
Exploiting Partial Order of Keys to Verify Security
of a Vehicular Group Protocol

Felipe Boeira and Mikael Asplund
Dept. of Computer and Information Science

Linköping University, Sweden

Abstract—Vehicular networks will enable a range of novel
applications to enhance road traffic efficiency, safety, and reduce
fuel consumption. As for other cyber-physical systems, security is
essential to the deployment of these applications and standardis-
ation efforts are ongoing. In this paper, we perform a systematic
security evaluation of a vehicular platooning protocol through
a thorough analysis of the protocol and security standards.
We tackle the complexity of the resulting model with a proof
strategy based on a relation on keys. The key relation forms a
partial order, which encapsulates both secrecy and authenticity
dependencies. We show that our order-aware approach makes
the verification feasible and proves authenticity properties along
with secrecy of all keys used throughout the protocol.

I. INTRODUCTION

Security of cyber-physical systems are increasingly becom-

ing a societal concern, as both the attack surfaces and the

potential consequences of attacks have increased considerably

in recent years. In the automotive domain, connected and

automated vehicles (CAV) promise considerable improvements

in safety and efficiency, but also require very strict security

processes to be trustworthy. Today, the most advanced and

complex collaborative vehicular application comes in the form

of vehicular platooning where a group of vehicles are jointly

controlled by a leader. In this paper we consider the security of

platooning as a starting point to investigate automated security

proofs, partially ordered key structures, and the process of

transforming informal and semi-formal standardisation text to

formal models.

Our work was inspired by Basin et al. [1] who in their

security analysis of the 5G AKA protocol make a compelling

argument for the need of formal models and security speci-

fications to complement protocol standards. In particular, the

authors point to under-specification of security properties and

assumptions that can in some cases lead to vulnerabilities.

Our analysis is focused on a cyber-physical protocol that is

currently in the pre-standardisation phase and described in

the European Ensemble project, and which also builds on the

existing ETSI ITS-G5 and IEEE vehicular networking stan-

dards (including security). Together, these form an interesting

study object since (i) they will have a real and significant

impact on the way future commercial vehicles are operated and

controlled, (ii) they represent a typical standardisation product

composed of multiple cross-references documents (in our case

8 documents and 617 pages), and (iii) the protocol and the

associated security specification describe a complex system

with dynamically joining and leaving nodes and a non-trivial

key structure.

We perform a structured and formal security analysis of

the Ensemble platooning protocol. To perform this analysis

several interesting challenges must be overcome. One such

challenge is the transformation from informal and semi-formal

standard documents - where descriptions are often spread

out over multiple documents, contain optional parts, and

sometimes overrides previous statements - to a formal model.

We show how ASN.1 specifications significantly improve this

process and discuss potential benefits of a fully automatic

transformation process. Moreover, our analysis also identifies

the lack of a corresponding language to capture the behaviour

of security checks since the specifications currently included

only capture the structure of security information, not the

mechanisms that make use of that information. This gives rise

to potential weaknesses depending on the interpretation of the

standard.

The second major challenge is of course the model com-

plexity which causes a state space explosion. In our case, even

a simple fact such as the secrecy of a long-term key could

not be proven on a large computing cluster without manual

intervention. Previous works have shown how this process

can be aided with so called helper lemmas and oracles. The

difficulty with such mechanisms is that they are inherently

specific to the problem at hand, and hard to generalise. In this

work we explore how the structure of the model can be used

to guide the proof strategy. In particular, by considering the

ordered structure of the cryptographic keys in the model we

make the problem tractable, thereby allowing a more generic

proof guidance mechanism.

Secure protocols are often created so that multiple secret

keys form dependency chains where the secrecy of one key

is dependent on the secrecy of another. This naturally allows

formulating provable properties in a way that together satisfy

the overall security specification (e.g., see [2]). While existing

research has investigated dependencies between keys [3], [4],

we show how a resulting partial order of keys is leveraged

to tackle proving complexity and provide an automatic key

dependency extractor for TAMARIN models.

We formulate relevant security properties of vehicular com-

munication protocols and instantiate our model and proof guid-

ance1 in the TAMARIN verifier tool [5]. In our case study there

1https://gitlab.liu.se/ida-rtslab/public-code/2022 csf platooning

305

2022 IEEE 35th Computer Security Foundations Symposium (CSF)

© 2022, Felipe Boeira. Under license to IEEE.
DOI 10.1109/CSF54842.2022.00019

20
22

 IE
EE

 3
5t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

78
-1

-6
65

4-
84

17
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

48
42

.2
02

2.
99

19
66

4

are 10 classes of keys with up to a dependency depth of six,

and potentially infinitely many instances of keys on a protocol

run. Our improved proof strategy allows us to identify the

security properties that are met by current protocols and under

what circumstances. Overall, our assessment is that security

standards for vehicular networks can provide strong security

properties, but that ambiguities and implicit assumptions in

the standards potentially give room for implementations with

lacking security checks.

To summarise, the contributions of this paper are as follows.

• Formulation of a joint secrecy and authenticity relation

on a set of keys that potentially forms a partial order,

together with an automated proof strategy, a key hierarchy

extractor for TAMARIN protocol models that exhibit such

partial orders of keys.

• An assessment of the state of security for current vehic-

ular networking protocols and a formal and structured

security analysis of vehicular platooning.

• A structured approach for interpreting security standards

in order to create models that allow formal reasoning,

identification of what is lacking in current standards, and

recommendations for future vehicular security standardi-

sation activities.

The remainder of this paper is organised as follows: Sec-

tion II introduces the area of vehicular networking protocols

at large, the Ensemble platooning protocol in particular and

formal verification of security protocols. Section III introduces

our model of the platooning protocol and the security prop-

erties that we verify. Section IV introduces the partial order

of keys, and explains how this ordering relation is used to

create the proof guidance. The outcome of verifying security

protocols under different settings and assumptions is presented

in Section V. Finally, Section VI describes related work and

Section VII concludes the paper and outlines future work.

II. BACKGROUND

In this section we introduce the standards for vehicular

communication and security that are employed in Ensemble.

We describe the overall design of the protocol, and provide an

overview of how the protocol security properties are verified

using the TAMARIN security verification tool.

A. Vehicular network and security standards

In recent years, organisations such as the Institute of

Electrical and Electronics Engineers (IEEE) and European

Telecommunications Standards Institute (ETSI) have been

actively working towards standardisation of vehicular network

protocols and applications. The Ensemble protocol [6], [7] is

built on top of these existing standards and makes use of their

services, so one must understand how these fit together to

understand the security implications for vehicular platooning.

Fig. 1 represents the protocol stack and the associated stan-

dards for each layer. In Europe, the physical layer and the data

link layer are grouped together into the Access layer and are

part of ITS-G5. More recently, the 5G standard has emerged

as a potential replacement at the access layer. Ensemble is

designed to work on ITS-G5 together with the Geonetworking

(GN) protocol and the Basic Transport Protocol (BTP) which

compose the network and transport layer. A set of security

profiles for vehicular applications is defined by ETSI based

on the primitives and message types defined by IEEE, and

are applied to GN and Ensemble messages. We proceed to

describe each of these standards briefly (starting from the

lowest layer).

Access Layer

EN 302 663 (ITS-G5) 3GPP V2X (5G)

Networking and Transport Layer

Geonetworking (GN)

Basic Transport Protocol (BTP)

Facilities Layer

DENM [...] ENSEMBLE

IE
E

E
16

09
.2

/E
TS

I1
03

09
7

Fig. 1. ENSEMBLE protocol stack.

ITS-G5 (ETSI EN 302 663). At the bottom of the vehicular

networking stack we find the access layer, which is of limited

interest from a security standpoint, but still relevant to provide

context. In Europe and US, the dominating access layer

standard for vehicular networks has been based on a flavour

of IEEE 802.11 (i.e., essentially wifi) operating at 5.9GHz.

3GPP V2X (5G Release 15+). There are ongoing efforts

to integrate 5G as an alternative access layer in the vehicular

networking stack [8]. Provided that GN is compatible with

V2X as intended [9], we argue that our analysis will still

be relevant as the cryptographic operations occur from the

networking and transport layer upwards.

GeoNetworking (ETSI EN 302 636-4-1). The GN proto-

col [10] provides packet routing in vehicular networks with the

use of geographical locations for packet transport. In Ensemble

only the single hop broadcast (SHB) mode is used.

BTP (ETSI EN 302 626-5-1). BTP [11] defines two header

variants: BTP-A for interactive packet transport and BTP-B

for non-interactive. Given that BTP does not carry relevant

information for our analysis and is included in higher layers’

cryptographic operations, we have decided to omit it in our

model.

Security Services for Applications and Management
Messages (IEEE 1609.2). The primitives for providing se-

curity capabilities to vehicular messages are primarily defined

by IEEE 1609.2 [12] and its two amendments [13], [14]. The

standard defines several data structures for encapsulating data

based on the type and origin of the key that is used to encrypt

306

it, and a SignedData structure for storing signature infor-

mation. The 1609.2 standard uses the concept of recipients to

transfer data encryption keys to other nodes, and a sequence

of recipients may be included in a message. For instance,

a recipient of type pskRecipInfo is used whenever the

data encryption key is pre-shared between the participants.

Alternatively, a node might use an ephemeral data encryption

key and a key encryption key to protect the ephemeral. In

particular, two recipient types that employ ephemeral keys are

used in Ensemble:

• symmRecipInfo specifies that the ephemeral data en-

cryption key was encrypted using a symmetric key.

• rekRecipInfo specifies that the ephemeral data en-

cryption key was encrypted using a public response en-

cryption key that was not obtained from a SignedData
structure.

Security header and certificate formats (ETSI TS 103
097). While IEEE 1609.2 defines low-level primitives and

data structures to build vehicular messages, the ETSI TS 103

097 [15] specifies message profiles based on the definitions

from 1609.2. For instance, ETSI specifies that Decentralized

Environmental Notification Messages (DENMs) shall include

the certificate as the signer information instead of its digest

only. The Ensemble project extends the definitions contained

in this standard to reflect the requirements of the messages

exchanged in the protocol.

B. Platooning protocol

Ensemble works as a group formation protocol with key

establishment and distribution. It consists of four operational

modes: idle, join, platoon, and leave. In idle mode,

vehicles announce their interest to form a platoon through

the flag isJoinable, which is included in a Cooperative

Awareness Message (CAM). Neighbouring vehicles may send

a request to join the platoon and, if accepted, will receive a

join response. These two messages compose the join mode,

which enables the joiner to start receiving and sending control

messages in the platoon mode. The latest vehicle to join the

platoon may flag isJoinable to allow other neighbours to

join, up to a certain length of the platoon. Finally, the leave
mode is activated whenever a vehicle wishes to depart from

the platoon or if no control messages have been received for a

predetermined period of time. More details on the protocol are

provided in Section III where we describe how it is formally

modelled.

C. Protocol security verification

To formally prove security properties of a protocol such

as Ensemble, there are at least three things to consider, how

to model the protocol, how to model the attacker, and what

security properties to verify.

There are two protocol models generally considered for

creating cryptographic protocol representations: computational

and symbolic [16]. In the computational model [17], [18],

terms are represented as bitstrings, cryptographic primitives

are functions on these bitstrings, and the adversary is any

probabilistic Turing machine. In the symbolic model (which

we consider in this work) bitstrings are abstracted to algebraic

terms, and cryptographic primitives are represented by an

equational theory. Messages are terms of these equations,

for instance, consider the symmetric encryption/decryption

equation where the term m is encrypted/decrypted using the

key k in Equation 1.

sdec(senc(m, k), k) = m (1)

The symbolic model allows the reasoning to be automated,

although complex protocols usually require the solver to be

guided with some proof strategy as we will discuss in the later

sections of this work. Given proper heuristics, TAMARIN has

been shown to work with protocols that exhibit complex state

machines that may include loops and agent memory [1], [19]–

[22]. For these reasons, the symbolic model and TAMARIN tool

are well-suited to our work.

To represent an attacker that acts throughout the execu-

tion of the protocol, a threat model defines capabilities on

computation and on observing and manipulating the network

communication. A Dolev-Yao [23] threat model assumes a

powerful attacker who is able to tamper with public com-

munication channels, knows public constants, has unbounded

computational and communication resources, and is able to

employ cryptographic primitives as long as the required terms

are known.

We now provide a brief overview of modelling in TAMARIN.

Protocols and adversary actions are modelled as multiset

rewriting rules and security properties are defined through

(temporal) first-order logic. Rules are composed by premise,

action, and conclusion facts as follows:

[p1, ..., pi] –[a1, ..., aj]→ [c1, ..., ck]

The solver maintains a multiset of facts that can be consumed

as premises to activate the execution of a rule (there are also

persistent facts that can be consumed an arbitrary number of

times and are defined with a starting ’!’). The special facts In()
and Out() are used to model receiving and sending messages

over the network (which can be intercepted by the attacker),

and Fr() to generate fresh terms. In addition, the action fact

KU() logs terms that are known by the attacker. The execution

of rules creates a trace of action facts, and the security

properties are formulas that reason about possible traces of the

protocol. For instance, consider an action fact Secret(x) that

marks the term x as secret whenever the corresponding rule is

executed. The following formula formalises the property that

an adversary cannot know a secret term x at any time point

j (an action fact a that occurs at time point j is denoted as

a@j).

∀x i. Secret(x)@i ⇒ ¬(∃ j. KU(x)@j)

To construct traces for which formulas will be checked,

TAMARIN uses a backwards constraint solving approach that

checks all possible sources for a given constraint. For a more

307

detailed discussion and presentation of TAMARIN we refer the

reader to [24]–[28].

III. PROTOCOL MODEL

This section describes our approach to analysing the stan-

dards and interpreting semi-formal descriptions to create a

formal protocol model. We describe how we leverage ASN.1

(Abstract Syntax Notation One) specifications to support this

process and present the resulting models (we model the

platoon formation statically and dynamically), the verification

goals, and assumptions we have considered.

A. Protocol messages interpretation

Some of the complexities to model protocols lie in collect-

ing information that is scattered across different documents

and connecting information that is defined sparsely, as well

as interpreting possibly ambiguous specifications with regards

to, for example, whether to include certain optional fields in

a message. In our analysis, basic data structures and message

types are defined by IEEE 1609.2, which is extended by two

amendments, and ETSI 103 097 defines profiles based on these

definitions. Finally, the protocol specification itself uses and

extends the profiles in distinct ways (Ensemble).

We have used ASN.1 specifications that are included in

several of the standards that we analyse to guide our mod-

elling of the protocol messages. First, we collect the required

modules from distinct standards (data structures and message

types can be defined and imported as modules): ITS Container,

CAM, IEEE 1609.2, ETSI 103 097, and Ensemble. Then, we

employ an ASN.1 compiler to generate sample packets of the

data structures we are interested in modelling. With the final

sample packet, we can refer back to the standards so that the

expected behaviour of the agents towards the data included

those packets can be modelled. We refine and choose what to

model in a message type if a given data structure transmits or

modifies cryptographic material, and whether it affects the way

the agents handle the messages (e.g., the presence of a node

identity in a message can be matched with expected senders

by a receiver).

In this work, the transition from ASN.1 packet descriptions

to a formal model was performed manually. Given that large

portions of the TAMARIN model are based on the content of

messages as they are exchanged between different nodes, much

of this process should be possible to automate. If properly

implemented, this would significantly simplify the process of

model validation.

However, even if ASN.1 formalises data structures and

its encoding/decoding operations, there are no formal spec-

ifications of the sanity/security checks to be performed on

received data. This makes standards susceptible to ambiguous

or misinterpretations that may lead to vulnerabilities in the

implementation. Therefore, even though the sample packets

provide an overview of the contents of messages, it is still

necessary to carefully analyse natural language in standards

so that the expected behaviour of the agents towards data

contained in messages is captured. Having a well-specified

language for expected behaviour and security checks as part

of the standardisation process would both mitigate problems

related to vulnerabilities in implementations as well as improve

the ability to formally verify security properties.

B. Model overview

The security verification of Ensemble was performed

through two TAMARIN model variants which we define as

static and dynamic. Fig. 2 depicts the main steps of the

protocol operation. Our static model has a fixed sequence of

actions from steps S1 to S7 between three agents that includes

the announcement of a platoon, a join operation followed by

a second join to form a platoon with three members, a leave

from the third member and a re-keying process to update

the group key. The dynamic model supports the same steps,

however with an unlimited number of vehicles that can form an

unbounded number of platoons (although with the limitation

that each vehicle engages in only one session). This model

enables the flexibility of different scenarios, which include

unbounded number of joins, a leave from any of the followers,

a key update request to the leader, and propagation of the new

group key through a series of key update messages until the

interaction ends. We have not analysed the growth of a platoon

after a leave has occurred (however, this growth would involve

the same interactions from S2 to S4 as shown in Fig. 2).

To support several platoons in the dynamic model, we

follow the Ensemble ASN.1 definitions to include a platoon

identifier in messages subsequent to the join response, and

leverage such identifiers to claim the honesty of vehicles in

a certain platoon (i.e., restrict the revealing of keys in the

platoon).

Our models consist of rules that represent the public key

infrastructure, initialisation of the vehicles and platoons, send-

ing and receiving messages, and the revealing of keys by the

attacker. The rules and properties take approximately 900 lines

of text to be defined, and we use let bindings to make the

messages more readable and clearer to maintain.

We model certificates as the persistent fact defined below,

and it essentially captures the binding between an identity and

a public key by a trusted certificate authority (CA with a long-

term key ltkCA). In our diagrams, the certificate for a public

identity n is represented as Certn.

Definition 1. A certificate for an identity n is modelled via
the following persistent fact:

!Cert(〈n, pk(ltkn), sign(〈n, pk(ltkn)〉, ltkCA)〉),
where pk(ltkn) is the public key for n and sign() is the signing
operation

We now proceed to explain the protocol model in two steps.

First, we show the interaction that occurs when a new vehicle

joins the platoon (Join procedure). Then we describe a full run

of the protocol with two joins and one leave (Full run). The

diagrams consider messages of the more expressive dynamic

model, which includes platoon identifiers and vehicle position

multisets.

308

S1start S2 S3 S4 S5 S6 S7
CAM JR JRE

CAM

LEAVE KUR KU

Fig. 2. Simplified diagram of protocol steps (Cooperative Awareness Message (CAM), Join Request (JR), Join Response (JRE), Leave, Key Update Request
(KUR), and Key Update (KU)).

Vehicle n (the joinable) Vehicle n+ 1 (the joiner)

APP← ’CAM’
GN← APP, sign(APP, ltkn), Certn

Cooperative Awareness Message

generate key pair jrek, pk(jrek)
APP← ’JoinRequest’, pk(jrek), n
GN← APP, sign(APP, ltkn+1), Certn+1

Join Request

generate key pgk if n = 1
generate keys eJoin, ppkn
rekRecipInfo← h(pk(jrek)), aenc(eJoin, pk(jrek))
ciphertext← senc(〈ppkn, pgk〉, eJoin)
APP← ’JoinResponse’, rekRecipInfo, ciphertext, P, n + 1
GN← APP, sign(APP, ltkn), Certn

Join Response

Agreement on ppkn, pgk

Fig. 3. The modelled Ensemble join operation.

1) Join procedure: The sequence diagram in Fig. 3 shows

a join operation from Vehicle n + 1 (the joiner) to Vehicle

n (the joinable). The join begins with the joinable sending

a CAM to neighbours announcing the availability to join the

platoon (or to create one). The CAM is unencrypted at the

application layer and follows the signing of messages in the

GeoNetworking layer (all messages are signed and carry the

vehicle’s certificate).

Whenever the joiner receives a CAM advertising a platoon

that it wishes to join, a join request message is pre-

pared. The joiner generates a short-term asymmetric key pair

jrek, pk(jrek) and includes the public key in the request sent

to the joinable along with the identity of the target joinable

vehicle.

Once the joinable vehicle n receives the join request,

it generates three keys: a platoon participant key (ppkn), a

platoon group key (pgk in case it is the first join, otherwise

re-transmit previously generated), and an ephemeral join key

(eJoin). Both ppkn and pgk are encrypted with eJoin, and

eJoin itself is encrypted with the public key of jrek which

was sent by the joiner. Recall from Section II-A the use of

rekRecipInfo when an ephemeral key is encrypted with a

public key that was not obtained from a certificate.

Note that using the rekRecipInfo is discouraged by the

security standards as it may introduce misbinding attacks. In

Ensemble, the inclusion of an intended receiver in the join
response mitigates such risk according to our analysis,

however, we show in Section V-D the possible outcome if

an intended receiver is omitted or not checked. The following

is a quotation from the IEEE 1609.2 standard:

[IEEE1609.2] It is therefore recommended that secure

data exchange entity designers who use public key encryp-

tion make use of either public keys in certificates or public

keys in signed secured protocol data units (SPDUs), and

avoid “raw” public keys because they do not mitigate this

misbinding threat.

The join response transmits the keys along with the

current platoon identifier P , the intended receiver, and the

platoon position of the joiner. Note that we simplify the

intended receiver and platoon position in the diagram denoted

as n + 1, whereas the model uses a public identity for the

intended receiver and a multiset for the platoon position as

previously discussed.

2) Full run: In a real case, there is no upper bound on the

number of steps that can be taken in the Ensemble protocol.

Even if there is a limit on the number of platoon members,

309

nodes can keep joining and leaving indefinitely. However, we

consider it a full run when all message types have been sent.

We now describe a scenario where two nodes join a leader

node so that the platoon reaches a length of three. Once the

third node has joined the platoon it initiates a leave procedure

which causes a key update mechanism.

In Fig. 4 we simplify the diagram by omitting the join
messages. In practice, each join procedure box can be inter-

preted as an instance of the interactions from Fig. 3. From

then on, the sequence diagram represents a leave from

Vehicle 3 and a key update procedure so that the remaining

members agree on a new platoon group key (which we denote

pgkUpdate).

A leave message contains the identity of the leaving

vehicle, its position and reason to leave, and is encrypted with

an ephemeral leave (eLeave) symmetric key. The eLeave key

is encrypted with the platoon group key (pgk) and is included

in a symmRecipInfo recipient data structure. In our model,

we represent the position as a multiset and reason as a constant

given that no checks are performed on this term.

As soon as Vehicle 2 receives the leave broadcast, it

prepares a key update request (KUR) message so that

the leader instantiates a new group key. The leader pro-

ceeds to generate a pgkUpdate key and includes it in a

KeyUpdate message. Both KUR and KeyUpdate messages

employ symmRecipInfo, however, while the former uses

pgk to encrypt the ephemeral key, the latter uses ppkn which

is private to every pair of adjacent vehicles. Note that in

both KUR and KeyUpdate we simply encrypt the message

name constants since the contents of these messages are

currently under specified in the documentation. The agreement

on pgkUpdate is shown at the end of the interaction in the

figure.

C. Verification goals

The verification goals are divided into liveness, secrecy, and

authenticity. Liveness ensures that our model can be executed

as expected. See Section V for details of the liveness checks

that are performed.

For every key (class of keys in the dynamic model) em-

ployed in the life cycle of the protocol, we introduce a

secrecy verification lemma based on Definition 2. There is one

important variation in the action facts and lemma construction

between the static and dynamic models. Since the static model

is composed of one static run, the nodes that participate in the

protocol are marked as honest globally. In the dynamic model,

since many platoons can be created, honesty claims are done

in a per-platoon basis. This allows an attacker to compromise

keys of vehicles that are not members of the platoon for which

a property is being verified. In the following definitions we

consider the use of a platoon identification. Our rules contain

Honest(P, n) action facts that mark an identity n in a platoon

P as a benign vehicle (participated in the protocol run and

satisfied checks such as signature verification). Therefore, the

secrecy formulas define that terms considered secret can not be

deduced by an attacker unless it has revealed (through a reveal

rule that contains a Rev() action fact) any subset of keys on

which the secret depends. We explain such key dependency

relations further in Section IV-A.

Definition 2. Secrecy lemma with platoon identification:

∀ P x i. Secret key(P, x)@i ⇒
(¬(∃ j. KU(x)@j)

| (∃ n k r h. Rev(’c’, n, k)@r & Honest(P, n)@h))

(2)

Intuitively, a secret x instantiated in a platoon with identifier

P is either (1) not known by the attacker, or (2) an honest

vehicle in the platoon P revealed a secret k of class ’c’

on which x depends. We employ variations of this lemma

structure to account for necessary dependencies.

For the authenticity properties we follow Lowe’s hierar-

chy [29] and the standard formula definitions according to the

TAMARIN manual. In the dynamic model, we also consider the

platoon identification as part of the agreed data. Namely, we

specify aliveness, weak agreement, and non-injective agree-
ment properties. Since our models support a single session per

vehicle, we have not analysed injective agreement properties

in this work.

To verify these authenticity formulas we annotate the model

rules with Running(m,n, t) and Commit(n,m, t) action facts

that specify that vehicles n and m agree on their roles

and the data represented by t. For a full description of the

interpretation of these properties we refer to the TAMARIN

manual.

D. Assumptions

In this section we describe assumptions related to the

replay protection of messages, random numbers, and pattern

matching used in the model.

In order to determine whether a vehicle should accept

replayed messages, we have identified several places where

this concept is mentioned in the relevant documents. The

GeoNetworking layer could potentially be used to reject re-

played messages. However, all Ensemble messages are single-

hop packets which do not carry sequence numbers, so this

cannot be used to prevent message replay, and ETSI 103 097

does not discuss replays. The IEEE 1609.2 standard describes

a mechanism that can be used to avoid message replay attacks

since it states that identical signed messages are not accepted

for a given predetermined time as follows.

[IEEE1609.2] The replay detection service indicates

that a signed SPDU is a replay if the entire encoded

signed SPDU, including signature and other fields such

as generation time inserted by the secure data service, is

identical to a recently received SPDU.

Ensemble does not explicitly specify that the replay pro-

tection from IEEE 1609.2 must be enforced. Having optional

security mechanisms is clearly a potential weakness since it

delegates important security aspects to choices made in the

310

Vehicle 1 Vehicle 2 Vehicle 3

Join procedure (Agreement on ppk1, pgk)

Join procedure (Agreement on ppk2, pgk)

generate key eLeave
symmRecipInfo← h(pgk), senc(eLeave, pgk)
leaveMsg← 3, position, ’Reason’
ciphertext← senc(leaveMsg, eLeave)
APP← ’Leave’, symmRecipInfo, ciphertext, P
GN← APP, sign(APP, ltk3), Cert3

Leave

generate key eKUR
symmRecipInfo← h(pgk), senc(eKUR, pgk)
ciphertext← senc(’KUR’, eKUR)
APP← ’KUR’, symmRecipInfo, ciphertext, P
GN← APP, sign(APP, ltk2), Cert2

Key Update Request

generate keys eKupdate, pgkUpdate
symmRecipInfo← h(ppk1), senc(eKupdate, ppk1)
ciphertext← senc(〈’KeyUpdate’, pgkUpdate〉, eKupdate)
APP← ’KeyUpdate’, symmRecipInfo, ciphertext, P
GN← APP, sign(APP, ltk1), Cert1

Key Update

Agreement on pgkUpdate

Fig. 4. The modelled Ensemble protocol interactions (the join messages from Fig. 3 are omitted).

implementation stage. Still, we believe that the most reason-

able assumption according to this statement is that message

replay is prevented by the protocol (valid re-transmissions of

messages can be done by updating the timestamp, and agents

check for uniqueness given a recentness parameter).

We formalise this replay protection as a restriction of

traces (only consider those that satisfy the restriction formula)

by annotating every message reception with Message(x, n)
where x is a signed message and n is the identity of the

receiver.

Definition 3. Replay protection is modelled via the following
restriction formula:

∀ x n i j. Message(x, n)@i & Message(x, n)@j ⇒ i = j

We include this restriction for completeness only since we

have not identified any specific attack that could be launched if

the restriction is not present (nor ruled it out). Such an analysis

would require a model that allows entities to be present in

multiple runs and is therefore out of scope for this paper.

Another assumption in the model is that vehicles verify the

signature with the corresponding public key of the sender that

was included in the certificate, and match the identity in the

certificate with the identity stored in a state fact of that run of

the protocol.

Moreover, we assume that the certificate authority is trust-

worthy, i.e., the attacker is unable to compromise its long-

term key ltkCA. In practice, one of the possibilities for the

attacker would be to forge certificates with arbitrary identities

and public keys in order to conduct identity theft of other

vehicles.

Finally, our model assumes that fresh terms (for instance,

ephemeral keys) are unique across all runs of the protocol.

In addition, when receiving messages, we employ pattern

matching instead of deconstruction. Deconstruction explicitly

decomposes the terms by applying equations, selecting specific

terms from tuples, and performing sanity checks on decom-

posed terms. Because of this, pattern matching implicitly

checks for message formats and expected data types which

must be done explicitly in real software.

IV. PROOF STRATEGY

In this section we define secrecy and authenticity relations

between keys, and explain how a partial order of these

311

relations is employed in our proof strategy. In addition, we

provide details of the goal prioritisation of the oracle that

guides the constraint solver.

A. Key ordering

The combination of keys defined in Ensemble, the pub-

lic key infrastructure, and ephemeral keys used in message

profiles from the security standards considerably increases

the complexity of our analysis. Our strategy towards making

the analysis tractable is to define the relations between the

keys and break the complexity into smaller parts that can be

combined to prove the security properties. We first present how

this can be done for a static case where all keys are known

at design time, and then discuss the extension to the dynamic

case where we know the classes of keys.

Let K be the set of symmetric and asymmetric keys. We

define a secrecy dependency relation →⊆ K × K such that

for two keys kA, kB ∈ K, kA → kB holds if revealing the

key kB allows the attacker to learn kA. We consider that

kA → kB whenever senc(kA, kB) or aenc(kA, pk(kB)) occurs

in a message sent over the network (rule 1). We note that the

secrecy dependency relation is reflexive (i.e., k → k for all

keys k since revealing a key means that the attacker knows it).

Moreover, under the assumption that revealing/compromising

a key is a stateless operation (i.e., it does not otherwise change

any state in the system), then the secrecy dependency relation

is also transitive. This means that if kA → kB and kB → kC ,

then kA → kC . In most applications this relation is also

anti-symmetric, thus giving rise to a partial order of keys.

To define our authenticity relation, we consider compromising
a term x as either revealing it or being able to generate a

x′ that will be accepted by other nodes as x. We define an

authenticity dependency relation ��� ⊆ K × K such that for

two keys kA, kB ∈ K, kA ��� kB holds if compromising

kB allows the attacker to create another key k′A that will

be accepted by the other nodes as the legitimate kA, which

thereby becomes compromised (rule 2). For instance, if node

n generates a fresh term f and signs it with its long-term key

ltkn, then f ��� ltkn. The authenticity dependency relation is

irreflexive (knowing a long-term key does not allow creating a

new long-term key), transitive (proof in appendix), and should

be anti-symmetric since otherwise the protocol has a cyclic

authenticity dependency.

In Ensemble, the two key relations → and ��� are both

anti-symmetric (there are no cases where two different keys

depend on each other). By taking the union of the two relations

(a relation is a set of pairs, so the union of two relations is

the aggregation of all pairs from both relations) we arrive at

a third relation whose transitive closure forms a partial order

�⊆ K × K. Intuitively, whenever kA � kB , compromising

kB will allow the attacker to compromise kA, either directly,

or through a chain of learned/replaced keys in which the

attacker appears as the legitimate entity that controlled kB .

Note that the joint dependency relation can in some cases be

automatically deduced from a formal description of a protocol

through rules 1 and 2, and we have implemented a proof-of-

concept extractor presented in the next subsection.

The dependency relation we have described here assumes

a static set of keys, and also that the relation itself is time-

invariant. In reality, there are several situations where these

assumptions do not hold. In the case of Ensemble, the static

model can be immediately analysed as all keys are known

a-priori. For the dynamic model on the other hand, we have

to consider classes of keys by, for example, considering all

ppk keys as if they were a single key. This means that if

some ppk key depends on another key k, then the class of

ppk will depend on the class of k. Another situation where

the assumptions do not hold is if the reveal/compromise can

be limited to happen only a finite number of times. In this

case, transitivity is not guaranteed to hold so compromising a

top-level key does not necessarily mean that all keys ”under”

also become compromised. Finally, the dependency relation

does not specify when a key can be compromised, so it does

not account for perfect forward secrecy formulations. Taken

together, the dependency graph that we consider should be

seen as an abstraction in which a dependency actually means a

possible dependency. Since the purpose of the ordering relation

is to guide the prover on which lemmas/goals to prioritise,

having spurious dependencies does not cause erroneous re-

sults, but can potentially reduce its usefulness. An extension

of our approach would be to let the prover maintain a dynamic

key hierarchy at runtime which would at least account for a

changing set of keys. We discuss this further in the future work

section.

B. Key dependency extractor

The dependencies formalised through rules 1 and 2 can be

automatically extracted from a TAMARIN model to support

oracle and reusable lemmas construction. To implement this

extractor we have extended the Tamarin to alice&bob transla-
tor [30] in order to parse the model, extract key dependencies,

identify term equivalences (for instance, keys with different

names across distinct rules) through unification, and then

grouping equivalent keys to output a graph of the hierarchy.

The process of extracting the key dependency is summarised

as follows:

1) The model is parsed to instantiate an internal representa-

tion [30] and an empty directed acyclic graph (DAG) of

keys is instantiated.

2) Terms are identified in each multiset rule of the TAMARIN

model and subsequently added as nodes to the DAG of

keys. Relations are added as edges according to rules 1

and 2 defined in the previous subsection (duplicates may

be merged through unification in later steps).

3) Instantiate empty premise and conclusion lists. Premise

and conclusion facts are added to the premise and con-

clusion lists, respectively.

4) Facts from the premise and conclusion lists with same

name and arity (as well as inputs and outputs from

the network) are unified if possible (we use maude for

312

this [31]). This results in a set of term substitutions

(unifiers) which we use to find equivalent keys.

5) A new DAG of equivalent keys is instantiated given the

prior DAG of keys and the resulting sets of equivalent

keys. Its topological sort represents the key ordering.

We illustrate the partial order of keys in the Ensemble

protocol extracted from the dynamic model using our tool in

Fig. 5. We see that at the top of this partial order is the long-

term key of the certificate authority, and at the bottom are the

ephemeral keys as well as the pgkUpdate key. Edges that are

covered by the transitivity of the relations have been omitted

in the graph.

eKupdateeLeave

jrek

pgk ppk

eJoin

pgkUpdate

ltkCA

ltk

eKUR

Fig. 5. Key dependency graph automatically extracted from our dynamic
model.

Proving security properties involving keys at the bottom

of this order requires that one is first able to prove the

secrecy of the keys in the upper layers. More concretely, if

kA � kB , then any security property (secrecy or authenticity)

that depends on kA also depends on kB . Thus, one should

first show the secrecy of kB . In a simple protocol with few

keys, this order matters little, but the more complex the

key relationships become, the more important it is that the

verifier is aware of the key ordering. Often this is implicit in

the helper lemmas or oracle instrumentation made for each

security property.

Due to limitations in the model parser, we remove union

operations (enabled by the multiset built-in theory) from

TAMARIN models and other theories are not currently sup-

ported (such as XOR and Diffie-Hellman). The relations for

such theories could be derived from the message deconstruc-

tion rules used in TAMARIN, but are out of the scope of our

current analysis. In addition, we note that some models might

generate cyclic graphs which are currently not supported.

Despite these limitations, we have employed our proof-

of-concept tool in the analysis of a recent work in 5G

handover protocols [32]. These models also present a complex

relation on keys, and required the modellers to consider the

dependencies during the specification of lemmas and oracles.

For instance, given that the model allows the revealing of

some keys, the secrecy lemmas must restrict the revealing of

dependencies. Furthermore, the oracles also seem to consider

some dependencies in the prioritisation, similar to what we

present in this work. While we have not enhanced the proving

efficiency of these models that had already been carefully

optimised by experts, we argue that applying the strategies

described in this work could be useful during the analysis and

modelling of such protocols. Examples of the extracted graphs

and further discussions are included in Appendix B.

C. Inductive helper lemmas

The possibility to instantiate infinitely many vehicles and

platoons associated to the fact that each platoon can grow

indefinitely aggregates further complexity to our dynamic

model. The model therefore enables loops that result in

non-termination when using standard backwards search in

TAMARIN. To handle such behaviour, TAMARIN allows the

specification of inductive lemmas which we employ as inter-

mediate helpers.

Recently, Cremers et al. have analysed IEEE 802.11’s

WPA2 protocol [22], which also contains complex state ma-

chines with loops and evolving states. In their work, they

specify Wellfoundedness, Uniqueness, and Ordering lemmas.

We follow their approach in the creation of such inductive

intermediate helper lemmas, and in conjunction employ our

key hierarchy prioritisation.

D. Oracle strategy

We now describe how the use of the linear extension of

the partial order of keys is used to guide the solver. Recall

from Section II-C that TAMARIN checks possible sources for

constraints to generate traces that will be used to prove or

find a counterexample for a given property. The choice of

which constraint to solve (goal) at a given step can be tailored

by using oracles. To perform the Ensemble verification, we

structured the lemmas and developed an oracle so that they

leverage the key ordering from our key dependency extractor.

Due to space constraints, we only present the main pri-

oritisation activities performed by the oracle, which leverage

the selection of reusable lemmas to avoid unnecessary case

distinctions during proving.

Ordered helper lemmas iff a knowledge goal for the
corresponding key exists in the constraint system: In order

to create contradictions earlier, the helpers are prioritised if

there is currently a goal for an attacker knowledge of the

corresponding key k as KU(k). Algorithm 1 performs this

prioritisation. The algorithm runs for each k according to the

ordering of keys.

Signature of protocol messages: Following our hierar-

chical key approach, we introduce helper lemmas that prove

that the attacker cannot obtain any long-term key unless it

performs a reveal of those keys. Since the authenticity of

messages depend on the secrecy of the respective long-term

keys (because of the signatures), we prioritise these goals to

determine that the attacker is not able to forge signatures or

act on behalf of an honest node.

313

Data: Proof goals G; Linearised key ordering K�
Result: Ordered list of goals G�
foreach k ∈ K� do

foreach g in G do
if g is a helper lemma for k and KU(k) ∈ G
then

add g to G�
end

end
end

Algorithm 1: Oracle priority pseudocode for helper lem-

mas

V. RESULTS AND DISCUSSION

In this section we present the Ensemble verification results

using our TAMARIN model variants and their respective proven

properties. In addition, an evaluation of our proof strategy is

conducted in order to show that leveraging an order-aware

oracle is effective.

A. Security verification results

Considering the security verification goals described in Sec-

tion III-C we prove three kinds of properties, model liveness,

secrecy and authenticity. For each of these we describe the

resulting security lemmas in the context of our model.

a) Liveness: To ensure protocol executability in our

static variant, we prove that a full run with three vehicles

exists. In the dynamic variant we verify that the following

is possible: two platoons can be formed with four members

each, there exists a leave from a member in a platoon, as well

as a key update request and key updates are performed for

remaining members.

b) Secrecy: We prove secrecy of all long-term and short-

term keys. We use one lemma per key in the static model as

they are instantiated in distinct rules, so there is a total of

15 secrecy lemmas. The dynamic model contains one secrecy

lemma for every class of keys (e.g., one lemma proves the

secrecy of all platoon participant keys).

c) Authenticity: We have one lemma each for the authen-

ticity properties aliveness, weak agreement and non-injective

agreement (cf. Section III-C).

The properties have been proven for both static and dynamic

models. This required making use of all the verification

strategies described in Section IV.

B. Verification strategy evaluation

To assess the effectiveness and impact of the proof strate-

gies, we use two experiments: a synthetic protocol generator

and a variation of configurations for proving the static model.

The experiments are run on a cluster of the Swedish National

Supercomputer Centre, where each compute node is equipped

with Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz with 32

cores and 96 GiB of main memory.

The synthetic protocol consists of a simple ’ping-pong’ pro-

tocol in which two nodes communicate and in every interaction

instantiate a new symmetric key which is encrypted with the

previously received key (the first instance is derived from a

pre-shared key). We use the standard TAMARIN heuristics and

only provide annotations in the model to prioritise certain

facts (state, pre-shared key, symmetric encryption, and attacker

knowledge of secret). The lemmas are created according to the

linear dependency of keys, and the proving is evaluated with

and without the reuse of lemmas. In addition, we perform

an experiment with the reuse of lemmas that are randomly

ordered (for this, the prover is executed ten times with random

orders for each key depth).

Each run was granted 8 cores of CPU for 30 minutes and

20 Gib of RAM. Table I presents the results. TAMARIN is

able to automatically prove the secrecy of keys in a depth of

2 in all cases, and up to a depth of 8 when reusing ordered

lemmas according to the key hierarchy, which shows how

our strategy makes such proofs tractable. In some cases, the

random ordering resulted in a possible automatic proof, but

took significantly more time to terminate as it was not the

optimal order. The key depth of 10 could not be proven and

would require further manual intervention (e.g., through an

oracle).

TABLE I
RESULTS OF PROVING THE SYNTHETIC MODELS WITH DISTINCT KEY

DEPENDENCY DEPTH

Key
depth

Without reuse
(ordered by
dependency)

With reuse
(random order)

With reuse
(ordered by
dependency)

2 � � �
4 � 3/10 �
6 � 2/10 �
8 � � �
10 � � �

In our second set of experiments, we run TAMARIN on the

static model of Ensemble with distinct parameter configura-

tions and measure how many of the security lemmas can be

proven with these settings and the computational resources

that are used.

We run the prover with four configurations, outlined as

follows.

• Bare TAMARIN - In this configuration we try to prove

the security properties of the protocol without any added

proof strategies or helper lemmas.

• Lemma reuse - Lemmas that for example assert secrecy

of keys are set as reusable so that the verifier can assume

these lemmas to be true when searching for the proof.

• Oracle only - Here we make use of the order-aware

oracle but do not reuse lemmas, and must therefore

reprove all relevant subresults for every property.

• Order-aware - In this configuration we use both the

order-aware oracle and reuse helper lemmas.

The first two configurations should be considered as base-

lines. The reason for including both the ”Oracle only” and

”Order-aware” configurations rather than just a single good

strategy is to investigate the relative impact of the different

aspects of the generated oracle as the ordering of reusable

314

lemmas according to the key hierarchy is an important aspect

of its design (see Section IV-D).

In addition to the amount of successfully proven lemmas,

we measure the resource consumption in terms of computation

time and memory usage. Each lemma was run as a separate

job in the cluster, and given an allocation of 2 hours on 8

cores and 22 GiB of memory. Jobs that exceeded either the

time or memory limit were aborted.

C. Effectiveness of proof strategies

We now proceed to present the outcome of the second

experiments. Table II shows an overview of how the four

prover configurations performed in terms of proving the 20

security properties. The Oracle and Reuse columns summarise

the key differences between the configurations (with or without

the key-aware oracle, and with or without reusable lemmas).

The final three columns show how many of the lemmas that

could be proven in the three categories.

TABLE II
OVERVIEW OF PROVABILITY FOR DISTINCT PROOF STRATEGIES

Proof method Oracle Reuse Liveness Secrecy Authenticity

Bare TAMARIN N N 1/1 0/15 0/3
Lemma reuse N Y 1/1 4/15 1/3
Oracle only Y N 1/1 15/15 3/3
Order-aware Y Y 1/1 15/15 3/3

The results clearly demonstrate the effectiveness of the key-

aware oracle, which seems to be the deciding factor to making

the model tractable for the verifier.

Another perspective on the performance of the strategies

is shown in Fig. 6. The graph shows time on the X axis

(logarithmic scale) and the number of lemmas proven within

this time on the Y axis. There is a significant (and expected)

performance difference observed when making use of, and

ordering, previously proven lemmas. In particular, the fastest

15 lemmas were verified in 86 seconds by the order-aware

strategy whereas it took over 10 minutes when lemmas were

not reused (Oracle only).

D. Identity misbinding attack

An identity misbinding attack [33], [34], also referred to

as an unknown key-share attack [35], [36] occurs when two

honest parties establish a common session key without a

consistent view of each other’s identities. In IEEE 1609.2, the

use of rekRecipInfo can possibly create a vulnerability to

misbinding since the public key is not bound to an identity.

In Ensemble, even though this data structure is used in a Join
Response, misbinding can be mitigated because the identity of

the intended receiver is included in the application payload.

However, it is not stated explicitly that this information should

be validated. The receiver must check that the intended re-

ceiver included in the message matches its own identity. In an

implementation of the protocol where this is not done, some

security properties will be violated. We ran the verification

with a modified variant of the static model that captures this

aspect. The results can be seen in Table III where we see that

0

5

10

15

20

25

30

10 100 1000 10000

V
er
i
ed

le
m
m
as

(o
ut
of
19
)

Time (s)

Order-aware
Oracle only

Lemma reuse
Bare Tamarin

Fig. 6. The number of lemmas proven within a given time for the proof
strategies (logarithmic x axis).

TABLE III
AUTHENTICATION FAILURE IN THE ABSENCE OF INTENDED RECEIVER

Security property Intended
receiver

No intended
receiver

Aliveness � �
Weak agreement � �

Non-injective
agreement

� �

the weak and non-injective agreement authenticity properties

are not satisfied.

The possible attacker behaviour is described as follows (see

also Fig. 3). Provided that the check of intended receiver is

absent, an inside attacker (who has a valid long-term key

and certificate) could replay the CAM (from Vehicle 1) that

advertises a joinable platoon to another Vehicle 2, which will

send a join request. The attacker extracts the public key

of jrek from that message and uses it in a join request signed

with his own long-term key. Vehicle 1 will send a join
response to the attacker, which will transmit it back to

Vehicle 2. At the end of the procedure, Vehicle 1 believes

that the attacker has joined, whereas Vehicle 2 believes it has

joined Vehicle 1, and both share the participant and group keys

(note that the attacker can not compromise the secrecy).

VI. RELATED WORK

Vehicular network security standardisation and its formal

analysis is rather recent. Whitefield et al. [37] analyse V2X

certificate revocation of malicious or misbehaving vehicles

with the REWIRE scheme using TAMARIN. In their analysis,

they are able to identify an authentication weakness and pro-

pose an extension to mitigate it. Li et al. propose a lightweight

privacy-preserving authentication protocol that is verified with

BAN logic and PROVERIF [38].

In mobile networks, Basin et al. [1] formalise the 5G

authentication and key agreement protocol, and verify security

properties using TAMARIN. The authors found in their analysis

315

that security goals and assumptions were under-specified or

missing. We show a similar situation in our analysis of

standards in the vehicular domain. While data structures are

often well defined, under-specification of data checks and

behaviour can lead to misinterpretation and potential security

vulnerabilities.

With respect to verification and solving theory, Cremers

and Mauw [39] employ partial order reduction to lower the

number of traversed states in checking secrecy of terms in a

cryptographic protocol in their tool SCYTHER. They build on

the fact that exchanging two events in a trace might result in

equivalent traces with respect to the verified property. In our

work, we explore the fact that solving for the knowledge of

some terms might not be relevant, and that solving for the

knowledge of some terms before others is more efficient.

Schmidt et al. [40] develop an algorithm to verify protocol

group key agreement protocols that can handle Diffie-Hellman

exponentiation, bilinear pairing, and AC-operators. In their

work they extend the operators set and provide constraint

reduction rules in TAMARIN to support them. They argue for

the analysis of dynamic join and leave operations in group

protocols, which is also present in our model.

VII. CONCLUSION AND FUTURE WORK

We have formally analysed the security of Ensemble, a

protocol for vehicular group formation with key establishment

and distribution which is currently in pre-standardisation. To

conduct the verification, we define secrecy and authentication

relations that are applied in a proof strategy based on their

partial order. We automate the key hierarchy extraction from

our TAMARIN models and create oracles to guide the prover

based on the ordering of keys. To refine the model of the

protocol messages we use ASN.1 definitions from standards

and a compiler to generate sample packets, which was useful

to avoid misinterpretations or ambiguities from multiple docu-

ments. Through our assessment of vehicular network security

standards by IEEE and ETSI, we show that although they

provide solid security message formats, the implementations

may still be susceptible to weaknesses if the expected agent

behaviour is not enforced. We show an example of such a

weakness in the form of a misbinding attack when appropriate

checks are not performed by the vehicles. An interesting point

for discussion in the context of standardisation work lies in

formally describing agent behaviour towards received data and

appropriate security checks.

TAMARIN enables the formal analysis of several complex

protocols, and may require manual tuning in some cases. We

believe that, ideally, an automated security analysis should

be able to derive, without manual intervention, the set of

conditions for each cryptographic term in a protocol to remain

secret and provide the corresponding proof (currently, mod-

ellers must identify such conditions and specify them in the

lemmas). Our work to automatically extract key dependencies

is a step towards this long-term goal, and many interesting

challenges remain. An integration of the dependency analysis

in TAMARIN at runtime (during proving) would allow much

richer reasoning. For instance, this could allow the possibility

to consider time and properties that involve forward secrecy. In

addition, the extension of dependency relations to account for

XOR, Multiset, Diffie-Hellman, and other equational theories

are required to support a large class of models. We consider

these challenges to be important contributions in future work.

REFERENCES

[1] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and
V. Stettler, “A formal analysis of 5g authentication,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 1383–1396. [Online]. Available:
https://doi.org/10.1145/3243734.3243846

[2] L. C. Paulson, “Relations between secrets: two formal analyses of the
yahalom protocol,” Journal of Computer Security, 2001.

[3] D. Pavlovic and C. Meadows, “Deriving secrecy in key establishment
protocols,” in Proceedings of the 11th European Conference on
Research in Computer Security, ser. ESORICS’06. Berlin, Heidelberg:
Springer-Verlag, 2006, p. 384–403. [Online]. Available: https://doi.org/
10.1007/11863908 24

[4] J. D. Guttman and F. Thayer, “Authentication tests and the structure
of bundles,” Theoretical Computer Science, vol. 283, no. 2, pp. 333–
380, 2002, theoretical Foundations of Security Analysis and Design.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0304397501001396

[5] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover
for the symbolic analysis of security protocols,” in Computer Aided
Verification, N. Sharygina and H. Veith, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 696–701.

[6] Ensemble, “D2.8 Platooning protocol definition and communication
strategy,” 2018.

[7] Ensemble, “D2.9 Security framework of platooning,” 2019.
[8] 3GPP, “TR 21.915 Summary of Rel-15 Work Items (Release 15),

v15.0.0,” 2019.
[9] ETSI, “TS 102 636-4-3 Media-dependent functionalities for LTE-V2X,

v1.1.1,” 2020.
[10] ——, “EN 302 636-4-1 GeoNetworking; Part 4: Geographical address-

ing and forwarding for point-to-point and point-to-multipoint communi-
cations; Sub-part 1: Media-Independent Functionality, v1.4.0,” 2019.

[11] ——, “EN 302 636-5-1 Basic Transport Protocol, v2.2.0,” 2019.
[12] IEEE, “Std 1609.2 Security Services for Applications and Management

Messages,” 2016.
[13] IEEE, “Std 1609.2a Security Services for Applications and Management

Messages - Amendment 1,” 2017.
[14] ——, “Std 1609.2b Security Services for Applications and Management

Messages - Amendment 2: PDU Functional Types and Encryption Key
Management,” 2019.

[15] ETSI, “TS 103 097 Security header and certificate formats, v1.3.1,”
2017.

[16] B. Blanchet, “Security protocol verification: Symbolic and computa-
tional models,” in Principles of Security and Trust, P. Degano and J. D.
Guttman, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 3–29.

[17] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature
scheme secure against adaptive chosen-message attacks,” SIAM J.
Comput., vol. 17, no. 2, p. 281–308, Apr. 1988. [Online]. Available:
https://doi.org/10.1137/0217017

[18] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of
Computer and System Sciences, vol. 28, no. 2, pp. 270 – 299, 1984.

[19] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated
analysis and verification of tls 1.3: 0-rtt, resumption and delayed
authentication,” in 2016 IEEE Symposium on Security and Privacy (SP),
2016, pp. 470–485.

[20] R. Künnemann, “Automated backward analysis of pkcs#11 v2.20,” in
Principles of Security and Trust, R. Focardi and A. Myers, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 219–238.

[21] C. Cremers, M. Dehnel-Wild, and K. Milner, “Secure authentication
in the grid: A formal analysis of dnp3: Sav5,” in Computer Security
– ESORICS 2017, S. N. Foley, D. Gollmann, and E. Snekkenes, Eds.
Cham: Springer International Publishing, 2017, pp. 389–407.

316

[22] C. Cremers, B. Kiesl, and N. Medinger, “A formal analysis of {IEEE}
802.11’s wpa2: Countering the kracks caused by cracking the counters,”
in 29th {USENIX} Security Symposium ({USENIX} Security 20), 2020,
pp. 1–17.

[23] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

[24] S. Meier, “Advancing automated security protocol verification,” Ph.D.
dissertation, ETH Zurich, Zürich, 2013.

[25] B. Schmidt, “Formal analysis of key exchange protocols and physical
protocols,” Ph.D. dissertation, ETH Zurich, Zürich, 2012.

[26] J. Dreier, L. Hirschi, S. Radomirovic, and R. Sasse, “Automated un-
bounded verification of stateful cryptographic protocols with exclusive
or,” in 2018 IEEE 31st Computer Security Foundations Symposium
(CSF), 2018, pp. 359–373.

[27] V. Cortier, S. Delaune, and J. Dreier, “Automatic generation of sources
lemmas in tamarin: Towards automatic proofs of security protocols,” in
Computer Security – ESORICS 2020, L. Chen, N. Li, K. Liang, and
S. Schneider, Eds. Cham: Springer International Publishing, 2020, pp.
3–22.

[28] J. Dreier, L. Hirschi, S. Radomirović, and R. Sasse, “Verification
of Stateful Cryptographic Protocols with Exclusive OR,” Journal of
Computer Security, vol. 28, no. 1, pp. 1–34, Feb. 2020. [Online].
Available: https://hal.archives-ouvertes.fr/hal-02358878

[29] G. Lowe, “A hierarchy of authentication specifications,” in Proceedings
10th Computer Security Foundations Workshop, 1997, pp. 31–43.

[30] D. Kozmai, “Converting tamarin to extended alice&bob protocol speci-
fications,” Bachelor’s Thesis, ETH, Zürich, 2016.

[31] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı-Oliet, J. Meseguer,
and J. Quesada, “Maude: specification and programming in rewriting
logic,” Theoretical Computer Science, vol. 285, no. 2, pp. 187–243,
2002, rewriting Logic and its Applications. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304397501003590

[32] A. Peltonen, R. Sasse, and D. Basin, “A comprehensive formal analysis
of 5g handover,” in Proceedings of the 14th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, ser. WiSec ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
1–12. [Online]. Available: https://doi.org/10.1145/3448300.3467823

[33] H. Krawczyk, “Sigma: The ‘sign-and-mac’ approach to authenticated
diffie-hellman and its use in the ike protocols,” in Advances in Cryp-
tology - CRYPTO 2003, D. Boneh, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 400–425.

[34] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication and
authenticated key exchanges,” Designs, Codes and cryptography, vol. 2,
no. 2, pp. 107–125, 1992.

[35] B. S. Kaliski Jr, “An unknown key-share attack on the mqv key
agreement protocol,” ACM Transactions on Information and System
Security (TISSEC), vol. 4, no. 3, pp. 275–288, 2001.

[36] S. Blake-Wilson and A. Menezes, “Unknown key-share attacks on the
station-to-station (sts) protocol,” in Public Key Cryptography. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 154–170.

[37] J. Whitefield, L. Chen, F. Kargl, A. Paverd, S. Schneider, H. Treharne,
and S. Wesemeyer, “Formal analysis of v2x revocation protocols,” in
Security and Trust Management, G. Livraga and C. Mitchell, Eds.
Cham: Springer International Publishing, 2017, pp. 147–163.

[38] X. Li, T. Liu, M. S. Obaidat, F. Wu, P. Vijayakumar, and N. Kumar, “A
lightweight privacy-preserving authentication protocol for vanets,” IEEE
Systems Journal, vol. 14, no. 3, pp. 3547–3557, 2020.

[39] C. J. F. Cremers and S. Mauw, “Checking secrecy by means of partial
order reduction,” in System Analysis and Modeling, D. Amyot and A. W.
Williams, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 171–188.

[40] B. Schmidt, R. Sasse, C. Cremers, and D. Basin, “Automated verification
of group key agreement protocols,” in 2014 IEEE Symposium on Security
and Privacy, 2014, pp. 179–194.

APPENDIX A

AUTHENTICITY RELATION

In this appendix we prove that the authenticity relation

defined in Section IV-A is transitive. We recall the following

definitions:

• Compromising a term p means either revealing it or being

able to generate a p′ that will be accepted by other nodes

as p. We assume that both of these actions (revealing and

generating a new key) can be performed infinitely often.

• If K is a set of keys, then the authenticity dependency

relation ��� ⊆ K × K is is defined so that for two keys

kA, kB ∈ K, kA ��� kB holds if compromising kB
allows the attacker to create another key k′A that will

be accepted by the other nodes as the legitimate kA.

We now proceed to prove that ���⊆ K ×K is transitive.

Proof. Assume that there exists keys kA, kB , kC ∈ K such that

kA ��� kB and kB ��� kC . To prove transitivity, we then must

show that kA ��� kC . Assume that kC has been compromised,

then by the second definition above, the attacker can create

another key k′B that will be accepted by other nodes as kB .

By the first definition, this means that kB is compromised.

Since kB is compromised and kA ��� kB , then the attacker

can create a key k′A that will be accepted by other nodes as

kA. Thus kA ��� kC .

APPENDIX B

5G HANDOVER GRAPHS

In this appendix we present approximations of the key

dependencies extracted automatically with our tool from a

5G handover model [32]. In addition to the steps described

in Section IV-B, a custom key derivation function (KDF with

arity 2) present in the 5G handover models must be considered.

Given a term k = KDF(a, b), then it holds that both a and

b must be known by an attacker in order to construct k.

This type of conjunctive dependency is not supported by our

current dependency relation, hence we approximate it in a

pessimistic (but safe) manner by creating two separate secrecy

dependencies k → a and k → b. Intuitively, we state that an

attacker could construct k by learning either a or b, whereas

in reality it must know both terms. This approximation (in

addition to our secrecy and authentication relations presented

in this work) of the (N2-based inter-RAN) 5G handover model

resulted in the graph illustrated in Fig. 7, which is unlabelled

for simplifying the presentation.

In order to give a concrete example of the structure of this

relation, we present in Fig. 8 a subgraph of Fig. 7 which

includes the all dependencies originating from a chosen term

’K-AMF3’. The secrecy of derived ’K-AMF’ keys is one of the

verified properties of the 5G handover analysis. A ’K-AMF’

can either be derived directly from keys ’SUPI’ and ’K-SEAF’,

or from another ’K-AMF’ itself (we refer the reader to the

paper [32] for more details). Fig. 8 shows classes of keys (there

are several distinct classes of ’K-AMF’) and their relations. In

addition to the dependencies described earlier, the graph also

includes SUPI → sk-HN due to the asymmetric encryption of

’SUPI’ with the public key of the home network pk(sk-HN).

317

Fig. 7. Approximation of the dependency graph from the N2-based inter-RAN
variant of 5G handover.

SUPI1

K-AMF2

K-AMF3

K-AMF1

sk-HN1

K-SEAF1

Fig. 8. Subgraph of dependencies extracted for target secret ’K-AMF3’.

318

