
Prophecy Variables for Hyperproperty Verification

Raven Beutner
CISPA Helmholtz Center for

Information Security

Germany

Bernd Finkbeiner
CISPA Helmholtz Center for

Information Security

Germany

Abstract—Temporal logics for hyperproperties like HyperLTL
use trace quantifiers to express properties that relate multiple
system runs. In practice, the verification of such specifications is
mostly limited to formulas without quantifier alternation, where
verification can be reduced to checking a trace property over
the self-composition of the system. Quantifier alternations like
∀π.∃π′.φ, can either be solved by complementation or with
an interpretation as a two-person game between a ∀-player,
who incrementally constructs the trace π, and an ∃-player, who
constructs π′ in such a way that π and π′ together satisfy φ.
The game-based approach is significantly cheaper but incomplete
because the ∃-player does not know the future moves of the ∀-
player. In this paper, we establish that the game-based approach
can be made complete by adding (ω-regular) temporal prophe-
cies. Our proof is constructive, yielding an effective algorithm
for the generation of a complete set of prophecies.

Index Terms—Hyperproperties, HyperLTL, Hyperliveness,
Verification, Prophecy Variables, Completeness

I. INTRODUCTION

Hyperproperties [1] are system properties that relate multi-

ple execution traces in a system and commonly arise, e.g., in

information-flow policies. An increasingly popular logic for

the specification of general hyperproperties is HyperLTL [2],

which extends linear-time temporal logic (LTL) with explicit

trace quantification. In HyperLTL we can, for example, express

a simple variant of non-interference (NI) [3] as follows:

∀π.∀π′.
(∧

a∈Lin

aπ ↔ aπ′

)
→

(∧
a∈Lout

aπ ↔ aπ′

)

Here Lin and Lout are sets of atomic propositions denoting

low-security inputs and outputs. Sets Hin and Hout are the

high-security counterparts. The HyperLTL property states that

any two traces with identical low-security inputs have identical

low-security outputs, i.e., the system behaves deterministi-

cally for a low-security user. A less strict notation of non-

interference, in the literature often referred to as generalized
non-interference (GNI) [4], can be expressed as follows:

∀π.∀π′.∃π′′.
(∧
a∈Lin∪Lout

aπ ↔ aπ′′

)
∧

(∧
a∈Hin

aπ′ ↔ aπ′′

)

GNI states that for all traces π and π′, there exists a third trace

π′′ that agrees with the low-security inputs and outputs of π
but with the high-security inputs of π′. Phrased differently,

any input-output behavior observable by a low-security user

is compatible with any sequence of high-security inputs. GNI

is of particular interest as it applies to non-deterministic

systems where the simple variant of NI is violated when the

nondeterminism influences the low-security output.

In this paper, we study the verification of HyperLTL, i.e., the

question of whether a given system satisfies a given property.

For HyperLTL, the structure of the quantifier prefix has direct

implications on the complexity of the verification problem. For

our example properties, the fundamental difference (w.r.t. ver-

ification) between NI and GNI, is that NI uses only univer-

sal quantification over traces (we say NI is alternation-free)

whereas GNI involves a quantifier alternation. Verification of

alternation-free properties is well understood and is reducible

to the verification of a trace property on a suitable self-

composition of the system [5], [6]. By contrast, verification

of properties involving alternations is much more challeng-

ing. In the complementation-based approach [6] a quantifier

alteration like ∀π.∃π′.φ is interpreted as ∀π.¬∀π′.¬φ which

can be checked by incrementally eliminating quantifiers with

interposed system complementation. This complementation is

infeasible for larger systems.

A. Strategy-based Verification

A first scalable verification method for ∀∗∃∗ HyperLTL

properties (i.e., properties that involve an arbitrary number

of universal quantifiers followed by an arbitrary number of

existential quantifiers, such as GNI) has been proposed by

Coenen et al. [7], which we call strategy-based verification.

The key idea is to interpret a ∀π.∃π′.φ formula as a game. The

∀-player controls the universally quantified trace by moving

through the system (thereby producing a trace π) while the

∃-player reacts with moves in a separate copy of the system

(thereby producing a trace π′). The ∃-player wins if π com-

bined with π′ satisfies φ. The resulting verification approach is

sound (i.e., a winning strategy for the ∃-player implies that the

property holds) and much cheaper than the complementation-

based method (the game can be solved in polynomial time

whereas the complementation incurs an exponential blow-up).

The method is, however, incomplete. The ∃-player can, in step

i, only react to the moves of the ∀-player up to step i (i.e., only

a finite prefix of the trace constructed by the ∀-player) and has

no access to future behavior. See Section II for examples.

B. Prophecies to the Rescue

A common proof technique to make information about

future events accessible are prophecy variables [8]. In the

context of hyperproperty verification, a prophecy provides the

471

2022 IEEE 35th Computer Security Foundations Symposium (CSF)

© 2022, Raven Beutner. Under license to IEEE.
DOI 10.1109/CSF54842.2022.00030

20
22

 IE
EE

 3
5t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

78
-1

-6
65

4-
84

17
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

48
42

.2
02

2.
99

19
65

8

∃-player with information about the future behavior of the ∀-

player. Appropriately chosen prophecies result in the existence

of a winning strategy for the ∃-player (who, in each step,

has access to the prophecies), even in cases where there is

no winning strategy without the prophecies [7]. However, in

the context of hyperproperty verification, prophecies have, so

far, been used as an ad hoc method where prophecies are

provided by the user on a case-by-case basis [7]. With this

paper, we conduct a first formal study into the expressive

power of prophecies. In particular, we show that (ω-regular)

prophecies are complete, i.e., prophecies always suffice for

successful verification. Our main result informally reads as

follows:

For any finite-state system T and ∀∗∃∗ HyperLTL prop-
erty ϕ, there exist finitely many (ω-regular) prophecies
such that the ∃-player has a winning strategy (with
access to the prophecies) if and only if T satisfies ϕ.

When given such a complete set of prophecies, verification

of a hyperproperty reduces (in a sound-and-complete manner)

to solving a finite-state two-player game. Notably, our proof

of the above result is constructive, i.e., we give an explicit

(and effective) construction of a complete set of prophecies,

represented as ω-automata.

C. Prototype Implementation

We have implemented our prophecy construction in a

prototype model checker for ∀∗∃∗ HyperLTL formulas,

called HyPro (short for Hyperproperty Verification with

Prophecies). If required, HyPro automatically constructs a

complete set of prophecies and thus constitutes the first

complete verifier for ∀∗∃∗ HyperLTL formulas with a safety

matrix (see Section IX). We emphasize that this paper’s

main contribution is a completeness proof for prophecies in

hyperproperty verification. While HyPro demonstrates that

our explicit prophecy construction is applicable in practice,

it is, currently, limited to small systems.

D. Structure

The remainder of this paper is structured as follows. In

Section II we demonstrate the need for prophecies on a small

example and outline our automatic prophecy construction.

In Section III we discuss related approaches, and in Sec-

tion IV define preliminaries and introduce HyperLTL. We

define strategy-based verification and prophecies in Section V,

and discuss completeness in Section VI. Afterward, we first

outline our prophecy construction for HyperLTL specifications

where the matrix is a safety property (in Section VII), and then

extend it to full ω-regularity in Section VIII. In Section IX we

discuss prophecy-based verification and evaluate our prototype

model checker HyPro. Lastly, we outline further applications

of (and future directions for) prophecy-based verification (in

Section X).

II. OVERVIEW

In this section, we demonstrate the need for prophecies in

hyperproperty verification on two small examples (in Sec-

s1:
a = �

s2:
a = ⊥

(a) Small transition sys-
tem that generates all
traces over {a}.

� aπ

¬aπ
�

�

(c) Automaton representa-
tion of Pq1,s1 .

q1

q2 q3

q4

a π
′

¬
a
π
′

aπ′∧aπ ¬aπ′∧¬aπ

aπ′∧¬aπ

¬aπ′∧aπ

¬
a
π a

π

�

(b) Deterministic Büchi automaton rep-
resenting the LTL matrix of Hyper-
LTL property (1). Accepting states are
marked with a double line.

Fig. 1: A simple example that demonstrates why prophecies

are needed for successful strategy-based verification. Fig-

ure 1c depicts the (minimized) automaton resulting from our

prophecy construction.

tions II-A and II-B). Afterward, we sketch our automated

prophecy construction (in Section II-C).

A. Strategy-based Verification and Prophecies

As a (very) small example, consider the transition system

T in Figure 1a, which generates all traces over atomic propo-

sitions AP = {a}, and the HyperLTL specification

ϕ := ∀π.∃π′. (aπ′ ↔ aπ). (1)

The property states that for every trace π there should be a

trace π′ that mimics π one step into the future. Clearly T |= ϕ,

i.e., the system satisfies the property.

To automatically check this using strategy-based verification

[7], we construct a game where, in each step, the ∀-player

chooses a successor state for trace π (in the first step the ∀-

player chooses any initial state), and the ∃-player reacts by

choosing a successor state for trace π′ (in a separate copy of

the system). The ∃-player tries to construct trace π′ such that

π′ combined with π satisfies the LTL matrix of (1). However,

even though T |= ϕ, the ∃-player loses this game. In every

step of the game, the ∃-player needs to move to either s1 or

s2. With either choice, the ∀-player can (in the next step of the

game) move its copy to the opposite state (i.e., move to s2 if

the ∃-player moved to s1 and vice versa) and thereby ensure

that aπ′ �↔ aπ holds; strategy-based verification fails.

To win the game, the ∃-player would need to base its

decision on the next move of the ∀-player. Prophecies can

provide this necessary information about the future behavior of

the ∀-player. Consider the LTL-definable prophecy ξ := aπ .1

If the ∃-player has access to this prophecy (i.e., has access to

an oracle that tells him, in each step of the game, if ξ currently

holds or not), a winning strategy exists. For example, if ξ holds

1In our setting, a prophecy is a ω-regular set of behaviors of the universally
quantified traces. If possible, we can represent this set as an LTL formula.

472

1: repeat
2: if � then
3: h := �
4: o := h
5: else
6: h := �
7: o := ¬h

(a) Simple example program.
Here, � denotes a non-
deterministic choice of a
(boolean) value.

s1:
o = ⊥
h = ⊥

s2:
o = ⊥
h = ⊥

s3:
o = ⊥
h = �

s4:
o = �
h = ⊥

s5:
o = ⊥
h = ⊥

s6:
o = ⊥
h = ⊥

s7:
o = �
h = �

(b) A simplified transition sys-
tem obtained from the program
in Figure 2a.

Fig. 2: Simple example program that requires prophecies to

successfully verify GNI using strategy-based verification.

(so a holds in the next step on π), the ∃-player moves to s1
as this ensures aπ′ ↔ aπ .

B. Prophecies and GNI

Prophecies are also needed when applying strategy-based

verification to more realistic systems and properties. As a

second example, consider the program in Figure 2a where h is

a high-security input and o a low-security output, and the GNI

property from Section I. Figure 2b depicts a simplified version

of the program as a transition system. In state s1 the system

can non-deterministically transition into s2 or s5. From s2
the values of h and o disagree (as in the second branch of the

conditional in Figure 2a) whereas from s5 the values agree (as

in the first branch). It is easy to see that this program (and/or

transition system) satisfies GNI, but strategy-based verification

fails. In order to resolve the non-deterministic choice in line

2 of the program (or in state s1 of the transition system), the

∃-player needs to know the next input and output on traces π
and π′. Prophecies can provide the needed information about

the future behavior on π, π′. This information is, for example,

made available via the LTL-definable prophecies ξ1 := oπ
and ξ2 := hπ′ . With access to these prophecies, a winning

strategy for the ∃-player exists. For example, if ξ1 holds (so

the next value of o on π is �) and ξ2 does not hold (so

the next value of h on π′ is ⊥), the ∃-player moves to

s2 as this supports a later transition to the state s4 (where

o = �, h = ⊥ as required). Note that, different from the

example in Section II-A, this dependency on the next state is

not explicit in the property (as GNI does not involve any s).

C. Automated Prophecy Construction

We now sketch how to automatically construct a complete

set of prophecies, i.e., a set of prophecies that ensures that the

∃-player can win the game (provided the property holds).

As a concrete example, we use the system and property

from Section II-A. For this example, the LTL matrix of (1) is

a safety property, which simplifies the prophecy construction

significantly. Conceptually, the idea is to design prophecies

that directly identify those states that the ∃-player can move

to without losing the game. We observe that the ∃-player can

(safely) move to state s (for s ∈ {s1, s2}) iff the trace π
constructed by the ∀-player is such that there exists some trace

π′ starting in s that serves as a witness for π. To formalize

this, Figure 1b depicts a deterministic Büchi automaton A
that tracks the matrix of (1). Given an automaton state q (for

q ∈ {q1, q2, q3, q4}) and a system state s, we summarize all

traces constructed by the ∀-player on which a witness trace

starting in state s exists (where the automaton begins tracking

in state q). Formally we define

Pq,s := {t ∈ (2{a})ω | ∃t′ ∈ Traces(Ts). t⊗ t′ ∈ L(Aq)}

where Traces(Ts) are all traces starting in state s, L(Aq) are

all traces accepted by A starting in state q, and t ⊗ t′ is the

pointwise product of t and t′. See Section VII for a formal

treatment.

The resulting prophecies determine which move is safe

for the ∃-player: If during the game the current state of the

automaton tracking the matrix of (1) is q, and prophecy Pq,s

holds (i.e., the trace constructed by the ∀-player is contained

in this set), the ∃-player can safely pick s as its successor.

As an example, we consider the set Pq1,s1 . By taking the

product of T and A, we obtain an automaton representation

of Pq1,s1 , which, after minimization, results in the Büchi au-

tomaton depicted in Figure 1c. Coincidentally, this automaton

directly corresponds to the LTL prophecy ξ := aπ identified

in Section II-A. As we already argued in Section II-A, the

single prophecy Pq1,s1 thus provides sufficient information

for the ∃-player.2

III. RELATED WORK

1) Hyperproperty Verification: Recently, the automated ver-

ification of hyperproperties expressed in general logics has

received significant attention. Verification of alternation-free

formulas (and, in particular, k-safety) is reducible to the

verification of a trace property on the self-composition of the

system [5], [6]. In contrast, few attempts at the automatic

verification of properties involving a quantifier alteration have

been made. This is in stark contrast to the fact that many

relevant properties (especially in non-deterministic systems)

require alternation. Examples include information-flow poli-

cies like GNI, refinement properties, fairness, and robust

cleanness. Barthe et al. [9] describe an asymmetric product

of the system such that only a subset of the behavior of the

second system is preserved, thereby allowing the verification

of ∀∃ properties. It is challenging to construct an asymmetric

product and verify its correctness (i.e., show that the product

preserves all behavior of the first, universally quantified,

system). Unno et al. [10] describe a constraint-based approach

to verify functional (opposed to temporal) ∀∃ properties. In

2In general, our completeness result (for cases where the matrix of the
HyperLTL formula is a safety property) states that the set {Pq,s}q∈Q,s∈S

where Q is the set of automaton states and S the set of system states always
provides sufficient information for the ∃-player to win (provided the property
holds). For properties where the matrix does not denote a safety property, a
more involved construction is necessary (see Section VIII).

473

their framework, both the existentially quantified traces and

the scheduling of the system are encoded in an extension of

constraint Horn clauses. Lamport and Schneider [11] outline

a deductive approach to verify hyperproperties by reducing

the verification to TLA. This is possible as existential trace

quantification can be internalized into the TLA specification.

Hsu et al. [12] present a bounded model checking algorithm

for hyperproperties. As usual for bounded approaches, a prop-

erty can only be refuted if there exists a finite set of finite

paths refuting it; bounded model checking for hyperproperties

is incomplete. A first practical (albeit incomplete) algorithm

for the verification of temporal properties involving quantifier

alternation (expressed in HyperLTL) was proposed by Coenen

et al. [7] in the form of strategy-based verification, which

forms the basic setting of this work. Strategy-based verification

is also applicable to infinite-state systems [13].
2) Prophecy Variables: Abadi and Lamport have intro-

duced the concept of prophecies as a proof technique in the

context of refinement mappings between state machines, and

have shown completeness in this setting [8]. Coenen et al. [7]

use prophecies to strengthen the ∃-player in strategy-based

verification. It is important to note that the use of temporal

prophecies advocated in [7] (and studied in this paper) differs

from the setting of Abadi and Lamport [8] in several key

regards. In [8], a prophecy variable changes the system by

adding a variable that records the future behavior of the system

as a sequence of states.3 We take a different point of view:

In our setting, we do not manipulate the system but define a

prophecy as a ω-regular set of behavior (expressed in temporal

logic). The ∃-player is only provided with a single bit of

information that indicates if the future behavior of ∀-player

lies within the prophecy or not.
While Coenen et al. [7] already discuss prophecies, they

consider them as an ad hoc feature where the user must pro-

vide prophecies on a case-by-case basis. We study prophecies

in the same setting (albeit our prophecies are ω-regular and not

necessarily LTL-definable as in [7]) but conduct a systematic

analysis of the expressiveness of strategy-based verification

when enriched with prophecies. In particular, we establish that

prophecies always suffice to verify a property and give an

explicit (and fully automatic) algorithm for the construction

of a complete set of prophecies. Compared to the purely

semantic construction of Abadi and Lamport [8], we work in

the fixed framework of ω-regularity and represent prophecies

as ω-automata.
Prophecies as a proof technique have found application in

various settings. They have been used for the verification of

branching-time properties [14], the construction of simulations

between automata [15], to strengthen proofs in program logics

[16]–[18], and to construct liveness-to-safety transformations

[19]. Cook and Koskinen [20] introduce prophecies in the form

of decision predicates to verify LTL properties using CTL

solvers on infinite-state systems. A decision predicate can be

3In particular, the completeness proof in [8] is purely semantic. The history
and prophecy variables describe the past and future behavior of the system,
which, in the worst case, turns a finite-state system into an infinite-state one.

seen as a limited form of (non-boolean) temporal prophecy

that predicts the number of occurrences of a particular event

in the future. Closely related to our setting is the work by

Unno et al. [10]. They show that for the verification of

functional ∀∃ properties, it is sufficient to have a prophecy

variable that simply predicts the final state of the universally

quantified execution. In our temporal setting, the prophecy

construction is necessarily more complex as it needs to provide

information about the temporal behavior of the universally

quantified execution, and the information communicated per

prophecy is restricted to a single bit.

IV. PRELIMINARIES

We fix a set of atomic propositions AP and define Σ :=
2AP . A trace is an element t ∈ Σω . We write t(i) to denote the

ith element (starting with 0) and t[i,∞] for the infinite suffix

starting at position i. For traces t1, . . . , tn ∈ Σω we define

zip(t1, . . . , tn) ∈ (Σn)ω as the pointwise product of the traces,

i.e., zip(t1, . . . , tn)(i) := (t1(i), . . . , tn(i)). We occasionally

write t1 ⊗ t2 instead of zip(t1, t2).
1) Transition Systems: A transition system is a tuple T =

(S, S0, �, L) where S is a finite set of states, S0 ⊆ S a set of

initial states, � ⊆ S × S a transition relation, and L : S → Σ

a state labelling. We write s
T−→ s′ whenever (s, s′) ∈ � and

define Sucs(s) := {s′ | (s, s′) ∈ �}. We assume Sucs(s) �= ∅
for every s ∈ S. A path in T is an infinite sequence p ∈ Sω

such that p(0) ∈ S0 and for every i ∈ N, we have p(i +
1) ∈ Sucs(p(i)). Each path p denotes a trace L(p) ∈ Σω by

applying the labelling pointwise, i.e., L(p)(i) := L(p(i)). We

write Paths(T) for the set of all paths and Traces(T) for

the set of all traces. For s ∈ S we define Ts as the transition

systems obtained by changing the initial states to {s}.
2) ω-Automata: A deterministic ω-automaton over alphabet

Σ is a tuple A = (Q, q0, δ,Acc) where Q is a finite set of

states, q0 ∈ Q an initial state, δ : Q × Σ → Q a transition

function, and Acc ⊆ Qω the acceptance condition. For every

finite word u ∈ Σ∗, we define δ∗(u) ∈ Q as the unique state

reached when reading u (starting in q0). For a trace t ∈ Σω ,

the unique run rt ∈ Qω is given by rt(i) := δ∗(t[0, i − 1])
where t[0, i− 1] is the prefix of length i. We write L(A) for

the language of the automaton, which consists of all traces t
whose unique run rt satisfies rt ∈ Acc. In a Büchi automaton,

the acceptance is given by a set F ⊆ Q of accepting states, and

a run is accepting if it visits states in F infinity many times. In

a parity automaton, the acceptance is given by a coloring c :
Q→ N, and a run is accepting if the minimal color occurring

infinitely often (as given by c) is even. In a safety automaton,

the acceptance is given by a set B ⊆ Q of bad states, and

a run is accepting if it never visits a state in B. A language

L ⊆ Σω is ω-regular if there exists a deterministic parity

automaton (DPA) that recognizes it.4 A language L ⊆ Σω is

4Throughout this paper, we work with deterministic ω-automata. Any
non-deterministic Büchi automaton (NBA) (see, e.g., [21] for a formal
definition) can be effectively translated into a DPA [22], [23]. On the other
hand, deterministic Büchi and deterministic safety automata are strictly less
expressive and do not capture full ω-regularity.

474

safety [24], [25], if it can be recognized by a deterministic

safety automata. Given q ∈ Q we define Aq as the automaton

obtained by replacing the initial state with q. For a set X ⊆ Q
and a trace t ∈ Σω , we define firstVisitX(A, t) ∈ N ∪ {∞}
as the first time step where the unique run of A on t visits a

state in X (if it exists and ∞ otherwise).
3) Parity Games: A parity game is a tuple G = (VV, VR,

T, c) where V := VV ·∪ VR is the finite set of states. The

states in VV are controlled by the verifier V and those in VR

are controlled by the refuter R. T ⊆ V × V is the transition

relation (we assume that for each v there is at least one v′ with

(v, v′) ∈ T), and c : V → N the coloring of each node. A

strategy σ for player p ∈ {V,R} is a function σ : V ∗×Vp →
V such that for every v ∈ V ∗, v ∈ Vp, (v, σ(v, v)) ∈ T .

A play in G is an infinite sequence r ∈ V ω such that for

every i, (r(i), r(i + 1)) ∈ T . The play r is compatible with

strategy σ for player p if for every i where r(i) ∈ Vp we have

that r(i+ 1) = σ(r(0) · · · r(i− 1), r(i)). A play r is won by

player V if the minimal color occurring infinitely often in r
(according to c) is even. Otherwise, it is won by R. We say

that player p wins node v if there exists a strategy σ for p
such that every play that starts in v and is compatible with

σ is won by p. As parity games are positionally determined

[26], every node is either won by V or by R.
4) HyperLTL: As the basic specification language for hy-

perproperties we use HyperLTL [2], which extends linear-time

temporal logic (LTL) with explicit trace quantification. We

assume a fixed set of trace variables V . Formulas in HyperLTL

are generated by the following grammar.

ϕ := ∃π.ϕ | ∀π.ϕ | φ
φ := aπ | ¬φ | φ1 ∧ φ2 | φ | φ1 U φ2

where π ∈ V and a ∈ AP . We use the derived boolean connec-

tives ∨,→,↔, boolean constants �,⊥, and temporal operators

eventually (φ := �U φ) and globally (φ := ¬ ¬φ). We

consider only closed formulas, i.e., formulas where for each

atom aπ the trace variable π is bound by some trace quantifier.

The semantics of HyperLTL is given with respect to a set of

traces T ⊆ Σω and a trace assignment Π, which is a partial

mapping Π : V ⇀ Σω . For π ∈ V and trace t, we write

Π[π �→ t] for the trace assignment obtained by updating the

value of π to t.

Π, i |= aπ iff a ∈ Π(π)(i)

Π, i |= ¬φ iff Π, i �|= φ

Π, i |= φ1 ∧ φ2 iff Π, i |= φ1 and Π, i |= φ2

Π, i |= φ iff Π, i+ 1 |= φ

Π, i |= φ1 U φ2 iff ∃j ≥ i.Π, j |= φ2 and

∀i ≤ k < j.Π, k |= φ1

Π |=T φ iff Π, 0 |= φ

Π |=T ∃π.ϕ iff ∃t ∈ T.Π[π �→ t] |=T ϕ

Π |=T ∀π.ϕ iff ∀t ∈ T.Π[π �→ t] |=T ϕ

We say a transition system T satisfies ϕ, written T |= ϕ, if

∅ |=Traces(T) ϕ where ∅ denotes the empty trace assignment.

5) Quantified Propositional Temporal Logic (QPTL): The

prophecies we study in this paper are ω-regular sets. LTL is

limited to non-counting properties and can consequently not

express arbitrary ω-regular properties [27]. To nevertheless

support prophecies on a syntactic level (where we represent

prophecies as formulas instead of ω-automata), we use Quan-

tified Propositional Temporal Logic (QPTL) [28]. We assume

a fresh set of propositional variables PV . We define QPTL

formulas by the following grammar.

φ := aπ | ¬φ | φ1 ∧ φ2 | φ | φ1 U φ2 |
∼
∃q.φ | q

where π ∈ V , a ∈ AP and q ∈ PV . QPTL allows the

quantification of a proposition variable q using
∼
∃q.φ and to

refer to the truth value of each propositional variable. We

abbreviate
∼
∀q.φ := ¬

∼
∃q.¬φ. Note that we write

∼
∃ and

∼
∀ for

propositional quantification to visually distinguish them from

the trace quantifiers in HyperLTL. The semantics of QPTL

is defined similarly to before with an additional mapping

Δ : PV ⇀ Bω that handles propositional quantification

(where B = {�,⊥}).
Π,Δ, i |= aπ iff a ∈ Π(π)(i)

Π,Δ, i |= ¬φ iff Π,Δ, i �|= φ

Π,Δ, i |= φ1 ∧ φ2 iff Π,Δ, i |= φ1 and Π,Δ, i |= φ2

Π,Δ, i |= φ iff Π,Δ, i+ 1 |= φ

Π,Δ, i |= φ1 U φ2 iff ∃j ≥ i.Π,Δ, j |= φ2 and

∀i ≤ k < j.Π,Δ, k |= φ1

Π,Δ, i |=
∼
∃q.φ iff ∃τ ∈ Bω.Π,Δ[q �→ τ], i |= ϕ

Π,Δ, i |= q iff Δ(q)(i) = �
The main advantage of QPTL (over LTL) stems from the

following result:

Theorem 1 ([28]). A language L is ω-regular if and only if
it is definable in QPTL.

Example 1. Take the property “a holds on trace π in at least
one even position”. While not expressible in LTL [27], we can
express it in QPTL as

∼
∃q. q ∧ (q ↔ ¬q) ∧ (aπ ∧ q).

In the remainder of this paper, we assume no particular

familiarity with QPTL and only use it when absolutely nec-

essary. We resort to QPTL as a tool to express ω-regular

properties as formulas which allows us to treat prophecies at a

syntactic level. Our prophecy construction itself is language-

theoretic.

V. STRATEGY-BASED VERIFICATION

The problem we are tackling in this paper is the following:

Given a transition system T and a ∀∗∃∗-HyperLTL property

ϕ, check if T |= ϕ. A first practical verification approach

was proposed by Coenen et al. [7], which we refer to as

strategy-based verification. The idea is to instantiate existential

quantification with a strategy that incrementally constructs

a trace by reacting to the moves of the ∀-player. Coenen

475

s1
T−→ s′1 · · · sk

T−→ s′k q′ = δφ
(
q,

(
L(s1), · · · , L(sk+l)

))
(∀)

〈(s1, . . . , sk, sk+1, . . . , sk+l), q,∀〉 → 〈(s′1, . . . , s′k, sk+1, . . . , sk+l), q
′, ∃〉

sk+1
T−→ s′k+1 · · · sk+l

T−→ s′k+l
(∃)

〈(s1, . . . , sk, sk+1, . . . , sk+l), q,∃〉 → 〈(s1, . . . , sk, s′k+1, . . . , s
′
k+l), q,∀〉

sk+1 ∈ S0 · · · sk+l ∈ S0
(init)

(s1, . . . , sk)→ 〈(s1, . . . , sk, sk+1, . . . , sk+l), q
φ
0 , ∀〉

Fig. 3: Transition rules for the parity-game-based synthesis of winning strategies for the ∃-player.

et al. formalize the strategy as a finite state transducer that

determines the next move of all existentially quantified copies.

The automated synthesis of a strategy is then expressed as a

SMT constraints. We phrase the problem as a parity game

which serves as an easier formal foundation to discuss our

completeness results.

A. Strategy-based Verification as a Parity Game

The idea is that the parity game mimic the iterative trace

construction of both players. Assume we are given a system

T = (S, S0, �, L) and a HyperLTL formula

ϕ = ∀π1 . . . πk.∃πk+1 . . . πk+l. φ.

We define a parity game GT ,ϕ as follows. Let Aφ =

(Qφ, qφ0 , δ
φ, cφ) be a deterministic parity automaton (DPA)

over Σk+l for φ that accepts exactly the zippings of traces

that satisfy the formula, i.e., [π1 �→ t1, . . . , πk+l �→ tk+l] |= φ
if and only if zip(t1, . . . , tk+l) ∈ L(Aφ). The construction of

this automaton can be performed via a standard LTL to DPA

translation (see, e.g., [6], [29]).

The game GT ,ϕ comprises two node kinds: Nodes are either

of the form (s1, . . . , sk) where si ∈ S for all 1 ≤ i ≤ k to

encode the initial states of the universally quantified copies.

Or they are of the form 〈(s1, . . . , sk+l), q, 〉 where si ∈ S for

all 1 ≤ i ≤ k+ l, q ∈ Qφ and ∈ {∀, ∃}. Here (s1, . . . , sk+l)
gives the current state of all copies of T , q is the current state

of the DPA tracking φ, and defines whether the universal

(= ∀) or existential (= ∃) copies move next. Nodes of

the form 〈(s1, . . . , sk+l), q,∀〉 are controlled by the refuter

(who takes the role of the ∀-player), and nodes of the form

〈(s1, . . . , sk+l), q,∃〉 and (s1, . . . , sk) are controlled by the

verifier (who takes the role of the ∃-player). The transitions

of the game are given in Figure 3. The (∀) and (∃)-transition

rules are the game’s main rules. In the (∀)-rule all universally

quantified copies are updated by moving to successor states

within T . Simultaneously, we update the automaton state

of Aφ. Similarly, in the (∃)-rule, the existentially quantified

copies are updated. The (init)-rule is used at the beginning

where the universal copies have already chosen a state and

the existential copies can select any initial state for themself.

Lastly, the coloring of the nodes is obtained by assigning

each node of the form 〈(s1, . . . , sk+l), q, 〉 the color given by

cφ(q). The color of nodes of the form (s1, . . . , sk) is irrelevant

as they are visited at most once.

B. Soundness of Strategy-based Verification

The game GT ,ϕ mimics the strategic behavior of the ∃-

player. In each step, the refuter chooses successors for the

k universally quantified traces, followed by the verifier who

selects successors for the l existentially quantified traces. The

automaton state in the nodes of GT ,ϕ tracks the (unique) run

of Aφ on the resulting k+ l traces. To verify that T |= ϕ, the

verifier should win from every possible combination of initial

states for the universally quantified copies. We define

Vinit := {(s1, . . . , sk) | ∀1 ≤ i ≤ k. si ∈ S0}.
We write V � GT ,ϕ if the verifier wins GT ,ϕ from all nodes in

Vinit . We can show the soundness of our verification method.

Theorem 2. If V � GT ,ϕ then T |= ϕ.

Proof sketch. We use a positional winning strategy σ for V
that witnesses V � GT ,ϕ to iteratively construct traces for the

existentially quantified traces by simulating σ on finite prefixes

of the universally quantified traces. We give a detailed proof

in the full version [30].

C. Prophecies and Prophecy Variables

As we saw in Section II-A, strategy-based verification of

∀∗∃∗ properties is incomplete, i.e., V might lose GT ,ϕ even

though the system satisfies the property. Intuitively, this is the

case when the ∃-player (the verifier in GT ,ϕ) needs future

information that is not available by observing only a prefix

of the universally quantified traces. To counteract this lack of

information, we introduce prophecies.

Definition 1. A prophecy is a ω-regular subset P ⊆ (Σk)ω .

If a prophecy P holds at step i, the ∃-player can assume that

the ∀-player (the refuter in GT ,ϕ) starting in step i, constructs

traces t1, . . . , tk for the k universal quantifiers such that

zip(t1, . . . , tk) ∈ P. The prophecy thereby provides limited

information (in form of the binary information on whether

or not the prophecy holds) about the future behavior of the

universally quantified traces.

To formally introduce prophecies into our framework, we

need to enable the ∃-player to, in each step, determine which

476

prophecies hold. We delegate this step to the universal player

who determines the truth value for each prophecy in its (mod-

ified) state space. Formally, we accomplish this in two steps.

(1) We extend the system by fresh boolean variables (called

prophecy variables) that, in each step, can be chosen non-

deterministically, and (2) we relax the specification to ensure

that the prophecy variables set by the ∀-player correspond to

the truth value of the prophecies.

1) System Manipulation: We begin by modifying the transi-

tion system to allow the ∀-player to set the prophecy variables.

Definition 2. Given a transition system T = (S, S0, �, L)
and a set of fresh propositions P (with P ∩ AP = ∅) we
define the modified transition system T P := (SP , SP

0 , �P , LP)
over AP ·∪ P where SP := S × 2P , SP

0 := S0 × 2P ,
�P := {((s,A), (s′, A′)) | (s, s′) ∈ � ∧ A,A′ ∈ 2P } and
LP (s,A) := L(s) ∪A.

In particular, we have

Traces(T P) = {t ∪ t′ | t ∈ Traces(T), t′ ∈ (2P)ω}

where t ∪ t′ denotes the pointwise union of both traces.

2) Property Manipulation: We modify the matrix of the

hyperproperty such that the original property is only required

to hold, if all prophecies by the universal player are set

correctly, i.e., a prophecy variable in P is set to true iff

the universally quantified traces produced by the ∀-player are

contained in the corresponding prophecy. To express this at the

logical level, we make use of the fact that we can express a

(ω-regular) prophecy P as a QPTL formula (cf. Theorem 1).5

Definition 3. Given a set of QPTL formulas Ξ = {ξ1, . . . , ξn}
using only trace variables in {π1, . . . , πk} and a fresh set of
atomic propositions P = {p1, . . . , pn}, define the modified
formula ϕP,Ξ as

∀π1 . . . ∀πk.∃πk+1 . . . ∃πk+l.

[n∧
j=1

(pjπ1
↔ ξj)

]
→ φ.

That is, we only require φ to hold, if in every step and for

every 1 ≤ j ≤ n, the prophecy formula ξj holds exactly when

the prophecy variable pj is set on trace π1.6

3) Soundness of Prophecies: The combination of the mod-

ified transition system (which allows the prophecy variables

to take any value) and the modified property does not impact

the satisfaction of the original property on the original system

as stated in the following theorem (see, e.g., [7, Thm. 5]).

5In practice, we would not express prophecies in QPTL and instead operate
directly on an automaton-based representation of a prophecy. By taking this
detour, we can keep the notation succinct and can express the assumption that
the ∀-player correctly sets the prophecy variables as a logical implication.

6With the construction of ϕP,Ξ we ensure that each prophecy variable on
π1 reflects the truth value of the prophecy. However, any of the universally
quantified trace variables would work equally well. Note that each prophecy
formula ξj captures a behavior of the combined executions of the universally
quantified traces π1, . . . , πk (as ξj uses trace variables in {π1, . . . , πk})
and not necessarily the behavior of a single trace. In fact, local prophecies
(i.e., prophecies that only capture behavior on one trace) are insufficient for
completeness (cf. Example 4).

Theorem 3. Let Ξ = {ξ1, . . . , ξn} and P = {p1, . . . , pn} be
as in Definition 3. Then T |= ϕ if and only if T P |= ϕP,Ξ.

Remark 1. A brief remark about nomenclature is in order.
A prophecy is a ω-regular set of traces P. We represent this
prophecy as a QPTL formula ξi ∈ Ξ which we also refer to as
a prophecy or prophecy formula. Lastly, pi ∈ P is a prophecy

variable that corresponds to prophecy (formula) ξi.

4) Prophecies for Strategy-based Verification: While the

addition of prophecies does not alter the satisfaction of the

property in the HyperLTL semantics (as stated in Theorem 3),

it can impact the existence of a winning strategy for the

∃-player during strategy-based verification. That is, it might

be that V � GT ,ϕ does not hold, but V � GT P ,ϕP,Ξ

does. Thus, prophecies provide a natural tool to strengthen

strategy-based verification and allow the user to, e.g., introduce

domain knowledge in the form of user-defined prophecies. The

soundness of the addition of prophecies can be argued easily:

If V � GT P ,ϕP,Ξ holds, then (by Theorem 2) T P |= ϕP,Ξ so

(by Theorem 3) T |= ϕ. The situation is depicted graphically

in Figure 4a.

Example 2. With our notation fixed, we revisit the transition
system T and HyperLTL formula ϕ from Section II-A. In this
case, V �� GT ,ϕ, i.e., strategy-based verification fails without
the addition of prophecies. Let Ξ = { aπ} and let P = {p}
be a fresh set of prophecies variables. Using Definition 3 we
construct

ϕP,Ξ = ∀π.∃π′. (pπ ↔ aπ)→ (aπ′ ↔ aπ).

It is easy to see that V � GT P ,ϕP,Ξ : the prophecy variable p
hints at the next move of R. If, for example, R sets p to true,
V can assume that aπ holds (if it does not, the premise of
ϕP,Ξ is violated and so the play is trivially won by V). The
verifier can thus move to state s1 (in Figure 1a) and thereby
correctly predict the next move on π. As argued in Figure 4a,
V � GT P ,ϕP,Ξ implies that T |= ϕ.

VI. COMPLETENESS

We have argued that strategy-based verification remains

sound when adding prophecies. The natural question that arises

is the following:

Assume that T |= ϕ. Does there exist some finite
set of prophecies Ξ such that V � GT P ,ϕP,Ξ?

As already observed by Coenen et al. [7], this does not hold

if we only allow LTL-definable prophecies.

Example 3. Consider a system T that generates all traces
over AP = {a, b} and the following property ϕ

∀π.∃π′. aπ′ ∧ (aπ′ ↔ ¬aπ′) ∧ (bπ′ ↔ (bπ ∧ aπ′)).

That is, b should hold in the first step on π′ iff b holds at
some even position on π. Clearly, T |= ϕ but V �� GT ,ϕ.
Moreover, LTL cannot express that (on π) b ever holds at an
even position (cf. Example 1). Consequently, no LTL-definable

477

V � GT P ,ϕP,Ξ

T |= ϕ T P |= ϕP,Ξ

Thm. 2

Thm. 3

(a) Implications for any set of prophecies.

V � GT P ,ϕP,Ξ

T |= ϕ T P |= ϕP,Ξ

Thm. 2

Thm. 3

Thm. 4

(b) Implications for a complete set of prophecies.

Fig. 4: Implications between the satisfaction of a hyperproperty and the existence of a winning strategy for the ∃-player. We

display implications with an arbitrary set of prophecies (Figure 4a) and a complete set (Figure 4b).

prophecy can provide sufficient information to the ∃-player,
i.e., V �� GT P ,ϕP,Ξ for any (finite) set of LTL formulas Ξ.

While this incompleteness result for LTL-definable prophe-

cies is interesting in its own right, we usually do not represent

prophecies as LTL formulas but work with some automaton

representation. Consequently, we are less interested in LTL-

definable prophecies but in the existence of ω-regular prophe-

cies. And indeed, in this paper, we show that we can answer

the above question positively if we shift from LTL-definable

prophecies to arbitrary ω-regular prophecies. The main result

of this paper reads as follows:

Theorem 4. Let T be a (finite-state) transition system and
let ϕ be a ∀∗∃∗ HyperLTL property such that T |= ϕ. There
exist finitely many QPTL prophecies Ξ = {ξ1, . . . , ξn} such
that for a fresh set P = {p1, . . . , pn} we get V � GT P ,ϕP,Ξ .

If T |= ϕ we call a set of prophecies Ξ complete if V �
GT P ,ϕP,Ξ , i.e., Ξ is a witness to Theorem 4. The resulting

situation is depicted in Figure 4b. Combined with Theorem 2

and Theorem 3 we can rephrase Theorem 4 as follows:

Corollary 1. Let T be a (finite-state) transition system and
let ϕ be a ∀∗∃∗ HyperLTL property. There exist finitely many
QPTL prophecies Ξ = {ξ1, . . . , ξn} such that for a fresh set
P = {p1, . . . , pn} we get V � GT P ,ϕP,Ξ if and only if T |= ϕ.

We note that our prophecy construction used to prove

Theorem 4 yields prophecies without first checking if T |= ϕ.

This allows us to use our construction to (algorithmically)

check if T |= ϕ (we discuss this in Section IX-A).

Remark 2. We can strengthen Theorem 4 further. Our
prophecy construction treats the LTL matrix of the HyperLTL
property as an ω-automaton. The constructions thus generalize
to all logics that utilize the trace quantification mechanism
of HyperLTL but express arbitrary ω-regular property within
their matrix. For example, our result also applies to Hy-
perQPTL, i.e., formulas where the trace-quantifier prefix is
followed by a QPTL formula. We thus show that ω-regular
prophecies suffice for all ∀∗∃∗ hyperproperties with ω-regular
matrix. In contrast, Example 3 shows that LTL-definable
prophecies are not sufficient for ∀∗∃∗ hyperproperties with
LTL-definable matrix (aka. HyperLTL).

Example 4. We can show that in the case of more than a
single universally quantified trace (i.e., cases where k > 1),

prophecies must necessarily reason about the joint future
behavior of all k universally quantified traces. Consider the
transition system T in Figure 1a that generates all traces over
AP = {a} and the property

ϕ = ∀π.∀π′.∃π′′. aπ′′ ↔ (aπ ↔ aπ′).

That is, a should hold on π′′ in the first step iff π and
π′ are equal. Clearly, T |= ϕ but this cannot be verified
using strategy-based verification without prophecies. The LTL-
definable prophecy ξ := (aπ ↔ aπ′) provides enough
information to the ∃-player on whether or not to set a in
the first step. However, any finite set of local prophecies (i.e.,
prophecy formulas that only refer to π or only refer to π′) is
incomplete.

The following two sections are devoted to a proof of

Theorem 4. To avoid clustered notation, we give our proof for

hyperproperties of the form ∀π.∃π′.φ. Our result generalizes

easily to the entire ∀∗∃∗ fragment. We begin our proof by

considering HyperLTL formulas of the form ∀π.∃π′.φ where

φ, when interpreted as a trace property, is a safety property (in

the traditional sense [24]). This allows for a simpler construc-

tion (in Section VII). In Section VIII we then incrementally

extend the construction to general temporal properties.

Remark 3. It is important to note that the class of safety
used in Section VII only refers to the LTL matrix (the body)
of the HyperLTL property. If the matrix is safety, this does not

imply that the HyperLTL formula is hypersafety (as defined
by Clarkson and Schneider [1]). For example, the matrix
of GNI (cf. Section I) is a safety property (and thus lends
itself to the simpler construction in Section VII), but GNI
is a hyperliveness property [1], [7]. On the other hand, as
shown in [31], the class of formulas with safety matrix (called
temporal safety in [31]) already contains all ∀∗∃∗ hypersafety
properties.

VII. COMPLETENESS FOR SAFETY MATRIX

We first consider the case where φ is a safety property. Let

Aφ = (Qφ, qφ0 , δ
φ, Bφ) be a deterministic safety automaton

over Σ× Σ for φ.

A. Prophecy Construction

The main idea behind our completeness result (which in a

modified form also applies to the general case in Section VIII)

is to design prophecies that directly identify those states that

478

the ∃-player should move to. As we assume that φ denotes

a safety property, we can accomplish this by identifying all

states that are safe, i.e., all states that the ∃-player can move

to without losing the game immediately. Formally, we add a

prophecy for each state s of the game and design them such

that a trace constructed by the ∀-player lies within a prophecy

for state s if and only if choosing s as a successor is safe for

the ∃-player. For every q ∈ Qφ and s ∈ S we define

Pq,s := {t ∈ Σω | ∃t′ ∈ Traces(Ts). t⊗ t′ ∈ L(Aφ
q)}.

Recall that Ts is T with s fixed as the initial state and similarly

for Aφ
q . That is, a trace t (chosen for the universally quantified

trace in ϕ) is in Pq,s if there exists some trace (chosen for

the existentially quantified trace in ϕ) that starts in s and, in

combination with t, is accepted by Aφ (when starting in q).

To (informally) see why these prophecies are useful for the

∃-player, let us assume that the current state of Aφ (on the

current prefix of the game) is q. If prophecy Pq,s holds, the

∃-player can move to state s knowing that the ∀-player plays

such that s is a safe move (as some trace starting from s is

still winning).

Remark 4. In our formalization, the ∀-player sets the
prophecy variables. Conceptually, we can thus consider
prophecies as a binding contract between the ∀-player and
the ∃-player. When the ∀-player indicates that Pq,s holds (by
setting the respective prophecy variable), the ∀-player enters a
binding agreement that guarantees that the constructed trace
is contained in Pq,s (as otherwise, the premise of ϕP,Ξ is
violated so the ∃-player wins trivially). From this point of
view, our prophecies defer the selection of a successor state
from the ∃-player to the ∀-player: By setting the variables, the
∀-player implicitly fixes all valid moves for the ∃-player.

We can easily see that the resulting prophecies are ω-regular

(by constructing the product of Ts and Aφ
q). Consequently,

we can represent each prophecy Pq,s as a QPTL prophecy

formula ξq,s (cf. Theorem 1). The resulting set of prophecies

is complete in the sense of Theorem 4.

Theorem 5. Assume T |= ϕ. Define Ξ = {ξq,s | q ∈ Qφ, s ∈
S} and let P = {pq,s | q ∈ Qφ, s ∈ S} be a fresh set of
atomic propositions. Then V � GT P ,ϕP,Ξ .

B. Correctness Proof

In this subsection, we sketch a proof of Theorem 5. As a

complete proof is rather involved, we restrict ourselves to the

construction of a winning strategy for the ∃-player and refer to

a detailed proof in the full version [30]. Readers less interested

in the proof can skip to Section VII-C.
1) Notation: We begin by introducing some notation.

By definition of T P , nodes in GT P ,ϕP,Ξ either have the

form (s,A), where s ∈ S and A ⊆ P or the form

〈(s,A), (s′, A′), q, 〉, where s, s′ ∈ S, A,A′ ⊆ P and

 ∈ {∀, ∃}. Here q is an automaton state in a DPA tracking

φP,Ξ :=
(∧
q∈Qφ,s∈S

(pq,s)π ↔ ξq,s

)
→ φ. (2)

It is easy to see that in states of the form 〈(s,A), (s′, A′), q, 〉
the A′ component (stemming from the definition of T P)

is irrelevant as in (2) the prophecy variables are only re-

ferred to on trace variable π. We, therefore, consider a

node 〈(s,A), (s′, A′), q, 〉 simply as 〈(s,A), s′, q, 〉. With

this conceptual simplification, any finite play v ∈ V ∗ in

GT P ,ϕP,Ξ (starting in some state in Vinit) of odd-length (where

|v| = 2i+ 1) has the form

(s0, A0)→ 〈(s0, A0), s
′
0, q0, ∀〉 → 〈(s1, A1), s

′
0, q1, ∃〉

→ 〈(s1, A1), s
′
1, q1, ∀〉 → · · · → 〈(si, Ai), s

′
i−1, qi, ∃〉.

(3)

We can extract from v both paths through T and the prophecy

variables set at each step. Define sv(0)sv(1) · · · sv(i) to be the

path of the ∀-player (s0s1 · · · si in (3)), Av(0)Av(1) · · ·Av(i)
the sequence of prophecy variables chosen (A0A1 · · ·Ai in

(3)), and s′v(0)s
′
v(1) · · · s′v(i − 1) the path for the ∃-player

(s′0s
′
1 · · · s′i−1 in (3)). Define tv(k) := L(sv(k)) and t′v(k) :=

L(s′v(k)) for 0 ≤ k ≤ i− 1.

2) Strategy Construction: With those definitions at hand,

we define an explicit winning strategy σ for V as follows:

1: Input: v ∈ V ∗ with |v| = 2i+ 1
2: if i = 0 then
3: T := S0

4: else
5: T := Sucs(s′v(i− 1))
6: q̂ := δφ

∗[
(tv(0), t

′
v(0)) · · · (tv(i− 1), t′v(i− 1))

]
7: C := {s′ | s′ ∈ T ∧ pq̂,s′ ∈ Av(i)}
8: if C �= ∅ then
9: return any s′ ∈ C

10: else
11: return any s′ ∈ T

Note that σ directly returns a successor state in T .

By the structure of GT P ,ϕP,Ξ , any finite path starting in

Vinit that reaches a node in VV is of odd length. We begin

by computing all possible successor states for the ∃-player in

a set T . These are either all initial nodes in the case where

|v| = 1 (line 3) or all successor states of the current state

of the ∃-player (line 5). We then compute the state q̂ of Aφ

reached on v in line 6. Note that q̂ is a state in Aφ whereas the

automaton states occurring in v are states in a DPA tracking

(2). In line 7, we check if any of the possible successors in

T are declared safe by the ∀-player, i.e., we check for states

where the corresponding prophecy variable is set. If there is

any such state, we pick it (line 9). Otherwise, we choose an

arbitrary successor (line 11).

Example 5. We can simulate the strategy on abstract pre-
fixes of (3). Initially, for v = (s0, A0) it picks any initial
state s′0 ∈ S0 such that ps′0,q

φ
0
∈ A0. For path v =

(s0, A0) → 〈(s0, A0), s
′
0, q0, ∀〉 → 〈(s1, A1), s

′
0, q1, ∃〉 it

computes the current state q̂ of Aφ reached on the path
(L(s0), L(s

′
0)) ∈ (Σ × Σ)∗ and picks any successor s′1 of

s′0 such that ps′1,q̂ ∈ A1.

479

It remains to argue the correctness of the just constructed

strategy. Here, we may assume that all prophecies are set

correctly (i.e., the premise of (2) is true) as otherwise, the play

is trivially won by V. Under this assumption, the premise that

T |= ϕ, and by induction on the length of a prefix of (3) we

can establish that C (as computed in line 7) is never empty, so

the strategy always selects a successor for which the prophecy

holds. This already implies that the play is winning for the ∃-

player: Indeed, if any state q̂ in Aφ were bad, we would get

Pq̂,s = ∅ for all states s, and so the set C computed in line

7 would be empty as well (as we assumed that the prophecy

variables are set correctly). A detailed proof can be found in

the full version [30].

C. On the Number Of Prophecies

As established in Theorem 5, the size of a complete set of

prophecies is upper bounded by |S| · |Qφ|. We can restrict the

number of prophecies further (which is relevant in practice but

does not offer an asymptotic improvement). Two states s1, s2
are trace equivalent, written s1 ≡Trace s2, if Traces(Ts1) =
Traces(Ts2). If s1 ≡Trace s2, we get Pq,s1 = Pq,s2 for any

automaton state q, so we can restrict the prophecy construction

to the equivalence class of ≡Trace .

We do not claim that our explicit prophecy construction

in Section VII-A is optimal w.r.t. the number of prophecies.

We can, however, show that the number of prophecies must

necessarily grow with the size of the system, i.e., it cannot be

constant (see the full version [30] for a proof).

Proposition 1. There exists a ∀∃ HyperLTL property ϕ with
safety matrix and a family of transition systems {Tn}n∈N such
that Tn has Θ(n)-many states, and Tn |= ϕ, and, additionally,
any family of prophecies {Ξn}n∈N where Ξn is complete for
Tn, ϕ has at least size |Ξn| ∈ Ω(logn).

VIII. COMPLETENESS FOR ω-REGULAR MATRIX

So far, the prophecy construction from Section VII is limited

to the case where φ is a safety property. In this section, we

incrementally modify the construction to support properties

where φ expresses arbitrary ω-regular properties. To begin

with, it is helpful to analyze why the construction from

Section VII fails when moving beyond safety.

Example 6. As a simple example to see this, we again
consider the transition system in Figure 1a, generating all
traces over AP = {a}. Define

ϕ := ∀π.∃π′.
(
aπ′ ↔ aπ

)
which expresses that π′ should predict the next step on π.
Importantly, π′ should not necessarily predict the next step of
π at every point but at least infinitely many times. Clearly,
T |= ϕ but V �� GT ,ϕ. Let Ξ be the set of prophecies
constructed in Section VII. It is easy to see that for any
reachable state q (in the canonical DPA for the matrix of
ϕ) and any trace t, it holds that t ∈ Pq,s1 and t ∈ Pq,s2 .
This is the case as choosing either state is safe, i.e., does lose
the game for the ∃-player. Even if the current prediction is

incorrect, infinitely many correct predictions are still possible
in the future. The ∀-player can therefore set all prophecy
variables to true without invalidating the premise of ϕP,Ξ,
so V �� GT P ,ϕP,Ξ ; Ξ is an incomplete set of prophecies.

As evident in Example 6, the root cause is that the safety

prophecies provide enough information to never lose the game

(i.e., encounter a situation from which the game cannot be

won anymore), but this does (when moving beyond safety)

not guarantee that the game is won.

A. Optimal Successors and Prophecy Construction

We begin our extension to support full ω-regularity by

assuming that we can express φ with a deterministic Büchi

automaton Aφ = (Qφ, qφ0 , δ
φ, Fφ). This is a proper extension

of the safety case in Section VII (as all safety properties

can be expressed with a deterministic Büchi automaton) but

does not capture full ω-regularity yet (we relax this further

in Section VIII-D). Note that the property in Example 6 can

be recognized by a deterministic Büchi automaton. We further

assume, w.l.o.g., that T has a unique initial state.

Following the idea from Section VII, the prophecies should

explicitly tell the ∃-player which successor to choose. The

crucial idea underlying our construction is that the prophecies

should point to successor states that are safe and, additionally,

satisfy that the next visit to an accepting state in Fφ occurs as
fast as possible (where the speed refers to the number of steps).

Always choosing such an “optimal” successor guarantees that

an accepting state is visited infinitely many times. A naı̈ve

idea where prophecies express “state s is safe, and a visit to

an accepting state is possible in n step” would certainly work

(a strategy for the ∃-player would always pick a successor

where the number of steps is minimal) but cannot be expressed

in finitely many prophecies (the number of steps needs to

be unbounded). The core idea in this section is to express

optimality of a state by means of a relative compression with

possible alternative states. Perhaps surprisingly, this is possible

within the framework of ω-regular prophecies. For automaton

state q ∈ Qφ and system states x, s ∈ S with s ∈ Sucs(x)
define Pq,x,s as follows:{
t ∈ Σω | ∃t′ ∈ Traces(Ts). t⊗ t′ ∈ L(Aφ

q)∧[
∀s′ ∈ Sucs(x). ∀t′′ ∈ Traces(Ts′). t⊗ t′′ ∈ L(Aφ

q)

⇒ firstVisitFφ(Aφ
q , t⊗ t′) ≤ firstVisitFφ(Aφ

q , t⊗ t′′)
]}

Recall that firstVisitFφ(Aφ
q , t⊗t′) denotes the first time point

that the unique run on t ⊗ t′ visits Fφ. The first line in our

new definition is similar to the safety case, i.e., a trace t is

in Pq,x,s if there exists a witness trace t′ starting in s. In

addition, we require that for any alternative successor s′ of x
and all traces t′′ starting in s′ that are also winning, the first

visit to an accepting state in Fφ occurs at least as fast on t′

as on the alternative trace t′′. For a given trace t ∈ Pq,x,s,

choosing s as the successor of x is thus optimal, in the sense

480

that from no other successor of x there is a witness trace that

visits an accepting state (strictly) sooner.

Example 7. We revisit Example 6. With our new construction,
a trace t satisfies t ∈ Pq,x,s1 (for any automaton state q and
any x ∈ {s1, s2}) if and only if a ∈ t(1). That is, choosing
s1 as a successor is optimal iff this correctly predicts the next
state of the ∀-player, i.e., a holds in the next step on t. In
particular, correctly predicting the move of the ∀-player in
the current step is better (measured in the number of steps to
an accepting state) than misspredicting it now but predicting
it correctly sometime in the future. A strategy that follows the
recommendations of the new prophecies will always (instead
of only infinitely many times) correctly predict the next step
of the ∀-player and is therefore winning.

B. On ω-Regularity

It is not immediate that Pq,x,s is ω-regular. We begin by

showing the following.

Proposition 2. For any q ∈ Qφ and s ∈ Sucs(x), Pq,x,s is
ω-regular.

Proof. We show that we can express Pq,x,s as a QPTL

formula which already gives the desired ω-regularity by The-

orem 1. We make heavy use of propositional quantification in

QPTL to encode paths in T and corresponding runs of Aφ.

Let VT := {ps | s ∈ S} and VAφ := {pq | q ∈ Qφ} be

propositional QPTL variables. We define formula valid as[
un(VT) ∧ un(VAφ) ∧

(∨
s

T−→s′

δφ(q,(σ,L(s)))=q′

ps ∧ ps′ ∧ pq ∧ pq′ ∧ σ
)]

where un(A) :=
∨

a∈A

(
a∧∧a �=a′∈A ¬a′

)
asserts that exactly

one proposition from A holds. For σ ∈ Σ = 2AP we write

σ for the formula
∧

a∈σ a ∧
∧

a �∈σ ¬a. This formula asserts

that the propositions in VT describe a valid path in T and

the propositions in VAφ a valid run of Aφ where the first

component in Aφ is read as input and the second component

is the label of the path described by VT .

Similarly, we use propositions V̂T := {p̂s | s ∈ S} and

V̂Aφ := {p̂q | q ∈ Qφ} to encode a second path and automaton

run (as needed in the definition of Pq,x,s). We define v̂alid
analogously to valid but use p̂s instead of ps and p̂q instead

of pq . Now consider the following QPTL formula φq,x,s:

∼
∃VT ∪ VAφ .

[
ps ∧ pq ∧ valid ∧

∨
q∈Fφ

pq

]
∧ (4)

(
∼
∀V̂T ∪ V̂Aφ .

[(∨
s′∈Sucs(x)

p̂s′
)
∧ p̂q ∧ v̂alid ∧

∨
q∈Fφ

p̂q

]
(5)

→
(∨

q �∈Fφ

p̂q

)
U
(∨

q∈Fφ

pq

))
(6)

This formula closely follows the definition of Pq,x,s. We

existentially quantify over a path of T starting in s and

an accompanying run of Aφ (starting in q). Taking only

(4) would result in a direct QPTL formula encoding of the

prophecy Pq,s from Section VII. To encode the optimality,

in (5) we quantify over an alternative run that starts in some

s′ ∈ Sucs(x) and is also accepting. Finally, (6) states that

the alternative run (described via the p̂ propositions) does not

visit an accepting state as long as the existentially quantified

run has not visited an accepting state. It is easy to see that

the QPTL formula φq,x,s expresses Pq,x,s.

C. Correctness Proof

We show that the resulting set of prophecies is complete.

Let ξq,x,s be a QPTL formula for Pq,x,s (which exists by

Proposition 2).

Theorem 6. Assume T |= ϕ. Define Ξ = {ξq,x,s | q ∈ Qφ, s ∈
Sucs(x)} and let P = {pq,x,s | q ∈ Qφ, s ∈ Sucs(x)} be a
fresh set of atomic propositions. Then V � GT P ,ϕP,Ξ .

Proof sketch. To construct a winning strategy for V we use

a similar construction as in Section VII-B. Whenever the ∃-

player is in a state x and q is the current state of Aφ (reached

on the prefix of the game), the strategy checks if any prophecy

variable pq,x,s is set for some s ∈ Sucs(x) and, if this

is the case, selects any such s. Arguing the correctness of

the resulting strategy is more challenging than in the safety

case. We only sketch the proof here. We can assume, that the

prophecies are set correctly (so the premise of ϕP,Ξ holds).

Under this assumption, we show that there always exists at

least one successor state for which the prophecy holds. We

employ a ranking argument to prove that the resulting play

visits Fφ infinity many times. We define a function that maps

each q ∈ Qφ, x ∈ S, and trace t to an element in N∪{∞} as

the shortest number of steps any trace starting in a successor

of x needs to take to reach an accepting state. Formally

opt(q, x, t) := min
t′∈T(q,x,t)

firstVisitFφ(Aφ
q , t⊗ t′)

where

T (q, x, t) := {t′ | ∃s ∈ Sucs(x). t′ ∈ Traces(Ts) ∧
t⊗ t′ ∈ L(Aφ

q)}.

We can establish that opt serves as a ranking function

w.r.t. our prophecies as follows. If q �∈ Fφ, s ∈ Sucs(x)
and t ∈ Pq,x,s, then opt(q′, s, t[1,∞]) < opt(q, x, t) (where

q′ = δφ(q, (t(0), L(s)))). That is, if a prophecy holds for

s ∈ Sucs(x), then the ranking function is finite and by moving

to s the function either decreases strictly or an accepting state

in Fφ visited. As N is well-founded, this implies that a visit

to an accepting state occurs infinity many times. We give a

detailed proof in the full version [30].

D. Completeness Beyond Deterministic Büchi Automata

Up to this point, we assumed thatA is given as a determinis-

tic Büchi automaton. We now sketch how to relax this further.

For this, we assume that φ is given as a deterministic Rabin

automaton (DRA). In a Rabin automaton, the acceptance

condition is given as a set of pairs (B1, F1), . . . , (Bm, Fm). A

run r of the automaton is accepting if there exists a 1 ≤ i ≤ m

481

such that r visits states in Bi only finitely many times and

states in Fi infinitely many times. As every parity condition is

also a Rabin condition, we can translate every LTL formula φ
(or, more generally, any ω-regular property) into an equivalent

deterministic Rabin automaton.

1) One-pair Rabin Automata: To begin with, we consider

the case where φ can be recognized by a DRA with a single
pair, i.e., the acceptance condition consists of a set of states F
that should be visited infinitely many times and a set of states

B that should be visited only finitely many times. The previous

construction of Pq,x,s for deterministic Büchi automaton is

incomplete as it guarantees that F is visited infinitely many

times but does not ensure that B is only visited finitely many

times. We sketch how the definition of Pq,x,s is modified to

support single-pair DRA and refer the reader to the full version

[30] for a formal definition. We modify Pq,x,s such that a trace

t satisfies t ∈ Pq,x,s if either of the following holds:

• There exists a trace t′ starting in s that is winning (i.e.,

t ⊗ t′ ∈ L(Aφ
q)), where the unique run never visits a

state in B, and for all other states s′ ∈ Sucs(x) and any

winning trace t′′ starting in s′ that also never visits B,

t⊗ t′ visits a state in F at least as fast as t⊗ t′′, or

• There does not exist a winning trace that never visits a

state in B from any successor of x but there is a trace

t′ from s that is winning (but visits B at least once),

and, for all states s′ ∈ Sucs(x) and any winning trace t′′

starting in s′, the last visit to a state in B on t⊗ t′ is at

least as fast as the last visit on t⊗ t′′.

Suppose the ∃-player follows the recommendation given by

the resulting prophecies (in the sense outlined in the proof

sketch of Theorem 6). By doing so, it will construct a witness

trace that visits B for the last time as soon as possible and

afterward (repeatedly) visits states in F as soon as possible

and is therefore winning.

2) Beyond One-pair Rabin Automata: To move from a

one-pair DRA to an arbitrary DRA, we simply annotate

prophecies with a Rabin pair index. Given a DRA with pairs

(B1, F1), . . . , (Bm, Fm) we compute the prophecies for a

single-pair DRA for each such pair (i.e., the DRA obtained

by replacing the set of Rabin pairs with a singleton set). For

q ∈ Qφ, s ∈ Sucs(x) and 1 ≤ i ≤ m we define Pq,x,s,i as the

prophecy Pq,x,s computed on the single-pair Rabin automaton

with pair (Bi, Fi) (as in Section VIII-D1). The ∃-player can

then initially commit to one Rabin pair, say i, and afterward,

always follow the recommendations of the prophecies where

the index matches i (in the sense outlined in the proof sketch

of Theorem 6). This strategy constructs a witness trace that is

already winning for the DRA fixed to the single pair (Bi, Fi)
and therefore also for the general automaton. This concludes

the proof of Theorem 4.

E. On the Number of Prophecies

In our construction, the number of prophecies is linear in

the size of the automaton but quadratic in the size of the sys-

tem. More precisely, as we consider prophecies Pq,x,s where

s ∈ Sucs(x), the number (in the size of the system) is of order

1: Input: T = (S, S0, �, L), ϕ = ∀π.∃π′.φ
2: construct DPA Aφ = (Qφ, qφ0 , δ

φ, cφ)
3: for i = 0 . . . |Qφ| · |S| do
4: for X in 2Q

φ×S
i do

5: Θ← {APq,s
| (q, s) ∈ X}

6: if V � GT P ,ϕP,Θ then return �

7: return �

Alg. 1: Prophecy-based verification for ∀∃ HyperLTL with

safety matrix. The algorithm returns � if T |= ϕ and � if

T �|= ϕ. We write 2S×Qφ

i for all subsets of S × Qφ with

cardinality i. Automaton APq,s
represents the prophecy Pq,s.

This automaton can be computed by constructing the product

of Aφ and T and is thus linear in the size of T .

O(d · |S|) where d = maxs∈S |Sucs(s)| (which is O(|S|2)
in the worst case). Using a more efficient binary encoding,

we can achieve an exponential decrease in the number of

prophecies to O(|S| log |S|) (in the size of the system). See

the full version [30] for the optimized construction.

Proposition 3. Let T be a (finite-state) transition system with
state-space S and let ϕ be a ∀∗∃∗ HyperLTL property such
that T |= ϕ. There exists a complete set of prophecies Ξ with
|Ξ| ∈ O(|S| log |S|).

IX. PROPHECY-BASED VERIFICATION AND

IMPLEMENTATION

A. Prophecy-based Verification

As the completeness result in this paper is constructive and

computable, we directly obtain an algorithmic solution to the

HyperLTL model checking problem. We sketch a possible

algorithm for the safety case (cf. Section VII) in Algorithm 1.

For each number of prophecies i (ranging from 0 to |Qφ|·|S|),
we consider all possible sets of prophecies X of size i,
compute an automaton representation APq,s

of Pq,s for each

(q, s) ∈ X , and check if V � GT P ,ϕP,Θ holds. By complete-

ness, the prophecies set of size i = |Qφ| · |S| is complete; the

algorithm constitutes a sound-and-complete model checking

procedure for ∀∃ properties with safety matrix.7

We briefly discuss how we can check if V � GT P ,ϕP,Θ . We

first observe that we can write φP,Ξ (the matrix of ϕP,Ξ) as[(n∧
j=1

(pjπ1
↔ ξj)

)
→ φ

]
≡

[(n∨
j=1

(pjπ1
�↔ ξj)

)
∨ φ

]
.

In Algorithm 1 we compute an NBA representation A ∈ Θ
for each prophecy. We can thus construct an NBA for φP,Θ

that is at most exponential in the size of the automata in

7Of course, computing the set of all prophecies identified in Theorem 5
directly (i.e., immediately setting i = |Qφ| · |S|) also constitutes a complete
model checker. Incrementally increasing the size of the prophecy set (as done
in Algorithm 1) often results in successful verification with fewer prophecies
and, in consequence, also in faster computation. If, on the other hand, the
goal is to disprove a property, computing the full set of prophecies directly
is, obviously, more efficient.

482

Θ, convert to a DPA, and solve the parity game GT P ,ϕP,Θ .8

Alternatively, we can make use of the disjunctive structure of

φP,Ξ by constructing a DPA for each formula (piπ1
�↔ ξi)

individually and then solve a generalized parity game (a

game where the winning condition is a disjunction of parity

objectives) [32].

Remark 5. Algorithm 1 uses the prophecy construction for
HyperLTL formulas with a safety matrix. Analogously, we
could obtain a complete algorithm for arbitrary ∀∗∃∗ prop-
erties by using the more general prophecy construction in
Section VIII. However, generating automata representations
of the prophecies is more challenging (cf. Proposition 2).

B. Implementation and Evaluation

We have implemented Algorithm 1 (supporting ∀∗∃∗ prop-

erties instead of only ∀∃ properties) in a prototype model

checker called HyPro (short for Hyperproperty Verification

with Prophecies). The novelty of HyPro is twofold: First,

it is the first tool to fully automatically synthesize winning

strategies for the ∃-player (based on the parity-game-based

encoding). And second, HyPro is the first complete verifica-

tion tool for ∀∗∃∗ properties with an LTL safety matrix.

If desired by the user, HyPro applies a bisimulation-

based preprocessing of the system.9 We have disabled this

preprocessing for our experiments.

1) Model Checking without Prophecies: We begin by eval-

uating HyPro on instances that do not require any prophecies,

i.e., instances where GT ,ϕ is won by V and so Algorithm 1

already terminates for i = 0. Our benchmarks consist of

information-flow policies in the form of GNI and symmetry

constraints (i.e., properties that require that for every trace,

there exists one with the opposite outcome) on boolean pro-

grams (including those from [33]) with varying bitwidths.

We give the verification results in Table I. Our results

confirm that our direct parity-game-based encoding can suc-

cessfully synthesize strategies for the ∃-player in systems of

medium size.10 If we enable HyPro‘s bisimulation-based pre-

processing, we can verify properties of significantly larger size,

as, with increasing bitwidths, the bisimulation quotient stays

small. With preprocessing enabled, HyPro can successfully

verify systems with up to 55k states within a few seconds.

We can contrast HyPro with the approach implemented

in MCHyper [6], [7]. MCHyper requires an explicit user-
provided strategy for the ∃-player, which reduces hyper-

8In particular, we get that Algorithm 1 solves the model checking problem
in 2-EXPTIME in the size of the system. We emphasize that the goal of our
completeness proof is not to derive an efficient model checking algorithm. As
we will see in Section IX-B, the actual number of prophecies needed is often
much smaller and research into more efficient prophecy constructions is an
interesting direction for future work (cf. Section X-B).

9For two bisimilar systems T1 and T2 (see, e.g., [21] for a formal definition)
it holds that V � GT1,ϕ iff V � GT2,ϕ for every ϕ. Therefore, we can apply
strategy-based verification to the (in many cases much smaller) bisimulation
quotient. Note V � GT1,ϕ and V � GT1,ϕ are, in general, not equivalent
when T1 and T2 are only trace equivalent.

10Note that the size column in Table I gives the size of an individual system.
If we, e.g., verify GNI, the size of the resulting parity game is cubic in the
size of the system (as GNI involves three trace quantifiers).

TABLE I: Evaluation on instances where no prophecies are

necessary to verify a property. We give the problem instance,

the bitwidth of the variables (Bitwidth), the size of the

program’s state space after compiling to a transition system

(Size), the verification outcome (Res) (� indicates that the

property holds, � that it is violated), and the overall time taken

by HyPro (t). Times are given in seconds.

Instance Bitwidth Size Res t

P1 (GNI)
1-bit 17

�
0.1

4-bit 129 25.3

P2 (GNI) 1-bit 55 � 0.4

P3 (GNI)
1-bit 20

�
0.2

3-bit 80 5.1

P4 (GNI)
1-bit 29

�
0.2

3-bit 113 9.2

FlipOutput (Sym) 7-bit 512 � 9.6

FlipConjunction (Sym) 2-bit 80 � 1.3

Switch (Sym) 3-bit 144 � 4.4

TABLE II: Evaluation on instances where prophecies are

needed to verify a property and instances where a prop-

erty does not hold. We give the size of the system (Size),

the number of prophecies identified using (an optimized

version of) Theorem 5 (#P), the minimal cardinality of a

complete prophecy set (MinP), the (cumulative) size of the

automata used to represent this (minimal) complete prophecy

set (SizeP), the construction time of the prophecies (tP), the

verification outcome (Res), and the overall time taken by

HyPro (t). Times are given in seconds.

Instance Size #P MinP SizeP tP Res t

Predict1Small 4 10 1 4 0.1 � 0.3

Predict1Large 20 42 1 4 0.1 � 1.2

Predict2 4 20 3 12 1.0 � 4.7

Example II-A 2 6 1 4 0.2 � 0.6

Example II-B 7 14 1 6 0.1 � 0.5

EnforceManyProph 4 16 3 12 0.8 � 14.5

Example 3 4 20 1 3 0.5 � 0.8

Example 4 2 10 1 2 0.1 � 0.3

PredictLiveness 4 20 1 2 0.3 � 0.6

MissingShift 4 5 - - 0.2 � 0.3

ViolationSimple 4 9 - - 0.4 � 0.8

property verification to the verification of a trace property.

Obviously, strategy synthesis (as done by HyPro) operators

on a different scale than strategy verification (as done by

MCHyper). This motivates the coexistence of both tools:

A user can either favor a fully automatic verification using

HyPro or provide an explicit strategy and make use of

the industrial-strength offered MCHyper. In the former, the

483

tedious, error-prone, and time-consuming task of writing an

explicit strategy by hand is avoided, whereas the latter supports

larger systems.

2) Model Checking with Prophecies: As a second bench-

mark, we compiled a collection of very small transition sys-

tems that cannot be verified without the use of prophecies. Our

benchmarks include programs where non-deterministic choices

need to be resolved before the information needed is provided

or where predictions on future behavior are demanded. The

results are given in Table II. None of the existing solvers [6],

[7], [33] can verify any of these instances. Moreover, based

on our completeness result, HyPro is the first tool that can

prove that a property does not hold.

¬bπ

�

bπ

�

Fig. 5: Prophecy au-

tomaton constructed by

HyPro for Example 3.

Even though the prophecies com-

puted by HyPro are only guaran-

teed to be complete for properties

with safety matrix, the construction

empirically also works for proper-

ties beyond safety (such as Exam-

ple 3). For Example 3, HyPro com-

putes the prophecy depicted as an

NBA in Figure 5, which precisely

captures the information needed by

the ∃-player, i.e., it determines if bπ never holds at an even

position. Note again that this prophecy is not LTL-definable.

In Table II, we observe that the actual number of prophecies

needed to verify a property (MinP) is often much smaller than

the overall number of prophecies (#P). This observation is

encouraging, as it indicates that the information needed by

the ∃-player is concise, i.e., expressible with few automata.

We remark that the direct prophecy construction in Algo-

rithm 1 (and implemented in HyPro) is, obviously, limited to

very small systems as the number of prophecies scales linearly

in the size of the system (also see Section X-B).

X. DISCUSSION

A. Further Applications of Prophecy-based Verification

The primary motivation for our work is rooted in the

need for efficient and accurate (meaning complete) verifica-

tion methods for hyperproperties with quantifier alternation.

Nevertheless, prophecies for hyperproperty verification are

also useful beyond just constituting a complete proof method.

We highlight two such cases in the context of explainable

verification results and hyperproperty verification on software.

1) Prophecies for Explainable Verification: Ideally, a ver-

ification tool should not only verify that a property holds

but convince the user (of, e.g., a security-critical library)

why this is the case [34]. Certifying verification results of

safety trace properties (or k-safety hyperproperties) are well

understood as the verification tool can provide an (inductive)

invariant on the system. Understanding verification outcomes

in the presence of quantifier alteration, such as for GNI, is

much more challenging. Prophecy-based verification naturally

provides a user-understandable certificate. If a property is

verified, a user is provided with (1) an explicit strategy σ for

the ∃-player, (2) an invariant on the plays produced by σ, and

(3) a finite set of prophecies needed by σ. This triple allows

for a deep investigation into the system as the prophecies

directly indicate which future decisions are relevant. The user

can even interactively step through the strategy and prophecies

and explore the trace constructed by the strategy.

2) Verification of Infinite-state Systems: Prophecies are also

useful in the context of hyperproperty verification on infinite-

state systems. For such systems, complementation-based ver-

ification is, unsurprisingly, impossible. In contrast, strategy-

based verification is applicable (see, e.g., [13]). Prophecies

can strengthen the ∃-player and result in more successful

verification instances.

B. Future Work

While HyPro demonstrates that an explicit prophecy con-

struction is applicable in practice, verification is, obviously,

restricted to very small systems. In fact, the direct prophecy-

based construction implemented in HyPro is, most likely,

easily outperform by complementation-based verification ap-

proaches (which are currently not implemented in any tool).

This leaves the construction of more efficient methods to

synthesize relevant prophecies as a particularly interesting

direction for future work. A natural idea would be to, instead

of using a fixed prophecy construction (as in Algorithm 1),

focus on counter-example guided approaches that iteratively

add prophecies by analyzing a spoiling strategy for the ∀-

player in GT P ,ϕP,Ξ . Existing techniques for LTL learning [35],

[36], or automaton learning [37]–[39] can be used to identify

prophecies that distinguish traces on which different future

behavior by the ∃-player is necessary. This would exhibit much

of the benefits of prophecy-based verification (in particular,

the explainability of verification results) while scaling well

in the size of the system. As we establish with this paper, a

well-chosen prophecy generation (that, in the limit, enumerates

enough prophecies) would constitute a complete verification

method. Moreover, as demonstrated in Table II, the actual

number of prophecies needed in practice is often small.

XI. CONCLUSION

In this paper, we have provided a formal footing for the use

of prophecy variables for hyperproperty verification by giving

a precise characterization of their expressive power. The main

result is that prophecies turn strategy-based verification into

a complete verification method for arbitrary ∀∗∃∗ properties.

Our completeness proof is informative in the sense that it pro-

vides an explicit, effective, and finite-state-representable (ω-

regular) construction of the prophecies. This new foundation

asks for further research to devise prophecy-based (complete)

verification methods that scale to larger systems.

ACKNOWLEDGMENTS

This work was partially supported by the German Research

Foundation (DFG) in project 389792660 (Foundations of Per-
spicuous Software Systems, TRR 248). R. Beutner carried out

this work as a member of the Saarbrücken Graduate School

of Computer Science.

484

REFERENCES

[1] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” in IEEE
Computer Security Foundations Symposium, CSF 2008. IEEE Computer
Society, 2008. [Online]. Available: https://doi.org/10.1109/CSF.2008.7

[2] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, “Temporal logics for hyperproperties,” in International
Conference on Principles of Security and Trust, POST 2014, ser.
Lecture Notes in Computer Science, vol. 8414. Springer, 2014.
[Online]. Available: https://doi.org/10.1007/978-3-642-54792-8 15

[3] A. W. Roscoe, J. Woodcock, and L. Wulf, “Non-interference through
determinism,” J. Comput. Secur., vol. 4, no. 1, 1996. [Online].
Available: https://doi.org/10.3233/JCS-1996-4103

[4] D. McCullough, “Noninterference and the composability of security
properties,” in IEEE Symposium on Security and Privacy, SP
1988. IEEE Computer Society, 1988. [Online]. Available: https:
//doi.org/10.1109/SECPRI.1988.8110

[5] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow
by self-composition,” Math. Struct. Comput. Sci., vol. 21, no. 6, 2011.
[Online]. Available: https://doi.org/10.1017/S0960129511000193

[6] B. Finkbeiner, M. N. Rabe, and C. Sánchez, “Algorithms for model
checking HyperLTL and HyperCTL∗,” in International Conference
on Computer Aided Verification, CAV 2015, ser. Lecture Notes in
Computer Science, vol. 9206. Springer, 2015. [Online]. Available:
https://doi.org/10.1007/978-3-319-21690-4 3

[7] N. Coenen, B. Finkbeiner, C. Sánchez, and L. Tentrup, “Verifying
hyperliveness,” in International Conference on Computer Aided
Verification, CAV 2019, ser. Lecture Notes in Computer Science, vol.
11561. Springer, 2019. [Online]. Available: https://doi.org/10.1007/
978-3-030-25540-4 7

[8] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theor. Comput. Sci., vol. 82, no. 2, 1991. [Online]. Available:
https://doi.org/10.1016/0304-3975(91)90224-P

[9] G. Barthe, J. M. Crespo, and C. Kunz, “Beyond 2-safety: Asymmetric
product programs for relational program verification,” in International
Symposium on Logical Foundations of Computer Science, LFCS 2013,
ser. Lecture Notes in Computer Science, vol. 7734. Springer, 2013.
[Online]. Available: https://doi.org/10.1007/978-3-642-35722-0 3

[10] H. Unno, T. Terauchi, and E. Koskinen, “Constraint-based
relational verification,” in International Conference on Computer
Aided Verification, CAV 2021, ser. Lecture Notes in Computer
Science, vol. 12759. Springer, 2021. [Online]. Available:
https://doi.org/10.1007/978-3-030-81685-8 35

[11] L. Lamport and F. B. Schneider, “Verifying hyperproperties with
TLA,” in IEEE Computer Security Foundations Symposium, CSF 2021.
IEEE, 2021. [Online]. Available: https://doi.org/10.1109/CSF51468.
2021.00012

[12] T. Hsu, C. Sánchez, and B. Bonakdarpour, “Bounded model checking
for hyperproperties,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2021,
ser. Lecture Notes in Computer Science, vol. 12651. Springer, 2021.
[Online]. Available: https://doi.org/10.1007/978-3-030-72016-2 6

[13] R. Beutner and B. Finkbeiner, “Software verification of hyperproperties
beyond k-safety,” in International Conference on Computer Aided Veri-
fication, CAV 2022, ser. Lecture Notes in Computer Science. Springer,
2022.

[14] B. Cook, H. Khlaaf, and N. Piterman, “On automation of CTL∗

verification for infinite-state systems,” in International Conference
on Computer Aided Verification, CAV 2015, ser. Lecture Notes in
Computer Science, vol. 9206. Springer, 2015. [Online]. Available:
https://doi.org/10.1007/978-3-319-21690-4 2

[15] N. A. Lynch and F. W. Vaandrager, “Forward and backward simulations:
I. untimed systems,” Inf. Comput., vol. 121, no. 2, 1995. [Online].
Available: https://doi.org/10.1006/inco.1995.1134

[16] R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany,
D. Dreyer, and B. Jacobs, “The future is ours: prophecy variables in
separation logic,” Proc. ACM Program. Lang., vol. 4, no. POPL, 2020.
[Online]. Available: https://doi.org/10.1145/3371113

[17] Z. Zhang, X. Feng, M. Fu, Z. Shao, and Y. Li, “A structural
approach to prophecy variables,” in Annual Conference on Theory
and Applications of Models of Computation, TAMC 2012, ser. Lecture
Notes in Computer Science, vol. 7287. Springer, 2012. [Online].
Available: https://doi.org/10.1007/978-3-642-29952-0 12

[18] V. Vafeiadis, “Modular fine-grained concurrency verification,” Ph.D.
dissertation, University of Cambridge, UK, 2008.

[19] O. Padon, J. Hoenicke, K. L. McMillan, A. Podelski, M. Sagiv, and
S. Shoham, “Temporal prophecy for proving temporal properties of
infinite-state systems,” Formal Methods Syst. Des., vol. 57, no. 2, 2021.
[Online]. Available: https://doi.org/10.1007/s10703-021-00377-1

[20] B. Cook and E. Koskinen, “Making prophecies with decision predicates,”
in ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2011. ACM, 2011. [Online]. Available: https:
//doi.org/10.1145/1926385.1926431

[21] C. Baier and J. Katoen, Principles of model checking. MIT Press, 2008.
[22] S. Safra, “On the complexity of omega-automata,” in Annual Symposium

on Foundations of Computer Science, FOCS 1988. IEEE Computer
Society, 1988. [Online]. Available: https://doi.org/10.1109/SFCS.1988.
21948

[23] N. Piterman, “From nondeterministic büchi and streett automata to
deterministic parity automata,” Log. Methods Comput. Sci., vol. 3, no. 3,
2007. [Online]. Available: https://doi.org/10.2168/LMCS-3(3:5)2007

[24] B. Alpern and F. B. Schneider, “Defining liveness,” Inf. Process.
Lett., vol. 21, no. 4, 1985. [Online]. Available: https://doi.org/10.1016/
0020-0190(85)90056-0

[25] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
in International Conference on Computer Aided Verification, CAV 1999,
ser. Lecture Notes in Computer Science, vol. 1633. Springer, 1999.
[Online]. Available: https://doi.org/10.1007/3-540-48683-6 17

[26] D. A. Martin, “Borel determinacy,” Annals of Mathematics, vol. 102,
no. 2, 1975.

[27] V. Diekert and P. Gastin, “First-order definable languages,” in Logic and
Automata: History and Perspectives, ser. Texts in Logic and Games,
vol. 2. Amsterdam University Press, 2008.

[28] A. P. Sistla, Theoretical issues in the design and verification of dis-
tributed systems. Harvard University, 1983.

[29] M. Y. Vardi and P. Wolper, “Reasoning about infinite computations,”
Inf. Comput., vol. 115, no. 1, 1994. [Online]. Available: https:
//doi.org/10.1006/inco.1994.1092

[30] R. Beutner and B. Finkbeiner, “Prophecy variables for hyperproperty
verification,” CoRR, vol. abs/2206.01797, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2206.01797

[31] R. Beutner, D. Carral, B. Finkbeiner, J. Hofmann, and M. Krötzsch,
“Deciding hyperproperties combined with functional specifications,”
in Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2022. ACM, 2022. [Online]. Available: https://doi.org/10.1145/
3531130.3533369

[32] K. Chatterjee, T. A. Henzinger, and N. Piterman, “Generalized parity
games,” in International Conference on Foundations of Software
Science and Computational Structures, FOSSACS 2007, ser. Lecture
Notes in Computer Science, vol. 4423. Springer, 2007. [Online].
Available: https://doi.org/10.1007/978-3-540-71389-0 12

[33] R. Beutner and B. Finkbeiner, “A temporal logic for strategic
hyperproperties,” in International Conference on Concurrency Theory,
CONCUR 2021, ser. LIPIcs, vol. 203. Dagstuhl, 2021. [Online].
Available: https://doi.org/10.4230/LIPIcs.CONCUR.2021.24

[34] H. Chockler, J. Y. Halpern, and O. Kupferman, “What causes a system
to satisfy a specification?” ACM Trans. Comput. Log., vol. 9, no. 3,
2008. [Online]. Available: https://doi.org/10.1145/1352582.1352588

[35] D. Neider and I. Gavran, “Learning linear temporal properties,”
in Formal Methods in Computer Aided Design, FMCAD 2018,
N. Bjørner and A. Gurfinkel, Eds. IEEE, 2018. [Online]. Available:
https://doi.org/10.23919/FMCAD.2018.8603016

[36] C. Lemieux, D. Park, and I. Beschastnikh, “General LTL specification
mining (T),” in IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015. IEEE Computer Society, 2015.
[Online]. Available: https://doi.org/10.1109/ASE.2015.71

[37] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, 1987. [Online]. Available: https:
//doi.org/10.1016/0890-5401(87)90052-6

[38] B. Finkbeiner, L. Haas, and H. Torfah, “Canonical representations
of k-safety hyperproperties,” in IEEE Computer Security Foundations
Symposium, CSF 2019. IEEE, 2019. [Online]. Available: https:
//doi.org/10.1109/CSF.2019.00009

[39] A. Farzan, Y. Chen, E. M. Clarke, Y. Tsay, and B. Wang,
“Extending automated compositional verification to the full class
of omega-regular languages,” in International Conference on Tools
and Algorithms for the Construction and Analysis of Systems,
TACAS 2008, vol. 4963. Springer, 2008. [Online]. Available:
https://doi.org/10.1007/978-3-540-78800-3 2

485

