a fresh,

distinct channel for each session. In particular, two sessions of

the same process will use different channels. Hence our model

does not assume that the attacker can identify an agent across

different sessions, this will depend on the protocol. Therefore

simple processes can still be used to model anonymity or

unlinkability properties.

A. Our procedure

The computation of dep for reachability properties no longer

suffices for equivalence properties. Indeed, the attacker not

only may need several sessions to reach some interesting

step of the protocol, but may also need to deduce auxiliary

information to mount a test that allows her to distinguish

between two protocols. Hence, the computation of dep will

now also depend on the rewriting rules in Rtest.

Formally, we keep our definition of dep on labels and types

and we extend it to protocols. We define:

dep(P ) = {∅} ∪ Sreach(P ) ∪ Stest(P ) ∪ Scheck(P )

where Sreach, Stest, and Scheck are given in Figure 3.

Intuitively, dep(P ) explores the different cases where trace

inclusion of P in some protocol Q may fail. The first case

is when some action can be reached in P but not in Q. The

Sreach(P ) =
⋃

α∈Label(P )

dep(α)

Stest(P ) =
⋃

τ∈St(δ0(P ))

dep(τ)⊗ S+
out(τ)

Scheck(P ) =
⋃

τ ∈ St(δ0(P ))
� = g(t1, . . . , tn) → r

θ = mgu(t1, τ)

Sout(τ)⊗ dep(t2θ)⊗ . . .⊗ dep(tnθ)

S+
out(τ) =

⋃
outα(c, u) occurring in P

(τ, p)#{τ1, . . . , τn} ∈ ρ(δ0(u))
(α, p) not marked or p = ε

dep(α)⊗ dep(τ1)⊗ . . .⊗ dep(τn)

Fig. 3. Definitions of Sreach, Stest, and Scheck.

corresponding sets of labels are computed by Sreach(P ). A
second case is when some equality holds in P and not in Q.

We rely here on a precise characterization of static inclusion,

where we show that it is possible to consider tests of the

form M = N where N only contains destructors. This case is

explored by Stest(P ) where the possible types of a destructor-
only recipe is computed by S+

out. Finally, the last relevant

case is when a term can be reduced in P (according to the

equational theory) and not in Q. This corresponds to Scheck.

Note that Sout coincides with S
+
out except that marked positions

(α, p) are no longer ignored when p = ε. The reason is that

even if a position is marked and hence the corresponding term

could be obtained earlier, it may be necessary to consider the

position in order to check its equality with an earlier term.

In other words, when looking for a test M = N , we can no

longer consider that bothM , and N are asap recipes. However,

we have shown that we can safely consider that at least one

of them is asap, whereas the other one can be assumed to be

subterm asap, meaning that all its direct subterms are asap

(but not necessarily the term itself).

B. Correctness

When searching for an attack against an equivalence prop-

erty specified as P ≈t Q, it is sufficient to consider sessions

as prescribed by dep(P ) and dep(Q).

Theorem 3. Let P be a simple protocol type-compliant w.r.t.
some typing system (Δ0, δ0). Let Q be another simple protocol
such that P ��t Q. There exists a trace (tr, φ) ∈ trace(P )
witnessing this non-inclusion such that Label(tr) ⊆ A for
some A ∈ dep(P ).

The proof of this theorem follows the same lines as the

one for reachability. Additional difficulties arise due to the

fact that we also need to provide a bound regarding static

inclusion. Considering an equality test R1 = R2 that witnesses

non static inclusion, we show that R1 and R2 can be chosen

with a specific shape that allows one to precisely characterize

the actions that may be involved in such a test.

43



VI. EXPERIMENTS

We have implemented our procedure into a tool HowMany,

that we run on several protocols of the literature, studying

both reachability and equivalence properties. When the tool

returns a list of (finite) scenarios, we can then use two existing

tools, SAT-Equiv and DeepSec, developed for a bounded

number of sessions, and directly conclude that security holds

in the unbounded case (unless the tools find an attack). The

specifications of all protocols, as well as the files to reproduce

the experiments, can be found in [20].

A. HowMany

The function dep may return infinite sets, hence does not

directly yield a terminating algorithm. Therefore, we define

dep′, a terminating algorithm that returns the same result than

dep whenever it is finite, and returns ⊥ otherwise.

The main idea is to first decide whether a given type τ (resp.

label α) is such that dep(τ) = ∅. In this case, since ∅ is an

absorbing element w.r.t. ⊗, we may conclude that, e.g.

dep(τ)⊗ dep(τ1)⊗ . . .⊗ dep(τn) = ∅
without computing dep(τ1), . . . , dep(τn). Once empty ele-

ments have been identified, relations can be simplified, and it

is relatively easy to identify a loop and to return ⊥ to indicate

that one of the resulting multisets will be infinite.

The algorithm dep′ has been implemented in the tool

HowMany. It will either return ⊥ or a set of multisets of labels.

Each element in the set corresponds to a finite scenario that

needs to be analyzed. Thanks to Theorems 2 and 3, we can

conclude that the protocol is secure if it is secure in all the

scenarios identified by HowMany. A multiset of labels tells

us the maximal number of sessions that may be involved in a

minimal attack. Actually, it is even more precise than that since

our algorithm gives us a list of scenarios, and each scenario

corresponds to a precise number of unfolding of a replication,

possibly truncated.

B. Security properties

We have considered three types of security properties,

depending on the protocol under study.

The first one is weak secrecy (WSEC), a reachability prop-

erty. We always consider secrecy of the key (sometimes the

nonce) as received by the responder. This is done by adding

an instruction of the form inα(c, k) at the end of the responder

role. Then, we ask for reachability of the label α.
The second one is key privacy (KPRIV). Intuitively, a key k

is secure if an attacker cannot learn any information on

messages that are encrypted by k. We model this by adding

at the end of the responder’ role senc(m1, k) on the left, and

senc(m2, k
′) on the right, where k′ is fresh, and m1, m2 are

two public constants.

For these two security properties, we consider a process

where each role is instantiated (arbitrarily many times) by all

possible players among 2 honest agents and a dishonest one.

Lastly, we analyzed some protocols from the e-passport

application, and we consider the unlinkability property

(UNLINK). This property is modeled relying on phases. In

a first phase, the attacker interacts with two passports and two

readers possibly many times. In a second phase, the attacker

interacts with either one instance of the first passport (and

a reader) or the second one. The protocol is linkable if the

attacker is able to distinguish between the two cases.

C. Outcome of Howmany

HowMany computes a set of scenarios, and each scenario

involves several sessions of the protocol. When more than one

scenario is returned, HowMany also computes a unique sce-

nario that over-approximates all the other ones. Indeed, there

is trade-off between considering multiple simple scenarios or

a unique but more complex one corresponding to the over-

approximation of all the simple ones. Depending on the tool

and the protocol, one approach may be more efficient than

the other, hence we consider both cases (multiple and unique

scenarios).

On all the examples mentioned in this section, HowMany

concludes in few seconds on a standard laptop but the Kao-

Chow example for KPRIV, which takes around 2 min. The

detailed outcome of our experiments is displayed in Table I

and Table II and we further comment them below. Compared

with [21], this shows a significant improvement. For the simple

Denning-Sacco protocol, in the case of reachability, [21] yields

a bound of at least 1019 and the bound would be even larger

in the other cases.

Reachability. The results regarding the weak secrecy property

WSEC are reported in the right part of Table I. The table

can be read as follows. For instance, for the Yahalom-Paulson

protocol, HowMany states that we may either consider 25

scenarios among which the biggest one is made up of 19

sessions in parallel and 35 actions in total; or we can decide

to analyze directly the more complex one which features 30

sessions in parallel for a total of 56 actions.

Equivalence. Actually, when analyzing KPRIV, we may re-

strict our attention to consider one inclusion. Indeed, in case

P �≈t Q, we necessarily have that P ��t Q since there are more

equalities on P side. To study this inclusion, we only need to

compute dep(P ). Regarding the property UNLINK, we focus

again on one inclusion due to the symmetry of the relation

under study. Moreover, we consider a simplified variant of the

protocols, without else branches, since else branches are not

supported by our approach.

Our experiments show that for all these protocols, a small

number of sessions is sufficient, up to 55 sessions in parallel

for the Kao-Chow protocol if one wishes to analyze a unique

(big) scenario only. The only cases where HowMany cannot

conclude are the Yahalom-Lowe protocol and the (flawed)

Needham-Schroeder protocol. For several protocols such as

Denning-Sacco or Wide-Mouth Frog, we even retrieve that 2-

3 sessions are sufficient, which corresponds to a very simple

scenario where one honest instance of each role is considered.
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Reachability (WSEC) Equivalence (KPRIV)
HowMany SAT-Equiv DeepSec HowMany SAT-Equiv DeepSec

nb size mult. unique mult. unique nb size mult. unique mult. unique
Symmetric protocols
Denning-Sacco 1 3 (8) <1s <1s 5 5 (12) 14 (31) <1s <1s <1s <1s
Needham-Schroeder 16 20 (45) 28 (63) 12s 5s 32s 18m 83 33 (72) 47 (107) 6m 1m TO TO
Otway-Rees� 4 12 (20) 16 (28) 2s 1s < 1s 1s 22 15 (23) 27 (48) 8s 7s 1s 48m
Wide-Mouth-Frog� 1 3 (6) <1s <1s 4 5 (8) 12 (20) <1s <1s <1s <1s
Kao-Chow (variant)� 48 15 (27) 28 (47) 4m 1m 3s 2m 385 29 (48) 55 (91) 10h 2h TO TO
Yahalom-Paulson� 25 19 (35) 30 (56) 2m 44s 4h TO 147 29 (50) 45 (85) 45m 8m TO TO
Yahalom-Lowe� - - - - - - - - - - - - - -
Asymmetric protocols
Denning-Sacco 1 2 (4) <1s <1s 5 3 (4) 8 (11) <1s <1s <1s <1s
Needham-Schroeder� - - - - - - - - - - - - - -
NS-Lowe� 2 7 (16) 8 (18) <1s <1s < 1s <1s 20 9 (19) 14 (31) <1s <1s <1s <1s


: the tagged version of the protocol has been considered to ensure type-compliance.
nb columns: number of scenarios returned by HowMany.
“size” columns (white): maximal number of sessions involved in the multiple scenarios, and in parentheses, the number of protocol actions.
“size” columns (gray): idem but for the unique, aggregated scenario given by HowMany.

mult.: time for the analysis of all the multiple scenarios. unique: time for the analysis of the unique, aggregated scenario. TO: time out (>24h).

TABLE I
ANALYSIS FOR WSEC AND KPRIV

Equivalence (UNLINK)
HowMany SAT-Equiv

nb size mult. unique

BAC 23 12 (34) 26 (76) 10s 5s
PA 6 7 (10) 31 (45) <1s <1s
AA 6 7 (10) 31 (46) <1s <1s

Columns are organized as explained in Table I. Since DeepSec does not handle
phases, we could not use it for these protocols.

TABLE II
ANALYSIS FOR UNLINK

D. SAT-Equiv, DeepSec

Even if our first and main contribution is theoretical, our

result shows that it is possible to find a reasonable bound on

the number of sessions on several protocols of the literature.

Actually, thanks to the recent advances of the verification

tools dedicated to a bounded number of sessions, our ap-

proach extends the scope of existing tools such as Avispa [4],

DeepSec [12], or SAT-Equiv [19] to an unbounded number of

sessions. We consider two of them, namely DeepSec and SAT-

Equiv, based on different verification techniques. We selected

them because they are known for their efficiency, they are

suitable for the class of protocols we consider in this paper, and

they are able to deal with both reachability and equivalence

properties.

DeepSec. DeepSec is based on constraint solving. As any other
tool based on this approach, it suffers from a combinatorial ex-

plosion when the number of sessions increases. To tackle this

issue partial-order reductions (POR) techniques that eliminate

redundant interleavings have been implemented and provide

a significant speedup. This is only possible for the class of

determinate processes, but this assumption is actually satisfied

by our case studies.

SAT-Equiv. SAT-Equiv proceeds by reduction to planning

problem and SAT-formula, and is quite efficient on the specific

class of protocols that it handles. This class is similar to the

one considered in this paper. This approach is less impacted

by the state-space explosion problem when the number of

sessions increases.

We used both tools to analyze all the scenarios returned by

HowMany. Even if parallelism is available in DeepSec, we

do not rely on this feature, and we consider a timeout of 24h.

SAT-Equiv concludes on all the scenarios and is more efficient

when analyzing the unique, aggregated scenario than all the

small ones. Regarding DeepSec, when more than 40 sessions

are involved, the tool is not able to conclude within 24h. It

is interesting to note that, contrary to SAT-Equiv, DeepSec

is more efficient when analyzing many small scenarios rather

than the unique aggregated one.

VII. CONCLUSION

We have proposed an algorithm that soundly bounds the

number of sessions needed for an attack, both for reachability

and equivalence properties. This provides some insights on

why, in practice, attacks require only a small number of

sessions. Note that dep(P ) may potentially be infinite. In that

case, our theorem does not provide any concrete bound but

may be of theoretical interest.

In our experiments, we have assumed a finite number

of agents (two honest agents and a dishonest one). Agents

can soundly be bounded for reachability properties [17] and

equivalence [18] when there is no else branches. Alternatively,

an additional process can be considered in the model, that

creates agents and keys, and distributes them to the other roles.

It then remains to check whether HowMany can still bound the

number of sessions in this setting. Further experiments would

need to be conducted.

We could extend our approach to deal with correspondence

properties, for example simple authentication properties of

the form end(x) → start(x). We could indeed exploit our
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extension of the typing result that preserves a certain number

of disequalities. An other interesting direction for future work

could be to extend our class of protocols and to consider e.g.

private channels. This requires first to extend the underlying

typing result but seems to be doable. Regarding reachability

properties, our dep algorithm will require some small adapta-

tions. The case of equivalence properties appears to be more

difficult since the addition of private channels takes us away

from the class of simple protocols.

While HowMany provides a small bound in many cases

(smaller than 15 sessions), the bound can be quite big in

some cases. We plan to further refine our bound by identifying

spurious scenarios, for example exploiting further dependen-

cies in the case of phases. Lastly, there is a trade-off between

analyzing many simple scenarios and a big one. Whereas it

makes sense to put together simple scenarios when the overlap

is important, we should not gather scenarios that are almost

disjoint. Providing a clever way to group scenarios could

simplify the security analysis.
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[9] R. Chadha, Ş. Ciobâcă, and S. Kremer. Automated verification of
equivalence properties of cryptographic protocols. In Proc. 21st Euro-
pean Symposium on Programming Languages and Systems (ESOP’12),
volume 7211 of LNCS, pages 108–127, Tallinn, Estonia, 2012. Springer.

[10] V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence
decision: Negative tests and non-determinism. In Proc. 18th ACM Con-
ference on Computer and Communications Security (CCS’11), Chicago,
Illinois, USA, 2011. ACM Press.

[11] V. Cheval, V. Cortier, and S. Delaune. Deciding equivalence-based
properties using constraint solving. Theoretical Computer Science,
492:1–39, June 2013.

[12] V. Cheval, S. Kremer, and I. Rakotonirina. Deepsec: deciding equiv-
alence properties in security protocols theory and practice. In 2018
Symposium on Security and Privacy (S&P’18), pages 529–546. IEEE,
2018.

[13] T. Chothia and V. Smirnov. A traceability attack against e-passports.
In 14th International Conference on Financial Cryptography and Data
Security (FC’10), 2010.

[14] R. Chrétien, V. Cortier, A. Dallon, and S. Delaune. Typing messages for
free in security protocols. ACM Transactions On Computational Logic
(TOCL), 21(1):1–52, 2019.

[15] R. Chrétien, V. Cortier, and S. Delaune. Typing messages for free
in security protocols: the case of equivalence properties. In Proc.
25th International Conference on Concurrency Theory (CONCUR’14),
volume 8704 of LNCS, pages 372–386, Rome, Italy, 2014. Springer.

[16] R. Chrétien, V. Cortier, and S. Delaune. Decidability of trace equivalence
for protocols with nonces. In Proc. 28th Computer Security Foundations
Symposium (CSF’15), pages 170–184. IEEE Computer Society, 2015.

[17] H. Comon-Lundh and V. Cortier. Security properties: two agents
are sufficient. In Proc. 12th European Symposium on Programming
(ESOP’03), volume 2618 of LNCS, pages 99–113, Warsaw, Poland,
2003. Springer.

[18] V. Cortier, A. Dallon, and S. Delaune. Bounding the number of agents,
for equivalence too. In Proc. 5th International Conference on Principles
of Security and Trust (POST’16), LNCS, pages 211–232. Springer, 2016.

[19] V. Cortier, A. Dallon, and S. Delaune. SAT-Equiv: an efficient tool for
equivalence properties. In Proc. 30th Computer Security Foundations
Symposium (CSF’17), pages 481–494. IEEE Computer Society, 2017.

[20] V. Cortier, A. Dallon, and S. Delaune. A small bound on the number of
sessions for security protocols. Technical report, HAL report 03473179,
2021.

[21] V. Cortier, S. Delaune, and V. Sundararajan. A decidable class of security
protocols for both reachability and equivalence properties. Journal of
Automated Reasoning, 65(4):479–520, 2021.

[22] J. Dawson and A. Tiu. Automating open bisimulation checking for the
spi-calculus. In Proc. 23rd Computer Security Foundations Symposium
(CSF’10). IEEE Computer Society, 2010.

[23] E. D’Osualdo, L. Ong, and A. Tiu. Deciding secrecy of security
protocols for an unbounded number of sessions: The case of depth-
bounded processes. In Proc. 30th Computer Security Foundations
Symposium, (CSF’17), pages 464–480. IEEE Computer Society, 2017.

[24] E. D’Osualdo and F. Stutz. Decidable inductive invariants for verification
of cryptographic protocols with unbounded sessions. In Proc. 31st In-
ternational Conference on Concurrency Theory (CONCUR’20), volume
171 of LIPIcs, pages 31:1–31:23. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[25] N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. Undecid-
ability of bounded security protocols. 1999.

[26] S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based inference
system for the NRL protocol analyzer and its meta-logical properties.
Theoretical Computer Science, 367(1-2):162–202, 2006.

[27] S. Fröschle. Leakiness is decidable for well-founded protocols? In Proc.
4th Conference on Principles of Security and Trust (POST’15), LNCS.
Springer, 2015.

[28] J. D. Guttman. Shapes: Surveying crypto protocol runs. In V. Cortier
and S. Kremer, editors, Formal Models and Techniques for Analyzing
Security Protocols, volume 5 of Cryptology and Information Security
Series, pages 222–257. IOS Press, 2011.

[29] A. V. Hess and S. Mödersheim. A typing result for stateful protocols. In
Proc. 31st Computer Security Foundations Symposium, (CSF’18), pages
374–388. IEEE Computer Society, 2018.

[30] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN
Prover for the Symbolic Analysis of Security Protocols. In N. Sharygina
and H. Veith, editors, Proc. 25th Computer Aided Verification, 25th
International Conference (CAV’13), volume 8044 of LNCS, pages 696–
701. Springer, 2013.

[31] J. Millen and V. Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In Proc. 8th ACM Conference on
Computer and Communications Security (CCS’01), 2001.

[32] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number
of sessions is NP-complete. In Proc. 14th Computer Security Founda-
tions Workshop (CSFW’01), pages 174–190. IEEE Computer Society,
2001.

46



APPENDIX

A. Some preliminaries

Our technical development relies on the notion of forced
normal form as introduced in [14] and denoted u

�

. This is the

normal form obtained when applying rewrite rules as soon as

the symbol in Σd �Σtest and the constructor match. Formally,

we reuse the definition as stated in [14]:

Definition 10. Given a rewriting rule �g → rg as defined
in Section II, its associated forced rewriting rule is �′g → rg
where �′g is obtained from �g by keeping only the path to rg
in �g. Formally, �′g is defined as follows:
1) �′g = g(x1, . . . , xn) when g ∈ Σtest;
2) otherwise denoting p0 = 1.j the unique position of �g

such that �g|p0
= rg, we have that �′g is the linear term

such that:
• root(�′g|ε) = root(�g|ε), root(�′g|1) = root(�g|1);

and �′g|p0 = rg;
• for any other position p′ of �′g, we have that �′g|p′

is a variable.

Note that the forced rewriting system associated to a rewrit-

ing system is well-defined. In particular, the position of rg
in �g|1 is uniquely defined since �g|1 is a linear term and rg
contains a variable when g ∈ Σd.

Given a rewriting system R = Rdes �Rtest, we define Rf

the set of forced rewriting rules associated to R. A term u
can be rewritten to v using Rf if there is a position p in u,
and a rewriting rule g(t1, . . . , tn) � t in Rf such that u|p =
g(t1, . . . , tn)θ for some substitution θ, and v = u[tθ]p. We

denote u

�

the forced normal form of u.

We say that a recipe R is almost destructor-only when R
is in forced normal form and root(R|p) ∈ Σd ∪ W for any

position p of the form 1 . . . 1 in R. A recipe R is simple when

R = C[R1, . . . , Rn] for some context C built using symbols

in Σc∪Σ0, and each Ri is almost destructor-only. Note that

an almost destructor-only recipe is a simple recipe.

B. Key result

When considering recipes for a witness of non static in-

clusion, we can not assume anymore that these recipes are

all asap, and thus marking is not justified. However, we can

assume they are subterm asap, and this is the reason why we

still consider a bit of marking. A simple recipe is subterm
asap w.r.t. φ if all its direct subterms are asap w.r.t. φ. Note
that this implies that all its strict subterms are asap too. The

definition of S+
out(τ) (which contains a bit of marking) is given

in Section V. In addition, we define

dep+(τ) = dep0(τ)∪({∅}⊗dep(τ1)⊗ . . .⊗dep(τk))∪S+
out(τ)

for any non-initial type τ such that τ = f(τ1, . . . , τk).

An execution K0
tr
==⇒ (P;φ;σ; i) of a protocol P can be

seen as a dag D whose vertices are actions of tr with their

label, and edges represent sequential and data dependencies.

Definition 11. Given a dag D = (V,E) and a set of nodes
N ⊆ V , we define the pruning DN = (VN , EN ) of D w.r.t. N
as follows:
• VN = {v ∈ V | ∃ r ∈ N, r →∗ v};
• EN = {(u, v) ∈ E | u, v ∈ VN}

where→∗ denotes the transitive closure of the relation induced
by E.

When we consider an execution of P and its associated

dag, we can decide to prune the dag w.r.t. a given set

of nodes N , then the resulting dag corresponds also to an

execution of P . Given an execution exec and its associated

dag D, we denote exec|v the execution obtained by pruning D
w.r.t. the set of nodes {v}, and given a recipe R such that

vars(R) = {wi1 , . . . ,wik}, we denote exec|R the execution

obtained by pruning D w.r.t. {v1, . . . , vk} where vj is the

node corresponding to the output wij .

We denote Label(tr) (resp. Label(exec)) the multiset of

labels (from L) occurring in tr (resp. in exec), and given a

node v of a dag (coming from an execution trace), we denote

Label(v) its label.

Then, we are able to state this key result whose proof can

be done by induction on the length of the execution.

Proposition 1. Let P be a protocol type-compliant w.r.t. some
typing systems (Δ0, δ0). We consider a well-typed and cv-
alien-free execution exec : P

tr
==⇒ (P;φ;σ; i) involving only

simple asap recipes. We consider the dag D corresponding to
this execution. We have that:
1) for any node v of D, we have that there exists a multiset

A ∈ dep(Label(v)) such that Label(exec|v) ⊆ A;
2) for any almost destructor-only receipe R which is also

asap (resp. subterm asap), and cv-alien-free, and such
that Rφ↓ is a message of type τ , we have that there
exists a multiset A ∈ Sout(τ) (resp. S+

out(τ)) such that
Label(exec|R) ⊆ A.

3) for any simple asap (resp. subterm asap), cv-alien-free
recipe R such that Rφ↓ is a message of type τ , we have
that there exists a multiset A ∈ dep(τ) (resp. dep+(τ))
such that Label(exec|R) ⊆ A.

C. Marking

We consider that a marking is appropriate if it indicates

subterms that, whenever deducible in a well-typed execution,

are deducible earlier in any well-typed execution.

An almost destructor-only recipe R such that Rφ↓ is a

message, intuitively tries to dig in a term u. Such a recipe

deconstructs the term u to extract its subterm at position

target(R) in u, where target(R) is defined as follows:

• ε if R is a variable w

• target(R|1).i0 if root(R) = g ∈ Σd and g(t1, . . . , tn)→
rg ∈ Rd with t1|i0 = rg.

Note that the operation target defined above is well-defined

for any almost destructor-only recipe.
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Definition 12. Let P be a protocol. A marked position
(α, p) of P w.r.t. (Δ0, δ0) is appropriate if for any well-typed
execution P

tr
==⇒ (P;φ;σ; j) for any outα(c,w) occurring

in tr, for any almost destructor-only recipe R with w at its
leftmost position and such that target(R) = p and Rφ↓ = m
is a message, we have that R is not an asap recipe of m
(considering the frame φ and the ordering induced by tr).

Lemma 1. Let P be a protocol, (Δ0, δ0) be a typing system,
and u be a term having a public type. Let P tr

==⇒ (P;φ;σ; i) be
a well-typed execution such that Rφ↓ = u for some recipe R,
then u ∈ T (Σc,Σ0).

We conclude that marking a position that has a public type

is appropriate.

Lemma 2. Let (α, p) be a marked position of a protocol P
w.r.t. a typing system (Δ0, δ0). Let u be the term such that
outα(c, u) occurs in P . If δ0(u)|p has a public type then (α, p)
is appropriate.

Our second criterion is a precedence criterion. Given a

protocol P , we say that the action labeled β follows the action
labeled α in P if β is sequentially after α, i.e. in case α is

an output, we have that outα(c, ·).Q is a subprocess of P
and β occurs in Q. Given an action labeled α occurring in a

protocol P , we denote by σα
match the mgu of all the equations

u = v corresponding to an instruction match u with v → _

encountered from the root of P to its action labeled α.

The inclusion S ⊆# S′ denotes the fact that for any element

e ∈ S, the multiplicity of e in S is smaller than the multiplicity

of e in S′.

Lemma 3. Let (β, p) be a marked position of a protocol P
w.r.t. a typing system (Δ0, δ0) and α a label of an action in P
involving term v such that:
• outβ(c, u) follows the action α in P ;
• ((uσβ

match)|p, p)#S ∈ ρ(uσ
β
match) for some S;

• ((uσβ
match)|p, q)#S′ ∈ ρ(vσβ

match) for some q, S′ such
that S′ ⊆# S.

We have that (β, p.p′) is appropriate for any p′ such that
δ0(u)|p.p′ is well-defined.

D. The case of equivalence

Regarding trace equivalence, we establish our small bound

in 2 main steps:

1) We first show that if P is not trace included in Q then

there exists a witness of non inclusion that is well-typed,

cv-alien-free, and involves only simple asap recipes.

A similar result has already been established in [21]

considering a fixed set of primitives.

2) We then compute a bound regarding the size of a well-

typed attack of minimal size. We need for that to es-

tablish a new characterization regarding static inclusion.

More precisely, we establish that we may consider a

witness tr of the non-inclusion P �t Q for which there

exists A ∈ dep(P ) such that Label(tr) ⊆ A. Remenber

that

dep(P ) = {∅} ∪ Sreach(P ) ∪ Stest(P ) ∪ Scheck(P )

where Sreach, Stest, and Scheck are given in Figure 3.

Our alternative definition of static inclusion is formally

defined below.

Definition 13. Let φ, ψ be such that dom(φ) = dom(ψ). We
write φ �simple

s ψ if:
1) For each almost destructor-only and asap recipe R such

that Rφ↓ is a (resp. atomic) message, Rψ↓ is a (resp.
atomic) message.

2) For each C[x1, . . . , xn] a strict/direct subterm of a
shape shf with f ∈ Σc, for each almost destructor-
only and asap recipe R such that Rφ↓ is a message.
If Rφ↓ = C[x1, . . . , xn]θ for some θ, then Rψ↓ =
C[x1, . . . , xn]θ

′ for some θ′.
3) For each simple recipe R and each almost destructor-

only recipe R′ such that Rφ↓, R′φ↓ are messages, if
Rφ↓ = R′φ↓, then we have that Rψ↓ = R′ψ↓. Actually,
we can assume in addition that one recipe is asap, and
the other one is subterm asap w.r.t. φ.

4) For each rule g(t1, . . . , tn)→ r in Rtest ∪Rd, for each
almost destructor-only and asap recipe R1, and simple
asap recipes R2, . . . , Rn such that R1φ↓, . . . , Rnφ↓
are messages, if (R1φ↓, . . . , Rnφ↓) = (t1, . . . , tn)θ for
some θ, then (R1ψ↓, . . . , Rnψ↓) = (t1, . . . , tn)θ

′ for
some θ′.

This notion is actually equivalent to the original one.

Lemma 4. Let φ and ψ be two frames having the same
domain. We have that: φ �s ψ ⇔ φ �simple

s ψ.

We now briefly explain the purpose of the different com-

ponents in the definition of dep(P ). The case Sreach(P )
corresponds to the case where the witness tr exists in P but

not in Q. The case Scheck(P ) corresponds to a failure of static

inclusion, and more precisely to the item 4 of Definition 13.

The case Stest(P ) corresponds to a failure of static inclu-

sion, and actually covers the items 1, 2, and 3 of Definition 13.

1) Assuming that the recipe R is such that δ0(Rφ↓) = τ ,
relying on Proposition 1, we get that it is enough

to consider a set A in Sout(τ). Actually, Sout(τ) ⊆
S+
out(τ) ⊆ Stest(P ) since τ ∈ St(δ0(P )).

2) This case can be handled in a similar way.

3) This case is a bit more complex and we have to consider

different cases depending on whether the simple recipe

is the asap one or not. Let us assume that δ0(Rφ↓) = τ .
Relying on Proposition 1, in case the simple recipe is

also the asap one, we get it is enough to consider a set

A in dep(τ) ⊗ S+
out(τ); whereas we obtain a set A in

dep+(τ)⊗Sout(τ) otherwise. Anyway, we can show that

dep+(τ)⊗Sout(τ) ⊆ dep(τ)⊗S+
out(τ) ⊆ Stest(P ) since

τ ∈ St(δ0(P )).
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