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Abstract—We propose conditional observational equivalence —
a variant of observational equivalence that is more flexible since it
can be made dependent on arbitrary safety trace properties. We
extend an existing method for verifying observational equivalence
in the multiset rewriting setting with the ability to handle
conditions. Our extension can automatically verify conditional
observational equivalence for a simple class of conditions that
depend only on the structure of the execution. By using conditional
observational equivalence, we give the first method for verifying
off-line guessing resistance in the multiset rewriting setting and
apply it to analyze and verify the properties of EAP-EKE, a
password-authenticated key exchange (PAKE) protocol.

Index Terms—observational equivalence, off-line guessing, EKE,
PAKE, multiset rewriting

I. INTRODUCTION

When analyzing cryptographic protocols in the symbolic

model, security properties are usually specified either as trace
properties or observational equivalence properties. Roughly

speaking, trace properties state that desirable conditions —

such as key secrecy or authentication — hold in all possible

executions of a system consisting of the protocol participants

and the attacker. Observational equivalence properties state

that from the point of view of an attacker interacting with

protocol participants, two different protocols appear exactly

the same. Most often, observational equivalence is used to

specify and verify properties related to anonymity and privacy.

However, it can also be used to prove that a cryptographic

protocol satisfies a “conventional” security property, such as key

secrecy, by demonstrating its observational equivalence with

an ideal protocol that has the desired property by construction.

Although verifying observational equivalence is generally

undecidable, automated procedures were developed [1, 2,

3, 4, 5] that successfully verify equivalence in certain cases

(see [6] for a survey of decidability results and [7] for a

survey of verification methods). PROVERIF [1], TAMARIN

prover [8, 2], and other tools were used to provide machine-

verified security proofs based on observational equivalence for

various real-world protocols — e.g., privacy-related properties

in e-voting protocols [9, 10]; anonymity properties in attestation

and key-exchange protocols [11, 12, 13, 14]; unlinkability in

authentication protocols [15].

In symbolic protocol analysis, trace properties can be fine-

grained — e.g., we can use TAMARIN prover to state and prove

that complex key secrecy and authentication properties hold

under various assumptions. Assumptions can specify necessary

preconditions for desired properties (e.g., that the attacker has

not compromised the long-term keys), but can also be used

to implement protocol features such as equality checks and

branching. This is done by limiting the scope of the analysis

to only those executions where the assumptions hold (these

types of assumptions are commonly referred to as restrictions
in TAMARIN prover). In contrast, the observational equivalence

of two protocols is usually an all-or-nothing property, and

any assumption or restriction must be explicitly built into

the protocols being compared or the formal model itself. We

believe that this inflexibility of observational equivalence is a

serious limitation when dealing with complex protocols and

properties.

The goal of this paper is to address this limitation by

combining observational equivalence with trace properties.

Informally, we will define two protocols L and R to be

observationally equivalent under conditions φL and φR if

an attacker cannot distinguish L and R as long as the systems

L and R are executed in a way that does not violate their

respective conditions φL and φR. Here, the conditions φL
and φR can be any safety trace properties. For example,

such conditions can be used to enable protocol branching

(cryptographic primitive agreement), to limit the number of

protocol rule instances (initialization), and to force execution

ordering (phases in a game between attacker and challenger).

We choose multiset rewriting as the formal setting and

define conditional observational equivalence by extending the

definitions of Basin et al. [2]. Also, we extend the method

for automated verification of observational equivalence given

in [2] to include the ability to verify conditional observational

equivalence. Our extension can automatically verify conditional

observational equivalence for a class of safety properties that

we call Type-0 properties. Informally, these properties depend

on the structure of the execution (the actions that protocol

participants take), but not on the data used in the execution

(message terms). Therefore, Type-0 properties cannot capture

equality restrictions but they can enforce protocol phases, for

example.

We demonstrate the utility of conditional observational

equivalence by showing how it can be used to prove the

resistance of protocols to off-line guessing attacks. Informally,

the attacker interacts with the protocol during the learning phase
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and tries to distinguish the secret in question from a random

value in the guessing phase. The protocol is then resistant to off-

line guessing if the observational equivalence holds under the

condition that the execution respects the protocol phases. We

believe that this is the first attempt to model off-line guessing

attacks using multiset rewriting, but we note that such an

analysis has been performed in a very similar way using the

applied π-calculus and the tool PROVERIF [1]. We claim that

our approach is more flexible since we implement protocol

phases with conditions, while PROVERIF explicitly builds them

into the execution model.
Finally, we perform two case studies. We show that the

EAP-EKE protocol for password-authenticated key exchange

is resistant to off-line guessing attacks in a general setting

that includes an unbounded number of client sessions and two

server sessions per client. We also extend the analysis of RFID

protocols given in [16] to a more general setting.
As mentioned earlier, this work relies heavily on the

automated procedure for verifying observational equivalence in

the multiset rewriting setting given in Basin et al. [2]. In fact,

most of the definitions and results in Sections III, IV, and V can

be viewed as generalizations of the results in [2] for the case of

conditional observational equivalence. In particular, we define

conditional dependency graph equivalence and show that this

implies conditional observational equivalence. We also prove

a lemma that provides sufficient conditions for terminating the

verification of conditional dependency graph equivalence when

there are open (unresolved) premises in dependency graphs.

The said lemma is crucial for achieving termination when

analyzing protocols with an unbounded number of sessions.
It is important to note that TAMARIN prover already supports

restrictions when proving observational equivalence. However,

to the best of our knowledge, the exact semantics of such

statements and the soundness of the proof method have not yet

been published. Moreover, several issues have been reported

by users when combining observational equivalence with

restrictions. In fact, the practical issues we encountered while

trying to perform a case study with TAMARIN prover and

using observational equivalence with restrictions were the main

motivation for this research.
In summary, our contributions are as follows:

• We propose the definition of conditional observational

equivalence that combines trace properties with observa-

tional equivalence properties.

• By extending [2], we give a method for automatically

verifying conditional observational equivalence for a

simple class of safety properties that depend only on

the execution structure. We implement our method by

extending the TAMARIN prover tool.

• We use conditional observational equivalence to give the

first method for verifying off-line guessing resistance in

the multiset rewriting setting.

• We give machine-verified proofs of off-line guessing

resistance for EAP-EKE protocol.

• We extend the case study of RFID protocols given in [16]

considering readers as well.

II. PRELIMINARIES

In this section we include the necessary mathematical

background. We use the notation and definitions from Basin

et al. [2], but we give more verbose definitions for recipes.

1) Multiset rewriting: We use an order-sorted signature
Σ = (S,≤,Σ) with the set of sorts S = {fr, pub,msg},
a partial order ≤ with top sort msg, and a signature Σ =
ΣFun � ΣFact as a disjoint union of the function symbols
ΣFun and the fact symbols ΣFact. The fr subsort is used for

the fresh values such as keys and nonces, while the pub subsort

is used for the public values such as an agent name and a

group generator; they are not compatible. We assume that there

are countably infinite sets FN and PN of fresh and public

names respectively. Function symbols ΣFun are used for the

cryptographic operators, where zero-arity symbols are called

constants, and fact symbols ΣFact are used for (recording) the

system state. Moreover, we partition fact symbols on the linear
facts — resources that can be consumed only once, and the

persistent facts — resources that can be consumed any number

of times, and define ΣFact = ΣFactl �ΣFactp . Persistent facts

will be prefixed with !, for example !Fr(x).

We assume that there is a countable number of the variables

Vs for each sort s ∈ S, and define the set of all variables

to be V =
⊎
s∈S Vs. For x ∈ Vs we will write x:s. Given

signature Σ and V ′ ⊆ V , the set of all well-sorted terms of the

sort s, over Σ∪V ′, is denoted by TΣ(V ′)s. Terms without any

variables are called ground terms; the set of all ground terms

over Σ is denoted by TΣ. Given a term t ∈ TΣ(V ′), vars(t)
denotes the set of all variables in t; the root(t) is equal to

f if t = f(t1, . . . , tk), and t otherwise. The set of all n-ary

facts is defined as Fn = {F (t1, . . . , tn) | ti ∈ TΣFun(V), F ∈
ΣFact, arity(F ) = n}; the set of all facts is denoted by F .

Given a set S and s1, . . . , sn ∈ S, a sequence over

S is denoted by s = [s1, . . . , sn], where [] stands for

the empty sequence; S∗ is the set of all sequences over

S; set(s) = {s1, . . . , sn} is the set of the sequence;

mset(s) = {s1, . . . , sn}# is the multiset of the sequence;

idx(s) = {1, . . . , |s|} is the set of indices of the sequence; si,
i ∈ idx(s) is the i-th sequence element; |s| is the sequence

length. Concatenation of sequences s and s′ is denoted by

concat(s, s′). Lexicographically ordered sequence s is denoted

by s≤. If s is the sequence of facts, then lfacts(s) = {F ∈
mset(s) | root(F ) ∈ ΣFactl} is the multiset of its linear facts,

and pfacts(s) = {F ∈ mset(s) | root(F ) ∈ ΣFactp} is the

multiset of its persistent facts.

A substitution σ is a well-sorted function σ:V → TΣ(V).
An application of σ to a variable x is denoted by xσ. A set of

variables on which σ is not the identity function is denoted by

dom(σ). If dom(σ) = {x1, . . . , xk}, and xiσ = ti, we will

write {t1/x1
, . . . ,tk/xk}. We extend σ to an endomorphism on

TΣ(V) and use the same notation tσ for an arbitrary term t.

Properties of cryptographic operators are specified as a set of

equations. An equation, over the signature Σ, is an unordered

pair {s, t} of terms s, t ∈ TΣ(V), written as s � t. We extend

this definition for a set of equations over a signature. An
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equational presentation is the tuple (Σ, E) where E is the

set of equations over the signature Σ. Given an equational

presentation E = (E,Σ), equational theory =E is the smallest

Σ-congruence containing all s � t ∈ E instances. We use =E
instead of =E when the signature is obvious from the context.

Each relation modulo E is denoted by indexing the relation

with E, for example ∈E .

A rewrite rule over a signature Σ is an ordered pair (l, r)
of terms l, r ∈ TΣ(V), denoted by l→ r; a rewrite system R
is the set of rewrite rules. R induces a rewrite relation→R:

s→R t iff there is a sequence of rewrite rules s→ . . .→ t.
Term s is in a normal form with respect to R written as

s ↓ R if there is no t such that s→R t; function symbol f is

irreducible with respect to the rewrite system R if there is no

l→ r ∈ R such that root(l) = f . We use rewrite system as a

decision procedure for an equational theory. This is possible

if an equational theory has a rewrite system that is confluent
and terminating, i.e. convergent where every term has a unique

normal form. In that case, it holds that s =E t iff s ↓ R =

t ↓ R. A rewrite system R is called subterm-convergent if it

is convergent and for each rule l→ r ∈ R, term r is either a

proper subterm of l or a ground term in normal form.

If the equational theory includes a set of equations AX that

cannot be oriented such as associativity (A) and commutativity

(C), we will use the standard notion of R,AX -rewriting. For a

decomposition (Σ,R,AX ) that has the finite variant property,


t�R denotes the complete set of R,AX variants of a term

t ∈ TΣ(V). We use the same notation for variants of a rule and

variants of a system. Equational theories with a finite variant

property include Diffie-Hellman and XOR.

A labeled multiset rewrite rule is a tuple (id, l, a, r), written

as ru = id: [l]−[a]→[r], where l, a, r ∈ F#, and id ∈ I
is the unique rule identifier. The name of the rule ru is

denoted by name(ru) = id, and sequence of premises, actions

and conclusions by prems(ru) = [l], acts(ru) = [a] and

concs(ru) = [r] respectively. Labeled multiset rewrite system
is a set of labeled multiset rewrite rules. By overloading the

notation, the set of all ground instances of both labeled multiset

rewrite rule ru and system P will be denoted by ginsts(ru)
and ginsts(P ) respectively. Ground instance obtained by

applying a substitution σ to every fact of a rule ru is denoted

by ruσ.

We partition labeled multiset rewrite system into system
(Sys), environment (Env), and interface (IF ). The system can

interact with the environment using the interface

IF =

{
out : [Outsys(x)]−[O]→[Inenv(x)],
in : [Outenv(x)]−[I]→[Insys(x)] .

Example 1. The following system (sys) aims to authenticate
a user a to a server b using a password p. The environment
rules are denoted by env. We will refer to this labeled multiset
rewrite system throughout the paper.

freshsys: []−[]→[Fr(x:fr)]
psgensys: [Fr(p)]−[PL]→[!P(p, a:pub, b:pub),C(p)]
ureqsys: [!P(p, a, b)]−[PL]→[Outsys((a, b)),U(p, a, b)]

sreqsys: [!P(p, a, b), Insys((a, b)),Fr(n)]−[PL()]→
[Outsys(n), S(p, a, b, n)]

uressys: [U(p, a, b), Insys(n)]−[PL]→[Outsys(enc(n, p))]
sversys: [S(p, a, b, n), Insys(enc(n, p))]−[PL]→[]
chalsys: [C(p),Fr(f)]−[PG]→[Outsys(p)]
recvenv: [Inenv(x)]−[]→[!K(x)]
sendenv: [!K(x)]−[]→[Outenv(x)]
decenv: [!K(enc(x, y)), !K(z)]−[]→[!K(dec(enc(x, y), z))]
encenv: [!K(x), !K(y)]−[]→[!K(enc(x, y))]

compenv: [!K(x), !K(x)]−[]→[]
Let P be a labeled multiset rewrite system and ru ∈ P its

rule. The set of new variables of the k-th conclusion fact of

the rule ru, is defined by

newvars(k, ru) = {x ∈ vars(concs(ru)k) |
k ∈ idx(concs(ru)), x �∈

⋃
i∈idx(prems(ru))

vars(prems(ru)i)}.

For a ground rule instance ri = ruσ, we define nvins(k, ri)
as sequence of instances of new variables by applying σ to

newvars(k, ru) and sorting by a variable appearance.

Example 2. Consider the rule psgensys of the multiset rewrite
system from Example 1, which can generate a password x:fr
for participants z:pub and w:pub:

ru = psgensys: [Fr(p)]−[PL]→[!P(p, a:pub, b:pub),C(p)] .
We have newvars(1, ru)) = {a, b}. Consider now the instance
ri = ruσ such that

ri = psgensys: [Fr(p0)]−[PL]→[!P(p0, a0, b0),C(p0)] .
It holds nvins(1, ri) = [{a0/a}, {b0/b}].

For observational equivalence, it is useful to know how a

fact or rule was derived. For this reason we will use recipes.

We define the set of recipes of the conclusion facts of the rule

instances, denoted by ρf , and the set of recipes of the rule

instances, denoted by ρ, with the following inductive definition.

R1. For a rule instance ri = ruσ ∈ ginsts(P ) such that

name(ru) = id, prems(ru) = [], and concs(ru) =
[r1, . . . , rm], the following holds for k ∈ {1, . . . ,m}.
frecipe(k, ri) = idk(nvins(k, ri), []) ∈ ρf
recipe(ri) = id([nvins(1, ri), . . . , nvins(m, ri)], []) ∈ ρ

R2. For a rule instance ri = ruσ ∈ ginsts(P ) such

that name(ru) = id, prems(ru) = [l1, . . . , ln], and

concs(ru) = [r1, . . . , rm], if for every (linear) premise

li, i ∈ {1, . . . , n}, there exists (an unique pair of) a rule

instance rii ∈ ginsts(P ) and pi ∈ idx(concs(rii)) such

that li = concs(rii)pi , and frecipe(pi, rii) ∈ ρf , then

the following holds for k ∈ {1, . . . ,m}.
frecipe(k, ri) = idk(nvins(k, ri),

[frecipe(p1, ri1), . . . , frecipe(pn, rin)]) ∈ ρf
recipe(ri) = id([nvins(1, ri), . . . , nvins(m, ri)],

[frecipe(p1, ri1), . . . , frecipe(pn, rin)]) ∈ ρ.
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The sets ρf and ρ are formed by first considering the rule

instances with empty premises (R1.) and then inductively

considering all other rules that can be reached from the ones

that are already in the set ρf (R2.). Note that a fact can have

multiple recipes, since there can be more than one way to

derive it.

Example 3. The following are the instance of the rule ureqsys

of the multiset rewrite system from Example 1 and its recipe.

ri = ureqsys: [!P(p0, a0, b0)]−[PL]→
[Outsys(a0, b0),U(p0, a0, b0)]

recipe(ri) = ureqsys([], [psgensys1 ([{a0/a}, {b0/b}],
[freshsys1 ([{p0/p}], [])])]).

We do not want an observer (environment) to be able to

distinguish systems by their internal workings because the

observer cannot see the internals of the system, i.e., taken rules

are hidden. This makes sense since a system corresponds to

a protocol, and an environment corresponds to an adversary.

The fact that the environment cannot see the rules internal to

the system is expressed by the following two special recipes.

frecipe(1, out) = out1([], [z]),

recipe(out) = out([], [z]).

We see that the recipes of the premises are replaced with a

new variable z, which hide how the fact Inenv(x) and the rule

out were derived.

Labeled transition relation →P⊆ G# × (G# × ρ)× G# of

a multiset rewrite system P is defined as:

ri = id: [l]−[a]→[r]∈E ginsts(P )

lfacts(l) ⊆# S pfacts(l) ⊆# S

S
set(a)−−−−−−→

recipe(ri) P

((S \# lfacts(l)) ∪# mset(r))

A multiset rewrite system with a labeled transition relation is

called labeled transition system (LTS).

An execution e of the multiset rewrite system P is an

alternating sequence of states and transitions:

e = [S0, (l1
set(a1)−−−−−→
rec(ri1)

r1), S1, . . . , Sk−1, (lk
set(ak)−−−−−→
rec(rik)

rk), Sk]

such that S0 = ∅#. The set of all executions of P is denoted

by execP ; the last state of an execution e ∈ execP is denoted

by state(e); the executions of state S consists of all executions

e ∈ execP with S as the last state: execP (S) = {e ∈ execP |
state(e) = S}; the trace of an execution is the sequence of

its action facts: trace(e) = [set(a1), . . . , set(ak)]; traces of

the set of executions R ⊆ execP are defined as trace(R) =
{trace(e) | e ∈ R}.
Example 4. The following sequence e is one possible execution
of the multiset rewrite system from Example 1. It generates
the pasword p0 with the rule fresh, and binds it to the user
a0 and the server b0 using the rule psgen. User then sends
(a, b) to the server with the rule ureq, and the server responds
with the challenge nonce n0 using the rule sreq. The rule

labels env and sys, and the multiset notation # are omitted
for clarity. Notice the introduction of the variable z.

∅ −−−−−−−−−−−→
fresh([{p0/x}],[])

S1 = ∅ ∪ {Fr(p0)}

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
psgen([{a0/a},{b1/b}],[fresh1([{p0/x}],[])])

S2

PL−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ureq([],[psgen1([{a0/a},{b1/b}],[fresh1([{p0/x}],[])])])

S3

O−−−−−−→
out([],[z])

S4 = (S3 \ {Outsys((a0, b0))}) ∪ {Inenv((a0, b0))},

−−−−−−−−−−−−→
recv([],[out1([],[z])])

S5

−−−−−−−−−−−−−−−−−−−→
send([],[recv1([],[out1([],[z])])])

S6 = S5 ∪ {Outenv((a0, b0))}
I−−−−−−−−−−−−−−−−−−−−−−−−−→

in([],[send1([],[recv1([],[out1([],[z])])])])
S7

−−−−−−−−−−−→
fresh([{n0/x}],[])

S8 = S7 ∪ {Fr(n0)}
PL−−−−−−→

sreq([],r0)
S9

S2 = (S1 \ {Fr(p0)}) ∪ {!P(p0, a0, b0),C(p0)},
S3 = S2 ∪ {Outsys((a0, b0)),U(p0, a0, b0)},
S5 = (S4 \ {Inenv((a0, b0))}) ∪ {!K((a0, b0))},
S7 = (S6 \ {Outenv((a0, b0))}) ∪ {Insys((a0, b0))},
S9 = (S8 \ {Insys((a0, b0)),Fr(n0)})

∪ {Outsys(n0), S(p0, a0, b0, n0)},
r0 = [psgen1([{a0/a}, {b1/b}], [fresh1([{p0/x}], [])]),

in1([], [send1([], [recv1([], [out1([], [z])])])]),

fresh1([{n0/x}], [])].
It holds that trace(e′) = [PL,O, I,PL].

2) Observational equivalence: There are many flavors of

behavioral equivalence by which the systems behavior can be

compared [17]. Here, we focus on the observational equivalence

from [2].
Two sets of multiset rewrite rules SA and SB are observa-

tional equivalent with respect to an environment given by a

set of multiset rewrite rules Env, written as SA ≈Env SB ,

if, given the LTS defined by the rules SA ∪ IF ∪ Env and

SB ∪ IF ∪Env, there exist a relation R containing the initial

states, such that for all states (SA,SB) ∈ R the following

conditions hold.

E1. If SA l−→
r
S ′A where r is the recipe of a rule in Env ∪ IF

then there exist l′ ∈ F# and S ′B ∈ G# such that SB l′−→
r

S ′B , and (S ′A,S ′B) ∈ R.

E2. If SA l−→
r
S ′A where r is the recipe of a rule in SA

then there exist recipes r1, . . . , rn ∈ ρ of rules in SB ,

actions l1, . . . , ln ∈ F#, n ≥ 0, and S ′B ∈ G# such that

SB l1−→
r1

. . .
ln−→
rn
S ′B , and (S ′A,S ′B) ∈ R.

Conditions E1. and E2. must also hold in the other direction.

Example 5. Let SA be the multiset rewrite system from
Example 1. Suppose we form multiset rewrite system SB by
taking SA, and modifying the rule chalsys such that

chalsys: [C(p),Fr(f)]−[PG]→[Outsys(f)] .

4



The two sets of multiset rewrite rules SA and SB are
not observationally equivalent. Continuing the execution e
from Example 4, we obtain the password p0 using the rule
chal, encrypt the nonce n0 with the password p0 using the
rule enc, and verify the encryption with the rule sver. The
last step is possible in SA, but not in SB . This is because in
SA, it holds that !K(enc(n0, p0)) ∈ S16, but in SB , we have
!K(enc(n0, f0)) ∈ S16 instead. So, the adversary (environment)
can distinguish the password p0 from a random value f0 by
the following execution.

S9
O−−−−−−→

out([],[z])
S10 = (S9 \ {Outsys(n0)}) ∪ {Inenv(n0)}

−−−−−−−−−−−−→
recv([],[out1([],[z])])

S11 = (S10 \ {Inenv(n0)}) ∪ {!K(n0)}

−−−−−−−−−−−→
fresh([{f0/x}],[])

S12 = S11 ∪ {Fr(f0)}
PG−−−−−−→

chal([],r1)
S13 = (S12 \ {C(p0),Fr(f0)}) ∪ {Outsys(p0)}

O−−−−−−→
out([],[z])

S14 = (S13 \ {Outsys(p0)}) ∪ {Inenv(p0)}

−−−−−−−−−−−−→
recv([],[out1([],[z])])

S15 = (S14 \ {Inenv(p0)}) ∪ {!K(p0)}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
enc([],[recv1([],[out1([],[z])]),recv1([],[out1([],[z])])])

S16

−−−−−−→
send([],r2)

S17 = S16 ∪ {Outenv(enc(n0, p0))}
I−−−−−−−−−−−−→

in([],[send1([],r2)])
S18

PL−−−−−−−−−−−−−−−−−−−−−−−−−−→
sver([],[sreq2([],r0),in1([],[send1([],r2)])])

S19

S16 = S15 ∪ {!K(enc(n0, p0))},
S18 = (S17 \ {Outenv(enc(n0, p0))}) ∪ {Insys(enc(n0, p0))},
S19 = S18 \ {Insys(enc(n0, p0)), S(p0, a0, b0, n0)},
r1 = [psgen2([{a0/a}, {b1/b}], [fresh1([{p0/x}], [])]),

fresh1([{f0/x}], [])]
r2 = [enc1([], [recv1([], [out1([], [z])]),

recv1([], [out1([], [z])])])].

It holds that trace(e′) = [PL,O, I,PL,O,PG,O, I,PL]. This
execution e′ represents the false attack in the context of off-
line guessing because one can always make a distinction by
succesfully executing a session after obtaining the password.
Therefore, we should forbid such executions. That means the
action PL must not come after the action PG. These actions
will represent the off-line guessing phases later on.

A bi-system [1] S is a multiset rewrite system with diff(_, _)
operator such that a pair of multiset rewrite systems L(S)
and R(S) can be obtained by considering the left hand side

(LHS) and the right hand side (RHS) of diff(_, _) operator

respectively. This makes it possible do verify bi-equivalence
— a rewriting modulo diff terms. Bi-equivalence is a sound

approximation of observational equivalence and it is easier to

automate.

Example 6. Consider the multiset rewrite system from Exam-
ple 1. Suppose that we modify the rule chalsys such that

chalsys: [C(p),Fr(f)]−[PG]→[Outsys(diff(p, f)] .

The resulting system S is now a bi-system. Furthermore, for the
systems SA and SB from Example 5 it holds that SA = L(S)
and SB = R(S).

3) TAMARIN prover: In the context of observational equiv-

alence, TAMARIN uses restricted normal dependency graphs
modulo AC to represent protocol and adversary execution with

∗-restricted protocol rules and normal (message) deduction
rules. The signature ΣFact consists of an arbitrary number of

protocol-specific fact symbols used to specify protocol state,

the linear facts Fr(x:fr) and Frl(x:fr) for the protocol and

adversary fresh names respectively, the persistent fact K(x) for

the adversary knowledge, and the interface facts Out(x) and

In(x). It can be shown that the set of traces of dependency

graphs and LTS executions coincide [18].

A ∗-restricted protocol rule is a multiset rewrite rule

id: [l]−[a]→[r] such that (P1) l, a, r do not contain fresh

names; (P2) l does not contain Out, K and Frl facts, and

reducible function symbols; (P3) r does not contain K,

In, Fr and Frl facts, and multiplication symbol ∗; (P4)

vars(r) ⊆ vars(l) ∪ Vpub. Protocol is a finite set of protocol

rules. Protocol rules are executed by honest participants

(system).

Normal message deduction rules ND represent standard

Dolev-Yao adversary. They consist of deconstruction rules

built from the equations and used to deduce messages

sent to the environment, and construction rules built from

the signature and used to construct messages sent to the

system. Adversary knowledge fact K is split into K↓ and

K↑ facts. Deconstruction rules have premises with both

K↓ and K↑ facts, and conclusion with K↓, for example

[K↓(enc(x, y)),K↑(y)]−[]→[K↓(y)]. Construction rules have

only K↑ facts, for example [K↑(x),K↑(y)]−[]→[K↑(enc(x, y)].
Moreover, ND rules are considered modulo AC. Normal

deduction rules supported by TAMARIN can be found in [2,

Figure 7].

There is a special rule for generating Fr facts:

Fresh: []−[]→[Fr(x:fr)]. It is the only way for the facts Fr to

came into existance and no two instances of the rule give the

same Fr(x:fr). We have two variants of this rule: FreshSys
for system and FreshEnv for the environment.

We use many-sorted first-order logic with sorts for messages

msg and timepoints temp. A trace formula is the first order

formula over the trace atoms [18, p.4.]. Given a trace formula

ϕ, facts(ϕ) denotes the set of fact symbols occurring in ϕ;

quant(ϕ) ⊆ {∃, ∀} denotes the set of quantifiers that occur in

ϕ. The semantics of trace formulas is defined by assigning a

domain Doms with each sort s: Domtemp = Q, Domfr =
FN , Dompub = PN , Dommsg = M. For an equational

theory E , the definition of satisfiability of the trace formula ϕ
on the trace tr for a valuation θ, written as (tr, θ) |=E ϕ, can

be found in [18, p.4.]. The relation �E is called the satisfaction
relation.

To specify security properties we use guarded trace proper-
ties [18, p.12.]. For a trace formula ψ and a set of action facts

A, we define ψ formula traces to be the set of all traces of the
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system for which the formula holds Trψ = {tr ∈ ginsts(A)∗ |
tr � ψ}; we will use the name property for both the formula ψ
and its sets of traces Trψ. We say that Trs ⊆ ginsts(A)∗ is

a safety property if for all tr ∈ ginsts(A)∗ \ Trs there exists

finite prefix t̂r of tr, such that

Trs ∩ {tr′ ∈ ginsts(A)∗ | t̂r is a finite prefix of tr′} = ∅.

The trace t̂r is called a bad prefix for Trs. Safety properties

can be further characterized by the closure. The set of finite
prefixes of a trace tr ∈ ginsts(A)∗ is defined as

pref(tr) = {t̂r ∈ ginsts(A)∗ | t̂r is a finite prefix of tr}.

For a property Tr ⊆ ginsts(A)∗, we define the set of finite
prefixes of Tr as pref(Tr) =

⋃
tr∈Tr pref(tr); the closure

of a property Tr as

closure(Tr) = {tr ∈ ginsts(A)∗ | pref(tr) ⊆ pref(Tr)}.

We say that property Tr is prefix-closed if closure(Tr) = Tr.

Safety properties can be characterized by their closure (the

proof of this fact can be found, for example, in [17]):

Tr is a safety property iff Tr is prefix-closed.

III. CONDITIONAL OBSERVATIONAL EQUIVALENCE

In this section we give our definition of conditional ob-

servational equivalence for systems induced with two sets of

multiset rewrite rules SA and SB . We model conditions as

sets of “allowable” traces TrA and TrB of the two respective

systems. Informally, our definition says that whenever it is

possible to make progress in one system while satisfying the

conditions, it must also be possible to make analogous progress

in the other system, again while satisfying the equivalence

conditions. Similarly to the definition in [2], a transition of the

environment has to be matched by the same rule, while the

transition inside the system has to be matched by a sequence

of transitions in the other system.

Definition 1 (Conditional Observational Equivalence). Two
sets of multiset rewrite rules SA and SB are conditional obser-
vational equivalent with respect to the traces Tr = TrA∪TrB ,
and an environment given by a set of multiset rewrite rules
Env, written as SA ≈TrEnv SB , if, given the LTS defined by
the rules SA ∪ IF ∪ Env and SB ∪ IF ∪ Env, there exist a
relation R containing the initial states, such that for all states
(SA,SB) ∈ R the following conditions hold.
C1. If there exists a trace trA ∈ trace(execSA(SA)) ∩ TrA,

a recipe r ∈ ρ of a rule in Env∪ IF , and a set of action
facts l ∈ F#, such that SA l−→

r
S ′A and concat(trA, [l]) ∈

TrA, then for every trace trB ∈ trace(execSB (SB)) ∩
TrB there exists S ′B ∈ G#, and a set of action facts

l′ ∈ F#, such that SB l′−→
r
S ′B , concat(trB , [l′]) ∈ TrB ,

and (S ′A,S ′B) ∈ R.
C2. If there exists a trace trA ∈ trace(execSA(SA)) ∩ TrA,

a recipe r ∈ ρ of a rule in SA, and a set of action facts
l ∈ F#, such that SA l−→

r
S ′A and concat(trA, [l]) ∈

TrA, then for every trace trB ∈ trace(execSB (SB)) ∩
TrB there exists S ′B ∈ G#, a sequence of recipes
r1, . . . , rn ∈ ρ, and a sequence of sets of action facts
l1, . . . , ln ∈ F#, n ≥ 0, such that SB l1−→

r1
. . .

ln−→
rn

S ′B ,

concat(trB , [l1, . . . , ln]) ∈ TrB , and (S ′A,S ′B) ∈ R.
The conditions must also hold in the other direction.

First, note that R is always non-empty since (∅, ∅) ∈ R.

Even though this definition makes no assumptions on the sets

of allowable traces TrA and TrB , it will be useful in practice

only when TrA and TrB are safety properties (prefix-closed).

The reason is that we look no further than the states which

can be reached from the initial state without breaking the

conditions C1., C2. and the opposite ones. For example, if

there is no way for systems to take any steps (in the initial

state) without violating the conditions, then the conditional

observational equivalence trivially holds.

Example 7. Consider the bi-sytem S from Example 6, and let
Tr denote the set of traces such that for every trace tr ∈ Tr
it holds that the action fact PL always precedes the action
fact PG. For the execution e′ from Example 5 of the system
SA = L(S), it holds that trace(e′) �∈ Tr because the last fact
tr(e′)8 = PL comes after the fact tr(e′)6 = PG. The last step
in the execution e′ breaks the condition, it is a “bad step” in
that sense. By abuse of notation, we denote this kind of steps
with a crossed arrow:

S18
PL−−−−−−→

sver([],r4) L(S)

× S19.

So, just by considering the execution e′, we cannot make
the claim that the systems L(S) and R(S) are also not
conditionally observational equivalent.

Suppose that we add the equation dec(enc(x, y), y) = x
to the system, and that the rule decsys is considered modulo
the equation. Continuing from the state S11, we can make
the following execution e′′ on the LHS, which executes the
rule ures to get the message dec(enc(n0, p0), p0), obtaines
the password p0 with the rule chal, decrypts the message with
the password to get the second nonce n0 using the rule dec,
and compares both nonces with the rule comp.

S11 −−−−−−−−−−−−−−−−−−−→
send([],[recv1([],[out1([],[z])])]

S′12 = S11 ∪ {Outenv(n0)}
I−−−−−−−−−−−−−−−−−−−−−−−→

in([],[send1([],recv1([],[out1([],[z])]))]
S′13

PL−−−−−−→
ures([],r′1)

S′14
O−−−−−−→

out([],[z])
S′15

−−−−−−−−−−−−→
recv([],[out1([],[z])])

S′16

−−−−−−−−−−−→
fresh([{f0/x}],[])

S′17 = S′16 ∪ {Fr(f0)}
PG−−−−−−→

chal([],r′2)
S′18 = (S′17 \ {C(p0),Fr(f0)}) ∪ {Outsys(p0)}

O−−−−−−→
out([],[z])

S′19 = (S′18 \ {Outsys(p0)}) ∪ {Inenv(p0)}

−−−−−−−−−−−−→
recv([],[out1([],[z])])

S′20 = (S′19 \ {Inenv(p0)}) ∪ {!K(p0)}
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
dec([],[recv1([],[out1([],[z])]),recv1([],[out1([],[z])])])

S′21

−−−−−−−→
comp([],r′3)

S′22 = S′21

S′13 = (S′12 \ {Outenv(n0)}) ∪ {Insys(n0)},
S′14 = (S′13 \ {U(p0, a0, b0), Insys(n0)})

∪ {Outsys(enc(n0, p0))},
S′15 = (S′14 \ {Outsys(enc(n0, p0))}) ∪ {Inenv(enc(n0, p0))},
S′16 = (S′15 \ {Inenv(enc(n0, p0))}) ∪ {!K(enc(n0, p0))},
S′21 = S′20 ∪ {!K(n0)},

r′1 = [ureq2([], [psgen1([{a0/a}, {b1/b}], [fresh1([{p0/x}], [])]),
in1([], send1([], [recv1([], [out1([], [z])])]))])],

r′2 = [psgen2([{a0/a}, {b1/b}], [fresh1([{p0/x}], [])]),
fresh1([{f0/x}], [])]

r′3 = [dec1([], [recv1([], [out1([], z])), recv1([], [out1([], [z])])]),
recv1([], [out1([], [z])])].

Again, the last step is not possible on the RHS since we
did not get the second nonce n0 in the state S′′21 = S′20 ∪#

{!K(dec(enc(n0, p0), f0))}:

S′′21 −−−−−−−→
comp([],r′2)) R(S)

× S′′22

But now, trace(e′′) = [PL,O, I,PL, I,PL,O,PG, I] ∈ Tr, and
we can conclude that the L(S) and R(S) are not conditionally
observational equivalent. The execution e′′ represents the sound
off-line guessing attack.

IV. CONDITIONAL DEPENDENCY GRAPH EQUIVALENCE

Our goal is to automate conditional observational equivalence

in a manner similar to the earlier work with observational

equivalence, by using a sound approximation in a form of

dependency graph equivalence [2] (bi-equivalence) which is

much easier to verify. All proofs can be found in the appendix.

We first introduce the notion of partial dependency graph by

generalizing an existing definition of a dependency graph [2]

such that premises without incoming edges are allowed. Hence,

partial dependency graphs correspond to fragments or “suffixes”

of executions that may have some open (unresolved) premises.

The motivation for partial dependency graphs comes from

bi-equivalence verification: rules can have infinitely many

dependency graphs that can be simulated on the other side. This

would mean that the backward constraint solving algorithm that

verifies bi-equivalence by naively searching for the dependency

graphs would never stop since every backward “step” that

satisfies the condition would lead to a premise that needs to be

resolved. The question, then, is whether at some point one can

stop the search and conclude that all dependency graphs of the

rule have been considered? The idea is to stop the search with

a set of partial dependency graphs, such that every dependency

graph of the rule is an extension of some partial dependency

graph in the set. Later, we will call this set a covering.

Definition 2 (Partial Dependency Graph). Let E be an
equational theory, R a set of labeled multiset rewrite protocol

rules, Env an environment. We say that a pair pdg = (I,D)
is a partial dependency graph (PDG) modulo E for R, if
I ∈E (ginsts(R ∪ IF ∪ Env))∗, D ⊆ N2 × N2 and the
following holds.

PDG1 For every edge (i, u) � (j, v) ∈ D, it holds that
i < j and concs(Ii)u =E prems(Ij)v .

PDG2 Every premise of pdg has at most one incoming
edge.

PDG3 Every linear conclusion of pdg has at most one
outgoing edge.

PDG4 The Fresh instances are unique.

The set of all partial dependency graphs of rules R modulo
E is denoted by pdgraphsE(R); a premise without incoming
edges is called an open premise; the set of all open premises of
a partial dependency graph pdg is denoted by oprems(pdg);
the root of a partial dependency graph pdg = (I,D) is its last
node: root(pdg) = Imax(idx(I)); the set of partial dependency
graphs of a rule ru ∈ R is pdgraphsE(ru) = {pdg ∈E
pdgraphs(R) | root(pdg) ∈E ginsts(ru)}.

Since every dependency graph is also a partial dependency

graph, all further definitions carry over including the restricted
partial dependency graph (RPDG). We say that partial depen-

dency graphs are equivalent if they have the same structure —

that is, the nodes are instances of the same rules. Note that

the equivalence of partial dependency graphs does not depend

on the exact ground terms used in rule instantiations.

Definition 3 (Partial Dependency Graph Equivalence). Let R
be a set of labeled multiset rewrite protocol rules and Env
an environment. For a S = pdgraphs(R ∪ Env ∪ IF ), we
say that the partial dependency graphs pdg = (I,D) ∈ S and
pdg′ = (I ′, D′) ∈ S, are equivalent, written as pdg �S pdg′,
if D = D′, |I|= |I ′|, idx(I) = idx(I ′), and for all i ∈ idx(I)
it holds that Ii and I ′i are ground instances of the same rules.

Obviously, the relation � is an equivalence relation on

pdgraphs(R), and the equivalence class of the partial depen-

dency graph pdg will be denoted by [pdg], while the quotient
set will be denoted by pdgraphs(R)/�. We will say that

[pdg] ∈ pdgraphs(R)/� is a partial dependency graph
class. The covering set that we mentioned at the beginning

will consist of partial dependency graph classes.

Figure 1 shows an example of a partial dependency graph

class consisting of infinitely many equivalent partial dependency

graphs, one for each n, p, f ∈ Domfr, and a, b ∈ Dompub.

One of its instances represents part of the execution e′′

from Example 7. We see that the rule instance sreq5 has

the open premise Insys((a, b)) which we can easily extend so

that we get the execution e′′. Again, the execution trace does

not violate the phase condition and corresponds to a successfull

off-line guessing attack.

Using the equivalence relation � we now define a mirror of a

partial dependency graph. Recall that a mirror of a dependency

graph of one system models a matching execution of the other

system.
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fresh1 :
Fr(p)

Fr(p)

!P(p, a, b) C(p)
psgen2 : PL

!P(p, a, b)

U(p, a, b) Outsys((a, b))
ureq3 : PL

Insys(〈a, b〉) !P(p, a, b) Fr(n)

Outsys(n) S(p, a, b, n)
sreq5 : PL

fresh4 :
Fr(n)

Outsys(n)

Inenv(n)
out6 :

Inenv(n)

!K(n)
recv7 :

!K(n)

Outenv(n)
send8 :

Outenv(n)

Insys(n)
in9 :

Insys(n)U(p, a, b)

Outsys(enc(n, p))
ures10 : PL

Outsys(enc(n, p))

Inenv(enc(n, p))
out11 :

Inenv(enc(n, p))

!K(enc(n, p))
recv16 :

Fr(f) C(p)

Outsys(p)
chal13 : PG

fresh12 :
Fr(f)

!K(enc(n, p)) !K(p)

!K(n)
dec17 :

Outsys(p)

Inenv(p)
out14 :

Inenv(p)

!K(p)
recv15 :

!K(n) !K(n)
comp18 :

Fig. 1: Partial dependency graph class.

Definition 4 (Partial Dependency Graph Mirror). Let S be a
protocol bi-system, Env an environment, L = L(S)∪IF∪Env
and R = R(S) ∪ IF ∪ Env corresponding multiset rewrite
systems, and G = pdgraphs(L) ∪ pdgraphs(R). Mirror
of a partial dependency graph pdgL ∈ pdgraphs(L) is
defined as mirror(pdgL) = {pdgR ∈ pdgraphs(R) |
pdgR �G pdgL}; mirror of a partial dependency graph class
[pdgL] ∈ pdgraphs(L)/� is defined as mirror([pdgL]) =⋃
pdg∈[pdgL]mirror(pdg); We define analogously in the other

direction.

Notice that, although the quotient set is defined on the union,

a mirror only considers equivalent partial dependency graphs

from the “other” side. This definition of a mirror is equivalent

to that of Basin et al. [2] (Definition 3): the class of partial

dependency graphs corresponds to the set of dependency graphs

for all possible instantiations of diff-variables.

The following lemma states that the mirror of a partial

dependency graph and its equivalence class coincide. This fact

will be used later for proving conditional dependency graph

equivalence.

Lemma 1. Let S be a protocol bi-system, Env an environment,

L = L(S)∪IF ∪Env and R = R(S)∪IF ∪Env correspond-
ing multiset rewrite systems, and [pdgL] ∈ pdgraphs(L)/�.
Then, mirror(pdgL) = mirror([pdgL]).

We would like to extend a partial dependency graph to

a possibly complete execution. For that reason, we define

concatenation.

Definition 5 (Partial Dependency Graph Concatenation).
For a partial dependency graph pdg = (I,D), |I| = n,
with an open premise prems(Ii)u ∈ oprems(pdg), and
a partial dependency graph pdg′ = (I ′, D′), |I ′| = m,
such that they do not share the same Fr(x) instances, and
concs(I ′m)v = prems(Ii)u, we define partial dependency
graph concatenation pdg′′ = (I ′′, D′′), denoted by pdg′′ =
pdg′ � pdg, where pdg and pdg′ keep the same structure
with their rule sequence numbers recalculated, such that
I ′′ = [I1, . . . , Ii−1, I

′
1, . . . , I

′
m, Ii, . . . , In], along with the edge

between them (m+ i, v) � (m+ i+1, u) ∈ D′′. In that case,
we will say that pdg′ is an partial dependency graph of an
open premise prems(Im+i+1)v .

For every edge of pdg′ � pdg it holds that it is either an

edge of pdg, an edge of pdg′, or an edge between them, so

PDG1 is satisfied. The only incoming edge added is that of

an open premise, so PDG2 is satisfied. Since the conclusions

of root(pdg′) have, no outgoing edges by definition, PDG3 is

satisfied. Finally, PDG4 is required by definition.

With these definitions, we are now ready to define conditional

dependency graph equivalence.

Definition 6 (Conditional Dependency Graph Equivalence).
Let S be a bi-system and consider multiset rewrite systems
L = L(S)∪IF ∪Env and R = R(S)∪IF ∪Env. For a set of
traces Tr = TrA ∪TrB we say that L and R are conditional
dependency graph equivalent written as L(S) ∼TrDG,Env R(S),
if dg ∈ dgraphs(L ∪ R) such that trace(dg) ∈ Tr, implies
mirror(dg) �= ∅, and for all dg′ ∈ mirror(dg) it holds that
trace(dg′) ∈ Tr.

The following theorem states that conditional dependency

graph equivalence is a sound approximation of conditional

observational equivalence.

Theorem 1. Let S be a bi-system and Tr = TrL ∪ TrR be a
set of traces. If L(S) ∼TrDG,Env R(S) then L(S) ≈TrEnv R(S).

We will use this result to automate verification of condi-

tional observational equivalence for a certain kind of simple

conditions.

V. AUTOMATING CONDITIONAL OBSERVATIONAL

EQUIVALENCE

Now we turn our attention to the conditions of the observa-

tional equivalence. We will consider only properties that are

invariant to mirroring — that is, the properties that hold for a

dependency graph if and only if they hold for its mirrors, if

they exist.
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Definition 7 (Trivially Mirrored Property). Let S be a bi-
system, Env an environment, L = L(S) ∪ IF ∪ Env and
R = R(S)∪IF ∪Env corresponding multiset rewrite systems.
We say that Tr = TrA ∪ TrB is a trivially mirrored property
if for all dg ∈ dgraphs(L ∪ R), such that trace(dg) ∈ Tr
and mirror(dg) �= ∅, implies trace(mirror(dg)) ⊆ Tr.

Many useful conditions are trivially mirrored, and in general

we can have an automated procedure where this assumption is

discharged with a verified proof. In this paper, however, we

restrict ourselves to properties for which we can conclude from

the syntax of the formulas alone that they are trivially mirrored.

These properties are called Type-0 properties, and they rely

only on the structure of the dependency graph, and not on

the values (terms) in rule instantiations. Since mirrors have

the same structure, Type-0 properties will clearly be trivially

mirrored.

Definition 8 (Type-0 Property). A guarded trace property ψ,
such that facts(ψ) ⊆ F0 and ∃ /∈ quant(ψ), is called Type-0
property.

Type-0 properties suffice to express some useful conditions

such as protocol phases, which are later used in the off-line

guessing:

∀#i#j. PhaseLearn()@i ∧ PhaseGuess()@j =⇒ #i < #j;

rules that should be executed only once:

∀ #i #j. Unique()@i ∧ Unique()@j =⇒ #i = #j;

or rules that should never be executed:

∀ #i. Bad()@i =⇒ ⊥.
On the other hand, they cannot capture equality checks

because values must be taken into account:

∀ x y #i. Eq(x, y)@i =⇒ x = y.

The following lemma and corollary state that the Type-0

properties are trivially mirrored under-approximated safety

properties.

Lemma 2. A Type-0 property is trivially mirrored.

Corollary 1. A Type-0 property is prefix-closed.

Now we focus on termination in the case where unbounded

number of sessions and infinite execution “loops” are possible.

Informally, we can terminate when only independent open

premises remain — the attacker can choose and fill in

arbitrary values for these premises without affecting subsequent

execution.

Given a partial dependency graph class [pdg] = [(I,D)],
we say that an open premise prems([I]i)u = K↑(x)
is a simple premise if x ∈ Dommsg. Simple premises

prems([I]i)u and prems([I]j)v are dependent premises if for

every pdg′ = (I ′, D′) ∈ [pdg] with prems(I ′i)u = K↑(s) and

prems(I ′j)v = K↑(t), it holds that i �= j or u �= v, and t = s.
Otherwise, we say that they are independent premises. A simple

premise is an independent if it is independent with every other

open premise. A Partial dependency graph class is trivial if

all its open premises are simple premises that are pairwise

independent. Independent premise p has the property that every

partial dependency graph of p has non-empty mirrors.

As mentioned at the beginning, a covering allows us to

stop searching for all dependency graphs of a rule, since

every dependency will be a “trivial extension” of some partial

dependency graph from the covering. The definition is the

following.

Definition 9 (Covering). Let P be a set of multiset rewrite
protocol rules, Env an environment, and G = P ∪ IF ∪Env.
The set of restricted trivial partial dependency graph classes
CovS ⊆ pdgraphs(G)/� is the covering for the set of
dependency graphs S ⊆ pdgraphs(G), if for every dependency
graph dg ∈ S, there exists a partial dependency graph class
[pdg] ∈ C and the dependency graphs dgp1 , . . . , dgpn ∈
dgraphs(G) of open premises p1, . . . , pn ∈ oprems(pdg),
such that the following holds:

dg = dgpn � (dgpn−1 � (· · ·� (dgp1 � pdg) · · ·)).

A covering is a set because there may be more then one

way to get to the trivial partial dependency graph classes. For

example, given the system⎧⎪⎪⎨
⎪⎪⎩

ru0: [In(x)]−[]→[B(x)],
ru1: [B(x)]−[]→[A(x)],
ru2: [In(x)]−[]→[A(x)],
ru3: [A(x)]−[]→[],

the covering for the set of dependency graphs of the rule ru3
consists of two trivial partial dependency graph clases.

Finally, with a covering that has non-empty mirrors, as given

in the next definition, and Type-0 properties, we can prove the

conditional dependency graph equivalence.

Definition 10 (Partially Mirrored Rule). Let S be a bi-system,
Env an environment, L = L(S)∪IF ∪Env and R = R(S)∪
IF∪Env corresponding multiset rewrite systems. Rule r ∈ L∪
R is partially mirrored if there exists a covering Covdgraphs(r)
of the set of dependency graphs dgraphs(r) of a rule r, such
that, for every [pdg] ∈ Covdgraphs(r), mirror([pdg]) �= ∅ is
trivial.

Lemma 3. Let S be a bi-system, ND a set of normal deduction
rules, L = L(S) ∪ IF ∪ Freshsys ∪ ND and R = R(S) ∪
IF ∪ Freshsys ∪ND corresponding multiset rewrite systems,
and ψ a Type-0 property. If the rule r ∈ L ∪ R is partially
mirrored, then L(S) ∼TrψRPDG R(S).

The above lemma directly translates into a termination

condition when constraint solving in TAMARIN is used to

verify conditional observational equivalence.

Also, it is important to note that the proof depends on the

assumption that ψ is a Type-0 property, and it is not obvious

how to extend the lemma (and hence the termination criteria) to

arbitrary safety properties. For example, a partial dependency

9



graph dg with a single open premise can have completions

that do and completions that do not satisfy ψ. The same is,

of course, true for mirrors of dg and there is no obvious way

to establish a correspondence between completions of dg that

satisfy the property ψ and their mirrors.

VI. OFF-LINE GUESSING

In this section, we use conditional observational equivalence

to model off-line guessing resistance. Before going into

technical details, we first illustrate the definition, requirements,

and constraints of off-line guessing resistance in multiset

rewriting.

Informally, a protocol that uses secrets (most often weak
secrets, such as passwords) is resistant to such attacks if, after

eavesdropping or participating in the protocol, the attacker

cannot later use the obtained information to verify guesses

(without interacting with the protocol again). More formally,

off-line guessing resistance can be described as the following

two-phase game. Starting from the learning phase, an adversary

interacts with the protocol in a standard way by instantiating

its rules and thereby learning the messages exchanged during

protocol execution. When it reaches the guessing phase, the

adversary can no longer interact with the protocol, but it is

given a challenge: the weak secret and a fresh value. We now

say that the protocol is resistant to off-line guessing if the

adversary cannot distinguish the weak secret from a fresh

value.

Note that this informal definition is analogous to the

definition used by the PROVERIF [1], which is based on

the Corin et al. [19]. While PROVERIF uses observational

equivalence with built-in phases (stages), we use conditional

observational equivalence, where the condition is the first-order

formula

∀#i#j. PhaseLearn()@i ∧ PhaseGuess()@j =⇒ #i < #j.

Of course, we annotate all protocol rules with the ac-

tion PhaseLearn(), and the challenge itself with the action

PhaseGuess(). Note that phases are necessary when verifying

off-line guessing resistance with more than one session.

Otherwise, an adversary can distinguish the secret from the

fresh value by instantiating a new session of the protocol.

In order to verify off-line guessing resistance in protocols that

use symmetric encryption with keys derived from weak secrets

(like EAP-EKE), we need to introduce an additional primitive

wsenc — weak symmetric encryption. The current symmetric

encryption scheme in TAMARIN is too strong — it is impossible

for the adversary to apply the following deconstruction rule to

decrypt a message with a wrong key

[K↓(senc(x, y)),K↑(y)]−[]→[K↓(x)] .
In a sense, symmetric encryption includes integrity protection.

This gives the adversary the ability to verify guesses at secrets,

given a ciphertext where those secrets are used as keys:

Decryption succeeds (the rule can be applied) if the challenge

is the weak secret, and fails (the rule cannot be applied) if the

challenge is a fresh value.

Since we are dealing with weak secrets, the security

assumptions are in a sense reversed — instead of using possibly

weak data with a strong key, here it is necessary to protect

strong (high entropy) data with a weak key. More precisely,

data encrypted with a weak key must be indistinguishable from

the random value. It imposes a constraint on what can and

cannot be encrypted with a weak key; roughly speaking, we

cannot use data that has a known structure. This is a technical

problem, since we need to add reasoning rules for the kinds

of payload data to be encrypted with weak keys. In this paper,

we only consider Diffie-Hellman public keys ‘g’ˆx as payload

data and this is sufficient to analyze the EAP-EKE protocol.

To allow decryption of a message with a possibly wrong

key, we add the standard symmetric encryption equation

wsdec(wsenc(x, y), y) = x (1)

to the equational theory and extend the adversary rules with

the following rule

[K↓(wsenc(x, y)),K↑(z)]−[]→[K↓(wsdec(wsenc(x, y), z))]

When this rule is applied in execution, the normalized

conclusion will always be either x or wsdec(wsenc(x, y), z)
corresponding to the decryption with the correct or incorrect

key. However, if the adversary now tries to encrypt both terms

using the challenge, it will obtain different terms on two sides

(wsenc(x, y) and wsenc(wsdec(wsenc(x, y), z), z)) leading to

a false attack. To address this we need to allow the adversary

to “undo” the decryption by adding the following equation to

the theory

wsenc(wsdec(x, y), y) = x. (2)

Now, both wsenc and wsenc become reducible function

symbols, and we cannot use them in rule premises (to en-

crypt/decrypt with pattern matching). However, we believe this

is necessary to faithfully model weak symmetric encryption.

Although the equations (1) and (2) can be user-specified in

TAMARIN, their corresponding adversary deconstruction rules

cannot be used to describe decryption with a possibly wrong

key: wsdec(wsdec(x, y), z); for this we need the previously

specified adversary rule.

Finally, since the plaintext encrypted with weak symmetric

encryption in EAP-EKE is a Diffie-Hellman public key, we need

to add assumptions that such values are indistinguishable from

random values (as long as the exponents are indistinguishable

from random values)1. For that purpose we need to add

adversary rules that exponentiate the terms corresponding to

decryptions with wrong keys.

K↓exp(wsdec(wsenc(xˆy, z), w)) K↑e (e)

K↓noexp(wsdec(wsenc(xˆy, z), w)ˆe)
.

1Note that, in practice, this assumption does not hold for all Diffie-Hellman
groups.
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fresh :
Fr(a)

fresh :
Fr(b)

fresh :
Fr(n)

Fr(b)Fr(a) Fr(n)
Out(wsenc(‘g’ˆn, a)) Out(a)

ru :

Out(wsenc(‘g’ˆn, a))

!K↓(wsenc(‘g’ˆn, a))
irecv :

Out(a)

!K↓(a)
irecv :

!K↓(a)
!K↑(a)

coerce :

!K↓(wsenc(‘g’ˆn, a)) !K↑(a)
!K↓(‘g’ˆn)

d_wsdec :

!K↓(‘g’ˆn) !K↑(x)
!K↓(‘g’ˆ(n ∗ x))d_exp :

!K↓(‘g’ˆn)
!K↑(‘g’ˆn)

coerce :

!K↑(‘g’ˆn) !K↑(a)
!K↑(wsenc(‘g’ˆn, a)

c_wsenc :

!K↑(wsenc(‘g’ˆn, a))!K↓(wsenc(‘g’ˆn, a))
!K↑(wsenc(‘g’ˆn, a)

iequality :

Fig. 2: Dependency graph dgwsenc ( ), partial depen-

dency graph class [dgexp] ( ), and dependency graph

dgiequ ( ).

A. Modelling Weak Symmetric Encryption

All the equations and rules mentioned will now be introduced

more formally by using the following protocol as a motivation.

Starting from the existing TAMARIN’s equations and rules,

we iteratively verify the protocol for the off-line guessing

resistance, introducing new rules and equations when necessary.

Let ND be a set of normal deduction rules [2, Figure 7],

IF the interface, and Fresh the fresh system rules. Consider

the bi-system

S =

{
ru:

Fr(a:fr) Fr(b:fr) Fr(n:fr)

Out(wsenc(‘g’ˆn, a:fr)) Out(diff(a:fr, b:fr))

}
,

with the weak secret a:fr, where the signature Σg =
{wsenc/2,wsdec/2} and the set of equations Eg =
{wsdec(wsenc(x, y), y) = x} form the equational presentation

Eg = (Σg, Eg). Let Rg be the rewrite system of Eg, and

L = L(S)∪IF∪Fresh∪ND, R = R(S)∪IF∪Fresh∪ND
corresponding multiset rewrite systems. Both systems corre-

spond to a simple protocol that encrypts a fresh Diffie-Hellman

public key with a fresh key using weak symmetric encryption.

Together with the ciphertext, the protocol outputs a challenge

— encryption key on the LHS and the new fresh value on the

RHS.

It does not hold that L(S) ∼DG,ND R(S) because the

dependency graph dgwsenc, in Figure 2 has no mirror. The rule

d_wsdec, on the LHS, can be used to decrypt wsenc(‘g’ˆn, a)
since we have the key a, but no such rule can be used on

RHS. This attack is sound if we assume that the adversary

knows the key used to encrypt the message beforehand — it

can distinguish between a and b from the start. But in off-line

guessing, the attack is not sound since the adversary cannot

distinguish a from b, so it must be able to decrypt the message

on the RHS also. For this purpose we define the following

rule.

d_wsdecg :
K↓e1(wsenc(x, y)) K↑e2(z)

K↓exp(wsdec(wsenc(x, y), z))
,

where ei ∈ {exp, noexp}, i ∈ {1, 2} (see [18, p. 7]). If y = z
then the rule would give us K↓exp(wsdec(wsenc(x, y), z)) ↓Rg=
K↓exp(x) since all terms have to be normalized; otherwise we

get K↓exp(wsdec(wsenc(x, y), z)).
It still does not hold that L(S) ∼DG,ND R(S) because

the trivial partial dependency graph class [dgexp] in Figure 2

has no mirror. The reason is that we cannot apply the rule

d_exp on the RHS since term wsdec(wsenc(‘g’ˆn, a), b) is

not an exponentiation. In practice, this would mean that we

can distinguish between the public key ‘g’ˆn and a value

wsdec(wsenc(‘g’ˆn, a), b). But, assuming we use the safe Diffie-

Hellman groups [20, Section 7.1], no such distinction is

possible. This brings us to the definition of the following

exponentiation rule.

d_expg :
K↓exp(wsdec(wsenc(xˆy, z), w)) K↑e (e)

K↓noexp(wsdec(wsenc(xˆy, z), w)ˆe)
.

Since we are using restricted normal dependency graphs,

we should comment on why the condition N7) [2, Defi-

nition 5] is not violated. The condition states that for all

nodes [K↓exp(s1),K
↑
e (t1)]−[]→[K↓noexp(s2ˆt2)], s2 ∈ PN implies

inp(t2) �⊆ inp(t1). For z = w, we have the existing

exponentiation rule [K↓exp(xˆy),K↑e (e)]−[]→[K↓noexp(xˆ(y ∗ e))],
otherwise wsdec(wsenc(xˆy, z), w) �∈ PN so the condition

trivially holds.

We still have a dependency graph dgiequ from the Figure 2

without any mirror. This happens because the rule c_wsenc
on the RHS looks like

c_wsencR :
K↑(wsdec(wsenc(‘g’ˆn, a), b)) K↑(b)

K↑(wsenc(wsdec(wsenc(‘g’ˆn, a), b), b))
.

Since the conclusion K↑(wsenc(wsdec(wsenc(‘g’ˆn, a), b), b))
is already in normal form, the rule iequality cannot be applied.

To do so, we use the equation wsenc(wsdec(x, y), y) = x to

ensure that the same rule normalizes to K↑(wsenc(‘g’ˆn, a))).
Finally, we define the set of equations

E′g =
{
wsdec(wsenc(x, y), y) = x,

wsenc(wsdec(x, y), y) = x

}
,

and call E ′g = (Σg, E
′
g) the weak symmetric encryption scheme.

It is obvious that the corresponding rewrite system R′g is

subterm-convergent. Also, to faithfully model EAP-EKE which

uses encryption schemes both with and without integrity

protection, we need to use both TAMARIN’s “standard” and

weak symmetric encryption in our formal model.

Note that our off-line guessing adversary is sound with re-

spect to the Diffie-Hellman rules used in the EAP-EKE protocol,
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since for these rules we prevented the adversary from perform-

ing false attacks. On the other hand, our off-line guessing

adversary is not sound with respect to all the normal deduction

rules from [2, Figure 7]. For example, if we modify the previous

bi-system S to use the fact Out(wsenc(inv(n:fr), a:fr)), the

adversary could perform the false off-line guessing attack by

first decrypting n with the weak secret a, and then using

the inverse rule [K↓(inv(n))]−[]→[K↓(n)] to obtain n which is

possible on the LHS but not on the RHS.

On the implementation side of TAMARIN, we use the ap-

proach analogous to the current XOR in equivalence mode [16]

and generate all the mentioned rule instances at runtime.

Off-line guessing resistance can now be defined as follows.

Definition 11. Let S be a bi-system such that for every rule
ru ∈ S holds that PL() ∈ set(acts(ru)), and there exists a
rule ru′ ∈ S such that G(w:fr) ∈ set(concs(ru′)), where w
is the weak secret. Given the rule

Challenge: [G(w:fr),Fr(w′:fr)]−[PG]→[Out(diff(w,w′))],

and a system Q = IF ∪Freshsys ∪ND′ ∪ {Challenge}, let
L = L(S)∪Q and R = R(S)∪Q. We say that a bi-system S

is off-line guessing resistant against w if L(S) ∼TrψRPDG R(S),

ψ ≡ ∀ #i #j. PL()@i ∧ PG()@j =⇒ #i < #j.

The fact PL() denotes the learning phase, while the fact

PG() denotes the guessing phase. The learning phase must

be present in every rule except the Challenge in which the

guessing phase occurs. The fact G allows us to move from the

learning phase to the guessing phase at any time (rule), the

other direction is not allowed.

VII. CASE STUDIES

In this section, we present the results of case studies and

discuss the challenges faced when attempting to analzye EAP-

EKE with an unbounded number of client and server sessions.

The protocols were analyzed and the proofs verified using a

version of the TAMARIN prover modified to support conditional

observational equivalence with Type-0 properties as described

in this paper. As mentioned in the introduction, TAMARIN

already supports restrictions in observational equivalence mode,

but we do not use these “legacy” restrictions in the case studies.

A. Encrypted Key Exchange (EKE) off-line guessing

Encrypted Key Exchange (EKE) is a Password Authenticated

Key Exchange (PAKE) protocol that combines asymmetric and

symmetric cryptography to mutually authenticate two agents

sharing a common weak secret — password, and derive a

cryptographically strong shared secret — session key. It was

initially described by Bellovin and Merritt [21]. There are

several variants of the protocol, some of which have been

successfully attacked [22]. Here we focus on EAP-EKE —

the RFC variant of the EKE protocol [20], which is based

on the original exponential exchange (Diffie-Hellman) variant

(DH-EKE) and is currently considered secure. Both EAP-

EKE and DH-EKE are almost equivalent, with EAP-EKE

Client Server

1 :
〈$C, ID_C〉

EAP-EKE-ID/Request

2 :
〈$S, ID_S〉

EAP-EKE-ID/Response

Knows(pass)
Fresh(x_c)
y_c← gx_c

3 :
wsenc(y_c, pass)

EAP-EKE-Commit/Request

Knows(pass)
Fresh(x_s)
Fresh(nonce_s)
y_s← gx_s

key ← y_cx_s

4 :
〈wsenc(y_s, pass), senc(nonce_s, key)〉

EAP-EKE-Commit/Response

Fresh(nonce_c)
key ← y_sx_c

5 :
senc(〈nonce_s, nonce_c〉, key)

EAP-EKE-Confirm/Request

6 :
senc(nonce_c, key)

EAP-EKE-Confirm/Response

Fig. 3: EAP-EKE message exchange

having the additional two messages for cryptographic primitive

negotiation.

The protocol is informally described in Figure 3. The EAP-

EKE-ID messages are used to exchange identities; EAP-EKE-

Commit to exchange ephemeral public keys y_c and y_s,
where the server also sends the challenge nonce_s; EAP-EKE-

Confirm to complete mutual authentication using the nonce_s
and nonce_c, and generate the session key.

We make some simplifications compared to the RFC EAP-

EKE. In particular, we do not include the entire EAP-EKE-ID

payload used to negotiate the group, encryption algorithms,

pseudo-random functions, and keyed message digest algorithms.

Moreover, in our model, the client initiates the connection

instead of the server.

We verified EAP-EKE to be off-line guessing resistant

according to the Definition 11 while allowing an unbounded
number of client and two server sessions per client; the

verification took approximately eight hours on a commodity

desktop computer. The setup and details are explained in the

appendix.

The reason why we could not verify with an un-

bounded number of server sessions is the following.

First, in our TAMARIN EAP-EKE model, the rule

ServerCommitResponse, which is used to receive EAP-EKE-

Commit/Request message, can receive anything from the

environment: Since the function symbol wsenc is reducible

with respect to the equation wsenc(wsdec(x, y)y) = x,

and because the ∗-restricted protocol does not allow re-

ducible function symbols in the rule premises, we must

have In(client_commit_request), and then use y_c =
wsdec(client_commit_request, pass) to get the client’s pub-
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In(client_commit_request) St(∼tid.3, . . . ). . .
Out(wsenc(gˆ∼x_s.3,∼pass)). . .

#vr.7 :

In(wsenc(gˆ∼x_s.3,∼pass)) St(∼tid.2, . . . ). . .
Out(wsenc(gˆ∼x_s.2,∼pass)). . .

#vr.5 :

In(wsenc(gˆ∼x_s.2,∼pass)) St(∼tid.1, . . . ). . .
Out(wsenc(gˆ∼x_s.0,∼pass)). . .

#vr.3 :

In(wsenc(gˆ∼x_s.0,∼pass)) St(∼tid.0, . . . ). . .
Out(wsenc(gˆ∼x_s.1,∼pass)). . .

#vr.0 :

!K↑(client_commit_request)@#vk.5

Fig. 4: Infinite regression of ServerCommitResponse

lic key. Second, the fact In(client_commit_request) has sev-

eral variants, including the variant In(wsenc(gˆ∼x_s,∼pass)).
Since the same rule instance ServerCommitResponse also has

Out(wsenc(gˆ∼x_s,∼pass)) as a conclusion, we get an infinite

regression as shown in Figure 4. Timepoints #vr.0, #vr.3,

#vr.5, #vr.7 represent different instances of the same rule

ServerCommitResponse, each with its own thread identifier

tid.

Now, normally we would solve this kind of problem with

induction:

lemma Start_Before_Loop [use_induction, diff_reuse]:

”∀ x y #j. Loop(x, y)@j =⇒ (∃ #i. Start(x)@i ∧ i < j)”

where Loop(x, y) ∈ acts(ServerCommitResponse), and

Start(x) ∈ acts(ClientCommitRequest). But in this case, the

lemma does not hold because we cannot distinguish the client’s

EAP-EKE-Commit/Request message from a fresh value. We

cannot use tagging like wsenc(〈1, gˆ∼x_s〉,∼pass), since an

adversary could easily distinguish an ordered pair from a fresh

value. Moreover, as discussed earlier, the message cannot use

any known structure whatsoever, as this would render the

protocol susceptible to an off-line guessing attacks.

Note that these “looping” runs are not a feature of our

model, but are in principle possible in the real deployment of

the EAP-EKE protocol since the server can, in fact, not verify

that the received messages decrypt to anything meaningful.

This seems to be a fundamental limitation of the method of

verifying observational equivalence based on coverings with

partial dependency graphs — there are protocols like EAP-

EKE whose dependency graphs do not admit a finite covering

with partial dependency graphs satisfying the conditions of

Lemma 3. As a consequence, we must use a bounded number

of server sessions, in our case we limit the number of server

sessions to two per client. This limitation is implemented in a

setup rule that generates a shared password for a client and a

server.

Along with the off-line guessing resistance, we

also verified several trace properties in an unbounded

number of sessions including the injective_agreement
and perfect_forward_secrecy. These include aliveness,
weak_agreement, noninjective_agreement,

B. LAK’06 and CH’07 game-based unlinkability

LAK’06 [23] is a lightweight RFID protocol with mutual

authentication and tag untraceability. CH’07 [24] is RFID

mutual authentication scheme that also provides tag untrace-

ability. Both protocols were verified by TAMARIN [16] using

the UK1, UK2 and UK3 untraceability definitions, and their

models are currently available in the TAMARIN source code

repository. A limitation in verifying game-based unlinkability

UK1 was inability to model the learning and guessing phase

(weak phases), and, as a consequence, these models did not

consider readers during the learning phase. We take CH’07

and LAK’06 and verify UK1 for an unbounded number of tags

and readers and two pairs of tags and readers, respectively.

LAK’06 took 28.2 minutes, while CH’07 took 18.9 minutes

to verify.

VIII. RELATED WORK

There are many flavors of equivalence properties in the

symbolic model of protocol analysis [6, 7], but we are

not aware of other attempts to combine trace properties and

observational equivalence properties in that model. In the

computational model of cryptography, such constructions are

more common since one needs indistinguishability for stating

basic concepts such as key secrecy. For example, Datta et

al. [25] develop a computational logic for protocols and support

formulas that combine trace and indistinguishability properties.

Corin and den Hartog [26] and Barthe et al. [27] develop

models for reasoning about cryptographic proofs and reductions

that combine reasoning about deterministic events in traces

and probabilistic equivalence expressions.

Many researchers considered off-line guessing attacks in the

symbolic model, and almost all of them have used some EKE

variant as the main example [28, 29, 3, 19]. Lowe [28] was the

first to analyze guessing attacks on protocols in [28] — he uses

CSP (Communicating Sequential Processes) process algebra

and the FDR model checker to analyze an asymmetric variant

of EKE (PK-EKE) that uses public key encryption instead

of Diffie-Hellman. FDR is constrained to bounded number of

sessions and the verification was done with one initiator and

responder.

Finally, the PROVERIF tool was used by Blanchet et al. [1]

to verify several EKE variants, including the DH-EKE in

unbounded number of client and server sessions. However,

PROVERIF has rather limited support for Diffie-Hellman

exponentiation with only one equation for commutative expo-

nentiation: exp(exp(g, x), y) = exp(exp(g, y), x). There is an

extension with a richer support [30], but it lacks observational

equivalence. It is worth mentioning that PROVERIF is orders of

magnitude faster than our analysis using TAMARIN; verifying

DH-EKE in less than two seconds, as opposed to nearly eight

hours. Apart from mentioned PROVERIF analysis, we are not

aware of any other work that verifies EKE in unbounded

number of server and/or client sessions.

Besides the multiset rewriting setting, our approach is unique

by using conditions to implement protocol phases — other

approaches implement multi-phase experiments using a global
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synchronization mechanism. Also, we are the first to verify

EAP-EKE using an equational theory for the Abelian group

of Diffie-Hellman exponents.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed combining trace and equiv-

alence properties into conditional observational equivalence
with the goal of being able to analyze a greater space of

protocols and properties. We give the definitions in the multiset

rewriting setting and extend the method of Basin et al. [2]

to support conditions in observational equivalence properties.

Using conditional observational equivalence, we give the first

analysis of off-line guessing attacks in the multiset rewriting

framework. The case study looks at the EAP-EKE password

authenticated key exchange protocol and verifies off-line

guessing resistance (along with a number of trace properties)

in a setting with unbounded number of clients and two servers

per client.

There are several limitations of our method that we wish

to address in future work. First and foremost, we would like

to extend the class of allowed conditions for observational

equivalence. Instead of considering only Type-0 properties, we

wish to allow the user to prove (using TAMARIN of course)

that an arbitrary property is a trivially mirrored property and

use it as a condition of equivalence. We also want to extend the

verification procedure to a class of safety properties that are

not trivially mirrored, but this requires different approach for

termination since our current method (Lemma 3 to be precise)

does not easily generalize to any safety property. For example,

a trivial dependency graph could easily be extended with a

prefix that satisfies an equality check, while its mirror does

not.

Finally, we would like to perform a more fine-grained

analysis of off-line guessing resistance that it is closer to the

properties required in the computational model. In particular,

we wish to quantify the level of resistance and say, for example,

that an active attacker can validate at most one password guess

per protocol execution.
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X. APPENDIX

A. Lemmas and Theorems

Lemma 1. Let S be a protocol bi-system, Env an environment,
L = L(S)∪IF ∪Env and R = R(S)∪IF ∪Env correspond-
ing multiset rewrite systems, and [pdgL] ∈ pdgraphs(L)/�.
Then, mirror(pdgL) = mirror([pdgL]).

Proof. Suppose pdgML ∈ mirror(pdgL) which means pdgML ∈
{pdgR ∈ pdgraphsE(R) | pdgR � pdgL}. Since for every

pdg′L ∈ [pdgL] holds pdg′L � pdgL, we get pdgML ∈
mirror(pdgL) = mirror(pdg′L). It follows that pdgML ∈
mirror([pdgL]).

Suppose now pdgML ∈ mirror([pdgL]) which means

pdgML ∈ ⋃
pdg′L∈[pdgL]mirror(pdg

′
L). It follows that there

exists pdg′L ∈ [pdgL] such that pdgML ∈ mirror(pdg′L).
Now, mirror(pdg′L) = {pdgR ∈ pdgraphsE(R) | pdgR �
pdg′L}, implies pdgML � pdg′L, and since pdg′L ∈ [pdgL],

it holds that pdgML � pdgL. By the assumption pdgML ∈
pdgraphsR(R) and the fact pdgML � pdgL, it follows

pdgML ∈ mirror(pdgL).
Theorem 1. Let S be a bi-system and Tr = TrL ∪ TrR be a
set of traces. If L(S) ∼TrDG,Env R(S) then L(S) ≈TrEnv R(S).
Proof. This proof is similar to the proof of the Theorem 1

from [2]. Suppose L(S) ∼TrDG,Env R(S) for a multiset rewrite

systems L = L(S)∪IF ∪Env and R = R(S)∪IF ∪Env. We

must prove that there exists a relation R with the initial states

(∅, ∅) ∈ R, such that conditions C1. and C2. are satisfied in

both directions. Let R be defined as

R ={(SA,SB) | SA = state(dgL),SB = state(dgR),

dgR ∈ mirror(dgL), dgL ∈ dgraphs(L),
trace(dgL) ∈ TrL}

∪ {(SA,SB) | SA = state(dgL),SB = state(dgR),

dgL ∈ mirror(dgR), dgR ∈ dgraphs(R),
trace(dgR) ∈ TrR},

and (SA,SB) ∈ R.

C1. Suppose there exists a trace trA ∈ trace(execSA(SA)) ∩
TrA, a recipe r ∈ ρ of a rule in Env ∪ IF , and a

set of action facts l ∈ F#, such that SA l−→
r
S ′A and

concat(trA, [l]) ∈ TrA, where r = recipe(ru) and

ru: [p]−[l]→[c]∈ Env ∪ IF . By the definition of R it

holds that

SA = state(dgL),SB = state(dgR),

dgR ∈ mirror(dgL), dgL ∈ dgraphs(L),
trace(dgL) ∈ TrL.

Since SA l−→
r
S ′A, there exists partial dependency graph

pdgru = ([ru: [p]−[l]→[c]], ∅) ∈ pdgraphs(L) such

that dg′L = dgL � pdgru ∈ dgraphs(L). Because

concat(trA, [l]) ∈ TrA, it follows that trace(dg′L) ∈
TrA. Now, dg′L ∈ dgraphs(L) and L(S) ∼TrDG,Env R(S)
together imply mirror(dg′L) �= ∅, and for all dg′R ∈
mirror(dg′L), it holds that trace(dg′R) ∈ TrB . Since

dg′R ∈ mirror(dg′L) implies dg′L � dg′R, the right

side has same structure with all possible instances, so

there must exist the partial dependency graph pdg′ru =
([ru: [p′]−[l′]→[c′]], ∅) ∈ pdgraphs(R) such that dg′R =
dgR � pdg′ru ∈ dgraphs(R) and concat(trB , [l

′]) ∈
TrB . Thus, by applying the same rule ru, we get the

same recipe r. By defining S ′B = state(dg′R) we have

SB l′−→
r
S ′B , and with

S ′A = state(dg′L),S ′B = state(dg′R),
dg′R ∈ mirror(dg′L), dg′L ∈ dgraphs(L),
trace(dg′L) ∈ TrL.

it follows (S ′A,S ′B) ∈ R. Analogously can be shown in

the other direction.

C2. This proof is analogous to the C1. because bi-equivalence

requires that every rule must be simulated by itself modulo
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diff terms. The only difference is that here we consider

protocol rules.

Lemma 2. A Type-0 property is trivially mirrored.

Proof. Suppose dg ∈ dgraphs(L ∪ R), trace(dg) ∈ Tr and

mirror(dg) �= ∅. Since facts(ψ) ⊆ F0, fact F ∈ F0 does

not contain any variables, so the diff operator cannot make

any difference on the other side. It follows that for every

dg′ ∈ mirror(dg), trace(dg′) � ψ, so trace(mirror(dg)) ⊆
Tr.

Corollary 1. A Type-0 property is prefix-closed.

Proof. Let ψ be a Type-0 property. Since ∃ /∈ quant(ψ), ψ
only contains universal quantifiers, which implies that it is a

safety property.

Lemma 3. Let S be a bi-system, ND a set of normal deduction
rules, L = L(S) ∪ IF ∪ Freshsys ∪ ND and R = R(S) ∪
IF ∪ Freshsys ∪ND corresponding multiset rewrite systems,
and ψ a Type-0 property. If the rule r ∈ L ∪ R is partially
mirrored, then L(S) ∼TrψRPDG R(S).

Proof. Suppose that r ∈ L ∪ R is a partially mirrored rule.

It follows that there exist covering Covdgraphs(r) of the set

of dependency graphs dgraphs(r) of a rule r, such that, for

every [pdgc] ∈ Covdgraphs(r), mirror([pdgc]) �= ∅ is trivial.

Let dg ∈ dgraphs(r), trace(dg) ∈ Trψ . Since Covdgraphs(r)
is the covering of dgraphs(r) and dg ∈ dgraphs(r),
there exist pdg ∈ [pdgc] ∈ Covdgraphs(r) and dependency

graphs dgp1 , . . . , dgpn ∈ dgraphs(L ∪ R) of open premises

p1, . . . , pn ∈ oprems(pdg), such that

dg = dgpn � (dgpn−1
� (· · ·� (dgp1 � pdg) · · ·)).

Assuming that ψ is a Type-0 property, trace(dg) ∈ Trψ
and Corollary 1, we have trace(dgpi) ∈ Trψ, i ∈ 1, . . . , n,

and trace(pdg) ∈ Trψ. Also, assuming that [pdg] is triv-

ial and the Lemma 2, it holds dgMpi = mirror(dgpi) �=
∅, trace(mirror(dgpi)) ⊆ Trψ, i ∈ {1, . . . , n}. With

the Lemma 1 and the assumption we have pdgM =
mirror(pdg) = mirror([pdg]) = mirror([pdgc]) �= ∅. This

together with the Lemma 2 gives trace(mirror(pdg)) ⊆ Trψ .

Now, the following holds.

mirror(dg)

= mirror(dgpn � (dgpn−1
� (· · ·� (dgp1 � pdg) · · ·)))

= dgMpn � (dgMpn−1
� (· · ·� (dgMp1 � pdgM ) · · ·))

�= ∅

B. EAP-EKE off-line guessing model

Our modified TAMARIN tool is available in the Github repos-

itory [32], where models and proofs are stored under the direc-

tory examples/csf22-conditional-equivalence.

Analysis was done on the AMD Ryzen 5 2600X (6/12 cores)

@ 3.6GHz with 23GB of available RAM running on the Linux

kernel version 5.11.16-arch1-1 and took almost eight hours.
As mentioned earlier, we model EAP-EKE with an un-

bounded number of client sessions and two server sessions

per client. This is expressed with the following rule. Note

unbounded number of passwords.

rule GeneratePassword:
[ Fr(~pass) ]

--[]->
[ !ClientPassword($C, $S, ~pass)
, ServerPassword($S, $C, ~pass)
, ServerPassword($S, $C, ~pass) ]

Since EAP-EKE does not use tagging, protocol messages

senc(nonce_s,key), senc(<nonce_s,nonce_p>,
key) and senc(nonce_p,key) from the Figure 3 look

very similar and can cause rules ClientConfirmRequest
and ServerConfirmResponse to loop on themselves or

each other. Moreover, nonce_s and nonce_p also cause

partial deconstructions in the mentioned rules. We use the

following lemma to resolve both of this issues.

lemma StartBeforeLoopNonces [sources,
diff_reuse, reuse]:

" ( All x y #j. ClientConfirmRequestLoopNonces
(x,y)@j ==>
(Ex #i. ServerCommitResponseStartNonce(x)

@i & i < j )
)

& ( All x y #j.
ServerConfirmResponseLoopNonces(x,y)@j ==>
(Ex #i. ClientConfirmRequestStartNonce(x)

@i & i < j)
) "

Following is the functional correctness lemma.

lemma Executable: exists-trace
" Ex C S nc ns #i #j.

CommitClient(C, S, 'initiator', nc, ns)@i &
CommitServer(S, C, 'responder', nc, ns)@j "

Appart from the restriction that enforces protocol phases:

restriction learnBeforeGuess:
" All #i #j. PhaseLearning()@i & PhaseGuessing

()@j ==> (#i < #j) "

we use restriction to enforce only one password guess:

restriction uniqueGuess:
" All #i #j. UniqueGuess()@i & UniqueGuess()@j

==> (#i = #j) "

The last one is important because it prevents a trivial false

attack where the adversary satisfies Rule_Equality with

the same password on the LHS, but no such thing is possible

with the fake password on the RHS since its always new.
There are three rules in conditional observational

equivalence that have no mirror: Rule_Destrd_0_fst,

Rule_Destrd_0_snd, and Rule_Destrd_0_sdec. The

analysis of these rules loops when using the default “smart”

heuristic for diff proofs because of the delayed equation case

splits which would otherwise lead to a contradiction. For this

reason we use an oracle that puts more priority on the case

splits.
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