
Privacy as Reachability

Sébastien Gondron
DTU Compute

Danmarks Tekniske Universitet
Kgs. Lyngby, Danmark

sebastien.gondron@riseup.net

Sebastian Mödersheim
DTU Compute

Danmarks Tekniske Universitet
Kgs. Lyngby, Danmark

samo@dtu.dk

Luca Viganò
Department of Informatics

King’s College London
London, United Kingdom

luca.vigano@kcl.ac.uk

Abstract—We show that privacy can be formalized as a reacha-
bility problem. We introduce a transaction-process formalism for
distributed systems that can exchange cryptographic messages (in
a black-box cryptography model). Our formalism includes privacy
variables chosen non-deterministically from finite domains (e.g.,
candidates in a voting protocol), it can work with long-term
mutable states (e.g., a hash-key chain) and allows one to specify
consciously released information (e.g., number of votes and the
result). We discuss examples, e.g., problems of linkability, and the
core of the privacy-preserving proximity tracing system DP-3T.

Index Terms—Formal Methods. Protocol security. Transition
system. Linkability. DP-3T.

I . I N TRODUCT I ON

Privacy-type properties of security and voting protocols are

often specified as trace equivalence of two processes in some

process calculus, such as the Applied-π calculus [1, 6, 10,

13]. While such approaches have uncovered vulnerabilities in

several protocols, they rely on asking whether the intruder can

distinguish two variants of a process; for instance, the intruder

should not be able to detect a difference between two processes

differing only by the swap of the votes of two honest voters.

It is quite hard to intuitively understand what such a trace

equivalence goal actually entails and what not, and one may

wonder if there are other trace equivalences that should be

checked. It is a rather technical way to encode the privacy

goals of a protocol, and although one can get insights from a

failed proof when the goal is too strong, one cannot easily see

when it is too weak.

To fill the gap between the intuitive ideas of the privacy

goals and the mathematical notions used to formalize and

reason about them, (α, β)-privacy has been proposed in [20].

It is a declarative approach based on specifying two formulae

α and β in first-order logic with Herbrand universes. α
formalizes the payload, i.e., the “non-technical” information,

that we intentionally release to the intruder, and β describes the

“technical” information that he has, i.e., his “actual knowledge”:

what (names, keys, etc.) he initially knows, which actual cryp-

tographic messages he observed and what he infers from them.

He may be unable to decrypt a message, but know anyway

that it has a certain format and contains certain (protected)

information. Consider, for instance, the unlinkability goals in

protocols for RFID tags used in electronic passports. In a state

where two sessions of the protocol have been initiated, we

may have α ≡ T1 ∈ Tags ∧ T2 ∈ Tags, where T1 and T2 are

free variables. This specifies the goal that the intruder does not

know more about T1 and T2 than: they are tags. In particular,

he should not be able to find out whether T1
.
= T2. If β (what

he learned from observing and interacting with the tags) allows

the intruder to derive β |= T1
.
= T2, then β violates the privacy

of α. We will make all of this formal below.
The main difficulty in reasoning about privacy with trace

equivalence is that one needs to consider two possible worlds:

for every step the first system can make, one has to show that

the other system can make a similar step so that they are still

indistinguishable. To tame this problem, several works limit

themselves to bi-processes, i.e., where the two processes can

only differ in subterms of messages. Bi-processes allow one

to obtain a verification question that is close to a reachability

problem, but at the price of drastically limiting the range of

protocols that can be considered. What distinguishes (α, β)-
privacy from trace equivalence is that it considers one possible

world rather than two.
This provides a stepping stone for a privacy approach based

on reachable states without the limitations of bi-processes.

However, until now, (α, β)-privacy is only a static approach

that does not reason about the development of a system, like

the influence the actions of an intruder can have on the system.
The first contribution of this paper is to lift (α, β)-privacy

from a static approach to a dynamic one. We define a

transaction-process formalism for distributed systems that can

exchange cryptographic messages (in a black-box cryptography

model). Our formalism

• includes privacy variables that can be non-

deterministically chosen from finite domains (e.g.,

the candidates in a voting protocol),

• can work also with long-term mutable states (e.g., mod-

eling a hash-key chain), and

• allows one to specify the consciously released information

(e.g., the number of cast votes and the result).

The core of this definition is a semantics as a state-transition

system. This keeps track of what the intruder knows about

the system, in particular modeling the several possibilities of

what could have happened that are not (yet) ruled out by

observations of the intruder. We define dynamic (α, β)-privacy
to hold if (static) (α, β)-privacy hold in every reachable state

of the transition system. Hence, every state is an (α, β)-privacy
problem, i.e., a pure reachability problem, that supports a wide

variety of privacy goals.

130

2022 IEEE 35th Computer Security Foundations Symposium (CSF)

© 2022, Sébastien Gondron. Under license to IEEE.
DOI 10.1109/CSF54842.2022.00009

20
22

 IE
EE

 3
5t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

78
-1

-6
65

4-
84

17
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

48
42

.2
02

2.
99

19
66

8

Formalizing privacy as a reachability problem, as dynamic

(α, β)-privacy allows us to do, provides a first step towards

automating the analysis, but it does not solve all the challenges

of automation: (i) (α, β)-privacy is in general undecidable,

but for most reasonable protocols it can be reduced to static

equivalence problems (cf. Theorem 3) and is thus decidable for

all algebraic theories for which static equivalence is; (ii) the

set of reachable states is infinite. Symbolic and abstract

interpretation methods still need to be developed, although

a first result exists [15].

We argue that our approach is also very helpful for manual

analysis, because it is a novel view of privacy that allows us to

characterize the reachable states in a declarative logical way,

and analyze the dynamic (α, β)-privacy question for them. As

a second contribution we consider the core of the privacy-

preserving proximity tracing system DP-3T [23] as a topical

case study. It turns out that the system actually releases slightly

more information than we initially thought. This is discovered

because for our first specification of α, i.e., what information

is deliberately released, the proof of (α, β)-privacy fails: the

system actually leaks slightly more information than α. In this

situation one has the choice to either change the system or

allow for the leak by augmenting the α-release. Such a step-

by-step augmentation is indeed a methodology to understand

the privacy of a system: we start by considering a minimal α to

represent our intention of the released information and augment

it until we can finally succeed in proving dynamic (α, β)-
privacy—thus obtaining a complete (and rather declarative)

characterization of all the information that the system discloses.

As a third contribution, we formalize the relationship be-

tween our approach and trace equivalence (Th. 2 and 3). This

serves two purposes. First, it helps us understand the relative

strengths of different approaches, in particular that (α, β)-
privacy has at least the expressive power of other approaches,

while still allowing one to consider a reachability problem.

Second, it paves the road to automation by relating to problems

for which algorithms already exist, such as static equivalence

for various algebraic theories of the cryptographic operators.

I I . P R E L IM I NAR I E S

A. Herbrand Logic

(α, β)-privacy is based on specifying two formulae α and

β in First-Order Logic with Herbrand Universes, or Herbrand
Logic for short [17]. For brevity, we only list the differences

with respect to standard first-order logic (FOL).
Herbrand Logic fixes the universe in which to interpret all

symbols. We introduce a signature Σ = Σf ∪ Σi ∪ Σr with

Σf the set of uninterpreted function symbols, Σi the set of

interpreted function symbols and Σr the set of relation symbols.
Let TΣf

be the set of ground terms that can be built using

symbols in Σf and let ≈ be a congruence relation on TΣf
; then

we define the Herbrand Universe as the quotient algebra A =
TΣf

/≈ = {[[t]]≈ | t ∈ TΣf
}, where [[t]]≈ = {t′ | t ∈ TΣf

∧ t ≈
t′}. The algebra fixes the “interpretation” of all uninterpreted

function symbols: fA([[t1]]≈, . . . , [[tn]]≈) = [[f(t1, . . . , tn)]]≈.

The interpreted function symbols Σi and the relation sym-

bols Σr behave as in FOL, i.e., as function and relation symbols

on the universe. To highlight the distinction between uninter-

preted and interpreted function symbols, we write f(t1, . . . , tn)
if f ∈ Σf and f [t1, . . . , tn] if f ∈ Σi . Given a signature Σ, a
set V of variables distinct from Σ, and a congruence relation

≈, and thus fixing a universe A, we define an interpretation I
(with respect to Σ, V , and ≈) as a function such that: I(x) ∈ A
for every x ∈ V; I(f) : An �→ A for every f/n ∈ Σi of arity

n; and I(r) ⊆ An for every r/n ∈ Σr of arity n. Note that

the functions of Σf are determined by the quotient algebra.

We define a model relation I |= φ (in words: φ holds under

I) as is standard and use notation like φ |= ψ.

Let Σf contain the constant 0 and the unary function s,
and let Σi contain the binary function +, i.e., the universe

contains the natural numbers 0, s(0), s(s(0)), . . ., which we

also write as 0, 1, 2, . . .We characterize + by the axiom αax ≡
∀x, y. x+ 0 = x ∧ x+ s(y) = s(x+ y)1.

We employ standard syntactic sugar and write, e.g., ∀x. φ
for ¬∃x. ¬φ, and x ∈ {t1, . . . , tn} for x = t1 ∨ . . . ∨ x = tn.
Slightly abusing notation, we will also consider a substitution

{x1 �→ t1, . . . , xn �→ tn} as a formula x1 = t1∧ . . .∧xn = tn.

B. Encoding of Frames

We use, as it is customary in security protocol analysis, a

black-box algebraic model. We choose a subset Σop ⊆ Σf

of uninterpreted functions to be the operators available to the

intruder. For instance, we generally require 0, s ∈ Σop , so

the intruder can “generate” any natural number. We call these

symbols public and we call private the symbols from Σ \Σop .

In order to represent the intruder’s knowledge, we use frames.

Definition 1 (Frame). A frame is written as � = {|m1 �→
t1, . . . ,ml �→ tl|}, where the mi are distinguished constants
called labels and the ti are terms that do not contain any mi.
We call m1, . . . ,ml the domain and t1, . . . , tl the image of
the frame. We write �{|t|} for replacing in the term t every
occurrence of mi with ti, i.e., � works like a substitution.

The labels mi can be regarded as memory locations of the

intruder, representing that the intruder knows the messages ti.
The set of recipes is the least set that contains m1, . . . ,ml and

that is closed under all the cryptographic operators in Σop .

We use two frames struct = {|l1 �→ t1, . . . , ln �→ tn|} and

concr = {|l1 �→ t′1, . . . , ln �→ t′n|} that always share the same

domain D in any formula. Let concr [·] and struct [·] be unary

function symbols, and gen(·) a unary relation symbol defined

by the following axioms:

φgen ≡∀r.gen(r)⇔
(
r ∈ D ∨∨

fn∈Σop
∃r1, . . . , rn.

r = f(r1, . . . , rn) ∧ gen(r1) ∧ . . . ∧ gen(rn)
)

1This characterization is only possible due to the expressive power of
Herbrand logic (in FOL one cannot characterize the universe appropriately).

131

φhom≡
∧

fn∈Σop
∀r1, . . . , rn. gen(r1) ∧ . . . ∧ gen(rn) =⇒

concr [f(r1, . . . , rn)] = f(concr [r1], . . . , concr [rn])∧
struct [f(r1, . . . , rn)] = f(struct [r1], . . . , struct [rn])

φdom≡struct [l1] = t1 ∧ . . . ∧ struct [ln] = tn ∧
concr [l1] = t′1 ∧ . . . ∧ concr [ln] = t′n

φ∼≡∀r, s. gen(r) ∧ gen(s) =⇒
concr [r] = concr [s]⇔ struct [r] = struct [s]

φgen defines the predicate gen to be exactly the set of recipes

for the frames concr and struct . φhom and φdom specify the

two frames concr and struct with domain D = {l1, . . . , ln}
and formalize that struct [t] and concr [t] is the result of

applying recipe t to the frames, i.e., replacing every occurrences

of a label mi by the corresponding ti in t. Finally, φ∼ means

that concr and struct are statically equivalent (we write

concr ∼ struct): for any pair of recipes r and s that the

intruder can generate, concr agrees on r and s iff struct does.

C. Alpha-Beta-Privacy

The distinction between payload and technical information is

at the core of (α, β)-privacy. We formalize it by a distinguished

subset Σ0 ⊂ Σ of the alphabet, where Σ0 contains only the

non-technical information, such as votes and addition, while

Σ \ Σ0 includes cryptographic operators. The formula α is

always over just Σ0, whereas β is over the full Σ.

Definition 2 (Static (α, β)-privacy [20]). Consider a countable
signature Σ and a payload alphabet Σ0 ⊂ Σ, a formula α over
Σ0 and a formula β over Σ s.t. fv(α) ⊆ fv(β), both α and β
are consistent and β |= α. We say that (α, β)-privacy holds

(statically) iff every Σ0-model of α can be extended to a Σ-
model of β, where a Σ-interpretation I ′ is an extension of a
Σ0-interpretation I if they agree on all variables and all the
interpreted function and relation symbols of Σ0.

In contrast to [20], we allow β to have more free variables

than α. All α formulae we consider in this paper are combina-
toric, meaning that Σ0 is finite and contains only uninterpreted

constants. Then α has only finitely many models.

The common equivalence-based approaches to privacy are

about the distinguishability between two alternatives. In con-

trast, (α, β)-privacy represents only one single situation that

can occur, and it is the question what the intruder can deduce

about this situation. To model this, we formalize that the

intruder not only knows some concrete messages, but also that

the intruder may know something about the structure of these

messages, e.g., that a particular encrypted message contains a

vote v1, where v1 is a free variable of α. Hence, we define the

intruder knowledge by two frames concr and struct , where
struct formalizes the structural knowledge of the intruder and

thus may contain free variables of α, and the frame for the

concrete knowledge concr is the same except that all variables

are instantiated with what really happened, e.g., v1 = 1. The
main idea is that we require as part of β that struct and concr
are statically equivalent, which means that if the intruder knows

that two concrete constructible messages are equal, then also

their structure has to be equal, and vice versa.

Example 1. As an example, let us consider a simplistic voting
protocol. The voters choose their vote vi from the payload
alphabet Σ0 = {0, 1}. Let h ∈ Σop (h does not have a
destructor), and, as part of the protocol, the voting server
publishes messages of the form h(vi). Then, for two voters,
we have the frames struct = {m1 �→ h(v1),m2 �→ h(v2)}
and concr = {m1 �→ h(0),m2 �→ h(1)}. Suppose now that
we have the following α, and that β is constructed from the
conjunction of α and the axioms we have introduced:

α ≡ v1, v2 ∈ {0, 1}
β ≡ α ∧ φgen ∧ φhom ∧ φdom ∧ φ∼

α expresses that the intruder knows that the voters choose the
votes from the set {0, 1}. β contains α, the specification of
the frames struct and concr , and the ability to compare them.
Then, from β follows the property v1 � .= v2. (α, β)-privacy is
violated, since, for instance, v1 = 0, v2 = 0 is a model of
α, but cannot be extended to a model of β. In this situation,
one can choose to allow for the leak, i.e., set α ≡ v1, v2 ∈
{0, 1} ∧ v1 + v2 = 1, then all models of α are compatible
with β and privacy holds. Rather than allowing the leak, better
would be to change the system, e.g., by adding a fresh nonce
as part of the published message: h(ni, vi).

In the following, we assume β in every state to be implicitly

augmented by the respective α and by the axioms φgen , φhom ,

φdom and φ∼ where D is the set of labels occurring in β.

I I I . T RANS I T I ON SYS T EMS FOR

ALPHA -BETA - P R I VACY

We lift the definition of static (α, β)-privacy to a dynamic

one with transition systems. In §III-A, we describe the syntax

of a protocol specification, notably the syntax of processes. We

give the operational semantics for transition systems in §III-B

and define the state with, among other things, the following

formulae: the payload formula α, the technical information
formula β and the truth formula γ. We also define a sequence

of conditional updates δ on memory cells. In §A, we show how

to derive a legitimate linkability attack on the OSK protocol.

A. Syntax

We consider a number of transaction processes and a number

of families of memory cells, which allow us to model the

stateful nature of some protocols. These cells can be used, for

instance, to store the status of a key (e.g., valid or revoked).

We define protocol specifications in Definition 3 below. A

specification must fix Σ, Σ0 and fix an interpretation of all the

interpreted symbols in Σi except for the built-in ones struct [·],
concr [·] and gen(·). Moreover, we forbid the use of struct [·],
concr [·] and gen(·) in process specifications.

In the processes, we talk about privacy variables. Each

of them has a domain D = {c1, . . . , cn}, where c1, . . . , cn
are constants, i.e., a variable will be instantiated to one of

these values. We consider only finite domains. This is not a

restriction, since it is possible to leave the size of the model

as a parameter in all definitions.

132

Definition 3 (Syntax). A protocol specification consists of:
• a number of families of memory cells, e.g., cell(·), together

with an initial value which is a ground context k([·]), so
that initially cell(t) = k([t]),

• a number of transaction processes of the form Pl, where
Pl is a left process according to the syntax below, and

• an initial state (see Definition 5), containing, e.g., domain
specific axioms in the formulae α and β (see §II-C).

We define left processes and right processes as follows:

Pl ::= mode x ∈ D.Pl Pr ::= snd(t).Pr

| rcv(x).Pl | cell(s) := t.Pr

| x := cell(s).Pl | mode φ.Pr

| if φ then Pl else Pl | 0
| νN.Pr

where x ranges over variables; mode is either
 or �, D is the
finite domain of a non-deterministic variable; s and t range
over terms, cell over families of memory cells, φ over Herbrand
formulae; and N is a set of fresh variables, i.e., that do not
occur elsewhere in a left process. We introduce a meta-notation:
a Herbrand formula φ in the mode in Pr may contain I(t) if
t is a term.

The syntactic structure of left and right processes ensures

that the steps in a transaction can only occur in a particular

order. In the first (left) part, we have the “incoming” aspects,

like receiving messages and reading from memory, and then

in the second (right) part, we have the “outgoing” aspects, like

sending messages and writing to memory. This corresponds to

the typical workflow, e.g, of a server or device API. Note that

all bindings of variables take place in the left part. The naming

of left and right is inspired by (multi-)set rewriting rules where

the left part corresponds to requirements for applying the rule

and the right part enacts the changes. The situation is however

different in our formalism, because the conditionals give rise

to several different possible executions. Thus in our case, every

transaction is always applicable, but one can run into, e.g., an

else case with the 0 process, meaning that the process makes

no changes to the state and produces no outgoing message.

Let us look first at the left-side actions.“mode x ∈ D” means

picking non-deterministically a value from domain D for the

privacy variable x. Here, mode is either � or
. � means that

the variable x is of a low-level technical nature, i.e., it is not

considered a privacy breach if the intruder should find out the

value of x (but we do not directly give this information to the

intruder). Thus, the formula x ∈ D will be added as a new

conjunct to the formula β of the current state.
 means that x
is high-level information, i.e., the intruder should not find out

anything about x (unless we deliberately release later some

information about x). Thus, x ∈ D will be added as a new

conjunct to both α and β in the current state. All these changes

of α and β will be made precise in the formal semantics below.

The other left-hand constructs are pretty standard: “rcv(x)”
is message input, where the variable x is replaced with

an actual received message. “x := cell(s)” means reading

the memory cell cell(s) into variable x. The conditional

“if φ then Pl else Pl” is as expected. “νN.Pr” creates a

sequence of fresh and distinct variables.

On the right-hand, we have “snd(t)” for message output,

“cell(s) := t” means writing the term t into the memory cell

cell(s). The step “mode φ” is a specialty of (α, β)-privacy
where again mode is either
 or �, and where the meta-notation

I(t) allows us to refer to the concrete value of t in a formula

φ (see Example 8). If the mode is
, this means that we

deliberately release the information φ, i.e., it is added as a

conjunct to α. This is crucial in specifying the privacy goals,

since we determine in this way positively what the intruder

is allowed to know (and everything else would be a violation

of privacy). For the mode = �, this means the formula φ is

added to γ. Finally, “0” is the null process.

We may write “let x = t” for the substitution of all following

occurrences of x by t. We use a for construct as a syntactic

sugar, e.g. for x : Agent. We need to unroll this loop, i.e., repeat

the body for each agent. This syntactic sugar allows us to keep

our formalization parametrized over an arbitrary number of

agents, while a concrete specification that results from unrolling

this loop has the number of agents fixed. Another syntactic

sugar concerns parsing of messages. For many (cryptographic)

operators we may have a corresponding destructor and verifier.
Let f/n be a destructor and v/n a corresponding verifier; then

we may write “try t = f(t1, . . . , tn) in P1 catch P2” in lieu of

“if v(t1, . . . , tn)
.
= true then let t = f(t1, . . . , tn).P1 else P2”.

Example 2. Let us illustrate our try and catch syntactic sugar
with the functions pair/2, proj1/1 and vpair/1 with the prop-
erties proji(pair(t1, t2)) ≈ ti and vpair(pair(t1, t2)) ≈ true:

try t = proj1(pair(t1, t2)) in send(t)
catch send(error)

is syntactic sugar for

if vpair(pair(t1, t2))
.
= true then

let t = proj1(pair(t1, t2)).send(t)
else send(error)

In the try construct, t is substituted in P1 and, as for the

else branch in the conditional construct, we may omit the

catch branch when P2 is the null process. Let us now look at

a first example of processes.

Example 3 (Basic Hash). As a first example, we consider the
Basic Hash protocol [7]: a reader can access a database of
authorized tags that carry a mutable state. We consider n tags
in the domain Tags = {t1, . . . , tn}. Let sk/1 be a private
function. Each tag T has an immutable secret key sk(T). Let
h/2, pair/2, vpair/1 and proji/1 be public functions as before.
The tag sends messages of the form of a pair of a fresh nonce
and the hash of the same nonce and its secret key.

Tag

� T ∈ Tags.
νN.snd(pair(N,h(sk(T), N))).0

Reader

rcv(t).
try R = extract(t) in

snd(ok).0

133

When the reader receives a message from a tag T , it
has first to figure out who T is by trying all known keys
sk(T) of any token T , almost like a guessing attack (this
ensures T is a valid tag from Tags). In order not to have
to describe this procedure as transactions (it is included in
the intruder model if he knows any keys), we simply define
two special private functions for the reader (extract/1 and
vextract/1) that check if a message is valid and extract T
from it such that extract(pair(N, h(sk(T), N))) ≈ sk(T) and
vextract(pair(N, h(sk(T), N))) ≈ true.

Definition 4 (Requirements on Processes). We require that
α formulae are over Σ0 and contain only variables that
were released in α. In “mode x ∈ D.Pl”, “rcv(x).Pl” and

“x := cell(s).Pl”, we require that x cannot be instantiated twice,
i.e., Pl contains neither “mode x ∈ D′”, nor “rcv(x)”, nor

“x := cell(s′)”. We also require that in different branches of
conditionals, the same non-deterministic variables are chosen
in the same order and from the same set of values, and
the ordering with receive steps is also the same. This is
formalized by the following function that is only defined when
the requirements are met:

varseq(mode x ∈ D.Pl) = mode x ∈ D.varseq(Pl)
varseq(if φ then P1 else P2) = varseq(P1)
if varseq(P1) = varseq(P2) and undefined otherwise

varseq(rcv(t).Pl) = rcv(t).varseq(Pl)
varseq(_.Pr) = varseq(Pr)

varseq(0) = 0

Finally, we require that every transaction in a protocol specifi-
cation is a closed process, i.e., it has no free variables and the
binding occurrence of a variable is the first occurrence where
in the context it is not free (so further occurrences do not open
a new scope):

fv(mode x ∈ D.Pl) = fv(Pl) \ {x}
fv(rcv(x).Pl) = fv(Pl) \ {x}

fv(x := cell(s).Pl) = (fv(s) ∪ fv(Pl)) \ {x}
fv(if φ then P1 else P2) = fv(φ) ∪ fv(P1) ∪ fv(P2)

fv(νN.Pr) = fv(Pr) \N
B. Operational Semantics

We describe the operational semantics that lifts the definition

of static (α, β)-privacy to a dynamic one with transition

systems: intuitively, we define dynamic (α, β)-privacy, to hold

if (α, β)-privacy holds in every state of the transition system.

We first define states as tuples (α, β, γ, δ) where α and β are

as before, γ is a formula representing the ground truth and δ
records conditional updates, i.e., write operations along with the

conditional context under which they appear in the execution.

We will then define a transition relation on states induced by

the transaction processes. In §A, we give a detailed example

of the application of our semantics.

Definition 5 (State). A state is a tuple (α, β, γ, δ), where:
• formula α over Σ0 is the released information,
• formula β over Σ is the technical information available

to the intruder, such that β is consistent and entails α

(thus also α is consistent and fv(α) ⊆ fv(β)2),
• formula γ over Σ0 is the truth, which is true for exactly

one model with respect to the free variables of α and Σ0,
and γ ∧ β is consistent,

• δ is a sequence of conditional updates of the form
cell(s) := t if φ, where s and t are terms and φ is a
formula over Σ, and its free variables are a subset of the
free variables of α.

The formulae α and β play the same roles as in the previous

section. To define our transition system, we introduce the

formula γ that represents the “truth”, i.e., the real execution of

a protocol. For instance, for a voting protocol, α may contain

vi ∈ {0, 1} (i.e., that vote vi is one of these values), β may

contain cryptographic messages that contain vi, and γ may

contain vi
.
= 1, i.e., what the vote actually is (and this is not

visible to the intruder). The consequences of γ is what really

happened, e.g., the result that one can derive from the votes in

γ is the true result of the election. The sequence δ represents in
a symbolic way all updates that a protocol may have performed

on the memory cells: when updates are under a condition, the

intruder does not know whether they where executed, so each

update operation in δ comes with a condition φ; these entries

in general contain variables when the intruder does not know

the concrete values.

During the execution of a transaction, the intruder will in

general not know what exactly is happening, in particular in

a conditional, he will generally not know which branch has

been taken. To model this precisely, our semantics models how

the intruder can “symbolically execute” the transaction step by

step in his mind: in particular for an if φ then P1 else P2 the

intruder only knows that either φ is true and the process is now

executing P1 or ¬φ holds and the process is now executing

P2. Now if, for instance, P1 would send out a message and P2

would not, then the intruder can rule out one of the possibility,

depending on whether he observes a message or not. Similarly,

if both P1 and P2 send a message, then the intruder might still

be able to tell whether it is a P1-message or a P2-message,

and thus still rule out one of the possibilities.

Our semantics now models this symbolic execution by the

intruder, including the management of several possibilities that

the intruder at the current point cannot rule out, which one

might call the ignorance of the intruder. In a given state

(α, β, γ, δ) and given a transaction process, we will step by

step execute the process, appropriately splitting into different

possibilities, where we always have one possibility marked as

being what really happened. From the final set of possibilities

obtained at the end of the process, we then derive the new state

(α′, β′, γ′, δ′) that reflects how the execution of the transaction

has changed the world and the intruder’s knowledge about it.

Definition 6 (Possibility, configuration). A possibility

(P, φ, struct) consists of a process P , a formula φ over Σ and
a frame struct representing the structural knowledge attached
to this process P .

2[20] only allowed fv(α) = fv(β), but our constructions don’t require it.

134

TABLE I
SUMMARY OF NORMAL I ZAT I ON AND EVALUAT I ON RULE S

Normalization rules Evaluation rules

Redundancy (NR 1.) Non-deterministic choice (ER 1.)
Redundant entries in δ (NR 2.)Marked process receives (ER 2.)
Cell Read (NR 3.)Marked process sends (ER 3.)
Conditional (NR 4.)Marked process has terminated (ER 4.)
Cell Write (NR 5.)
Release (NR 6.)

A configuration is a pair (S,P), where S is a state and P
is a non-empty finite set of possibilities s.t.:

• fv(P) is a subset of the free variables of S,
• exactly one element of P is marked as the actual possi-

bility, which we depict by underlining that element,
• the formulae φ1, . . . , φn of P are mutually exclusive (i.e.,
|= ¬φi ∨ ¬φj for i �= j) and β implies their disjunction
(i.e., β |= φ1 ∨ . . . ∨ φn), and

• β ∧ γ |= φ for the condition φ of the marked possibility.

We call a configuration (S,P) ready if P = 0 for all
(P, φ, struct) ∈ P .

For a ready configuration (S,P) in the protocol, we can

start the execution of any transaction Pl from the protocol

description with an initial configuration of Pl defined as:

Definition 7 (Initial configuration of a transaction). Consider
a ready configuration (S,P), a transaction process Pl, a
substitution θ that substitutes the fresh variables N (from a
νN.Pr specification) with fresh and distinct constants from
Σ \ Σ0 that do not occur elsewhere in the description or
in (S,P), and that replaces all other variables with fresh
variables that do not occur elsewhere in the description or
in (S,P). The initial configuration of Pl w.r.t. (S,P) and θ
is (S, {(θ(Pl), φ, struct) | (0, φ, struct) ∈ P}).

Example 4. Consider a transition for the Basic hash pro-
tocol in Example 3. The initial state of the protocol is
S = (true, true, true, ∅) and the initial set of possibilities is
P = {(0, true, ∅)}. The first transition to be taken is Tag .
The initial configuration for the Tag process w.r.t. (S,P) is
(S, {(
 T1 ∈ Tags.snd(pair(N1, h(sk(T1), N1))).0, true, ∅)}).

From this initial configuration, we can get to a new state (or

several states) by the following normalization and evaluation

rules, basically working off the steps of the process Pl. We

first define these rules and then give a larger example in §A.

Table I provides a summary of the following normalization

and evaluation rules.

1) Normalization Rules: Recall that in a configuration, we

have always one possibility being marked, which we denote by

underlining it; in the following rules however, if no possibility

is underlined, then the rule applies for all possibilities, no matter

if marked or not.

a) Redundancy (NR 1.): We can always remove redun-

dant possibilities when the intruder knows that a condition

is inconsistent with β (this can never happen to the marked

possibility, as the truth is always consistent with β):

{(P, φ, struct)} ∪ P =⇒ P if β |= ¬φ
b) Redundant entries in δ (NR 2.): An entry cell(s) := t

if φ can be removed from δ if β |= ¬φ.
c) Cell Reads (NR 3.): Let C[·] be the initial state of cell,

and let the cell operations in the current state S be cell(s1) := t1
if φ1, . . . , cell(sn) := tn if φn. Then, every possibility that

starts with the reading of cell is normalized via:

{(x := cell(s).Pl, φ, struct)} ∪ P =⇒
{(if s = sn ∧ φn then let x := tn.Pl else

if s = sn−1 ∧ φn−1 then let x := tn−1.Pl else

. . .

if s = s1 ∧ φ1 then let x := t1.Pl else

let x := C[s].Pl, φ, struct)} ∪ P
The same rule holds if the possibility is marked (and then the

transformed possibility is the marked one).

Example 5. Consider a cell family r with initial state
C[·] = init(·), and a state where δ has exactly one entry for
memory cell r: r(X) := h(init(X)) if true. Consider now the
following possibilities: {(Key := r(Y).P, true, struct)} ∪ P .
The normalization yields:

{(if Y .
= X then let Key := h(init(Y)).P else

let Key := init(Y).P, true, struct)} ∪ P
Thus cell reads are reduced to conditionals at run time and
conditionals we consider next.

d) Conditional (NR 4.): A conditional process is normal-

ized via:

{(if ψ then P1 else P2, φ, struct)} ∪ P =⇒
{(P1, φ ∧ ψ, struct), (P2, φ ∧ ¬ψ, struct)} ∪ P

If the process “if ψ then P1 else P2” is marked, then, by

construction, β ∧ γ |= φ. Recall that the interpretation of

symbols is fixed, and that due to well-formedness, the truth

γ determines one value for all variables in ψ. Thus, either
β ∧ γ |= φ ∧ ψ or β ∧ γ |= φ ∧ ¬ψ. Accordingly, exactly one

of the alternatives gets marked.

Example 6. The possibilities reached in the previous example,
we can thus further normalize:

{(if Y .
= X then let Key := h(init(Y)).P else

let Key := init(Y).P, true, struct)} ∪ P =⇒
{(let Key := h(init(X)).P,X

.
= Y, struct),

(let Key := init(Y).P,X � .= Y, struct)} ∪ P
e) Cell write (NR 5.): A cell write process is normalized

via:

{(cell(s) := t.Pr, φ, struct)} ∪ P =⇒ {(Pr, φ, struct)} ∪ P
where δ is augmented with the entry cell(s) := t if φ.
The order of these entries in δ depends on which normal-

135

izations are performed first, e.g., if we have {(cell(s1) :=
t1.0, φ1, struct1), (cell(s2) := t2.0, φ2, struct2)}, the resulting
δ is either cell(s1) := t1 if φ1, cell(s2) := t2 if φ2 or

cell(s2) := t2 if φ2, cell(s1) := t1 if φ1.

However, both orderings are in some sense equivalent, be-

cause φ1 and φ2 are mutually exclusive, so at most one of them

can happen in any given model I of β. A similar argument

holds for any critical pair of applicable normalization rules,

and thus an arbitrary application strategy of the normalization

rules may be fixed for the uniqueness of the definition.

Example 7. Continuing the previous example, suppose P =
r(Y) := h(Key).P ′; then, we have the possibilities:

{(r(Y) := h(h(init(X))).P ′, X .
= Y, struct),

(r(Y) := h(init(Y)).P ′, X � .= Y, struct)} ∪ P
Thus normalization yields

{(P ′, X .
= Y, struct),

(P ′, X � .= Y, struct)} ∪ P
and δ is augmented by entries (in any order):

r(Y) := h(h(init(X))).P ′ if X .
= Y

r(Y) := h(init(Y)).P ′ if X � .= Y

f) Release (NR 6.): Given a process that wants to release

some information φ0, if the possibility is marked then we add

it to α, if mode is
 or to γ if mode is �, else we ignore it:

{(mode α0.Pr, φ, struct)} ∪ P =⇒ {(Pr, φ, struct)} ∪ P
Recall that in process specifications, the formula φ0 may

contain subterms of the form I(t), e.g., x = I(x). If φ0 is

added to α, it must only contain symbols in Σ0, otherwise

we consider it as a specification error (i.e., privacy for this

specification is undefined). Recall that γ gives every privacy

variable a unique value that occurs in the current state. We

write I to denote the corresponding substitution induced by γ.

Example 8. Consider a state where γ ≡ X
.
= 0. Consider

now the possibility {(
 X .
= I(X).0, φ, struct)}. The nor-

malization yields {(0, φ, struct)} and the α formula is now
augmented with the conjunct X .

= 0 since I(X) = 0.

2) Evaluation Rules: We call a set of possibilities normal-
ized if normalization rules have been applied as far as possible.

The first step of a normalized set of possibilities is either a non-

deterministic choice, a send or a receive step, or they finished—

since all other constructs are acted upon by the normalization

rules. The following evaluation rules can produce multiple

successor configurations (due to non-deterministic choice), and

they can produce non-normalized possibilities. Before another

of the evaluation rules can be taken, the possibilities have to

be normalized again.

a) Non-deterministic choice (ER 1.): If the first step in

the marked process is a non-deterministic choice, then, all

processes must start with a non-deterministic choice of the

same variable x from the same domain D, since we required

that varseq is defined as in Def. 4 and the set of configurations

is normalized. In this case, the evaluation is defined as a non-

deterministic configuration transition for every c ∈ D:

((α, β, γ, δ),{((mode x ∈ D.P1, φ1, struct1), . . . ,
(mode x ∈ D.Pn, φn, structn))})→

((α′, β′, γ′, δ),{(P1, φ1, struct1), . . . , (Pn, φn, structn)})
where: α′ ≡ α ∧ x ∈ D if mode is
; α′ ≡ α if mode is �;
β′ ≡ β ∧ x ∈ D; γ′ ≡ γ ∧ x .

= c.

Example 9. We consider the following configuration:
((α, β, γ, δ), {(
 X ∈ {0, 1}, φ, struct)}). There are two
successor configurations that represent the different possible
instantiations of the variable X:

((α, β, γ, δ), {(
 X ∈ {0, 1}.0, φ, struct)})→
((α′, β′, γ′, δ), {(0, φ, struct)})

where α′ ≡ α ∧X ∈ {0, 1}, β′ ≡ β ∧X ∈ {0, 1} and γ′ ≡
γ∧X .

= 0; The other state is identical except γ′ ≡ γ∧X .
= 1.

b) Marked process receives (ER 2.): Also in this case,

if one process starts with a receive, all the others start with

a receive as well. Also here, we have several possible state

transitions, since the intruder can freely choose a message to

send to the processes. Let r be any recipe that the intruder can

generate according to β, i.e., β |= gen(r). For every such r,
we have a configuration transition:

{(rcv(x).P1, φ1, struct1), . . . , (rcv(x).Pk, φk, structk)} →
{(P1[x �→ struct1{|r|}], φ1, struct1), . . . ,
(Pk[x �→ structk{|r|}], φk, structk)}

Note that our construction requires that in any rcv(x).Pk, x
is a variable that did not occur previously in the same process,

i.e., we forbid rcv(x).rcv(x).Pk, as explained in Definition 4.

Example 10. Consider the set of possibilities
{(rcv(Z).Pa, φ, structa), (rcv(Z).Pb, φ, structb)}. Suppose
the intruder chooses to send as input the recipe h(l) for some
label l in structa (by construction structa and structb must
have the same domain). Each process receives the message
that results from that recipe in the respective possibility:

{(Pa[Z �→ structa{|h(l)|}], φ, structa),
(Pb[Z �→ structb{|h(l)|}], φ, structb)}

c) Marked process sends (ER 3.): If the marked process

sends a message next, this is observable, and all processes that

do not send are ruled out. Thus, we have the rule

{(snd(m1).P1, φ1, struct1), . . . ,

(snd(mk).Pk, φk, structk)} ∪ P →
{(P1, φ1, struct1 ∪ {|l �→ m1|}), . . . ,
(Pk, φk, structk ∪ {|l �→ mk|})}

where l is a fresh label and P is a set of possibilities that

are finished (i.e., all the processes are the 0 process), and we

augment β by:

φ1 ∨ . . . ∨ φk ∧ concr [l] = γ(m1) ∧
∃i ∈ {1, . . . , k}. ∨k

j=1 i = j ∧ struct [l] = mj ∧ φj

136

This is because the intruder can now rule out all possibilities

in P and their conditions (so one of the φi in the remaining

processes must be true). Moreover, the intruder knows a priori

only that the message they receive, concretely γ(m1), is one
of the mi and this is the case iff φi holds.

Example 11. Consider the following process and its evaluation,
and suppose that γ contains X .

= 1:

{(send(h(init(X))).0, X
.
= Y, structa),

(send(init(Y)).0, X � .= Y, structb)} →
{(0, X .

= Y, structa ∪ {|l �→ h(init(X))|}),
(0, X � .= Y, structb ∪ {|l �→ init(Y)|})}

β is augmented by concr [l] = init(1) ∧ ∃i ∈ {1, 2}.
(
(i =

1 ∧ struct [l] = h(init(X))) ∨ (i = 2 ∧ struct [l] = init(Y))
)
,

representing that the concrete message the intruder receives
follows the underlined possibility (instantiating X with its true
value) and that the intruder a priori does not know which of
the two possibilities the true structure of the message is.

d) Marked process has terminated (ER 4.): If the marked

process has terminated, then the others have either also termi-

nated or start with a send step (since other cases are already

done). If all processes are terminated, we are done, otherwise

the intruder can rule out the processes that are not yet done:

{(0, φ1, struct1), . . . , (0, φk, structk)} ∪ P →
{(0, φ1, struct1), . . . , (0, φk, structk)}

where P is a set of possibilities that start with a send, and

we augment β by φ1 ∨ . . . ∨ φk. In any case, no further

normalization and evaluation rules are applicable, and thus

have reached a state.

After defining transition systems, let us define dynamic
(α, β)-privacy.

Definition 8 (Dynamic (α, β)-privacy). Given a configuration
(S,P), a transaction process Pl, and a substitution θ as in
Def 7, the successor states are defined as all states reachable
from the initial configuration of Pl using the normalization
and evaluation rules. The set of reachable states of a protocol
description is the least reflexive transitive closure of this
successor relation w.r.t. a given initial state of the specification
(the possibilities being initialized with (0, true, ∅)).

We say that a transition system satisfies dynamic (α, β)-
privacy iff static (α, β)-privacy holds for every reachable state.

IV. DP - 3T

As a concrete and topical example, we consider the decentral-

ized, privacy-preserving proximity tracing system DP-3T [14],

which has been developed to help slow the spread of the SARS-

CoV-2 virus by identifying people who have been in contact

with an infected person. The DP-3T system aims to minimize

privacy and security risks for individuals and communities, and

to guarantee the highest level of data protection.

A. Modeling

For every agent and for every day, we have a day key, and the

day is further separated into periods (e.g., of 15 minutes), and

for each period, each agent generates a new ephemeral identity.

In order to avoid any complications with infinite numbers of

models, we consider finite (but arbitrarily large) sets of agents,

day keys, and ephemeral IDs. Moreover, we use these sets

as sorts, so that we can define interpreted functions between

these sorts without inducing infinitely many models for these

functions. We use the following sorts:

• Agent is the sort of all participating agents,

• Day = {0, . . . ,D− 1} identifies days,

• Period = {0, . . . ,P− 1} identifies a particular period of

a day, i.e., a day is partitioned into P periods (e.g., of 15
minutes),

• SK is the sort of daily identities that contains at least

(D× |Agent | +1) elements, and

• EphID is the sort of ephemeral identities (changing, e.g.,

every 15 minutes). This set contains at least (| Agent |
×D × P) elements.

Let all elements of these sorts but SK be part of Σ0, so that α
formulae can talk about agents, days, and ephemeral identities.

On these sorts, we define the following functions and relations:

• sk0[·] : Agent → SK maps every agent to their first-day

key. We assume that this key is distinct for every agent,

i.e., sk0[a] �= sk0[b] for any a �= b.
• h[·] : SK → SK is a hash function that maps every

daily identity to the next day. We assume that for every

a : Agent, we have a seed value sk0[a] ∈ SK such that

hi[sk0[a]] �= hj [sk0[b]] for any a, b ∈ Agent, i, j ∈ Day
with (a, i) �= (b, j): every daily identity of an agent is

unique.

• prg [·, ·] : SK × Period → EphID models a pseudo-

random number generator to generate the ephemeral

identities. We assume prg is injective on the domain

SK × Period , so that there is also no collision between

the ephemeral identities of any agents (with respect to

any timepoints).

• pwnr [·] : EphID → Agent relates an ephemeral ID to its

actual owner in our model, i.e., for e = prg [hi[sk(a)], j],
we have pwnr [e] = a.

• dayof [·] : EphID → Day tells the day an ephemeral ID

is issued.

• sick ⊆ EphID×Day is a relation where sick(e, d) means

that the agent identified by e has declared sick on day d.
In contrast, dayof [e] is the day when e was used.

We fix the interpretation of these functions and relations so

that the described constraints are satisfied: we pick for each

agent and each day a unique element from SK , and interpret

sk0[a] as the key of a for day 0, and the h[·] maps that key to

the day 1 key of a. Observe there is at least one more element

in SK , which is where all remaining h[·] map, so we do not

have any collisions except outside the area that we are using.

Given the size of EphID we can fix an injective interpretation

for prg , and can then set the interpretation of pwnr , dayof
and sick as expected.

The functions h and prg are cryptographic functions, and

sk0 is a cryptographic setup. We regard them as techni-

137

cal/implementation related, so they are only part of Σ\Σ0 and

cannot be used in α. We have made several assumptions about

absence of collisions in these functions: these assumptions are

part of β in the initial state. The functions pwnr and dayof
and the relation sick are part of the high-level modeling, and

thus part of Σ0.

We use the following memory cells with their initial values:

• skl(A : Agent) := sk0[A] is whatever is the opposite of a

look-ahead: it represents the day ID of agent A of l days
ago, where l is the period how far back we want to report

the sickness after a positive test (e.g. five days),

• sk(A : Agent) := hl[sk0[A]]. The current day ID of A is

l hashes ahead of sk0. Thus, within the first l days of

the app, we have some “virtual” past days where we can

report sickness—this is to keep the model simple,

• today() := l is the current day counter (it is the same for

all agents),

• period() := 0, where 0 identifies the first period of a day,

• ephid(A : Agent) := prg [sk(A), period()] is the current

ephemeral ID, and

• isSick(A : Agent) := false is a flag to indicate that the

agent has reported sick and should no longer use the app

and should quarantine.

We consider the agent transactions in Fig. 1. The transaction

New Day or Period advances a global clock, and when a day

is finished, automatically triggers the generation of new day

keys for each agent. This ignores any privacy problems that

could arise from de-synchronized clocks and the like. The

Agent Advertise transaction models that an agent can at any

time communicate its current ephemeral identity e and that the

intruder never learns more than the owner of e is some agent

x ∈ Agent. Our model ignores the details of how two agents’

phones actually exchange IDs, which can cause also several

problems [23]. The Agent Sick Transaction models that an

agent declares sick and publishes the day keys in their sickness

period (for simplicity, we publish only the oldest, the others can

be generated by everybody themselves). We specify that the

intruder should now only learn that all ephemeral IDs belong to

an agent that has just declared sick. The model actually omits

the details of how this sick report is communicated to a central

server (who must also somehow check with health authorities

whether the agent is indeed sick), which again is not trivial to

get right [23]. Our model focuses on the core privacy question

that arises, even if all exchange protocols work perfectly.

B. Privacy violated

Suppose that we have two advertisements by the same agent

a in the first two periods of the first day (numbered l), i.e.,
let skl = hl[sk0[a]] be the day key, and e0 = prg [skl, 0] and
e1 = prg [skl, 1] be the released ephemeral IDs. On the same

day, a releases a sick note sk0[a] that gives rise to further

ephemeral IDs e2, . . . , en. Then, α in the reached state is:

α ≡ x1 ∈ Agent ∧ pwnr [e0]
.
= x1 ∧ dayof [e0]

.
= l∧

x2 ∈ Agent ∧ pwnr [e1]
.
= x2 ∧ dayof [e1]

.
= l∧

x3 ∈ Agent ∧ sick(e0, l) ∧ . . . ∧ sick(en, l)

where e0, . . . , en are all ephemeral keys of a released in the

sick report. The following can be derived from β, for some

labels m1, m2 and m3 where the sent messages are stored:

concr [m1] = e0 struct [m1] = prg [hl[sk0[x1]], 0]
concr [m2] = e1 struct [m2] = prg [hl[sk0[x2]], 1]
concr [m3] = skl struct [m3] = hl[sk0[x3]]

Intruder deductions:

concr [prg [m3, 0]] = prg [hl[sk[a]], 0] = e0 = concr [m1]
concr [prg [m3, 1]] = prg [hl[sk[a]], 1] = e1 = concr [m2]

Using φ∼:
struct [prg [m3, 0]] = struct [m1]
struct [prg [m3, 1]] = struct [m2]
prg [h1[sk1[x3]], 0] = prg [hl[sk0[x1]], 0]
prg [hl[sk0[x3]], 1] = prg [hl[sk0[x2]], 1]

By the properties of prg , h and sk0 : x3 = x2 ∧ x3 = x1

and thus x1 = x2.

This last statement is however not compatible with all models

of α, so dynamic (α, β)-privacy is indeed violated. Note that

we do not find out that x1
.
= a, but we have linkability of

pseudonyms of sick persons.

C. The Actual Privacy Guarantee

The protocol releases more information than we have speci-

fied so far in α. This corresponds to the privacy problem that

the intruder gets to know that all the ephemeral identities of a

day are related to the same agent. This could be relevant if, e.g.,

the intruder surveys in several places for ephemeral identities

and can then build partial profiles of users who declared sick.

We at least need to add the following information: in the sick

release by the information there is one particular agent who

is the owner of all released sick-predicates, i.e., in the Agent

Sick transaction we have the α release. This provides the

link between all ephemeral IDs released by an agent, because

the owner is the same agent x (who of course still remains

anonymous, hence the variable).

As a consequence, this additional information (i.e., that

x1
.
= x2

.
= x3) no longer counts as an attack, because we

explicitly declare that we want to release this information,

which we can formalize by adding it to α. This highlights

how in (α, β)-privacy one can—as a conscious choice of the

modeler—move to a weaker privacy goal (by allowing the

intruder to obtain more information), when the protocol is not

as strong as initially expected.

However, this extended α still does not cover all the infor-

mation we release. For instance, if the two agents x1
.
= a and

x2
.
= b have released ephemeral IDs ea and eb, respectively,

and a has declared sick, then we can still observe that x1 � .=x2
because eb does not belong to any of the keys that have been

released with a sick note. Similarly, we can distinguish agents

that have declared sick; for instance, if both a and b have

declared sick, then we can also derive x1 � .= x2, because we

have distinct day keys and moreover, when two day keys belong

to the same agent, then they are related by the hash function,

i.e., sk1 = hk[sk2] or vice-versa.

138

New Day or Period

if (period() < P− 1) then
period() := period() + 1

else period() := 0
if (today() < D− 1) then

today() := today() + 1
for x : Agent

sk(x) := h(sk(x))
skl(x) := h(skl(x))

Agent Advertise

� x ∈ Agent
if ¬isSick(x) then

let z = prg [sk(x), period()]
� pwnr [I(z)] = x ∧ dayof [I(z)] = today()
snd(z)

Agent Sick

� x ∈ Agent
if ¬isSick(x) then

isSick(x) := true
let y = skl(x)
for i ∈ Period ∧ j ∈ {0, . . . , l}

� sick(I(prg [hj [y], i]), I(today()))
snd(y)

Fig. 1. A model of DP-3T (with insufficient α)

∀E,F ∈ EphID , C,D ∈ Day : sick(E,C) ∧ sick(F,D) ∧
pwnr [E]

.
= pwnr [F] =⇒ C

.
= D

∧ ∀E,F ∈ EphID , D ∈ Day : sick(E,D) ∧
pwnr [E]

.
= pwnr [F] =⇒ dayof [F] ≤ D

∧ ∀E,F ∈ EphID , D ∈ Day : pwnr [E]
.
= pwnr [F]∧

dayof [E]
.
= dayof [F] ∧ sick(E,D) =⇒ sick(F,D)

∧ ∀E0, E1, . . . , EP ∈ EphID :
∧

i,j∈{0,...,P},i �=j Ei
 .= Ej

pwnr [E1]
.
= . . .

.
= pwnr [EP]∧

dayof [E1]
.
= . . .

.
= dayof [EP]

=⇒ pwnr [E0]
 .= pwnr [E1] ∨ dayof [E0]
 .= dayof [E1]

Fig. 2. Axioms for DP-3T

So, actually, what we really give out here is much more, and

it is not easy to keep track of it without basically copying into

α most of what is going on in β, and thus basically making

the implementation be also the specification. However, as most

logicians will agree, there is almost always a declarative way

to describe things. In this case, we can actually formalize a

few relevant properties of the implementation as axioms on

the Σ0 level, without talking about the day keys SK or how

they are generated and how the ephemeral IDs are generated.

These axioms are given in Figure 2, and we obtained them

from failed attempts of proving dynamic (α, β)-privacy, adding
missing aspects until we could prove it. Here is what these

axioms respectively express:

• an agent declares sick only once,

• after declaring sick, the agent does not use the app

anymore. In fact, they could, if we had a reset operation

that installs a new initial key, but we refrained from further

complicating the model,

• when an agent reports sick for a particular day, this entails

all ephemeral identities for that day, and

• finally, let P = |Period | denote the number of periods in

a day; then there cannot be more P ephemeral IDs that

belong to the same agent on the same day.

We shall thus, from now on, consider the axioms in Figure 2

as part of α in our initial state. Now, it may not be entirely

intuitive anymore what this actually implies. So, let us look

at the general form that α has after a number of transitions,

and how to compute the models (satisfying interpretations) of

α. In general, in any reachable state the formula α consists of

conjuncts of the following forms:

• from Agent Advertise: x ∈ Agent ∧ pwnr [e]
.
= x ∧

dayof [e] = d, where e ∈ EphID , d ∈ Day , and x is

a variable that occurs nowhere else in α, and
• from Agent Sick:

∧
e∈E pwnr [e]

.
= x∧sick(e, dr), where

E is a set of ephemeral IDs that are released on reporting

day dr. Among all agent sick reports, the set E is pairwise

disjoint. Moreover, the variable x occurs nowhere else in

α. Finally, the size of E is |Period | × l, i.e., for every of

the l days and for every time period of a day, we identify

exactly one ephemeral ID as sick.

Lemma 1. Every model I of α can be computed by the
following non-deterministic algorithm:

1) Consider every conjunct that arose from Agent Sick and
consider the variable x of that conjunct.

a) For every such x, choose a unique a ∈ Agent and set
I(x) = a. (Unique here means: two different Agent-sick
conjuncts with variables x and x′ must be interpreted
as different agents I(x) �= I(x′)).

b) For every e that occurs in this conjunct, we have
I(pwnr [e]) = a.

2) Consider every conjunct that arose from Agent Advertise
and let x be the variable occurring in there and e be the
ephemeral ID in there.

a) If I(pwnr [e]) = a has been determined, then I(x) = a.
b) If I(pwnr [e]) has not yet been determined, then let d be

the day that is has been declared. Let Agents be the set
of agents that have declared sick on day d or before,
i.e., I(x′) for every x′ s.t. α contains sick(e, d′) ∧
pwnr [e] = x′∧dayof [e] = d0 and d0 ≤ d. Further, let
Agente denote all the agents a for which I(pwnr[e]) =
a, and I(dayof [e]) = d for P different ephemeral IDs
e. Then, choose a ∈ Agent\Agents\Agente arbitrarily
and set I(x) = a and I(pwnr [e]) = a.

3) All remaining aspects of I are actually irrelevant (i.e.,
I(pwnr [e]) for e that did not occur in the formula).

In a nutshell: α does not reveal any agent names, but allows

one to distinguish all sick agents from each other and from

the non-sick, and it allows one to link all ephemeral IDs of

every sick agent from the first day of sickness on.

Proof. Soundness (i.e., the algorithm produces only models

of α): the algorithm respects obviously every conjunct of α
produced during transactions, and for the axioms the distinct

choice of sick-reported agents is actually sufficient.

139

Completeness (i.e., every model of α is produced by the

algorithm): we have first to show that α enforces I(xi) �=
I(xj) for every pair of variables xi and xj that occur in distinct

sickness reports. Suppose this were not true, i.e., we have a

model I of α such that I(xi) = I(xj) for the variables xi and
xj from distinct agent sickness reports. From the construction,

we know each sick report contains exactly P · l ephemeral IDs

(l days reporting, and P periods per day), and the ephemeral

IDs from distinct sick reports are disjoint. Moreover, each sick

report has a reporting day, say di and dj . Let thus ei and

ej be ephemeral IDs from the two sick reports, then I |=
pwnr [ei]

.
= xi

.
= xj

.
= pwnr [ej] and therefore the axioms

entail di = dj (same day of reporting). Thus, α contains for

each sick report P ephemeral IDs for l days up to reporting

day di = dj . That is however impossible by the axiom that

not more than P different ephemeral IDs can have the same

day and the same owner (while we have 2 · P according to

assumption). Thus, I(xi) .= I(xj) is absurd.
That all distinct sickness reports must be interpreted as being

done by different agents shows the completeness of the choice

in step 1a. Steps 1b and 2a are directly enforced by α. For
step 2b, we have an ephemeral ID e for an agent x, such that

e is not contained in any sick-report. By dayof [e] = d we

can check all sick reports that have been done on day d or

before, and which agents we have reported there according

to a given model I, which the algorithm calls the set Agents.
Suppose I(x) ∈ Agents, i.e., there is a sick report for an agent

x′ and I(x′) = I(x) that has at least one ephemeral id e′ that
is included in the sick report for day d′ ≤ d. If d = d′, this
contradicts the axiom that an agent releases all their ephemeral

IDs for a given sick day, because we were considering an e that
was not reported sick. If d′ < d, this contradicts the axiom

that the agent stops using the app after the sick report, i.e.,

dayof [e] must be before the sick report. Finally, we have to

show that also I(x) ∈ Agente is not possible, because Agente
contains all agents for which we have interpreted already P
different ephemeral IDs for this day. This directly follows from

the axiom that there are at most P different ephemeral IDs for

the same agent on the same day. This shows that the choice in

step 2b of an agent outside Agents and Agente is complete.

Hence, the algorithm allows all choices that are not excluded

by α itself, and is thus complete.

This characterization of the models of α of any reachable

state allows us to prove dynamic (α, β)-privacy as follows.

Theorem 1. DP-3T with the extended α specification (includ-
ing the axioms in Figure 2) given in this section satisfies
dynamic (α, β)-privacy.

Proof. We have to show that in every reachable state, any

model I0 of α can be extended to a model I of β. Note that β
must have a model Ir that corresponds to what really happened

(and it is also a model of α). The idea is that we incrementally

construct I close to Ir.
First, we choose a key from SK for every agent a and every

day d that occur in β; let us call it ska,d. The principle here

is: if, according to I , agent a declares sick at some point, then

β will contain the publication of the corresponding day keys

of some agent x, where I(x) = a. So, we have to set ska,d
for those days d and a accordingly. All remaining keys can be

set to arbitrary distinct values from SK , disjoint from those

occurring in β. ska,d = skb,c implies a = b and c = d by

construction now, so set I(sk0[a]) = ska,0, and I(h[ska,d]) =
ska,d+1 for any agent a and day d occurring in β.
For prg , we can already pick some values in a convenient

way: for those sk that are part of a sick report (i.e., not arbitrarily
chosen from SK in the previous step), we can choose the

ephemeral IDs derived from them to be identical to those

in Ir, i.e., set I(prg [sk, i]) = Ir(prg [sk, i]) for every period

i ∈ Period and every day key sk that is covered by a sickness

report. The remaining ephemeral IDs (that did not occur in

sickness reports) will be chosen “on the fly” now. It is yet to

be proved that this is consistent with the rest of β.
For the initial state, we have thus an “intruder interpretation”,

i.e., what the initial value of the memory cells skl(a) and

sk(a) of every agent a is, namely I(sk0[a]) and I(hl[sk0[a]]),
respectively (while the real initial values are Ir(sk0[a]) and

Ir(hl[sk0[a]])). The intruder cannot see all the concrete values
sk that occur here: the intruder can only see those values

that have been explicitly released and apply the hash function

further to them. Let us speak in the following of the virtual
state of the memory cells, i.e., what value they would have

(after a given sequence of transaction) if I were the reality.

The next day and the next period transactions just change the

state; the virtual state is changed in a way that is completely

determined by what we have determined in I so far.

For an agent advertisement transaction, let x be the variable

for the agent in the transaction and I(x) = a the concrete

agent according to I and e the ephemeral ID advertised. Let

further sk, i, and d be the current values of sk(a), period() and
today() in the virtual state. We distinguish two cases: first, if

sk is a day key published in a sick report later, then we have

already determined I(prg [sk, i]) = Ir(prg [sk, i]) previously,

and Ir(prg [sk, i]) = e because this is indeed the advertisement

of the agent Ir(x) (which may have a name different from

I(x)) at this day and time period and sk is indeed the current

day key this agent. Otherwise, if sk is not reported sick later,

then I(prg [sk, i]) is not yet determined, unless we run the same

advertisement a second time for the same agent on the same

day and time period, and so it is already set to e, and we can

set it to e. This is possible since in every other reached virtual

state, sk and i are necessarily different, so prg [sk, i] has not

yet been assigned a different interpretation yet. The formula

β now contains (for an appropriate label m): concr [m] =
e ∧ struct [m] = prg [hd[sk0[x]], i]. This is because d and i in
the virtual state are equal to the value in reality. Under I , the
struct term thus also equals e. We show below also for the

other transitions that on every introduced label m it holds that

I |= concr [m] = struct [m], and thus concr and struct will

be trivially in static equivalence under I.
For a sick report, let x be the variable for the agent in the

transition and I(x) = a the concrete agent according to I , and

140

let skl, i, and d be the current values of skl(a), period(), and
today() in the current virtual state. The formula β now contains

concr [m] = skl and struct [m] = hd−l[sk0[x]]. Observe also

here that we have I |= concr [m] = struct [m] because skl(x)
is x’s key from l days ago.

V. COMPAR I SON W I TH TRACE EQU IVALENCE

The gold standard for privacy in security protocols are the

notions of observational equivalence and trace equivalence
(see, e.g., [12] for a survey). Roughly, a pair of processes

is trace equivalent if all transitions of one process can be

simulated by the other. This entails substantial difficulties for

automated verification [8], especially when systems have a long-

term mutable state [3], but still privacy notions are typically for-

mulated as such an equivalence between two alternative worlds,

rather than a reachability problem. Interesting in this context

is the notion of diff-equivalence [6] that is implemented in the

most popular verification tools ProVerif [5] and Tamarin [22]:

here the processes are parameterized over a binary choice

in terms, and one proves the equivalence between the two

processes that result from taking either all the “left” or all

the “right” choices. The main requirement is now that during

execution all if conditions are either both true or both false

for the two variants. Thus, the two processes are basically in

lockstep and we have also practically a reachability problem.

While this is helpful for automation, it restricts the set of

protocols that can be verified (without false positives); for

instance, [4] discusses why the Basic Hash protocol and OSK

could not be reasonably modeled in ProVerif and Tamarin

directly, and [12] gives the similar BAC protocol as an example

that cannot be handled with diff-equivalence.

In contrast, (α, β)-privacy gives us a reachability problem

without such a restriction. In particular, the different possibili-

ties struct i that we are maintaining in each state represent the

different ways past conditions could have turned out and that

the intruder cannot rule out. In fact, all mentioned examples can

be directly expressed as reachability problems in (α, β)-privacy.
In terms of expressive power, (α, β)-privacy thus seems close

to the unrestricted trace equivalence and, while there are some

substantial differences, we give some formal arguments for that

in the following.

In addition to (α, β)-privacy’s advantages of a declarative

modeling, the simplicity of a reachability problem is also

beneficial to automation. A first step towards that is found

in [15], which solves the message analysis problem of static

(α, β)-privacy defined in [20] that has only one struct . We

are currently extending this method for the case of several

struct i as is needed for the dynamic (α, β)-privacy defined in

this paper. To handle the interaction with the intruder that

arises from the rcv command, we are also working on a

constraint-based approach to obtain a decision procedure for

a bounded number of sessions. Note that related tools such

as DEEPSEC [9] are also limited to a bounded number of

sessions but are implementing a decision procedure for full

trace equivalence. This leaves open the question whether all

really expressive notions of privacy require a limit to a bounded

number of sessions, or whether (despite undecidability) there

can be algorithms for handling the unbounded case reasonably

well in practice. We believe (α, β)-privacy may be a way,

since it provides a reachability problem without requiring any

restrictions such as those inherent in diff-equivalence.

A. Visibility of Transactions

It is inherent in the semantics of (α, β)-privacy that the

intruder knows which transaction is currently being executed;

but the intruder does not know which of the if-then-else

branches is taken, unless this can be inferred from the com-

munication behavior of the transaction. In contrast, most trace-

based approaches are formulated in a variant of the Applied-π
calculus and do not have a notion of transaction; the intruder

view is thus limited to the communication behavior.

If desired, it is easy to express the same limited intruder

view in (α, β)-privacy transactions;3 given a specification of

transactions T1, . . . , Tn, one can transform them into a single

transaction T as follows (where z is a variable that does not

occur in any of the Ti):

� z ∈ {1, . . . , n}.
if (z

.
= 1) then T1.

else if (z
.
= 2) then T2.

...
else if (z

.
= n) then Tn

This transaction allows all the same behaviors as the Tis
together, except that the intruder does not see a priori which

of the Tis is taken. Depending on the output messages of the

Tis, the intruder may anyway find out which Ti it is (or just
narrow it down to a few candidates), but that in itself is not

a violation of privacy since the non-deterministic choice of z
was not released in α.

In our opinion, it is better to let the intruder know the

transaction by default, and have the modeler explicitly specify

otherwise (with the above construction), when the protocol

privacy indeed relies on this. This makes it less likely that such

a reliance is overlooked upon implementation. For the rest of

this discussion, we will speak of transactions T1, . . . , Tn, but
allowing for the case that n = 1 with the above construction.

B. Relations between messages sent and received

Another subtle difference between the modeling in (α, β)-
privacy and in trace equivalence approaches concerns what

relationship the intruder can see between messages sent and

received by a single entity/process, which is very relevant

for linkability goals as we have considered in previous ex-

amples. In trace equivalence approaches, the intruder cannot

a priori see any relation between incoming and outgoing

messages. Consider, for instance, the following two processes

running in parallel: P1 = rcv(X).νN.snd(h(X,N)) and P2 =
new N.snd(N).

Suppose the intruder sends a message m1 and then observes

a message m2. Then m2 may either be a reply to m1 from

P1, or the message from P2. Of course, if P1 is modeling

3It is similarly possible to equip a process calculus specification with
additional messages that tell the intruder a particular point has been reached.

141

an entity that directly gives a reply to an input, in particular

without any mechanism to break the timely relation between

input and output (like batching of answers or dummy traffic

as in mix-networks), then it is, in our opinion, just reasonable

that the intruder can tell which process has sent it. We thus

chose to introduce in (α, β)-privacy the concept of transaction

processes that form an “atomic unit”. Thus, the intruder can

relate all messages sent and received by one transaction.

If one wants to hide this relationship from the intruder in

(α, β)-privacy, one can break a transaction into smaller ones.

For instance, P1 can be split into P1,a = rcv(X).cell := X
and P1,b = X := cell(s).νN.send(h(X,N)), two transactions

between which any number of other transactions can happen.

Thus, the intruder a priori cannot relate inputs and outputs.

A modeler should only do this if one is certain that the

relationship is not visible to the intruder. Note that also in

trace equivalence approaches one often models the observable

relationship between messages (e.g., by generating a new public

channel and sending all relatable messages over that channel).

C. Equivalence

We consider now any specification of a protocol that can be

expressed as transactions meeting two restrictions as explained

below. We show that for such a specification all privacy prop-

erties that can be expressed with trace equivalence can also be

expressed with (α, β)-privacy. The reader should bear in mind

that trace equivalence and (α, β)-privacy are two quite different
“games”, so bridging between them often leads to constructions,

and requires restrictions, that are somewhat artificial, but that

at least give an idea of how the two approaches relate.

We consider two restrictions (R1) and (R2) that do not seem

utterly necessary, but greatly simplify the exposition. (R1): for

this discussion, we consider (α, β)-privacy without interpreted

functions except concr and struct and without relation sym-

bols except gen . Hence, there are only the following “sources”

of non-determinism:

• variables that are introduced as
 x ∈ D; let us call such

an x an α-variable (because it is part of α),
• variables that are introduced as � y ∈ D; let us call such

a y a β-variable (because it is not part of α),
• the non-determinism of the transition relation itself, i.e.,

in a sequence of steps, which transaction is performed

next, and

• for a transaction that receives a message, which of all

available messages is received.

(R1) is helpful for the following discussion: we forbid the

complications that arise from interpreted functions and relation

symbols (cf. discussion after Def 4). While many protocols

like our Basic Hash and OSK examples satisfy this condition,

the DP-3T example does not. It seems that in many cases one

could find an alternative formalization that uses memory cells

instead of interpreted functions, but we have found no precise

characterization of the limits of such encodings.

(R2): we restrict transactions to having exactly one input and

one output (on every path through its if-the-else conditions).

This simplifies the problem as for a trace of k transactions we

have now exactly k inputs and k outputs. Note that none of our

major examples satisfies (R2) but they can all be transformed

into equivalent specifications (in the sense that they enjoy the

same privacy properties) by sending a dummy message for

each case where no output is sent (observation of the dummy

output is then equivalent to observing no output in the original

specification), and similarly can be done for other examples,

so (R2) does not mean a real restriction in practice.

Definition 9. Given a transaction specification with the
restrictions (R1) and (R2), we define a trace tr as a tuple
((a1, r1), . . . , (ak, rk), (S,P)), where
• each ai identifies one of the transactions,
• each ri is an intruder recipe over labels {l1, . . . , li−1},
• (S,P) is any configuration reached by the given sequence

of transactions when the inputs are bound to the ri and
the outputs labeled li. (This is according to our definition
of transaction semantics in §III-B.)

We refer to the α(S), β(S), and γ(S) of a trace as expected;
we may also refer to the concr(S) of a trace, i.e., the (unique)
ground messages bound to the labels li according to β(S).

We call a sequence (a1, r1), . . . , (ak, rk) a symbolic trace

that represents all those traces that have this sequence of
(ai, ri) transactions and inputs. The set of represented traces
is finite, corresponding to the possible interpretations of the
non-deterministic α and β variables.

We say that (α, β)-privacy holds in a trace ((a1, r1), . . . ,
(ak, rk), (S,P)) if it holds in state S, and that it holds in a
symbolic trace tr if it holds in all traces represented by tr .

We call two traces tr = ((a1, r1), . . . , (ak, rk), (S,P)) and
tr ′ = ((a1, r1), . . . , (ak, rk), (S ′,P ′)) equivalent, and write
tr ≈ tr ′, if concr(S) ∼ concr(S ′)(and, as indicated by pattern
matching, the ai, ri, and k are the same).

Let traces(Spec) be the set of traces produced by a protocol
specification Spec. We call two specifications Spec and Spec′

trace equivalent, and write Spec ≈ Spec′, if for every trace
tr ∈ traces(Spec), there is a tr ′ ∈ traces(Spec′) with tr ≈ tr ′,
and vice versa.

A binary privacy question is a specification of (α, β)-privacy
transactions that do not contain any α-variables and make no
α-release, together with a special transaction Tbin = if (init

.
=

⊥) then
 x ∈ {0, 1}. init := x, where init is a distinguished
memory cell initialized to ⊥ and the other transactions may
only read, but not modify, the value of init.

The traces represented by a symbolic trace are actually easy

to compute thanks to the restrictions (R1) and (R2): we follow

the normal semantics, but for every step “
 x ∈ Dx” and

for every step “� y ∈ Dy”, we keep the choice symbolic,

and compute a set of corresponding α and γ that we attach to

the respective possibility (Pi, φi, struct i) in the configurations.

The δ is the same for all, and the β can be reconstructed from γ
and the configuration. This is taking advantage of the fact that

we already have a representation for all the possibilities (the

(Pi, φi, struct i)) at a given point. Now, there is however no

possibility (Pi, φi, struct i) marked, but that marking is actually

only needed in case the different possibilities have differences

142

in the number of sent and received messages, which we do not

consider here due to the restrictions (R1) and (R2).

Note that every trace has at least one interpretation since

every if-then-else has at least one branch that can execute, i.e.,

every transaction is applicable in every trace (it may just fail

to actually do something).

This definition expresses the fact that trace equivalence is

about the ability to distinguish between two systems that each

reflect a particular choice of the privacy information. Relating

this to the terms of (α, β)-privacy means thus that α is simply

the secrecy of a bit x. We start by giving a formal definition

of static equivalence of frames in (α, β)-privacy. To that end,

we defined the axioms φgen , φhom , φdom and φ∼ for any two

frames �1 and �2 that shares the same domain D:

φgen(D)≡∀r.gen(r)⇔ (
r ∈ D ∨∨

fn∈Σop
∃r1, . . . , rn.

r = f(r1, . . . , rn) ∧ gen(r1) ∧ . . . ∧ gen(rn)
)

φhom(�)≡∧
fn∈Σop

∀r1, . . . , rn.
gen(r1) ∧ . . . ∧ gen(rn) =⇒
�[f(r1, . . . , rn)] = f(�1[r1], . . . ,�1[rn])

φdom≡�1[l1] = t1 ∧ . . . ∧�1[ln] = tn
φ∼(�1,�2)≡∀r, s. gen(r) ∧ gen(s) =⇒

�1[r] = �1[s]⇔ �2[r] = �2[s]

Using these axioms, we can now define the symbol ∼ for

any two frames:

Definition 10 (Static Equivalence of Frames). Two frames
�1 and �2 with the same domain {m1, . . . ,ml} of memory
locations are statically equivalent (we write �1 ∼ �2) iff
φhom(�1)∧φdom(�1)∧φhom(�2)∧φdom(�2)∧φ∼(�1,�2)
holds.

We can now relate (α, β)-privacy in the binary case with

trace equivalence (we first prove Theorem 3 as it will come

in handy to prove Theorem 2):

Theorem 2. Consider a binary privacy question Spec that
meets (R1) and (R2). For each b ∈ {0, 1}, let Specb be the
specialization of Spec where Tbin sets the choice of x to {b}.
Then (α, β)-privacy holds in Spec iff Spec0 ≈ Spec1.

Here, one can see two fundamental differences between

(α, β)-privacy and the trace equivalence approach: in trace

equivalence, we do not have to introduce a distinction between

high-level and low-level (but we simply have a single bit a

secret); on the other hand, we cannot express more than a

binary choice between two systems in one go: of course one

can specify several binary questions, but each is an independent

binary question. In contrast, in (α, β)-privacy we can have a

choice between any finite number of models and we can let

this develop during transitions, also dependent on the actions

of the intruder. For this reason, we also formulate a different

equivalence notion that is based on traces, but that, instead

of distinguishing two systems, is based on the models of a

formula α in a single system:

Theorem 3. (α, β)-privacy holds in a symbolic trace tr =
(a1, r1), . . . , (ak, rk) iff for every trace (tr , (S,P)) and every
Σ0-interpretation I0 |= α(S), there exists a trace (tr , (S ′,P ′))

such that I0 |= γ(S ′) and concr(S) ∼ concr(S ′).

Proof. Let tr = (a1, r1), . . . , (ak, rk) and first suppose (α, β)-
privacy is violated in tr , i.e., for some trace (tr , (S,P)),
(α, β)-privacy is violated in S. This means that there is one

model I0 of α(S) that cannot be extended to a model of β,
i.e., for every (Pi, struct i, φi) ∈ P , either I0 �|= φi or the

I0(struct i) �∼ concr(S). Thus, the intruder can exclude in

state S every trace (tr , (S ′,P ′)) where I0 |= γ(S ′). Since
only the α- and β-variables are to interpret, this means that

in every trace (tr , (S ′,P ′)) where I0 |= γ(S ′), we have

concr(S) �∼ concr(S ′).
Vice-versa, suppose there is a trace (tr , (S,P)) and a model

I0 of α(S) such that for every trace (tr , (S ′,P ′)) where

I0 |= γ(S ′), concr(S) �∼ concr(S ′). Then, similarly, for

every (Pi, struct i, φi) ∈ P , either I0 �|= φi or I0(struct i) �∼
concr(S). Thus, (tr , (S,P)) violates (α, β)-privacy.

We can finally prove Theorem 2:

Proof. Note that Spec, Spec0 and Spec1 have the same set

of symbolic traces. If a symbolic trace tr does not contain

the special transaction Tbin , then all the concrete traces it

represents in Spec0, Spec1 and Spec are also the same, so up

to taking the special transaction, there is no violation of (α, β)-
privacy or trace distinction possible. Thus, for the rest of this

proof, we consider only a symbolic trace tr that includes the

special transaction Tbin . Note that in Spec, all concrete traces

(tr ,S,P) represented by tr have thus α(S) ≡ x ∈ {0, 1}.
Suppose now (α, β)-privacy holds in Spec and suppose

(tr ,S,P) is a trace that tr represents in Spec0. Then,

γ(S)(x) ≡ 0. This trace is also possible in Spec, and
since the privacy holds, by Theorem 3, there exists a trace

(tr ,S ′,P ′) in Spec that supports the other model of α, namely

γ(S ′)(x) ≡ 1, and such that concr(S) ∼ concr(S ′). By

construction, (tr ,S ′,P ′) is a trace of Spec1. Thus, for every
trace in Spec0 exists an equivalent one Spec1. By a similar

proof, every trace in Spec1 has an equivalent in Spec0. Hence,
Spec0 and Spec1 are trace equivalent.

Suppose, for the sake of contradiction, that (α, β)-privacy
is violated in Spec. Then, by Theorem 3, there exists a trace

(tr ,S,P) in Spec, say with γ(S)(x) ≡ 0 (the proof for the case

γ(S)(x) ≡ 1 is analogous), and there is no trace (tr ,S ′,P ′) of
Spec such that both γ(S)(x) ≡ 1 and concr(S) ∼ concr(S ′).
Obviously, (tr ,S,P) is a trace of Spec0, but for all (tr ,S ′,P ′)
of Spec1, concr(S) �∼ concr(S ′) (since they have γ(S)(x) ≡
1). Thus, Spec0 and Spec1 are not trace equivalent.

Consider again the Basic Hash of Example 3. In approaches

based on trace equivalence, one commonly specifies an equiv-

alence between a system where the same tag performs any

number of sessions with the reader versus a system where any

number of different tags each perform one session with the

reader. We can simulate this idea as a binary privacy question

with the transaction Tbin as above, the same reader transaction

143

as in Example 3 and the following modified transaction for

tags where idfix ∈ Tags is a fixed tag:

Tag

� T ∈ Tags.νN.
if (init

.
= ⊥) then snd(waiting_for_init).0

else if (init
.
= 1) then snd(pair(N,h(sk(T), N))).0

else snd(pair(N,h(sk(idfix), N))).0

Here, T is a β-variable, i.e., it would not in itself count as a

privacy violation if the intruder finds out the identity of a tag;

rather the privacy goal is that the intruder does not find out

the choice of x in the first execution of Tbin (which is saved

then in init). If this x was 0, then it is always the tag idfix who
performs the transaction, otherwise it is non-deterministically

chosen from Tags.4 It follows from Th. 3 that (α, β)-privacy
of this system is equivalent to the trace equivalence between

the system that non-deterministically chooses the tags and

the system that always uses idfix. We emphasize that this

specification is only for the comparison to trace equivalence,

while the preferred way to specify unlinkability in (α, β)-
privacy is as in Ex. 3 and OSK in § A: in each transaction of

a tag T , the intruder learns only that
 T ∈ Tags, but nothing
more, in particular not whether two transactions are performed

by the same tag. We see this as particularly declarative, namely

not focusing on what the intruder should not find out, but rather

what he may find out, and unlinkability thus means he does

not find out anything except that T is a tag.

V I . CONCLU S I ON S

(α, β)-privacy was proposed in [20] to fill the gap between

the intuitive ideas and the mathematical notions used to

formalize and reason about them. Here, we lifted (α, β)-
privacy from a static approach to a dynamic one. Dynamic

(α, β)-privacy considers one possible reality rather than two

as it is common in approaches based on trace-equivalence.

This means that (α, β)-privacy is now a privacy approach

based on reachable states. Reachability makes the reasoning

substantially easier for manual proofs, as in the DP-3T case

study, and it paves the road towards automation. In particular,

Theorem. 3 shows that the privacy problem can be reduced to

static equivalence problems for each reachable state. This is

the same as in trace-equivalence approaches where one also

has a static equivalence problem for comparing two traces,

but one additionally has to show that for every trace in one

system, one can obtain an equivalent trace in the other. Static

equivalence is decidable for many algebraic theories relevant

in protocol verification [2]. However, the set of reachable states

is in general infinite and transactions can obviously simulate

Turing machines, thus (α, β)-privacy is still undecidable (as is

“standard” protocol verification).

A first approach for automatically verifying (α, β)-privacy is

given by Fernet and Mödersheim [15] which solves the message

analysis problem defined in [20] for standard cryptographic

4For simplicity, we are not forbidding here that in two sessions we may
use the same tag; for privacy it is of course sufficient that there are traces for
x

.
= 1 where all tags are different.

operators. This is similar to methods for deciding static equiv-

alence, but adapted to frames with privacy variables (without

grounding them). As mentioned above, this is limited to (α, β)-
privacy states with just one struct , whereas the present paper

requires one to consider several struct i in order to handle

the different possibilities arising from the evaluation of the

conditions. Moreover, the present paper also explicitly models

the interaction with the intruder, who in every state has an

infinite choice of messages that he could send. We are currently

working on the extension of the procedure of [15] to handle

both problems for a bounded number of sessions. The infinite

choice of the intruder can be represented finitely by a symbolic,

constraint-based representation, not unlike existing tools on

trace equivalence for bounded sessions like DEEPSEC [9].

For the unbounded case, Cortier et al. [11] observed that

an obstacle in abstracting away sessions is the fact that some

actions can only happen once, but in the abstraction can happen

infinitely many times, which can produce false positives. They

devised a type system that can in many cases help one to

avoid the problem and allow for unbounded verification of

trace equivalence. We plan to investigate whether similar typing

ideas could also lead to a practically feasible analysis tool for

(α, β)-privacy with unbounded sessions.

The fact that every state in dynamic (α, β)-privacy represents
a single reality has another striking advantage. For many

applications, it is interesting to take into account quantitative

approaches. We see no obvious way to reason with them in

equivalence-based specifications, but it is possible in (α, β)-
privacy to make a declarative extension that integrates, e.g.,

non-determinism and probabilistic aspects, and we are currently

working at including this in an extended version of this

paper. Such a probabilistic extension also motivates a future

comparison to information flow [16, 19].

Finally, it is interesting to consider whether there are any

similarities between dynamic (α, β)-privacy and cryptographic

notions like UC and IITM [18]. Also there we have the

distinction between two levels, namely an ideal and a real

system, which bears some similarity to our high-level α and

the low-level β. A difference is that the ideal and real systems

in composability frameworks describe interactions, i.e., what

interface a component exposes to the outside, while α and β
describe facts (what happened) and how these facts are logically

related, e.g., how conditions in the program are related to the

structure of messages observed by the intruder. Yet, the idea of

(α, β)-privacy is indeed inspired by cryptography, namely zero-

knowledge proofs: The idea of a zero-knowledge proof is that

the intruder (or a dishonest verifier) does not learn anything

from the proof but the statement being proved. This statement

was the inspiration for α, i.e., the high-level information that

this intruder is allowed to learn, whereas the cryptographic

messages actually observed inspired the low-level information

β, and using a fully-fledged logic for expressing α and β allows

us to easily model how the intruder can make arbitrary logical

deductions, e.g., if somebody proves to be over 21 implies that

they are also over 18, but not necessarily over 65.

144

Acknowledgments: This work was supported by the Sapere-

Aude project “Composec: Secure Composition of Distributed

Systems” (grant 4184-00334B of the Danish Council for

Independent Research), by the EU H2020 SU-ICT-03-2018

project no. 830929 “CyberSec4Europe”, and by the UKRI

Trustworthy Autonomous Systems Hub (EP/V00784X/1).

R E F ER ENCE S

[1] Martín Abadi, Bruno Blanchet, and Cédric Fournet. “The

Applied Pi Calculus: Mobile Values, New Names, and

Secure Communication”. In: J. ACM (2018).

[2] Martín Abadi and Véronique Cortier. “Deciding knowl-

edge in security protocols under equational theories”. In:

Theor. Comput. Sci. (2006).
[3] Myrto Arapinis et al. “Stateful applied pi calculus:

Observational equivalence and labelled bisimilarity”. In:

JLAMP (2017).

[4] David Baelde, Stéphanie Delaune, and Solène Moreau.

“A Method for Proving Unlinkability of Stateful Proto-

cols”. In: CSF. 2020.
[5] Bruno Blanchet. “An Efficient Cryptographic Protocol

Verifier Based on Prolog Rules”. In: CSF. 2001.
[6] Bruno Blanchet, Martín Abadi, and Cédric Fournet. “Au-

tomated verification of selected equivalences for security

protocols”. In: JLAMP (2008).

[7] Mayla Brusò, Konstantinos Chatzikokolakis, and Jerry

den Hartog. “Formal Verification of Privacy for RFID

Systems”. In: CSF. 2010.
[8] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie

Delaune. “A procedure for deciding symbolic equiv-

alence between sets of constraint systems”. In: Inf.
Comput. (2017).

[9] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina.

“DEEPSEC: Deciding Equivalence Properties in Security

Protocols – Theory and Practice”. In: IEEE SP. 2018.
[10] Véronique Cortier, Michaël Rusinowitch, and Eugen

Zalinescu. “Relating two standard notions of secrecy”.

In: Log. Methods Comput. Sci. (2007).
[11] Véronique Cortier et al. “A Type System for Privacy

Properties”. In: CCS. 2017.
[12] Stéphanie Delaune and Lucca Hirschi. “A survey of

symbolic methods for establishing equivalence-based

properties in cryptographic protocols”. In: JLAMP
(2017).

[13] Stéphanie Delaune, Mark Ryan, and Ben Smyth. “Auto-

matic Verification of Privacy Properties in the Applied

pi Calculus”. In: IFIPTM. 2008.

[14] DP-3T – Decentralized Privacy-Preserving Proximity
Tracing. 2020. UR L: https : / / github . com / DP - 3T /

documents/blob/master/DP3T%20White%20Paper.pdf.

[15] Laouen Fernet and Sebastian Mödersheim. “Deciding a

Fragment of (α, β)-privacy”. In: STM. 2021.

[16] Joseph A. Goguen and José Meseguer. “Security Poli-

cies and Security Models”. In: IEEE SP. 1982.
[17] Timothy Hinrichs and Michael Genesereth. Herbrand

Logic. Tech. rep. Stanford University, 2006.

[18] Ralf Küsters, Max Tuengerthal, and Daniel Rausch.

“The IITM Model: A Simple and Expressive Model for

Universal Composability”. In: J. Cryptol. 33.4 (2020).

[19] Heiko Mantel, David Sands, and Henning Sudbrock.

“Assumptions and Guarantees for Compositional Non-

interference”. In: CSF. 2011.
[20] Sebastian Mödersheim and Luca Viganò. “Alpha-Beta

Privacy”. In: ACM Trans. Priv. Secur. (2019).
[21] Miyako Ohkubo, Koutarou Suzuki, and Shingo Ki-

noshita. “Cryptographic approach to “privacy-friendly”

tags”. In: RFID Privacy Workshop. 2003.
[22] Benedikt Schmidt et al. “Automated Analysis of Diffie-

Hellman Protocols and Advanced Security Properties”.

In: CSF. 2012.
[23] Serge Vaudenay. Analysis of DP3T. Cryptology ePrint

Archive, Report 2020/399. 2020.

A P P END I X

A. Linkability attack on OSK Protocol

Consider the OSK protocol [21]. Let Tags = {t1, . . . , tn} be
a finite set of tags, and h/1 and g/1 be two public uninterpreted

functions (modeling one-way functions). Consider two families

of memory cells, r(·) for the tags and state(·) for the reader,

whose initial values are both init(·). Each tag T owns r(T) and
the reader owns the entire family state(T), i.e., T ’s “database”.
The tag updates its state r(T) by applying a hash to it at each

session and sending out the current key under g. The privacy

goal is that the intruder cannot find out anything besides the

fact that this action is performed by some tag T ∈ Tags.
The reader receives a message of the form g(hj(init(T))),

and accepts it if its own database contains the value hi(init(T))
for some i ≤ j (to prevent replay). As in Example 3, the

server has to perform a kind of guessing attack to figure out

T and j− i. To model this, we introduce private uninterpreted

functions getT/1, vgetT/1, extract/2, vextract/2, init/1 with

the algebraic properties

getT(g(init(T))) ≈ T
getT(g(h(X))) ≈ getT(g(X))

vgetT(g(init(T))) ≈ true
vgetT(g(h(X))) ≈ vgetT(g(X))

extract(g(init(T)), init(T)) ≈ init(T)
extract(g(h(X)), init(T)) ≈ h(extract(g(X), init(T)))
extract(g(h(X)), h(X ′)) ≈ h(extract(g(X), X ′))

vextract(g(init(T)), init(T)) ≈ true
vextract(g(h(X)), init(T)) ≈ vextract(g(X), init(T))
vextract(g(h(X)), h(X ′)) ≈ vextract(g(X), X ′)

getT extracts the name (if it is a valid message, as checked

with vgetT) and extract extracts the current key (if it is a

higher hash than the given key, as checked with vextract). For
applying the verifiers, we use the syntactic sugar try again to

formulate that the reader, when successful, updates its own

state and sends an ok message.

Tag

� T ∈ Tags.
Key := r(T).
r(T) := h(Key).
snd(g(Key))

Reader

rcv(x).
try T = getT(x) in s := state(T).

try s′ = extract(x, s) in
state(T) := h(s′).snd(ok)

145

α β γ δ

1 T1 ∈ Tags concr [l1] = g(init(t1)) ∧ struct [l1] = g(init(T1)) T1
.
= t1 r(T1) := h(init(T1)) if true

2 T2 ∈ Tags
concr [l2] = g(h(init(t1))) ∧ ∃i ∈ {1, 2}.

T2
.
= t1

r(T2) := h(h(init(T1))) if T1
.
= T2

i = 1 ∧ struct [l2] = g(h(init(T1))) ∧ T1
.
= T2 r(T2) := h(init(T2)) if T1
 .= T2

∨ i = 2 ∧ struct [l2] = g(init(T2)) ∧ T1
 .= T2

3
concr [l3] = ok ∧ ∃i ∈ {1, 2}. state(T1) := h(h(init(T1))) if T1

.
= T2

i = 1 ∧ struct [l3] = ok ∧ T1
.
= T2 state(T2) := h(init(T2)) if T1
 .= T2

∨ i = 2 ∧ struct [l3] = ok ∧ T1
 .= T2

4 T1
.
= T2 state(T1) := h(init(T1)) if T1
 .= T2

Fig. 3. Execution of the OSK Protocol

We show how to reach a state of the OSK protocol that vio-

lates (α, β)-privacy with a linkability attack [4] (two sessions

were initiated by the same tag). In short, the goal, or the in-

tended released information, is that two tags initiated a session.

In the end, the payload formula is: α ≡ T1 ∈ Tags∧T2 ∈ Tags.
The intruder does not know more about these tags, especially

whether they are the same. If the technical information allows

him to conclude that they are the same (β |= T1
.
= T2), then

(α, β)-privacy is violated.

The initial state is S0 = {true, true, true, true}. Con-

sider a Tag transition. In the initial configuration, the pos-

sibilities are {(
 T1 ∈ Tags. Key1 := r(T1). r(T1) :=
h(Key1). snd(g(Key1)). 0, true, {})} (with a variable-renamed

copy of Tag). First, a value from Tags is chosen for T1, i.e.,
we have |Tags| successor states (ER 1.). Let us focus on one

successor state with the choice t1, and thus γ0 is augmented

by T1
.
= t1, and α and β are augmented by T1 ∈ Tags.

We apply the rule for cell reads (NR 3.). Since δ0 is still

empty, we replace Key1 by the initial value, init(T1), in the

rest of the process. We can now apply the rule for cell write

(NR 5.), so that δ0 is augmented by r(T1) := h(init(T1)) if true.
The marked process sends a message and we augment β by

concr [l1] = g(init(t1)) ∧ struct [l1] = g(init(T1)) (ER 3.).

There is just one possibility and the process has terminated,

so the transaction is completed, getting to the state in the first

line of Fig. 3 (we refer to the α in that line as α1 and so on).

Consider a second Tag transition. The possibilities in

the initial configuration are {(Tag(2), true, struct)}, where
Tag(2) is a renaming of the tag process variables with index

2. We again look only at one successor state where, for the

choice of T2, we pick the same tag t1 (ER 1.). (NR 3.)

now introduces a case split: if T2
.
= T1 then let Key2 =

h(init(T1)) . . . else let Key2 = init(T2) The con-

ditional rule (NR 4.) splits it into two possibilities:

{(Pa, T1
.
= T2, struct1), (Pb, T1 � .=T2, struct1)}, where Pa and

Pb are instantiations of r(T2) := Key2.snd(g(Key2)) by

Key2 = h(init(T1)) and Key2 = init(T2), respectively, and
where struct1 is the frame from the first transaction. The

case where T2
.
= T1 is marked since this is the reality.

The cell write rule (NR 5.) augments δ1 by two lines (in

either order): r(T2) := h(h(init(T1))) if T2
.
= T1 and

r(T2) := h(init(T2)) if T2 �= T1. It remains to send the

outgoing message (ER 3.): β in line 2 of Fig. 3 reflects that the

structural information is different. The structural knowledge of

each possibility is updated with the respective version, let us

call them structa and structb. Both have terminated, so we

have reached the end of the second transaction.

After a Reader transition, the possibilities are

{(Reader(3), T1 .
= T2, structa), (Reader(3), T1 � .= T2,

structb)}. We evaluate the receive step (ER 2.) and we have

a choice of every recipe that the intruder can generate: we use

l2, i.e., the message from the second tag transaction. Note that

structa{|l2|} = g(h(init(T1))) and structb{|l2|} = g(init(T2)),
which is what we insert for the received message x3 in the

respective processes. When the processes (successfully) try

getT(x3), we obtain let T3 = T1 and let T3 = T2, respectively.
The state lookup (NR 3.) gives the initial value, as we have not

yet written anything to the state cells. Thus, trying extract(T,
s) will succeed and produce either s′3 := h(init(T1)) or

s′3 := init(T2). We amend δ (NR 5.) by the two lines (in

either order) state(T1) := h(h(init(T1))) if T1
.
= T2 and

state(T2) := h(init(T2)) if T1 � .= T2. Both processes are now

at a sending step (ER 3.). Even if the message is the same

in both processes, we still have to consider a case distinction

since the conditions differ, as shown in Fig. 3. Again, both

processes have terminated, so the third transaction is finished.

Finally, after another Reader process, we have

{(Reader(4), T2 .
= T1, struct

′
a), (Reader(4), T2 � .= T1,

struct ′b)}, where struct ′a and struct ′b are the structs frames

augmented with the last ok-message. Suppose the intruder

chooses l1 as a recipe for the received message (ER 2.), i.e.,

struct ′a{|l1|} = struct ′b{|l1|} = g(h(init(T1))) for variable x4.
The next operation tries getT(x4), which gives T1 in any case.

Looking up the state(T1), (NR 3.) gives s4 := h(h(init(T1)))
in the first possibility (due to T1

.
= T2), and s4 := init(T1)

in the second. The next try succeeds only for the second

possibility, and we have: {(0, T2 .
= T1, struct

′
a), (snd(ok).0,

T2 � .= T1, struct
′
b)}. The marked process terminates, so the

intruder can rule out the second possibility (ER 3.). We

augment β by the condition of the only remaining possibility,

i.e., T1
.
= T2. That is indeed a violation of privacy since we

can now exclude all those models of α, where T1 � .= T2.

146

