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Abstract—Bana and Comon have proposed a logical approach
to proving protocols in the computational model, which they call
the Computationally Complete Symbolic Attacker (CCSA). The
proof assistant SQUIRREL implements a verification technique
that elaborates on this approach, building on a meta-logic over
the CCSA base logic. In this paper, we show that this meta-
logic can naturally be extended to handle protocols with mutable
states (key updates, counters, etc.) and we extend SQUIRREL’s
proof system to be able to express the complex proof arguments
that are sometimes required for these protocols. Our theoretical
contributions have been implemented in SQUIRREL and validated
on a number of case studies, including a proof of the YubiKey
and YubiHSM protocols.

I. INTRODUCTION

Formally specifying and verifying security protocols has

become a major field of application for formal logic and

automated reasoning. Decades of intensive research in that

domain have lead to mature tools and industrial successes [1]–

[3]. Some tools analyze protocols in so-called symbolic mod-

els [4]–[8] where attacker capabilities are represented by a

fixed set of equations or inference rules over formal terms.

Others deal with the cryptographer’s computational model [9]–

[11] where arbitrary probabilistic Turing machines compute

over bitstrings. The symbolic models have enabled the earliest

successes, generally allow for highly automated analyses, and

can be used to discover actual attacks. However, it is very

difficult to interpret a proof in a symbolic model in terms

of computational attackers, as is witnessed by the limited

practical impact of research on computational soundness [12].

Originally, many tools were designed to be fully automatic,

e.g. [13], [14]. Newer tools, e.g. [4], [8], still have this objec-

tive but also incorporate interactivity, and even tools designed

originally to be fully automated, e.g. PROVERIF, are moving

towards it [15]. It is indeed an interesting compromise to tackle

the analysis of complex security protocols. The computational

model is more sought after than the symbolic one, as it pro-

vides stronger and more realistic security guarantees. But these

come at a cost: it involves more complex notions and specific

proof techniques, and mechanized proofs in that model often

involve heavy user guidance. Yet there is no clear cut between
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the two approaches, and CRYPTOVERIF [9] in particular can

sometimes derive proofs completely automatically.

In this paper, we consider a recent approach to proving

protocols in the computational model, embodied in the proof

assistant SQUIRREL [16]. It implements a meta-logic built on

top of the logic introduced by Bana and Comon [17], which

follows an approach called the computationally complete sym-

bolic attacker (CCSA). The CCSA approach assumes a fixed

bound on protocol traces and relies on an explicit encoding

of protocol traces as terms of the CCSA logic. It yields

verification goals that are tedious to prove by hand and for

which no automated prover exists so far. To circumvent these

problems, SQUIRREL builds on a meta-logic which internalizes

the encoding of traces as terms, and allows high-level proofs

that are well-suited for interactive theorem proving. Moreover,

these proofs hold for any trace, without a bound on their

length. SQUIRREL and its meta-logic have enabled the first

completely mechanized proofs of protocols using the CCSA

approach [18].

The initial successes of the SQUIRREL system lie within a

limited scope, in terms of the complexity of the protocols and

of the proofs of their properties, and one naturally wonders

how far the approach can be taken. In the present paper, we

show how the SQUIRREL approach can be extended to support

protocols with mutable states. Such situations are common:

new keys may be derived regularly using cryptographic hash

functions, counters or timestamps may be maintained to avoid

replays, etc. At the semantic level, the meta-logic approach

is easily adapted to incorporate states. At the level of proofs,

however, significant improvements appear to be needed except

for the simplest case studies.

• As we shall see, significant properties of stateful proto-

cols often rely on a rich interplay between reachability

and equivalence properties, which have to be proved

simultaneously by mutual induction: e.g., the strong se-

crecy (an equivalence property) of some state values at

an instant T can be shown using the fact that these values

never repeat (a reachability property), which itself relies

on the strong secrecy of said state values at T ′ < T , etc.
• Moreover, because proofs of stateful protocols are more

complex, they benefit more from automated deduction

support. We found (bi)-deduction to be a useful notion

in that regard. Roughly, the idea is that, if (part of) some

messages of a protocol can be deduced by the adversary
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from past messages, they can be safely ignored: indeed,

they do not bring any new knowledge to the adversary.

Our main theoretical contribution is thus the introduction

of a significant generalization of the sequent calculi of [18],

allowing to capture security arguments mixing reachability and

equivalence properties, and the design of a rich bi-deduction

proof system, which can be used to automatically simplify

some proof goals. On the practical side, we have implemented

these improvements in an extension of SQUIRREL, and shown

that they enable new case studies. In particular, we present

proofs of the YubiKey and YubiHSM protocols, adapting in

the computational model the TAMARIN development of [19].

Interestingly, the SQUIRREL development involves a similar

amount of human effort than the TAMARIN analysis.

A full version of this paper including the omitted rules and

proofs is available [20]. Our extension of SQUIRREL, as well

as our case studies are available at:

https://squirrel-prover.github.io

Outline. We briefly recall the CCSA approach in Section II,

before presenting in Section III the meta-logic given in [18]

enriched to support mutable states, and sequences of terms. We

show in Section IV some immediate applications of this exten-

sion, and also identify limitations of the proof system of [18].

This motivates the development of several improvements of

this proof system, in Section V. We put everything together in

Section VI where we present our case studies on the YubiKey

and YubiHSM protocols. We conclude in Section VII.

II. BACKGROUND

The CCSA approach [17], [21] allows to reason about

probabilistic polynomial-time computations using the simple

symbolic setting of first-order logic. In a nutshell, terms are

used to model computations, and a single predicate models

indistinguishability of (sequences of) terms. Standard crypto-

graphic assumptions can then be captured by axiom schemes,

from which the indistinguishabilities of interest will have to

be derived. In comparison with [17], we consider only the

sort message, and a single attacker symbol att. For illustration
purposes, we introduce below our running example.

Example 1. We consider a variant of the OSK protocol [22],
which is an RFID protocol.

T updates its state: sT := H(sT, k)
T → R : G(sT, k′)
R→ T : ok if G(sT, k′) = G(H(sR, k), k′) with sR ∈ DB
R updates the database DB : sR := H(sR, k)

We consider two keyed hash functions H and G and assume
that they both satisfy the Pseudo Random Function (PRF [23])
assumption. We will always use H with the key k, and G
with k′. Each tag is associated to a mutable state sT initial-
ized with a secret value s0 and can perform the following
action any number of times: update sT with H(sT, k), output
G(sT, k′). We consider that readers have access to a database,
containing an entry for each authorized tag. Each entry is

initialized with the secret value s0 of the corresponding tag.
When receiving a message x, the reader looks up in the
database for an entry sR such that x = G(H(sR, k), k′).
Upon success, the reader accepts the message and updates the
entry sR with H(sR, k). Intuitively, readers knowing the tag’s
secrets will be able to recognize its outputs, but an attacker
will not be able to learn these secrets and impersonate tags.

A. Syntax of the base logic

The base logic is a first-order logic, in which terms represent

probabilistic PTIME Turing machines producing bitstrings,

and a single predicate ∼ represents computational indistin-

guishability. A key idea of the CCSA approach is to use a

special attacker function symbol att to represent the attacker’s

computations, which is left unspecified to model the fact that

the attacker may perform any arbitrary probabilistic PTIME

computation. The logic is parameterized by a set NB of name

symbols (modeling random samplings), a set of variables XB ,

and a set of function symbols FB (modeling e.g. cryptographic
primitives). Terms are generated from XB and NB using the

unary function symbol att and the function symbols of FB .

We assume that FB contains at least the following symbols,

with the expected arities and usual notations: pairing 〈_, _〉,
equality EQ(_, _), conditionals if _ then _ else _, and the

constants empty, true and false.

Atomic formulas are of the form u1, . . . , un ∼ v1, . . . , vn
where n ≥ 1 and u1, . . . , un, v1, . . . , vn are terms. Such

a formula intuitively expresses that the two sequences of

messages are indistinguishable. We do not use a predicate

symbol for equality in the base logic: EQ(u, v) is a term and

we may write, for instance, the term EQ(true,EQ(u, v)) or

the formula EQ(u, v) ∼ true.

Example 2. To model the protocol of Example 1, we use one
name symbol s0i for each tag i, two name symbols k, k′ for the
keys, and two function symbols H,G. The term G(H(s0i , k), k

′)
represents the message outputted at the first session of the
tag i, G(H(H(s0i , k), k), k

′) the message outputted at the sec-
ond session, etc. Assuming two different tags with respective
initial secret values s01 and s02, the atomic formula

G(H(s01, k), k
′),G(H(s02, k), k

′)

∼ G(H(s01, k), k
′),G(H(H(s01, k), k), k

′),

expresses a simple unlinkability property: an outside observer
cannot tell the difference between the outputs of two different
tags and two successive outputs of the same tag.

B. Semantics of the base logic

We are interested in the interpretation of formulas of the

base logic in a specific class of first-order interpretations,

called computational models. The domain of a computational

model M is the set of probabilistic PTIME Turing machines

that run in polynomial-time w.r.t. a security parameter η and

that manipulate a pair ρ = (ρs, ρr) of infinite read-only

random tapes. The tape ρs is used to draw honestly generated

random values, and is not directly accessible by the attacker,
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and ρr is used for random values drawn by the attacker. Given

a valuation σ mapping variables in t to Turing machines in

M’s domain, the interpretation [[t]]σ
M

of a term as a Turing

machine is defined as follows (we omit σ when t is ground,

and write [[t]] when M is clear from the context).

Variables in XB are interpreted using σ, and each name

n ∈ NB is interpreted as a machine that extracts a word of

length η from ρs, such that different names extract disjoint

parts of the tape (this ensures that syntactically distinct names

are interpreted as independent random variables).

The symbols empty, true, false, EQ, 〈_, _〉 and

if _ then _ else _ are interpreted in the expected way.

For instance, for any term t1, t2, [[EQ(t1, t2)]]
σ
M

is the Turing

machine that, on input (1η, ρ), returns 1 if [[t1]]
σ
M
(1η, ρ) and

[[t2]]
σ
M
(1η, ρ) return the same result, and 0 otherwise. The other

function symbols in FB are interpreted as arbitrary PTIME

Turing machines that do not access the random tapes. When

studying a specific protocol, we will put additional restrictions

on the computational models we consider, according to the

assumptions the protocol relies on: we may assume e.g.
that a binary function symbol ⊕ is interpreted as exclusive

or, or that a binary function symbol H is interpreted as a

cryptographically secure keyed hash function. The symbol

att is interpreted as a PTIME Turing machine that does not

access the random tape ρs, but has access to ρr.

Finally, the predicate ∼ is interpreted as the computational

indistinguishability ≈, where two terms are computationally

indistinguishable if no probabilistic PTIME machine can dis-

tinguish between them with non-negligible probability. More

precisely, d1, . . . , dn ≈ d′1, . . . , d
′
n when for any PTIME

Turing machine A, the following quantity is negligible in η:

|Pr(ρ : A(d1(1η, ρ), . . . , dn(1η, ρ), ρr) = 1)−
Pr(ρ : A(d′1(1η, ρ), . . . , d′n(1η, ρ), ρr) = 1)|.

Here, Pr(ρ :M(ρ) = 1) is the probability that the ma-

chineM accepts w.r.t. the random tapes in ρ. As it is standard

with asymptotic security, a function is said to be negligible

when it is asymptotically smaller than the inverse of any

polynomial.

Given a computational model M, a valuation σ and a

formula φ, we write M, σ |= φ when φ, with its variables

interpreted by σ, is satisfied in the computational model M.

We say that φ is valid when M, σ |= φ for all M and σ.

Example 3. Let n and m be two distinct names. The formulas
n ∼ m and EQ(n,m) ∼ false are valid, as no attacker can
distinguish between two uniform random samplings of the
same length, and two such samplings that are independent
have a negligible probability of being equal.

In this approach, a proof of a security property is done using

an axiomatic approach, by deriving the formula expressing

the given security property from a set of sound axioms.

Some axioms are sound in all computational models, e.g.
the symmetry of ∼, or properties of if _ then _ else _.

Other axioms reflect cryptographic assumptions on the security

primitives, such as the PRF assumption for hash functions.

Such axioms exclude any computational model that does not

satisfy the assumptions under which a security protocol has

been designed.

C. Limitations of the base logic approach

As mentioned in the introduction, this approach has some

limitations. First, it can only deal with bounded executions,

e.g. the equivalence formula in Example 2 expresses the

unlinkability of only two sessions of the protocol. Second,

there is no support for proof mechanization. The work of [18]

elaborates on the CCSA approach to solve these limitations, by

designing a meta-logic over the base logic, a proof system for

this meta-logic and by implementing them in a new interactive

prover SQUIRREL. Nevertheless, the framework of [18] does

not support stateful protocols. In the next section, we extend

the meta-logic syntax and semantics with mutable states, and

show in Section IV some direct applications of our extension.

III. META-LOGIC

We now introduce the syntax and the semantics of our meta-

logic, which extends the meta-logic of [18] with memory

cells, to model stateful protocols; and sequences, which are

useful to reason about sets of terms. In order to match the

intuitive notion of a trace, we also add a new atomic formula

happens(T ), expressing that T occurs in the execution.

A. Meta-logic syntax

Our meta-logic is a first-order logic with terms of three pos-

sible sorts: timestamp to represent time points in an execution;

message to represent bitstrings exchanged between protocol’s

participants, or stored in the participants’ states; and index
which are used to identify an element, e.g. a session or an

item in a database. We consider infinite sets T , X , and I of

variables of each sort.

We assume a set F of indexed function symbols to represent

protocol functions and cryptographic primitives (e.g. encryp-

tions or keyed hash functions). Function symbols representing

cryptographic primitives have index arity 0, and a message

arity depending on the primitive. In contrast, function symbols

representing identities have 0 as message arity and an arbitrary

index arity. We also assume a set N of indexed name symbols

to model random samplings, and a set of indexed action

symbols A to model particular time points.

Given a meta-logic signature Σ = (F ,N ,A,S) and sets of

variables T , X , and I, we give in Figure 1 the syntax of meta-

terms of sorts timestamp (noted T ) and message (noted t), and
of local meta-formulas (noted φ). Note that the notion of local
meta-formulas will take all its meaning in Section V where

we will introduce global meta-formulas. Meta-terms of sort

index are restricted to variables i ∈ I. We denote by fv(_) the
free variables (of any sort) of a meta-term or meta-formula.

Messages are modeled using terms of sort message, relying

on macros to represent specific terms involved in the protocol.

Since these values change throughout the protocol execution,
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T := τ (variable, τ ∈ T )
| a[i1, . . . , ik] (action, a ∈ A)
| init | pred(T )

t := x (variable, x ∈ X )
| s[i1, . . . , ik]@T (memory cell, s ∈ S)
| n[i1, . . . , ik] (name, n ∈ N )
| f[i1, . . . , ik](t1, . . . , tn) (function, f ∈ F)
| input@T | output@T | frame@T (builtin macros)
| if φ then t else t′ (conditional)
| find�i suchthat φ in t else t′ (index lookup)
| seq(�α : t) (sequence of terms)

α := i | τ (variable, i ∈ I, τ ∈ T )

A := t = t′ | i = i′ | T = T ′ | T < T ′ | T ≤ T ′

| happens(T ) | cond@T | exec@T
φ := A | � | ⊥ | φ ∧ φ′ | φ ∨ φ′ | φ⇒ φ′ | ¬φ

| ∀i.φ | ∃i.φ | ∀τ.φ | ∃τ.φ

Syntactic sugar: (if φ then t)
def
= if (φ then t else empty)

and seq(�α : t | φ) def
= seq(�α : if φ then t).

Fig. 1. Syntax of meta-terms and local meta-formulas.

macros are applied to a timestamp term that indicates when

the macro is evaluated. Our logic features several predefined

macros: input@T and output@T refer to the input and output

messages of the action executed at time point T ; cond@T
and exec@T encode, resp., the condition of the action T ,

and the conjunction of all the conditions to reach T ; and

frame@T represents all the messages known by the attacker

at time point T . The special timestamp constant init stands

for the initial time point, and we rely on pred to denote the

predecessor of a given time point T . Finally, predn is used as

a shortcut for n successive applications of pred. We assume

a set S of indexed state macro symbols to represent memory

cells. For instance, if s is a state macro symbol of arity 1,

the message s[i]@T refers to the contents of s[i] at time T .

Lookups generalize conditionals: find�i suchthat φ in t else t′

evaluates to t where indices �i are bound to values such that φ
holds if such values exist, and t′ otherwise.

Lastly, we often use sequences when reasoning on protocols,

e.g. to enrich equivalences with collections of messages that

are already known to the attacker or can safely be disclosed

as far as the property being proved is concerned. Once meta-

interpreted in a given trace model, a sequence seq(�α : t) is

simply a list built as nested pairs. However, we need to reason

on these objects in the meta-logic, uniformly for all trace

models, which requires the use of a specific construct.

Example 4. In Example 2, we explained how to model the
messages outputted by the tag in the base logic. In particular,
we had to consider as many names s0i as tag’s identities. In
the meta-logic, we can use indexed names to model unbounded
collections of objects. We thus assume a name s0 ∈ N

of index arity 1, such that s0[i] models the initial secret
value associated to the tag i. We also take two state macro
symbols, sT and sR of index arity 1, modeling the current
value of the memory cell and the database entry associated
to a tag. The message outputted by a tag i at time T is then
modeled by the meta-term G(H(sT[i]@pred(T ), k), k′). In this
message, sT[i]@pred(T ) is the value of the memory cell just
before time point T , i.e. a (possibly empty) stack of hashes
H(. . . (H(s0[i]), k), . . .), k). We finally model as a (local) meta-
formula the condition under which a reader executing at time
T ′ will accept the input as coming from tag i:

φT
′

reader
def
= input@T ′ = G(H(sR[i]@pred(T

′), k), k′).

The example below illustrates the use of the seq(�α : t)
construct.

Example 5. Continuing our running example, we may want to
consider the sequence of terms corresponding to the successive
values stored in the memory cell sT[i] of each tag i during a
valid execution. Such a sequence can be represented by the
meta-term:

seq(τ, i : sT[i]@τ | happens(τ) ∧ exec@τ)

If we only want to consider the successive values stored in
the memory cell of the tag i0, we will consider the meta-term

• seq(τ : sT[i0]@τ | happens(τ) ∧ exec@τ); or
• seq(τ, i : sT[i]@τ | i = i0 ∧ happens(τ) ∧ exec@τ)

B. Protocols

Our local meta-logic formulas are interpreted as boolean

terms of the base logic, depending on an execution of the

protocol under study. We model a protocol as a finite set of

actions, each action representing a basic step of the protocol

where: the attacker provides an input; a condition is checked;

some updates are performed; and finally, an output is emitted.

Definition 1. An action

a[�i ].(φa[�i ], oa[�i ], {s[�j ]← ua[�i ],s[�j ] | s ∈ S})
is formed from an action symbol a, distinct index variables �i,
a local meta-logic formula φa[�i ], a meta-logic term oa[�i ] of
sort message, and for each state macro symbol s ∈ S and
distinct index variables �j (disjoint from �i), a meta-logic term
ua[�i ],s[�j ] of sort message. We require that

fv(φa[�i ], oa[�i ]) ⊆ {�i} and fv(ua[�i ],s[�j ]) ⊆ {�i,�j }.
The formula φa[�i ] is called the condition of the action, oa[�i ]
its output and {ua[�i ],s[�j ] | s ∈ S} its state update terms.

An action a[�i ].(φa[�i ], oa[�i ], {s[�j ] ← ua[�i ],s[�j ] | s ∈ S})
models that, if φa[�i ] holds, oa[�i ] may be emitted, after having

updated each memory cell s[�j ] with the value ua[�i ],s[�j ].

Conditional branching may be modeled using two actions, the

condition of the second action being the negation of the first

action’s condition.

A protocol is a set of actions equipped with a dependency

relation, which constrains the order of execution of actions.

We require that an action only refers to timestamps of actions
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occurring strictly before it, except when referring to its own

input or to the value of a state macro at the current time if it is

in the output term (i.e. after all updates have been performed).

Definition 2. Given a finite set A of action symbols and a fi-
nite set S of state macro symbols, a protocol P = (Pact,U0, <)
over (A,S) is a finite set U0

def
= {s[�j ]← u0,s[�j ] | s ∈ S} of

initial state values, one for each state macro symbol, and a
finite set Pact of actions, one for each action symbol, equipped
with a partial order < over terms of the form a[�i ] with a ∈ A.
We require the following conditions.

• For each memory cell s[�j ], u0,s[�j ] is a macro-free meta-
logic term of sort message with free variables among �j.

• The partial order < is insensitive to the choice of specific
index variables, i.e. we have a1[�i1 ] < a2[�i2 ] if, and only
if, a1[σ(�i1)] < a2[σ(�i2)] for any a1, a2, �i1 and �i2 and for
any bijective variable renaming σ : I → I.

• Actions only refer to information about previously exe-
cuted actions. For every action a[�i ].(_) ∈ Pact:

– each subterm T of sort timestamp occurring in the
condition φa[�i ] or in an update ua[�i ],s[�j ] is either
(i) of the form a0[�i0 ] with a0[�i0 ] < a[�i ], or (ii) of
the form predn(a[�i ]) with n ≥ 1, or (iii) of the form
a[�i ] and is applied to an input macro,

– each subterm T of sort timestamp occurring in oa[�i ]
either verifies (i), (ii) or (iii); or (iv) is of the form
a[�i ] and is applied to a state macro.

Example 6. Coming back to our running example, let T ∈ A
be an action symbol of index arity 2. The action T[i, j].(_)
defined below models the output performed by the tag, as
well as the way the memory cells are updated. The memory
cell sT[i] is updated with H(sT[i]@pred(T[i, j]), k), whereas
sT[i

′] with i′ �= i, and sR[i
′], are left unchanged.

T[i, j].(true,G(H(sT[i]@pred(T[i, j]), k), k′),
{sT[i′]← if i′ = i then H(sT[i]@pred(T[i, j]), k)

else sT[i
′]@pred(T[i, j]),

sR[i
′]← sR[i

′]@pred(T[i, j])})
We similarly define the action R[j, i].(_) of a reader session j
accepting tag i, and R1[j].(_) of a reader session j rejecting
its input. We take φR[j,i]

def
= φ

R[j,i]
reader from Example 4, and oR[j]

def
=

ok. It remains to model the updates:

sR[i
′]← if i′ = i then H(sR[i]@pred(R[j, i]), k)

else sR[i
′]@pred(R[j, i])

sT[i
′]← sT[i

′]@pred(R[j, i])

For the failure action R1[j] we take φR1[j]
def
= ∀i.¬φR1[j]

reader,

oR1[j]
def
= empty, and updates that leave cells unchanged.

To complete the protocol modeling our running example we
initialize cells with s0 and specify an empty partial order:

Pex
def
= ({T[i, j].(_),R[j, i].(_),R1[j].(_)},

{sT[i]← s0[i], sR[i]← s0[i]}, ∅).

C. Semantics

To give a semantics to meta-terms and local meta-formulas,

we translate them to terms of the base logic. This translation

depends on the number of protocol agents and sessions, and on

the interleaving of the protocol actions (i.e. the order in which

the adversary interacts with the different protocol agents). This

information is going to be encapsulated in the notion of trace
model, which we are now going to define.

1) Protocol execution: We can instantiate the indices of an

action by values to yield concrete actions.

Definition 3. Given a set A of action symbols, a concrete

action is the application of an action symbol a ∈ A to k
integers (k is the index arity of a). We lift the partial order
of a protocol P to concrete actions. For any σ : I → N,
we have that a[σ(i1), . . . , σ(ik)] < b[σ(j1), . . . , σ(jl)] when
a[i1, . . . , ik] < b[j1, . . . , jl].

We define next the possible interleavings of actions for a

given protocol, which over-approximates the actual possible

executions by taking only dependency constraints into account.

Definition 4. Given a protocol P , an interleaving is a se-
quence of concrete actions α1 . . . αn in which no concrete
action occurs twice, and such that, for every 1 ≤ i ≤ n,
for every concrete action β such that β < αi, there exists
1 ≤ j < i such that β = αj .

We consider meta-logic terms and formulas over

Σ = (F ,N ,A,S), and given a finite set D of integers,

the associated base logic signature ΣD = (FB ,NB) contains

exactly a name symbol nk1,...,kp
for every n ∈ N of index

arity p, and every k1, . . . , kp ∈ D; and a function symbol

fk1,...,kp of arity n for every f ∈ F of index arity p and

message arity n, and every k1, . . . , kp ∈ D.

In order to interpret meta-terms and local meta-formulas,

we introduce the notion of trace model. The idea is that for

each interleaving of the actions of the protocol under study,

we can define a structure that will allow us to give a meaning

to the macros.

Definition 5. A trace model T (of a protocol P) is a tuple
(DI ,DT , <T , σI , σT ) such that:

• DI ⊆ N is a finite index domain;
• DT contains two special symbols init, undef, and a subset

of Da
def
= {a[k1, . . . , kn] | a ∈ A, k1, . . . , kn ∈ DI};

• <T is a total ordering on DT � {undef} such that init
is minimal, and such that the sequence of elements of
DT � {undef} ordered by <T is an interleaving of P;

• σI : I → DI and σT : T → DT are mappings that
interpret index and timestamp variables as elements of
their respective domains.

Given a trace model, we define a predecessor function

predT : DT → DT which maps undef to itself, init to undef,
and all other elements v to the largest element v′ such that

v′ <T v. Moreover, we denote by ≤T the reflexive closure

of <T on DT � {undef}. When T = (DI ,DT , <T , σI , σT )
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is a trace model and k ∈ DI , T{i→ k} is the trace model

identical to T in which σI is updated to map i to k. We

similarly define T{τ → v} when v ∈ DT .

Example 7. Consider the protocol Pex introduced in Exam-
ple 6. A possible trace model T associated to this protocol is
the tuple (DI ,DT , <T , σI , σT ) where:

• DI
def
= {1, 2, 3};

• DT
def
= {undef, init,T[1, 3],T[2, 1],T[2, 2],R[1, 2],R1[3]};

• <T is a total ordering such that:
init < T[2, 1] < T[1, 3] < R[1, 2] < T[2, 2] < R1[3];

• σI and σT are mappings that interpret index and times-
tamp variables to DI and DT respectively. For illustra-
tion purposes, we consider that σI(i) = σI(j) = 2.

We have predT (R1[3]) = T[2, 2], predT (T[2, 2]) = R[1, 2],
and so on.

2) Translation: We can now give our translation for meta-

terms and local meta-formulas. This translation is similar to

the one introduced in [18], but adapted to our notion of trace

model in which some actions are allowed to not happen.

We recall its general principle while highlighting the main

differences with the translation given in [18].

The translation (_)TP is parameterized by a proto-

col P and a trace model T of P . First, as ex-

pected, we have that (τ)TP = σT (τ), (init)TP = init, and

(pred(T ))TP = predT ((T )
T

P). Then, each meta-logic construct

is translated using its counterpart in the base logic when

it is available. A name n[i1, . . . , ip] is translated into

nσI(i1),...,σI(ip). For some constructions, it is a bit more com-

plicated. For instance, the sequence construct is not available

in the base logic, but is translated using nested pairs. As an

example, we show the interpretation of a sequence over a

single index variable i.

(seq(i : t))TP
def
= 〈(t)T[i�→k1]

P , 〈 . . . , (t)T[i�→kn]
P 〉 . . .〉

where k1, . . . , kn is an enumeration of DI . Similarly, the

interpretation of (local) meta-formulas is quite straightforward

using finite boolean expressions to translate quantifications

over index and timestamp variables. For instance, we have that:

(∀i.φ)TP
def
=

.∧k∈DI (φ)
T{i�→k}
P

Then, regarding atomic meta-formulas involving times-

tamps, we have that:

• (T = T ′)TP = true iff (T )TP = (T ′)TP ;

• (T < T ′)TP = true iff (T )TP <T (T ′)TP ;

• (T ≤ T ′)TP = true iff (T )TP ≤T (T ′)TP ;

• (happens(T ))TP = true iff (T )TP ∈ DT � {undef}.
Lastly, we give in Figure 2 the interpretation of macros.

Roughly, an output macro is replaced by the meta-term as

specified by the protocol, and is then interpreted in the trace

model T. The cond macro has a similar treatment and produces

a base logic formula corresponding to the condition of the

action. The macro exec is translated as the conjunction of all

(s[�l ]@T )TP
def
=⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

empty if (T )TP = undef

(u0,s[�j ])
T{�j �→�k0}
P if (T )TP = init, (�l )TP = �k0

and (s[�j ]← u0,s[�j ]) ∈ U0
(ua[�i ],s[�j ])

T{�i�→�k,�j �→�k0}
P if (T )TP = a[�k ] ∈ DT , (�l )TP = �k0

(m@T )TP
def
=⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

empty if (T )TP = undef

and m ∈ {input, output, frame}
false if (T )TP = undef and m ∈ {cond, exec}
(minit)

T

P if (T )TP = init

(ma[�i])
T{�i�→�k}
P if (T )TP = a[�k] ∈ DT

where minit and ma[�i] are defined as follows:

condinit=execinit= true

inputinit= frameinit=outputinit=empty

output
a[�i ]

= oa[�i ] exec
a[�i ]

= cond@a[�i ] ∧ exec@pred(a[�i ])

conda[�i ] = φa[�i ] inputa[�i ] = att
(
frame@pred(a[�i ])

)
framea[�i ] = 〈exec@a[�i ], 〈if exec@a[�i ] then output@a[�i ]

else empty, frame@pred(a[�i ])〉〉

Fig. 2. Interpretation of macros.

past conditions. The translation of the frame macro gathers

(using nested pairs) all the information available to the attacker

at some execution point: for each past action, the attacker

observes if the execution continues and, if that is the case,

obtains the output. Finally, to model the fact that the attacker

controls the network, the input macro is interpreted using the

attacker symbol att, to which we pass the current frame.

Example 8. Considering the trace model of Example 7 on our
running example, we have the following translation:

(output@T[i, j])TPex
= (oT[i,j])

T

Pex

= (G(H(sT[i]@pred(T[i, j]), k), k′))TPex

= G(H((sT[i]@pred(T[i, j]))TPex
, k), k′).

We slightly abuse notation by using the same function symbols
G, H, k and k′ in the base logic and the meta-logic.

Then, the translation (sT[i]@pred(T[i, j]))TPex
is unfolded to

a stack of hashes until reaching the initial time point init.
Here, after some basic reasoning in the base logic regarding
the if _ then _ else construct, we obtain:

(sT[i]@pred(T[i, j]))TPex
= H(s02, k).

A local meta-logic formula φ is valid w.r.t. a proto-

col P when, for any trace model T, the base logic formula

(φ)TP ∼ true is valid (i.e. is satisfied in all computational

models).

294



Example 9. The following meta-formula models an authen-
tication property which is valid in any computational model
interpreting G and H as EUF-CMA secure hash functions.

∀ j, i. happens(R[j, i])⇒ cond@R[j, i]⇒
(∃ j′.T[i, j′] < R[j, i] ∧ output@T[i, j′] = input@R[j, i])

This formula states that, whenever the condition of the reader’s
action R[j, i] holds, there must be some session j′ of the tag i
(which uses the seed s0[i] to initialize its memory cell) that
has been executed before R[j, i]. Moreover, the output of the
tag’s action coincides with the input of the reader’s action.
Here, we use quantifications to express our security goal. In
the base logic, we would have to first fix a trace model, and
then to explicitly enumerate all possible values for j, i, and j′.

Comparison with [18]: In the notion of trace model of [18],

the set DT contains init and all concrete actions of the set Da

(see Definition 5). In our new definition, DT contains only

a subset of all possible concrete actions, which correspond

to the actions that happen. For example, this change allows

to model conflicts between actions: for instance, the axiom

∀�i,�j. ¬
(
happens(a1[�i]) ∧ happens(a2[�j])

)
rules out traces

where the two actions are scheduled.

IV. APPLICATIONS AND LIMITATIONS

We present in Table I some case studies corresponding to

protocols with global mutable states. These case studies use

the extension of the meta-logic presented above to support

mutable states, but rely on the same proof system as [18]. For

each protocol, we give the security properties that we proved

and the intermediate lemmas (also proved with SQUIRREL)

used to carry out the proofs. We will comment below on these

lemmas. All files are between 100 and 500 lines long (for both

modeling and proof script). The length of each development

mostly depends on the number of intermediate lemmas used.

Protocol Intermediate Lemmas Security Properties
Toy Counter [15] Counter increase Secrecy

CANAuth [15] Counter increase Authentication,

Injectivity

Running example Last update, Disjoint chains Authentication

SLK06 [24] - Authentication

YPLRK05 [24] No update Authentication

TABLE I
CASE STUDIES OF SOME STATEFUL PROTOCOLS

1) Protocols with counters: We first consider two stateful

protocols from [15], which rely on counter values that are

incremented throughout the protocols execution. Toy Counter

is a toy protocol where two agents A and B access a shared

counter. We prove that this protocol provides some form of

secrecy (expressed as a reachability property). CANAuth is a

message authentication protocol where every agent, who can

be both initiator and responder, stores a counter in memory

which is incremented at each action of the agent. Proving

the security of these protocols required reasoning on counter

values. To that end, we axiomatized the counters ordering

relation in SQUIRREL. This can be done using, e.g., the axioms

(i.e. global meta-formulas) in Listing 1.

abstract Succ : message → message
abstract (~<) : message→ message→ boolean

axiom orderTrans (n1,n2,n3:message):
n1 ~< n2 ⇒ n2 ~< n3 ⇒ n1 ~< n3.

axiom orderStrict (n1,n2:message):
n1 = n2 ⇒ n1 ~< n2 ⇒ false.

axiom orderSucc (n1,n2:message):
n1 = n2 ⇒ n1 ~< Succ(n2).

Listing 1. Axioms in SQUIRREL.

This highlights an advantage of our method, which lets the

user axiomatize any theory needed to conduct the security

analysis. In contrast, symbolic approaches are less flexible,

and only let the user provide axioms in some restricted ways.

To analyze the security of these two protocols, we proved

some intermediate lemmas about state values, e.g. that counters
are monotonically increasing. Our security analysis is similar

to the one in GSVerif [15], and we obtain the same results,

except that we provide computational guarantees (assuming

that the MAC function used in CANAuth is EUF-CMA secure).

2) Protocols with stacks of hashes: We consider next a

few RFID protocols which use a hash function to repeatedly

refresh a secret value: the protocol of Example 1 and simplified

versions of the SLK06 and YPLRK05 protocols of [24]. We

prove authentication properties in all cases. These protocols

are intended to be used with unkeyed hash functions, in

the random oracle model (ROM), but we model them here

with keyed hash functions (satisfying the PRF assumption)

— a stronger assumption. For the SLK06 and YPLRK05

protocols we even assume that each tag uses its own hash key

(shared with the reader) which rules out confusions between

the hashes of different tags and thus simplifies proofs. For our

running example, the proof of authentication is more complex,

involving in particular a lemma showing that the chains of

hash stacks of distinct agents remain disjoint, despite their use

of the same hash key. For these protocols, it has sometimes

proved useful to do some basic reasoning about updates of the

memory cells, such as proving that the value of a state at a

given timestamp is either equal to the initial value, or equal to

the update term of the last action that updated this particular

state; or proving that the value of a state remains constant

between two consecutive updates.

3) Limitations: In order to faithfully model the ROM in

our setting, it would be natural to provide the attacker with

a hashing oracle, i.e. include in the protocol, for each hash

function H(_, k) in use, an action which upon input x outputs

H(x, k). With this modeling, we can still use the EUF-CMA

and PRF tactics associated to hash functions, but the explo-

ration of possible occurrences of hashes now includes this

additional oracle process. In order to prove an authentication

property, we use the unforgeability of some hash function
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(rule EUF-CMA): if the reader receives a valid hash H(m, k),
it must have been produced by some action of the protocol.

In presence of an oracle, we would have to consider the

possibility that the hash has been obtained by feeding m to

the oracle. This possibility can however be dismissed because

m is not known to the attacker. Proving such weak secrecy
properties directly is difficult in our setting, but we can prove

the strong secrecy of m (i.e. that it is indistinguishable from

a fresh name) and conclude from there that it is also weakly

secret. Unfortunately, the proof system of [18] does not give

the possibility to derive reachability properties (here, weak

secrecy) from equivalence properties (strong secrecy). Our

extension of the proof system presented in the next section

allows to lift this limitation.

V. PROOF SYSTEM

We now generalize the proof system of [18] in order to

enable complex reasoning where reachability and equivalence

properties are simultaneously established, and to improve

automated reasoning.

A. Global meta-logic formulas

The local meta-logic formulas of Section III express prop-

erties that hold for all traces of a protocol. We now introduce

global meta-logic formulas, which will make it possible to

express properties involving multiple protocols, and will be

the basis for our extended sequent calculus. In order to be

able to simultaneously talk of the traces of multiple protocols,

we need these protocols to be compatible.

Definition 6. Two protocols are compatible if they use the
same set A of action names and have the same partial order.

The syntax of global meta-formulas is shown next, where

we write α for a variable of any sort, including message, and
�t , �t′ are sequences of meta-terms and meta-formulas.

F := [φ]P | [�t ∼ �t ′]P,P′ | ⊥̃ | �̃ |
∀̃α.F | ∃̃α.F | F ⇒̃ F ′ | F ∧̃ F ′ | F ∨̃ F ′

To avoid the confusion with local meta-formulas we use other

symbols for quantifiers and connectives. An atom of a global

meta-formula may be a local formula relative to some protocol,

or an equivalence relative to two protocols. We impose that

all protocols used in a global meta-formula are compatible.

Similarly to local meta-formulas, a global meta-formula
is said to be valid when, for any trace model, its meta-
interpretation as a base logic formula is valid. This meta-
interpretation is defined as follows — notice the specific
treatment of quantification over messages.

(⊥̃)T def
= ⊥ (∀̃i.F )T def

= ∧v∈DI (F )
T{i �→v}

([φ]P)
T def
= (φ)TP ∼ true (∀̃τ.F )T def

= ∧v∈DT (F )T{τ �→v}

(F ⇒̃ F ′)T def
= (F )T ⇒ (F ′)T (∀̃x.F )T def

= ∀x.(F )T

([�t ∼ �t ′]P,P′)T
def
= (�t)TP ∼ (�t ′)TP′

The other cases are similarly handled.

Definition 7. Two protocols P1 and P2 are observationally

equivalent when they are compatible and the following global
meta-logic formula is valid:

∀̃τ. [happens(τ)]P1 ⇒̃ [frame@τ ∼ frame@τ ]P1,P2 .

Note that [happens(τ)]P1
and [happens(τ)]P2

are equivalent

as happens(τ) only talks about the trace model.

B. Sequents

We consider two kinds of sequents, general and reachability

sequents, which are respectively of the form

Σ; Θ � F and Σ; Θ : Γ �P φ

where Σ is a sequence of variables (of any sort), Θ is a set

of global meta-formulas, Γ is a set of local meta-formulas,

φ is a local meta-formula and F is a global meta-formula.

We require that sequents are closed, i.e. Σ binds all variables

occurring in the rest of the sequent.

These sequents translate to global meta-formulas, which

indirectly defines their semantics. When Θ = {F1, . . . , Fn}
we write Θ⇒̃F for F1 ⇒̃ . . . ⇒̃ Fn ⇒̃ F . We define similarly

the notation Γ⇒̃φ. Finally, when Σ = {α1, . . . , αn}, we write

∀̃Σ.F for ∀̃α1 . . . ∀̃αn.F . The translation of our two kinds of

sequents is then defined as follows.

Σ; Θ � F � ∀̃Σ.(Θ ⇒̃ F )

Σ; Θ : Γ �P φ � ∀̃Σ.(Θ ⇒̃ [Γ⇒ φ]P)

A sequent is valid when its translation as a global meta-

formula is valid.

Example 10. To understand the distinction between Θ and Γ
hypotheses in reachability sequents, note that the validity of
Σ; : φ �P ψ implies that of Σ; [φ]P :�P ψ, but the converse
does not generally hold. In the former case we state that the
implication φ ⇒ ψ is true with overwhelming probability;
in the latter, we state that if φ is true with overwhelming
probability then so is ψ.

When �u and �v are sequences of meta-terms or meta-

formulas of the same length, we write Σ; Θ �P,P′ �u ∼ �v
for Σ; Θ � [�u ∼ �v]P,P′ .

C. Structural rules

Reachability sequents (resp. general sequents) generalize the

reachability (resp. equivalence) sequents of [18], and the proof

rules for that earlier work can naturally be adapted for our

generalized sequents. This initial set of proof rules includes,

for both kinds of sequents, the usual first-order reasoning

rules and proof by induction for both kinds of sequents but

also rules that embody cryptographic assumptions or reasoning

about names. We shall not comment further these (essentially)

unchanged rules, but refer the reader to [18] for more details.

The semantics of local meta-formulas is not boolean, but

probabilistic: a formula is valid if its meta-interpretation is

true with overwhelming probability. It is thus remarkable that

the usual rules of first-order logic are sound for these formulas.

But this only holds when we remain within the “local” part of
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Σ; Θ : Γ, φ �P ψ
Σ; Θ : Γ, φ′ �P ψ

Σ; Θ : Γ, φ ∨ φ′ �P ψ

Σ; Θ, [φ]P : Γ �P ψ
Σ; Θ, [φ′]P : Γ �P ψ

Σ; Θ, [φ ∨ φ′]P : Γ �P ψ

In the right rule, we require that one of the two disjuncts is a
pure trace formula.

Fig. 3. Left disjunction rules at the local and global levels.

GLOBAL-LOCAL

Σ; Θ � [φ]P
Σ; Θ :�P φ

LOCAL-GLOBAL

Σ; Θ :�P φ

Σ; Θ � [φ]P
EQUIV-TERM

Σ; Θ :�P t = t′

Σ; Θ �P,P′ �C[t′] ∼ �v

Σ; Θ �P,P′ �C[t] ∼ �v

EQUIV-FORM

Σ; Θ :�P φ⇔ ψ

Σ; Θ �P,P′ �C[ψ] ∼ �v

Σ; Θ �P,P′ �C[φ] ∼ �v

REWRITE-EQUIV

Σ; Θ �P,P′ (Γ ⇒ φ) ∼ (Δ ⇒ ψ) Σ; Θ : Δ �P′ ψ

Σ; Θ : Γ �P φ

Fig. 4. Inference rules involving mixed kinds of sequents.

local sequents, as illustrated in Figure 3. The second rule in

that figure would not be valid without the proviso that one of

the disjuncts is a pure trace formula. A pure trace formula is

a local meta-formula which does not feature any macros, and

is always true or false when evaluated in a trace model.

Definition 8. A local meta-formula φ is a pure trace formula

w.r.t. protocol P if φ does not contain any macro and if for
any trace model T, (φ)TP ∼ true or (φ)TP ∼ false is valid.

A simple syntactic criterion guaranteeing this property is

that the formula does not feature any macro or message, i.e. its
atoms are only comparisons of indices and timestamps.

Essentially, assuming that φ∨φ′ is true with overwhelming

probability, we cannot generally conclude that one of φ and φ′

is also true with overwhelming probability; the pure trace

formula proviso allows one to fix this gap because a pure trace

formula is either always true or always false (depending on the

trace model). Proofs in our case studies must sometimes be

carefully structured to be able to accommodate this subtlety.

Our proof system also features rules which articulate the

relationship between our two kinds of sequents, shown in

Figure 4. Rules GLOBAL-LOCAL and LOCAL-GLOBAL are

obvious conversions. Rules EQUIV-TERM and EQUIV-FORM

are immediate generalizations of the identically named rules in

[18], with the new environment Θ allowing to carry hypotheses

from the equivalence sequent in conclusion to the reachability

sequent in first premise. Conversely, the new rule REWRITE-

EQUIV shows how an equivalence judgement can be used

to help derive reachability judgements. As expected all these

rules have been shown to be sound.

Proposition 1. The rules in Figures 3 and 4 are sound.

Example 11. To illustrate the utility of this articulation
between equivalence and reachability, we show how to prove a
(weak) secrecy property (expressed as a reachability sequent)
using a strong secrecy property (an equivalence) as hypothesis.
Consider a protocol P involving a memory cell s of index
arity 1. Given a fresh name m, we consider the reachability
sequent Σ; Θhap,Θ :�P φ where Σ

def
= τ, τ ′, i and:

Θhap
def
= [happens(pred(τ))]P

Θ
def
= [frame@τ, s[i]@τ ′ ∼ frame@τ,m]P,P

φ
def
= input@τ �= s[i]@τ ′

This sequent states that, if the values stored in the memory
cell s are strongly secret (this is the global meta-formula Θ),
then we know that s[i]@τ ′ is (weakly) secret, i.e. the attacker
cannot deduce its value (this is the local meta-formula φ). In
order to derive this sequent, we use the rule REWRITE-EQUIV

with ψ := input@τ �= m and empty environments Γ and Δ.
We thus have to derive the following two sequents.

Σ; Θhap,Θ �P,P input@τ �= s[i]@τ ′ ∼ input@τ �= m
Σ; Θhap,Θ :�P input@τ �= m

The second one can be easily derived using the freshness of the
name m. Concerning the first one, we shall see that we can use
the equivalence in Θ to deduce the right side of the sequent:
this is the purpose of the next subsection. The file correspond-
ing to this example in [16] is running-ex-secrecy.sp.

Echoing the limitations discussed at the end of Section IV,

the articulation illustrated above is also critical to prove the

strong secrecy of the states of tags in a variant of the OSK

protocol with oracles but no readers. Interestingly, strong and

weak secrecy must be derived simultaneously in that proof, in

a mutual induction. See the file running-ex-oracle.sp
at [16] for more details.

D. Automating proofs by bi-deduction

In the sequent Σ; Θhap,Θ �P,P φ ∼ ψ of Example 11,

the left side of the equivalence in Θ contains all the necessary

information to compute φ: there exists a machine B computing

the latter from the former. Moreover, the same algorithm B
computes ψ from the right side of the equivalence in Θ.

Intuitively, the proof is done here: if you can break the

equivalence φ ∼ ψ, then you can break the equivalence Θ by

composing the distinguisher for φ ∼ ψ with B. The existence

of such a B proves that an equivalence is entailed by another

equivalence. Informally:

∃B s.t. B computes �vi from �ui w.r.t. Pi for any i ∈ {1, 2}
Σ; Θ, [�u1 ∼ �u2]P1,P2 � [�v1 ∼ �v2]P1,P2

(1)

We shall now define formally this notion of simultane-

ous computation, which we call bi-deduction and note

Σ; Θ; #(�u1, �u2) �P1,P2
#(�v1, �v2).
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1) Bi-terms: A bi-term t# is an element of the form #(t1, t2)
where t1 and t2 are meta-terms. Similarly, a bi-formula

#(φ1, φ2) is a pair of local formulas. We often use compact

notations to refer to bi-terms (and bi-formulas) sharing some

top-level constructs.

For example, f(#(t1, t2), g(#(s1, s2))) is the bi-term

#(f(t1, g(s1)), f(t2, g(s2))), and seq(�α : #(t1, t2)) is the bi-

term #(seq(�α : t1), seq(�α : t2)). We may also note t for the

bi-term #(t, t). We similarly lift boolean connectives to bi-

terms: e.g. #(φ1, φ2) ∧ #(ψ1, ψ2) is #(φ1 ∧ ψ1, φ2 ∧ ψ2).

2) Bi-deduction: A bi-deduction judgement is an element

of the form Σ; Θ; �u# �P1,P2
{v# | φ#} where Σ is a sequence

of variables of any sort, Θ is a set of global meta-formulas,

P1,P2 are protocols, �u# is a sequence of bi-terms, v is a

bi-term, and φ# is a bi-formula. We require that Σ binds all

variables in the judgement. We omit the protocols P1,P2 from

the judgement when they are clear from the context, and write

Σ; Θ; �u# � v# when φ# = �. We also write Σ; Θ; �u# � �v #

when Σ; Θ; �u# � v
i
# for each element vi# in �v #.

A judgement Σ; Θ; #( �u1 , �u2 )�P1,P2 {#(v1, v2) | #(φ1, φ2)}
is valid when, for any trace model T, there exist probabilistic

PTIME machines Bo and Bc such that, for any computational

model M and valuation σ such that M, σ |= (Θ)T, and for any

i ∈ {1, 2}, the following equalities hold with overwhelming

probability:

[[EQ]]
M

(
Bc([[(�u i)

T

Pi
]]σ
M
), [[(φi)

T

Pi
]]σ
M

)
= 1

[[EQ]]
M

(
Bo([[(�u i)

T

Pi
]]σ
M
), [[(if φi then vi)

T

Pi
]]σ
M

))
= 1

(2)

Said otherwise, given �u i as input, the machines Bc and Bo

respectively compute φi and (if φi then vi) (up to a negligible

probability of failure) whenever Θ holds, for i = 1 and

protocol P1, and for i = 2 and protocol P2. Note that the

same machines are used on both sides.

Example 12. Let i′, i be index variables. The bi-deduction
judgement i′, i; ; �i′ = i is valid because, for any trace model
T, we can choose B to be the machine that always returns
true if (i′ = i)T is true, and false otherwise. The dependence
of B on T is crucial here.

Example 13. Let a[_] be some action name of index arity
one, τ a timestamp variable and i, j index variables. The bi-
deduction judgement:

τ, j; ; seq(i : n[i] | a[i] ≤ τ) � {n[j] | a[j] < τ}

is valid because the sequence seq(i : n[i] | a[i] ≤ τ) contains
the names n[i] for any a[i] ≤ τ , and consequently contains
n[j] whenever a[j] < τ . Hence we can easily construct a
machine B extracting n[j] from the sequence.

3) Rules: We can now give a formal version of Equ. (1),

i.e. state the rule that derives equivalences from bi-deductions:

BI-DEDUCE

Σ; Θ; #(�u1, �u2) �P1,P2
#(�v1, �v2)

Σ; Θ, [�u1 ∼ �u2]P1,P2 � [�v1 ∼ �v2]P1,P2

If, given some known bi-terms #(�u1, �u2), we can bi-deduce

some other bi-terms #(�v1, �v2) (for a pair of protocols P1,P2),

then we know that the equivalence [�u1 ∼ �u2]P1,P2 entails

[�v1 ∼ �v2]P1,P2
.

Example 14. Let us come back to Example 11 in which we
had to derive the following sequent:

Σ; Θhap, [frame@τ, s[i]@τ ′ ∼ frame@τ,m]P,P

�P,P input@τ �= s[i]@τ ′ ∼ input@τ �= m

Using the rule BI-DEDUCE, we are left with the following
bi-deduction judgement:

Σ; Θhap; frame@τ, #(s[i]@τ ′,m)�P,P input@τ �= #(s[i]@τ ′,m)

That judgement is valid according to our semantics: indeed
there is a machine that can (1) obtain x := frame@τ and
y := s[i]@τ ′ when i = 1 (resp. y := m when i = 2); (2) build
z := input@τ from frame@τ ; (3) compute z �= y.

We present in Figure 5 some rules for bi-deducibility;

a complete presentation is given in Figure 8, Appendix A.

Rule SEQ-DED allows to bi-deduce a bi-term #(v1, v2), when-

ever #(φ1, φ2) holds, from a sequence seq(�α : #(u1, u2) |
#(ψ1, ψ2)) if it appears in the sequence simultaneously on

both sides: there must exists �α such that, for any i ∈ {1, 2},
ui = vi and the sequence condition ψi holds whenever φi
holds. Rule PURE-DED states that pure trace formulas are

always bi-deducible: indeed, once the trace model is fixed, they

have a constant value (either always true or always false). Rule

PAIR-PROJ allows to exploit the fact that a machine can recover

a pair’s components. The FRAME rule states that frame@T
contains all frame@T ′ for any T ′ ≤ T . Combined with other

rules, this makes it possible to bi-deduce any past input from

a frame. The rule FA says that the image of a function f(�v #)
is bi-deducible whenever its arguments �v # are bi-deducible. In

case f is of arity zero, we must also check that the condition

φ# is bi-deducible — see rule FA0. Finally, FA-ITE allows one

to derive a bi-deduction with a conditional on its right, taking

advantage of its condition to refine the premises: we know

that we must deduce the then branch only if the condition

ψ holds, and similarly for the else branch.

Proposition 2. The BI-DEDUCE rule and the rules in Figure 5
(as well as the complete version of the rules given in Figure 8
in Appendix) are sound.

Example 15. We now formally derive the bi-deduction judge-
ment of Example 14. We first apply FA on the �= function
symbol. This gives us two bi-deduction judgements:

1) Σ; Θhap; frame@τ, #(s[i]@τ ′,m) �P,P input@τ ; and
2) Σ; Θhap; frame@τ, #(s[i]@τ ′,m) �P,P #(s[i]@τ ′,m).

The second judgement is derived using SEQ-DED, since the
bi-term we must deduce is already present in the left side
of the judgement. For the first one, we replace input@τ by
att(frame@pred(τ)): this is done by unfolding the input macro
(rule not shown). Then, we get rid of the att function symbol
using FA. Applying FRAME then gives:
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SEQ-DED

Σ; Θ � ∃̃�α.
([φ1 ⇒ (ψ1 ∧ u1 = v1)]P1 ∧̃
[φ2 ⇒ (ψ2 ∧ u2 = v2)]P2

)

Σ; Θ; �u#, seq(�α : #(u1, u2) | #(ψ1, ψ2)) � #(φ1, φ2)

Σ; Θ; �u#, seq(�α : #(u1, u2) | #(ψ1, ψ2)) � {#(v1, v2) | #(φ1, φ2)}

PURE-DED

v, φ pure trace formula

Σ; Θ; �u# � {#(v, v) | #(φ, φ)}
PAIR-PROJ

Σ; Θ; �u#, seq(�α : u
1
# | ψ#), seq(�α : u

2
# | ψ#) � {v# | φ#}

Σ; Θ; �u#, seq(�α : 〈u1
#, u

2
#〉 | ψ#) � {v# | φ#}

FRAME

Σ; Θ; �u#, seq(�α, T
′ : frame@T ′ | ψ# ∧ T ′ ≤ T ) � {v# | φ#}

Σ; Θ; �u#, seq(�α : frame@T | ψ#) � {v# | φ#}

FA

Σ; Θ; �u# � {�v # | φ#}
Σ; Θ; �u# � {f(�v #) | φ#}

FA0

Σ; Θ; �u# � φ#

Σ; Θ; �u# � {f() | φ#}

FA-ITE

Σ; Θ; �u# � {ψ# | φ#}
Σ; Θ; �u# � {t# | φ# ∧ ψ#}
Σ; Θ; �u# � {t′# | φ# ∧ ¬ψ#}

Σ; Θ; �u# � {if ψ# then t# else t′# | φ#}
We identify a single term u with the degenerate sequence seq(ε : u | �) so that the left rules apply not only to sequences. The FA rule
only applies when f is of non-zero arity.

Fig. 5. Bi-deduction rules for protocols P1,P2.

Σ; Θhap; seq(T : frame@T | T ≤ τ) �P,P frame@pred(τ).

We conclude with the rule SEQ-DED, noticing that we can
instantiate T by pred(τ).

Using our bi-deduction rules, we implemented a procedure

DED(·) which automatically checks whether a bi-deduction

judgement Σ; Θ; �u# � {v# | φ#} is valid. Our procedure is

sound but incomplete: it relies on heuristics to decide on

which order it applies the rules. Studying the decidability and

complexity of the bi-deduction logic is left as future work.

This procedure has been incorporated in SQUIRREL apply

tactic: when applying a lemma H whose conclusion is an

equivalence, we use our automatic procedure to check that

the current goal is bi-deducible from H’s conclusion. This

improvement plays a crucial role to ease the proof effort for

the case studies presented in this paper, but has also allowed

to simplify older case studies from [18].

a) Discussion: Some bi-deduction proofs can be done

directly using equivalence judgements and existing rules.

Roughly, the idea is to construct an explicit context computing

the wanted terms �v from the known terms �u , using DUP, FA.

But this is not always possible, in particular when sequences

are involved. E.g., using BI-DEDUCE, it is possible to prove

(the two sides are syntactically equal but interpreted w.r.t. dis-

tinct protocols):

τ ;

[
frame@τ ∼
frame@τ

]
P1,P2

�
[
seq(τ1 : input@τ1 | τ1 < τ) ∼
seq(τ1 : input@τ1 | τ1 < τ)

]
P1,P2

using the fact that frame@τ contains frame@τ0 for all τ0 ≤ τ ,
and the definition of input — see the long version [20] for

a detailed proof. With our current set of rules, we believe

this judgement cannot be proved without BI-DEDUCE, as we

cannot construct an explicit context extracting frame@τ0 from

frame@τ for τ0 ≤ τ . Indeed, such a context would have

to perform projections on frames a number of times which

depends on the trace models, which cannot be done.

E. Induction and bi-deduction

The automatic bi-deduction procedure derived from the bi-

deduction proof system presented so far is very efficient and

helpful. In some cases, though, it is not enough to conclude,

at least not with a reasonable proof effort.

Example 16. Consider the protocol of our running example,
with tags only for simplicity. Call it P1, and let P2 be a
modified version where the states sT[i] are initialized with n0[i]
instead of s0[i]. Consider the equivalence

frame@t, k, seq(i : s0[i]) ∼P1,P2

frame@t, k, seq(i : n0[i])
(3)

where we reveal, in addition to the frames, the key k and
the initial values for all i. This equivalence obviously holds
because it compares terms that only differ by a bijective
renaming. Consider now an even stronger equivalence where
we reveal all past states:

frame@τ, k, seq(i, τ ′ : if τ ′ ≤ τ then sT[i]@τ
′) ∼P1,P2

frame@τ, k, seq(i, τ ′ : if τ ′ ≤ τ then sT[i]@τ
′)

(4)

Such enriched equivalences are typically needed for use with
REWRITE-EQUIV, as is the case in our YubiHSM case study.
In our simple example, the enriched equivalence (4) obviously
holds because it is a renaming, but it is difficult to derive it
without an ad-hoc renaming rule, which would be inapplicable
in realistic cases such as our YubiHSM case study. Intuitively,
equivalence (4) follows from (3) because the attacker can bi-
deduce the successive states from their initial values and k.
However, the number of steps of the construction of sT[i]@τ ′

depends on the position of τ ′ in a trace model, so we need
some sort of inductive reasoning to establish this bi-deduction.

At a high-level, this inductive reasoning would proceed as
follows. If τ is init, the sequence of states is composed of initial
values only, which are given in the first equivalence. If τ is
undef, the comparison τ ′ ≤ τ cannot hold hence the sequence
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is essentially empty. Otherwise, τ is of the form T[i′, j]. By
induction hypothesis we have already bi-deduced the part of
the sequence corresponding to values of τ ′ such that τ ′ < τ .
It remains to bi-deduce the states for τ ′ = τ = T[i′, j]. But,
for any i, we have (for both P1 and P2)

sT[i]@T[i′, j]
def
= if i = i′ then H(sT[i

′]@pred(T[i′, j]), k)

else sT[i]@pred(T[i′, j])

which can be bi-deduced, notably because the parts underlined
above have already been shown to be bi-deducible.

The reasoning performed in the previous example cannot

be formally carried out with the bi-deduction inference rules

presented so far, because they do not include any form of

inductive reasoning. Of course, an induction and case anal-

ysis over τ could be done at the general sequent level, but

this would require the user to supply the inductive invariant

and carry out a very tedious manual proof, as shown in

running-ex-deduction.sp on the previous example.

Instead, we extend our automated procedure for bi-

deduction with inductive reasoning. The soundness of our

procedure relies on the following induction rule:

IND-�
Σ, τ ; Θ; �u#, seq(τ

′ : �v#[τ
′] | φ# ∧ τ ′ < τ) � {�v#[τ ] | φ#}

Σ; Θ; �u# � {seq(τ : �v#[τ ]) | φ#}
Assume we want to prove the bi-deduction judgement

Σ; Θ; u# � v#. First, our procedure computes an invariant of

the form U#
def
= λτ, u#[τ ] such that U# is an invariant of the

protocol:

Σ, τ ; Θ; �u#, seq(τ
′ : U#[τ

′] | τ ′ < τ) � U#[τ ]

This invariant U# is computed automatically, using abstract

interpretation techniques [25]. Finally, we check whether

Σ; Θ; u#, seq(τ : U#[τ ]) � v#

using our automated procedure DED(·). We refer the reader

to Appendix B for the proof of soundness of this approach

and additional details on how the invariant U# is computed.

This procedure for bi-deduction extended with inductive

reasoning has been incorporated in the SQUIRREL apply

tactic. Because it is more costly, it is not used by default,

and must be turned on by using apply ~inductive.

Example 17. The equivalence in Equ. (4) of Example 16 is
proved directly using our bi-deduction procedure with induc-
tive reasoning (see running-ex-deduction.sp in [16]).

F. Sequences

We often use sequences when reasoning on protocols. e.g.
to enrich equivalences with collections of messages that are

already known to the attacker or can safely be disclosed as

far as the property being proved is concerned. We give in

Figure 6 two new rules that are sometimes necessary to prove

equivalences between sequences.

The SPLIT-SEQ rule allow to split sequences in two, ac-

cording to some arbitrary meta-formula φ on the left and ψ

SPLIT-SEQ

Σ; Θ �P,P′
�u, seq(�α : if φ then t), seq(�α : if ¬φ then t)

∼ �v, seq(�α : if ψ then s), seq(�α : if ¬ψ then s)

Σ; Θ �P,P′ �u, seq(�α : t) ∼ �v, seq(�α : s)

CONST-SEQ

Σ; Θ � [∀�α,∨0≤i≤n bi
]
P

Σ; Θ � [∧
0≤i≤n ∀�α, bi ⇒ t = ti

]
P

Σ; Θ � [∧
0≤i≤n ∀�α, bi ⇒ s = si

]
P′

�α ∩ Σ = ∅ (bi)1≤i≤n pure trace formulas
Σ; Θ �P,P′ �u, t1, . . . , tn ∼ �v, s1, . . . , sn

Σ; Θ �P,P′ �u, seq(�α : t) ∼ �v, seq(�α : s)

Fig. 6. Inference rules for equivalence of sequences.

on the right. The CONST-SEQ rule can be used to simplify

a sequence seq(�α : t) into a finite collection t1, . . . , tn when

it can be proved that all instances of t fall into this finite

set of possibilities. Since we are dealing with an equivalence

with sequences on both sides, this simplification must be done

simultaneously on both sides, and we must make sure that the

mapping for the instances of t to the constants ti is the same

as its counterpart on the other side of the equivalence: this is

the role of the conditions bi that partition the sequences. As

expected, these rules are sound.

Proposition 3. The rules in Figure 6 are sound.

VI. CASE STUDY: YUBIKEY AND YUBIHSM

This section discusses the YubiKey and the YubiHSM pro-

tocols following the security analysis done in [19], [26] using

the symbolic prover TAMARIN. The analysis of YubiHSM in

TAMARIN requires the use of the interactive mode, and took

the authors around one month. Doing this analysis in SQUIR-

REL allows to test our extensions of the tool and to provide

stronger computational guarantees. Conducting this analysis

in SQUIRREL required a similar amount of human effort than

the TAMARIN analysis. The corresponding SQUIRREL files,

yubikey.sp (270 LoC) and yubihsm.sp (720 LoC), can

be found at [16].

A. Background

The YubiKey is a simple physical authentication device with

a unique button. This device, manufactured by Yubico, allows

users to securely authenticate to their accounts by issuing

a one-time password (OTP). In its typical configuration, the

YubiKey generates a random OTP by encrypting a secret value

and a counter. This message is accepted by the server only

if it decrypts under the correct key to a valid secret value

containing a counter whose value is larger than the last value

accepted by the server for that YubiKey.

We first analyze the security of the protocol assuming that

the server remains secure. Then, we consider an adversary

having access to the authentication server. To provide some
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security guarantees in this scenario, a Hardware Security Mod-

ule (HSM), called YubiHSM, is used to protect the working

secret symmetric keys.

As in [19], [26], instead of having a session counter and

a token counter, we consider a single counter. To conduct

the security analysis in TAMARIN, the authors in [19], [26]

over-approximate the behaviours of the system by allowing

the adversary to instantiate the rule for any counter value

that is higher than the previous one. We do not rely on this

approximation in our SQUIRREL security analysis.

B. YubiKey

Yubico assigns a key k, as well as a public and a secret

identifier (pid, sid) to each YubiKey. The counter inside the

YubiKey is incremented whenever the YubiKey is plugged in,

as well as when an OTP is generated, i.e. when the button of

the YubiKey is pressed. This OTP is obtained by encrypting

the counter value and the sid of the YubiKey with its key k.

YUBIKEY → SERVER : pid, senc(〈sid, cpt〉, k, r)
Here, r is the encryption randomness. The server accepts this

message if it decrypts with a legitimate key k, and leads to

a valid secret value sid. Lastly, the counter value obtained

through decryption has to be larger than the current value

stored in the server database. After this exchange, the server

updates its counter with the value just received. We consider

the same three security properties as in [19], [26]:

1) Absence of replay attacks: the server never accepts for

the same YubiKey the same counter twice.

2) Injective correspondence: a successful login for the Yu-

biKey pid must have been preceded by a button press on

this YubiKey for the same counter value, and this counter

value is not involved in another successful login.

3) Monotonicity: the counter values associated to successful

logins are monotonically increasing in time.

As expected, modeling this protocol requires us to rely on

our notion of states to store and update counter values on both

the YubiKey’s and the server’s sides.

These three security properties are reachability properties

which can be expressed using local meta-formulas, and which

actually do not require the use of our new REWRITE-EQUIV

inference rule. Furthermore, the security properties 1 and 3 are

established relying solely on counter values, while injective
correspondence requires the use of the INT-CTXT crypto-

graphic assumption. Indeed, it is needed to ensure that the

accepted ciphertext has been issued by a legitimate YubiKey.

C. YubiHSM

In order to provide some security guarantees even in the

case where the server is compromised, Yubico has developed

a specific HSM, called YubiHSM. In this setting, the working

keys (those used by the YubiKey) are encrypted under a

master key mk stored inside the YubiHSM. The YubiHSM lets

the server use them to perform some specific cryptographic

operations (through a specific API) without ever having ac-

cess to them in plaintext. Therefore, the interaction between

the YubiKey and the server has to go through the HSM

(via a secure channel). The HSM receives the otp and the

aead = senc(〈k, 〈pid, sid〉〉,mk , r0), performs the decryption

operation, and returns the value of the counter inside the otp to

the server. The server, depending on the value of the counter,

accepts the exchange or not.

YUBIKEY → SERVER : pid, otp

SERVER
secure−−−→ HSM : pid, aead, otp

HSM
secure−−−→ SERVER : cpt

SERVER → YUBIKEY : accept

The idea is that since the master key of the YubiHSM is

not extractable, the attacker will never learn the value of the

working keys (which are protected by mk ) even if the server

is under the control of the attacker.

We analyze the three same security properties. However, in

this new setting, the proof of injective correspondence cannot

be carried out in the same fashion, because the INT-CTXT

cryptographic assumption on the working keys can no longer

be applied. Indeed, these keys occur in plaintext position in,

e.g., aead . Therefore, to conduct this proof, we proceed in two

steps. We first establish the equivalence between the original

system and an ideal one, described below. We then prove

the security property on the ideal system, using the same

proof techniques as in the previous subsection. Thanks to our

new rule REWRITE-EQUIV, we put together these two steps

and conclude that the security property holds on the original

system. In the ideal system, we replace the keys encrypted

in aead by dummy keys, so as to be able to rely on the INT-

CTXT cryptographic assumption. To maintain the functionality

on the ideal system, we replace the dummy keys by the real

keys when we need to use them.

To establish the equivalence between these two systems,

we first enrich the knowledge of the attacker by revealing

additional terms, e.g. the secret identifiers and the working

keys. Then, we show that the equivalence holds by induction

on the length of the trace, with the help of the new BI-

DEDUCE rule. Revealing additional information allows us to

establish that the additional message outputted during the last

step does not provide additional knowledge to the attacker.

VII. CONCLUSION

In order to reason on protocols with mutable states, we

have improved both the theoretical foundations and the prac-

tical implementation of the SQUIRREL prover. In particular,

we have presented a richer and more faithful semantics, an

extended proof system that allows a rich interplay between

reachability and equivalence properties, and automated deduc-

tion techniques based on the notion of bi-deduction.

These improvements have made it possible to carry out

new security analyses. We have been able to prove properties

of several RFID protocols, overcoming some difficulties tied

to a proper modeling of the random oracle model. We have

finally carried out the largest SQUIRREL development so far,

obtaining the first computational proofs of the YubiKey and

YubiHSM protocols.

301



Future work will obviously include the development of more

complex case studies, removing various simplifications in the

present ones or tackling more complex protocols. We also

plan to improve proof automation, for instance by automating

common arguments such as reasonings on counters or stacks of

hashes, and by leveraging general-purpose tools such as SMT

solvers. We conjecture that our bi-deduction proof system

subsumes the FA-DUP rule from [18], which needs to be

formally established, and exploited in the implementation of

the prover. More generally, we plan to study decidability and

completeness issues for our bi-deduction proof system.
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and general sequents can be found in the long version [20].

APPENDIX A

BI-DEDUCTION

We extend bi-deduction to bi-formulas in a straightforward

manner. For any sequence Σ of variables of any sort, protocols

P1,P2, set Θ of global meta-formulas, sequences of bi-terms

#( �u1 , �u2 ), bi-formulas #(λ1, λ2) and #(φ1, φ2), we have a bi-

deduction judgement:

Σ; Θ; #( �u1 , �u2 ) �P1,P2
{#(λ1, λ2) | #(φ1, φ2)}.

The validity of this judgement is defined in the same way

as the validity of a bi-deduction judgement for a bi-term

(Equ. (2)): the machine Bc must compute φi and Bo must

compute (if φi then λi), i.e. (φi ⇒ λi).

a) Unfold: Before giving our rules, we define the partial

macro evaluation function unfoldP(·, ·) in Figure 7.
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Left rules

WEAK-L
Σ; Θ; �u1

# � {v# | φ#}
Σ; Θ; �u1

#, �u
2
# � {v# | φ#}

SEQ-DED

Σ; Θ � ∃̃�α.
([φ1 ⇒ (ψ1 ∧ u1 = v1)]P1 ∧̃
[φ2 ⇒ (ψ2 ∧ u2 = v2)]P2

)

Σ; Θ; �u#, seq(�α : #(u1, u2) | #(ψ1, ψ2)) � #(φ1, φ2)

Σ; Θ; �u#, seq(�α : #(u1, u2) | #(ψ1, ψ2)) � {#(v1, v2) | #(φ1, φ2)}

PAIR-PROJ

Σ; Θ; �u#, seq(�α : u
1
# | ψ#), seq(�α : u

2
# | ψ#) � {v# | φ#}

Σ; Θ; �u#, seq(�α : 〈u1
#, u

2
#〉 | ψ#) � {v# | φ#}

UNFOLD-L-1
Σ; Θ; �u#, #(seq(�α : unfoldP1(m, a[�i]) | ψ), u2) � {v# | φ#}

Σ, �α ; Θ � [ψ ⇒ happens(a[�i ])]P1

Σ; Θ; �u#, #(seq(�α : m@(a[�i ]) | ψ), u2) � {v# | φ#}
UNFOLD-L-2
Σ; Θ; �u#, #(u1, seq(�α : unfoldP2(m, a[�i]) | ψ)) � {v# | φ#}

Σ, �α ; Θ � [ψ ⇒ happens(a[�i ])]P2

Σ; Θ; �u#, #(u1, seq(�α : m@(a[�i ]) | ψ)) � {v# | φ#}

FRAME

Σ; Θ; �u#, seq(�α, T
′ : frame@T ′ | ψ# ∧ T ′ ≤ T ) � {v# | φ#}

Σ; Θ; �u#, seq(�α : frame@T | ψ#) � {v# | φ#}

Right rules
SPLIT-COND

Σ; Θ; �u# � {v# | ψ#} Σ; Θ; �u# � {φ# | ψ#}
Σ; Θ; �u# � {v# | φ# ∧ ψ#}

FA

Σ; Θ; �u# � {�v # | φ#}
Σ; Θ; �u# � {f(�v #) | φ#}

FA0

Σ; Θ; �u# � φ#

Σ; Θ; �u# � {f() | φ#}
FA-ITE

Σ; Θ; �u# � {ψ# | φ#}
Σ; Θ; �u# � {t# | φ# ∧ ψ#}
Σ; Θ; �u# � {t′# | φ# ∧ ¬ψ#}

Σ; Θ; �u# � {if ψ# then t# else t′# | φ#}

FA-FIND

Σ,�i ; Θ; �u# � {ψ# | φ#}
Σ,�i ; Θ; �u# � {t# | φ# ∧ ψ#}
Σ; Θ; �u# � {t′# | φ# ∧ ∀�i ,¬ψ#}

Σ; Θ; �u# � {find�i suchthat ψ# in t# else t′# | φ#}

FA-Q
Σ, α; Θ; �u# � {v# | φ#}
Σ; Θ; �u# � {Qα.v# | φ#} Q ∈ {∃, ∀}

FA-∨-L
Σ; Θ; �u# � {ψ0

# | φ#}
Σ; Θ; �u# � {ψ1

# | φ# ∧ ¬ψ0
#}

Σ; Θ; �u# � {ψ0
# ∨ ψ1

# | φ#}

FA-∨-R
Σ; Θ; �u# � {ψ1

# | φ#}
Σ; Θ; �u# � {ψ0

# | φ# ∧ ¬ψ1
#}

Σ; Θ; �u# � {ψ0
# ∨ ψ1

# | φ#}

FA-∧-L
Σ; Θ; �u# � {ψ1

# | φ# ∧ ψ0
#}

Σ; Θ; �u# � {ψ0
# ∧ ψ1

# | φ#}

FA-∧-R
Σ; Θ; �u# � {ψ0

# | φ# ∧ ψ1
#}

Σ; Θ; �u# � {ψ0
# ∧ ψ1

# | φ#}

FA-⇒
Σ; Θ; �u# � {ψ0

# | φ#}
Σ; Θ; �u# � {ψ1

# | φ# ∧ ψ0
#}

Σ; Θ; �u# � {ψ0
# ⇒ ψ1

# | φ#}

FA-¬
Σ; Θ; �u# � {ψ# | φ#}
Σ; Θ; �u# � {¬ψ# | φ#}

FA-†
Σ; Θ; �u# � φ#

Σ; Θ; �u# � {† | φ#} † ∈ {�,⊥}
FA-SEQ

Σ, �α ; Θ; �u# � {v# | φ# ∧ ψ#}
Σ; Θ; �u# � {seq(�α : v# | ψ#) | φ#}

PURE-DED

v, φ pure trace formula

Σ; Θ; �u# � {#(v, v) | #(φ, φ)}
UNFOLD-R-1
Σ; Θ; �u# � {#(unfoldP1(m, a[�i ]), v2) | φ#}

Σ; Θ � [φ1 ⇒ happens(a[�i ])]P1

Σ; Θ; �u# � {#(m@(a[�i ]), v2) | #(φ1, φ2)}

UNFOLD-R-2
Σ; Θ; �u# � {#(v1, unfoldP2(m, a[�i ])) | φ#}

Σ; Θ � [φ2 ⇒ happens(a[�i ])]P2

Σ; Θ; �u# � {#(v1,m@(a[�i ])) | #(φ1, φ2)}
UNFOLD-R-SYM

Σ; Θ; �u# � {#(unfoldP1(m, a[�i ]), unfoldP2(m, a[�i ])) | φ#}
Σ; Θ; �u# � {m@(a[�i ]) | φ#}

Symmetric rule
CASE(
Σ,�i ; Θ{τ �→ a[�i ]}; �u#{τ �→ a[�i ]} � {v#{τ �→ a[�i ]} | φ#{τ �→ a[�i ]}}

)
a∈A

Σ, τ ; Θ; �u# � {v# | φ#}
Conventions: A is the set of action names of P1,P2. When necessary, we use the fact that u = seq(ε : u | �) to apply a rule. We
assume that the environment Σ is only extended by fresh variables (e.g. in FA-Q, we assume that α �∈ Σ). This is always possible
through alpha-renaming. The FA rule only applies when f is of non-zero arity.

Fig. 8. Bi-deduction rules for protocols P1,P2.
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b) Rules: We present the bi-deduction rules of Figure 8,

which are grouped in three categories, depending on whether

they act on the left, right, or both sides of the � symbol.

We start by describing left rules. The WEAK-L rule

states that if v# can be bi-deduced from �u1
#, then it

can bi-deduced from �u1
#, �u

2
#. SEQ-DED allows to bi-

deduce a bi-term #(v1, v2), whenever #(φ1, φ2) holds, from

�u#, seq(�α : #(u1, u2) | #(ψ1, ψ2)) if: i) #(φ1, φ2) can be bi-

deduced using the allowed bi-terms; and ii), the bi-term

#(v1, v2) appears in the sequence simultaneously on both sides:

there must exists �α such that, for any i ∈ {1, 2}, if φi holds

then ui = vi and the sequence condition ψi holds. PAIR-PROJ

allows to exploit the fact that a machine can recover a pair’s

components. Using the UNFOLD-L-I rules, we can replace a

macro by its definition, as long as it is at a timestamp that

happens. The FRAME rule states that frame@T contains all

frame@T ′ for any T ′ ≤ T .

We now describe right rules. The rule SPLIT-COND allows

to weaken the condition on the right-hand side when it is bi-

deducible. The rule FA says that the image of a function f(�v #)
is bi-deducible whenever its arguments �v # are bi-deducible. In

case f is of arity zero, we must also check that the condition

φ# is bi-deducible — see rule FA0. We then have many variants

of the FA rule, for other logical constructs that are translated,

in the base logic, to function symbol applications: FA-ITE for

conditionals; FA-FIND for lookups; FA-Q for quantification

over indices or timestamps; FA-∨, FA-∧, FA-⇒, FA-¬ and FA-

† for boolean connectives; and FA-SEQ for sequences. Remark

that, whenever possible, we restrict the set of terms that must

be deduced by adding new conditions. E.g., in the FA-ITE rule,

we know that we must deduce the then branch only if the

condition ψ holds. PURE-DED states that pure trace formulas,

i.e. formulas that only talk about the trace model, are always

bi-deducible. Indeed, once the trace model is fixed, they have

a constant value (either always true or always false). The

UNFOLD-R-I rules allow to replace, on the right-hand side, a

macrom@(a[�i]) by its definition, as long as it is at a timestamp

that happens. We have another unfolding rule on the right-

hand side. The UNFOLD-R-SYM rules allow to replace a macro

m@(a[�i]) by its definition of both sides of the bi-term. Remark

that we do not need to check that a[�i] happens: indeed, if it

does, then by definitionm@(a[�i]) = empty (simultaneously on

both sides of the bi-term), which is a constant, and is therefore

bi-deducible.

Finally, the symmetric CASE rule allows to do a case

analysis.

APPENDIX B

AUTOMATIC INFERENCE OF BI-DEDUCTION INVARIANTS

Assume we want to prove the bi-deduction judgement

Σ; Θ; u# � v#. We give a high-level description of how we

infer the invariant U# of Section V-E.

Consider a fixed set of invariant candidates I of the form

U i
#

def
= λτ.ui#[τ ], where U i

# free variables are bound by Σ. Our

high-level description is agnostic in the precise set of invariant

candidates I, as long as it supports some operations (discussed

below). Still, to help the reader, we give an example of such

a set which can be used to instantiate our algorithm.

Example 18. A state slice is an element of the form:
λτ. seq(�j : s[�i ]@τ)

where �i ⊆ �j ∪ Σ. Then, a state invariant candidate is any
finite union of state slices, and we let IS be the set of state
invariant candidates.

Our inductive invariant procedure computes a sequence of

elements (U i
#)i≤N ∈ IN+1 such that:

(A) for all i, U i+1
# [τ ] can be deduced from the initial knowl-

edge and the known terms at previous steps:

Σ, τ ; Θ; u#, seq(τ
′ : U i

#[τ
′] | τ ′ < τ) � U i+1

# [τ ]
(B) the candidate invariants are monotonously decreasing:

Σ, τ ; Θ; U i
#[τ ] � U

i+1
# [τ ] (for all i)

Our procedure stops as soon as it computes a candidate

invariant UN
# which is smaller than UN−1

# w.r.t. �. More

precisely:

(C) the procedure stops at step N > 0 if it reached a post

fix-point:
Σ, τ ; Θ; u#, U

N
# [τ ] � U

N−1
# [τ ]

We can prove that if these conditions hold, then UN
# is an

inductive invariant.

Proposition 4. If a sequence (U i
#)i≤N ∈ IN+1 satisfies

conditions (A) to (C), then UN
# is an invariant of the protocol:

Σ, τ ; Θ; u#, seq(τ
′ : UN

# [τ ′] | τ ′ < τ) � UN
# [τ ] ()

We now put everything together.

Lemma 1. If a sequence (U i
#)i≤N ∈ IN+1 satisfies conditions

(A) to (C), and if:
Σ; Θ; u#, seq(τ : U#[τ ]) � v#

then Σ; Θ; u# � v#.

Instantiating I. To instantiate this procedure with some set

of candidate invariants I, we require the following.

• There exists an effective procedure that can compute, for

any initial knowledge u# and for any U# in I, a candidate

invariant V# ∈ I such that:

Σ, τ ; Θ; u#, seq(τ
′ : U#[τ

′] | τ ′ < τ) � V#[τ ]

and Σ, τ ; Θ; U#[τ ] � V#[τ ]. This procedure allows to

compute the decreasing sequence of candidate invariants

(U i
#)i≤N satisfying conditions (A) and (B).

• There exists a sound (though not necessarily complete)

procedure that can check, for any U#, V# in I, if:

Σ, τ ; Θ; U#[τ ] � V#[τ ]. This is used to verify the termi-

nation condition (C).

• To ensure termination, any sequence (U i
#)i ∈ I∞ such

that conditions (A) and (B) holds must be stationnary.1

We have designed and implemented such procedures for the

set IS of state invariants introduced in Example 18. We do

not detail them here.

1Sets of invariant candidates I which do not have this property could still
be used, by adapting the procedure we presented so far with a widening
operator [25].
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