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Abstract—Various modern protocols tailored to emerging wire-
less networks, such as body area networks, rely on the proximity
and honesty of devices within the network to achieve their
security goals. However, there does not exist a security framework
that supports the formal analysis of such protocols, leaving the
door open to unexpected flaws. In this article we introduce such
a security framework, show how it can be implemented in the
protocol verification tool TAMARIN, and use it to find previously
unknown vulnerabilities on two recent key exchange protocols.

Index Terms—security protocols, formal verification, key ex-
change, distance bounding, distant attacker

I. INTRODUCTION

In the past few years, we have seen the emergence of

a new class of security protocols that have as a common

feature that their security goals are only guaranteed under the

assumption that the adversary is not in the proximity of the

proper communication partners. Examples of such protocols

are key exchange protocols for Body Area Networks [1],

pairing protocols of smart devices [2]–[4], or protocols for

memory erasure and memory attestation [5], [6].

Assuming that attackers are far or distant, called the distant-
attacker assumption, can be motivated in various ways. A local

attacker can, for instance, be excluded due to physical protec-

tion or human observation of the environment. Alternatively,

attacks by local agents may be considered infeasible due to the

use of out-of-band channels that open to nearby devices only,

such as short-range or low-powered communication. A trace-

ability attack, which occurs when a user can be traced based

on the transcripts of the communication protocol, that requires

the attacker to be close to the victim is arguably ineffective,

as the victim is already being physically monitored. Lastly,

memory erasure and attestation protocols have proven unable

to resist a standard man-in-the-middle attacker [7], such as the

Dolev-Yao attacker. The state-of-the-practice for this type of

This work was supported by the Luxembourg National Research Fund,
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protocols is to isolate the prover and verifier by radio jamming

or hardware manipulation.

Most of the protocols that depend on the distant-attacker

assumption have not been formally verified yet and may thus

suffer from unexpected vulnerabilities. This lack of verification

effort can mainly be explained by the use of informal, physical

or out-of-band techniques that are hard to formalize in a

symbolic security model. Hence there is a need for a security

model that makes explicit what a distant-attacker can and

cannot do, and that is amenable to formal verification.

Because the distant-attacker assumption states that the dis-

tance between the adversary and the proper communication

partners is (much) larger than the mutual distance between the

communication partners, this notion appears to have a strong

link to the notion of distance-bounding protocols. However,

while the goal of distance-bounding protocols is to ensure

that the communication partners are close, protocols from the

above mentioned class aim to ensure some classical security

property, like secrecy or authentication, under the assumption

of proximity of the communication partners. Such focus on

distance bounding is reflected on the verification frameworks

[8]–[13] developed for the verification of distance-bounding

protocols using round-trip time, which ignore classical security

properties.

The pairing protocol depicted in Figure 1, inspired by

the design of Move2Auth [3], is an example of the type of

protocols we are referring to: it aims at secure key exchange,

relies on the distant-attacker assumption, and uses the physical

properties of the communication channel to check proximity.

The goal is for an agent V to create a shared key kvp with

another agent P . V does not have any previous cryptographic

secret shared with P , but it is confident that all agents in its

vicinity are honest. The prover first generates a public/private

key pair, denoted pk(k) and k, respectively. The public key,

together with the signature of the prover’s identity P with k, is

sent to V . Upon reception, V generates a fresh symmetric key
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kvp, executes a round-trip-time (RTT) measurement with P ,

and sends kvp encrypted with pk(k). The RTT measurement,

illustrated by dashed arrows, is based on the messages nv and

nv⊕np. Once P decrypts {kvp}pk(k), it confirms reception of

the key by encrypting the nonce np and its own identity P with

kvp. If the RTT is lower than a time threshold Δ, and 〈np, P 〉
is correctly encrypted with kvp, then V concludes that P is

nearby and, therefore, honest (based on the distant-attacker

assumption). This allows V to claim that kvp is secret, i.e.

unknown to attackers.

P V

nonce k, np nonce nv, kvp
〈pk(k), sign(P, k)〉

nv

max Δnv ⊕ np

{kvp}pk(k)

{〈np, P 〉}kvp

kvp is secret

Fig. 1: An insecure pairing protocol Pex: a running example

Based on our study of the literature, the most common

security argument used to analyse this type of protocol is to

assume that some messages are unavailable to the attackers,

because they are far. Case in point: if the messages used

to measure RTT can only be received by honest and nearby

agents, then the last message {〈np, P, 〉}kvp
should have been

generated by an honest agent, supposedly P . By using this

security argument one may conclude that the protocol in

Figure 1 is secure. Yet it is not. The protocol suffers from

an attack known as distance fraud in the distance-bounding

literature [14], because it relies on the ability of an attacker

to inject messages from far away.

The attack works as follows. The attacker E executes the

protocol with V by sending their own public key. E does not

wait for the second message. Instead, E sends a random value

m soon enough to be received by V right after V sends nv .

The same antenna that E uses to inject messages is used to

eventually receive the verifier’s challenge nv . This allows E
to compute np = nv ⊕ m and correctly finish the protocol

with V . There is another attack on this protocol, that does not

require the attacker to interfere with the RTT measurement.

It consist in hijacking a session between an honest prover P
and V in a similar fashion to distance-hijacking attacks on

distance-bounding protocols [15]. Without providing further

details on the second attack, we argue that the intuitive use

of a secure or protected channel between nearby devices

to formally model the physical assumptions underlying the

protocol, risks missing attacks. Hence, such a modelling could

lead to the conclusion that the protocol is safe, while it is not.

Consequently, there is a need for a verification methodology

that augments standard symbolic security protocol verification

with a distant-attacker model and incorporates techniques used

for the verification of protocols with physical properties, such

as distance bounding protocols [9]. This article introduces such

a methodology.

Our methodology starts from a time-based security model

which allows for the analysis of standard security properties

(Section III). Next, we add the distant-attacker assumption

and round-trip-time restrictions (Section IV). In order to

prepare for efficient verification with an analysis tool like

Tamarin [16], this time-based model is then reduced to a

causality-based model (Section V). The input to our method-

ology consists of the formalized description of a security pro-

tocol, in which we modelled the distant-attacker assumption as

a time-bound challenge-response loop in the protocol. Using

this approach, we formally verified seven protocols for which

we found a number of novel attacks (Section VI).

II. RELATED WORK

There exist various symbolic models to analyse security

protocols that depend on time and location, most of them

specifically targeting distance-bounding protocols. The first

one [17] was proposed in 2007. That model allowed for

the analysis of distance-bounding protocols while faithfully

representing time and location, but it lacked support for

computer-aided verification. Basin et al. [8] later addressed

that limitation, introducing a security model for distance-

bounding protocols with tool support. They made explicit that

the arrival time of a message depends on the locations of

sender and receiver, and the maximum propagation speed of

the communication channel. This allows their model to for-

mulate distance-bounding security as a statement on whether

a round-trip-time measurement is lower than or equal to twice

the distance to the communicating partner divided by the

propagation speed. Our model is inspired by these modelling

choices. To assist formal verification, Basin et al. encoded their

model in the theorem proving assistant Isabelle/HOL. Their

approach is not fully automated, though, requiring end-users

to define several protocol-dependent lemmas.

The problem of realising a fully automated verification

framework for distance-bounding protocols was solved inde-

pendently in 2018 by Mauw et al. [9], Chothia et al. [10],

and Debant et al. [11], [12]. In [18] a procedure to analyse

these protocols is presented and integrated in Akiss1. Our work

intersects with all those seminal works in different ways. Like

in [9], we frame time-based protocol requirements as causal

relations of protocol events, and show they can be automati-

cally verified in TAMARIN. To prove equivalence between a

time-based model and a causality-based model, we use proving

techniques similar to the one used in [10]–[12] to analyse

distance-hijacking resistance. We generalise these approaches

under the assumption of a distant attacker by supporting other

security properties, such as secrecy, agreement and memory

erasure.

1http://people.irisa.fr/Alexandre.Debant/akiss-db.html

18



Improvements and extensions of the above verification

frameworks have followed. For example, Boureanu et al. [13]

introduce a model that supports moving agents and use it to

analyse complex payment protocols. Alturki et al. [19] propose

a timed multiset rewriting model with memory bounding and

timeouts features. Their analyses are of theoretical interest, but

their model lacks tool support.

Outside the domain of distance-bounding protocols, there

exist time-aware security models [20]–[22] that support the

verification of standard authentication properties, as we do

in this article. Their specification language is richer than

ours, allowing for statements on timeouts and the ordering of

protocol events based on timestamps. Their network model,

however, neither captures the location of agents nor the

propagation time of a message via the network in terms of

the distance between sender and receiver. Instead, they model

the network communication delay as a range within a discrete

space, making these models unsuitable to formalise the notion

of distant attackers.

Lastly, the notion of distant attacker was introduced in [7],

from which we borrow the terminology, within the context of

memory-erasure protocols. Their security model, however, is

neither amenable for computer-aided verification nor extend-

able to other security properties.

Up to our knowledge, no symbolic model with tool support

has been proposed to analyse protocols in which standard

properties such as secrecy and authentication can be analysed

under the distant-attacker assumption. We introduce the first

such model and use it to verify key exchange and memory-

erasure protocols.

III. A SECURITY MODEL FOR TIMED SECURITY

PROPERTIES

This section introduces a security model for protocols with

round-trip-time restrictions. Like previous models for distance-

bounding protocols [8], [18], our model uses a timed com-

munication channel where protocol participants are provided

with a spatial location, and the arrival time of messages is

consistent with the propagation speed of the communication

channel and the distance between sender and receiver. Our

model, however, is used to analyse general properties of

security protocols. Hence we provide the model with a simple

protocol specification language (à la Cremers and Mauw [23])

and operational semantics that allows us to prove general

properties of protocols with round-trip-time measurements in

relation to their security goals. We note that although security

models including a notion of time do exist, they are either

too expressive (e.g. [8]), making it a laborious task to prove

general properties of protocols, or too specific (e.g. [9]) and

constrained to the analysis of distance-bounding protocols.

A. Messages

A security protocol defines the way various protocol par-

ticipants, called agents, exchange cryptographic messages.

To model them, we use an order-sorted term algebra (S,≤
, TΣ(V, C)) where Σ is a signature, V a set of variables, C

a set of constants, and (S,≤) a poset of sorts [24]. We will

often use TΣ(V, C) to refer to our sorted term algebra when the

sorts are clear from context. All terms have a sort. In particular,

the sorts agent and nonce are reserved for agent names and

nonces. We also define the sort msg (short for message) to

be the supersort or the greatest element of the poset S, i.e.

s ≤ msg for all s ∈ S. We use t : s to denote that term t is of

sort s.
Let Agent = {a ∈ C|a : agent} be the set of agent names

and Nonce = {n ∈ C|n : nonce} be the set of nonces. Given an

agent a, we use Noncea to denote the set of nonces that agent

a can produce. We restrict agents to produce unique nonces,

hence we require ∀a, b ∈ Agent : a �= b =⇒ Noncea ∩
Nonceb = ∅. The set Agent is partitioned into Honest (honest

agents) and Dishonest (dishonest agents). Finally, we assume

that the signature Σ contains the following function symbols:

• pair(m,m′) denoting the pairing of two terms m and

m′. We will often use 〈m,m′〉 as shorthand notation,

and write 〈m1, . . . ,mn〉 instead of 〈m1, 〈m2, . . . ,mn〉〉.
The functions fst and snd allow us to recover the first

and second element of a pair, respectively.

• xor(m,m′), often written as m ⊕ m′, denoting the ex-
clusive or of the terms m and m′. The constant zero
represents the null element with respect to xor.

• k(a, b) denoting the long-term symmetric key shared by

agents a and b.
• sk(a) denoting the long-term secret key of an agent a.

• pk(m) denoting the public key associated to a term m.

If it does not lead to confusion, we shall write pk(a) to

denote pk(sk(a)) when a ∈ Agent.
• aenc(m1, pk(k)) and adec(m2, k) denoting, respec-

tively, the asymmetric encryption of m1 with the public

key pk(k), and the asymmetric decryption of m2 with

the secret key k.

• senc(m1, k1) and sdec(m2, k2) denoting, respectively,

the symmetric encryption of m1 with the key k1, and the

symmetric decryption of m2 with the key k2.

• sign(m, k′) denoting the signature of m with the secret

key k′. The function verify and the constant true are used

to verify whether a signature is correct.

• h(m) denoting the hash of the term m.

• x · y and xy denote, respectively, the multiplication and

exponentiation of x and y, in a Diffie-Hellman group. The

function inv and the constant 1 denote, respectively, the

inverse function w.r.t. multiplication and the unit element.

We often write {X}Y to denote (a)symmetric encryption of

X with (public) key Y . Further, we assume that the sort of

all composed terms is the super sort msg.
The semantics of the function symbols above is formalised

by an equational theory E that models perfect cryptography,

such as the one supported by TAMARIN and ProVerif. We use

the symbol =E to denote equality of two terms modulo E.
Terms with variables will be used in our model to

specify the behaviour of protocol participants (roles), in

such a way that their behaviour can be instantiated mul-

tiple times by means of variable substitution. Formally, let
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vars : TΣ(V, C) → P(V), where P(.) denotes the power set,

be an auxiliary function that, given a term t, gives all variables

occurring in t. A term t ∈ TΣ(V, C) is called ground iff

vars(t) = ∅. We use TΣ(C) to denote the set of ground

terms over the term algebra. A substitution is a function

σ : V → TΣ(V, C) from variables to terms such that σ(v) �= v
for finitely many variables. An instantiation of a term t via a

substitution σ, denoted tσ, is inductively defined by

tσ =

⎧⎨
⎩

t if t ∈ C
σ(t) if t ∈ V
f(σ(t1), . . . , σ(tn)) if t = f(t1, . . . , tn)

We say that a substitution σ is type-preserving if for every

variable v ∈ V it holds that v : s ∧ σ(v) : s′ =⇒ s′ ≤ s.
This means, for example, that a variable of type msg can be

substituted by a term of type nonce, but not the other way

around. In our model, we consider type-preserving substitution

only, and we use Γ to denote the universe of such substitutions.

B. Protocol specification

We partition a protocol into roles. A role is composed of

events it uses to communicate with other roles, security claims,

time measurements, etc. An event is a term of the form Ea(t),
where E is a symbol from an unsorted signature E , and t and

a are terms in TΣ(V, C) with a : agent. The application of a

substitution σ to an event Ea(t), denoted Ea(t)σ, results in the

event Eaσ(tσ). The set of all events is denoted Ev and the set

Evg ⊆ Ev denotes the set of ground events, which are events

with only ground terms as arguments. The function actor(·),
defined by actor(Ea(t)) = a, provides the actor executing an

event.

We reserve the event symbols send, recv, claim, clock,

and equal. The events senda(m) and recva(m) denote the

sending and reception, respectively, of a message m. For the

remaining reserved events we impose the following syntactical

restrictions: clock events have the form clocka(i, j), where i
and j are integers representing the start and end of a timer. This

timer starts with the execution of the ith event of the role, and

stops at the execution of its jth event. Claim events have the

form claima(ψ, t), where ψ is a constant denoting a security

property name and t is an argument of the property, such as

an agent’s name or a nonce; equality events have the form

equala(〈m1,m2〉) denoting the expectation that m1 =E m2.

The impact of these event types in the behaviour of a protocol

will be made precise soon.

As in [23], we consider a role specification R to be a

sequence of events r1 · · · rn establishing a total order on

the execution of the role events. We require every role

specification with sequence of events r1 · · · rn to satisfy that

actor(r1) = . . . = actor(rn), i.e. events within a role

specification are executed by the same agent. We also require

ri = clocka(x, y) =⇒ x ≤ y < i for every i ∈ {1, . . . , n};
i.e. a time measurement is built upon preceding events only,

and the event at which the clock stops does not precede the

event at which the clock starts.

A role is a mapping from role names, such as server and

client, to role specifications. We use R = r1 · · · rn to denote

the role with name R and specification r1 · · · rn, and we use

R to denote the universe of roles.

Definition 1 (Protocol specification). A protocol P consists of
a set of roles, such that no two roles share the same role name,
built over an order-sorted term algebra (S,≤, TΣ(V, C)).

At the semantical level, we will treat all variables within

a role as local variables. This ensures that agents can only

communicate by messaging each other. Given a role R =
r1 · · · rn, we use rolevars(R) to obtain all role variables in

R, which is defined as follows.

rolevars(R) = {v ∈ V|∃i ∈ {1, . . . , n} : ri = senda(m) ∧
v ∈vars(m) ∧ ∀j ∈ {1, . . . , i− 1} : v �∈ vars(rj)}

As naming convention for variables, we will use upper case

letters when a variable is intended to be instantiated within a

receive event, such as K and Np in the example below, lower

case letters otherwise, such as nv and kvp.

Example 1. To illustrate our security model, we formalise the
running example depicted in Figure 1. The specification within
our security model of the prover and verifier roles, denoted P
and V , respectively, is given below. It assumes that nv , np,
kvp, and k are variables of type nonce, while the variables V
and P are of type agent. All the other variables, namely Nv ,
Np, Kvp, S, PK, are of type msg.

Pex = {
V = recvv(〈PK,S〉) · sendv(nv) · recvv(nv ⊕Np)·
clockv(2, 3) · sendv({kvp}PK) · recvv({〈Np, P 〉}kvp

)·
equalv(〈verify(S, P, PK), true〉) · claimv(sec, 〈P, kvp〉)

P = sendp(〈pk(k), sign(P, k)〉) · recvp(Nv), sendp(Nv ⊕ np)·
recvp({Kvp}pk(k)) · sendp({〈np, P 〉}Kvp

)}
The Δ symbol labelling a dashed arrow that connects the

2nd and 3rd protocol message in Figure 1 represents the
round-trip-time measurement of the verifier, and is translated
into the event clockv(2, 3) in the role specification.

C. Role instantiation.

Protocols are executed by instantiating their roles. Syntacti-

cally, the instantiation of a role results in a sequence of ground

events that respect the order of the events established by the

role specification. Given a role R = r1 · · · rn, we define all

its instantiations, denoted insts(R), as follows.

insts(R) ={e1 · · · ei ∈ Evg
∗|i ≤ n ∧

∃σ ∈ Γ: e1 = r1σ, . . . , ei = riσ}
Note that the empty sequence of events ε is a valid instan-

tiation of all role specifications.

In the operational semantics provided further below, we

restrict role variables of type nonce to be assigned a fresh
value, i.e. a term that has not been used in other role instanti-

ations during the protocol execution. Therefore, we introduce
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a �s m m =E m′

a �s m′
I0

m ∈ Agent ∪ Noncea
a �s m

I1

b ∈ Agent

a �s 〈k(a, b), k(b, a), sk(a), pk(sk(b))〉 I2

a �s m1 . . . a �s mn f ∈ Σ \ {sk, k}
a �s f(m1, . . . ,mn)

I3

(t, recva(m)) ∈ s
a �s m

I4

Fig. 2: Inference rules

an auxiliary function to extract the set of nonces used in an

instantiation, for every e1 · · · ei ∈ insts(R),

nonces(e1 · · · ei, R) = {t ∈ Nonce |∃v ∈ rolevars(R), σ ∈ Γ:
σ(v) = t ∧ v : nonce ∧ e1 = r1σ, . . . , ei = riσ}

D. Inference

Before establishing how agents exchange messages, we

need to define how agents obtain and create knowledge. We

model this by means of an inference relation � ⊆ Agent ×
P(Ev)×Msg. we use the shorthand notation a �s m to denote

(a, s,m) ∈�, indicating that agent a can infer message m
from a set of events s. The relation � is defined as the least

set that is closed under the inference rules in Figure 2. These

rules express the following: (I0) If an agent a can infer a term

m, then a can infer all terms within the equivalence class of m
defined by =E . (I1) an agent a can infer agent names and its

own set of nonces; (I2) agents can infer their shared secret

keys with other agents, long term public keys of any agent

and its own long term secret key; (I3) all function symbols

in Σ, except the reserved symbols for secret keys k and sk,

can be used to infer arbitrary terms constructed over already

inferable terms; (I4) a receive event recva(m) allows agent

a to infer m.

E. Protocol semantics

We model the execution of a protocol P as a Labelled

Transition System (LTS) l = (Q,Λ,→, s0), where Q is a set

of states, Λ is a set of labels used to annotate the transition

of the system from one state to another, → : Q × Λ × Q is

a transition relation, and s0 ∈ Q is the initial state. We will

often use s
�−→ s′ as a shorthand notation for (s, �, s′) ∈→.

States. A state in the system is composed of a set of runs,

where a run is an instantiation of a role by an agent. A

run contains a possibly partial execution of a role and a

run identifier. The latter allows agents to play multiple roles

in parallel. A run also includes the time-stamps at which

the events are executed. This allows us to reason about

time properties, such as consistency between the time-of-

flight of a transmitted message with respect to the speed of

the communication channel and the location of sender and

receiver.

Definition 2 (Run). Let Id be a countably infinite set of run
identifiers. A run is any tuple (id, (t1, e1) · · · (tn, en), R, a) ∈
Id × (R+ × Evg)

∗ × R × Agent satisfying that e1 · · · en ∈
insts(R) is an instantiation of the role R, a is the actor
executing the events e1, . . . , en, i.e. a = actor(e1) = · · · =
actor(en), and t1 ≤ t2 ≤ · · · ≤ tn.

A run is an execution of a role by an actor, containing

instantiations of events in the order imposed by the role

specification, and timestamps indicating the time at which

each event was instantiated. The order of the timestamps ≤ is

consistent with the order of the events in the instantiated role.

An empty run contains no events.

A state in our LTS is a set of runs. The initial state s0
is the empty set. Given a state s, the functions labels(s)
and nonces(s) return, respectively, all timed events and fresh

values occurring in s.

labels(s) ={(t, e)|∃(id, (t1, e1) · · · (tn, en), R, a) ∈ s :
(t, e) = (ti, ei) for some i ∈ {1, . . . , n}}

nonces(s) =
⋃

(id,(t1,e1)···(tn,en),R,a)∈s
nonces(e1 · · · en, R)

Given a state s, a role R, and a substitution σ mapping

the role R to its instantiation e1 · · · en, we use e1 · · · en ∈s

insts(R) to denote that the instantiation e1 · · · en of R sat-

isfies: (1) nonces(e1 · · · ei, R) ∩ nonces(s) = ∅ and (2) for

every x, y ∈ rolevars(R) of type nonce, x �= y implies

σ(x) �= σ(y). That is, no instantiation in s exists sharing

fresh values with the instantiation e1 · · · en of R, and the role

variables are instantiated with pairwise distinct nonces.

Labels and execution traces. A transition in our LTS will either

add a new empty run to the current state or add a timed event

to an existing run. Each transition is labelled with a timestamp,

a description of the state update and the id of the run modified

in that transition (this will become clear later). We denote the

creation of a new run by createa(R), where a ∈ Agent is an

agent and R ∈ R is a role. The addition of a protocol event will

be labelled by using the events themselves as labels. Therefore,

an execution of the protocol is an interleaved sequence of states

and labels of the type s0
(t1,l1)

id1

−−−−−−→ s1 · · · sn−1
(tn,ln)

idn

−−−−−−→
sn, where s0, . . . , sn are states, t1, . . . , tn timestamps, and li
is either a protocol event or a label of the type createa(R),
for i ∈ {1, . . . , n}. A trace is the resulting sequence of LTS

labels τ = (t1, �1)
id1 · · · (tn, �n)idn . In this case, we say that

τ has cardinality n, denoted |τ |, and we use τi to denote the

ith element of τ , i.e. τi = (ti, �i)
idi . When n = 0, we use

ε to denote the empty trace, while the initial state s0 alone

represents the empty execution. Lastly, we will omit the run

ids from traces when they are not necessary.

We write a �τ m to denote a �s m where s is the set of

events occurring in τ.
Transition relation. The transition relation of the protocol LTS

is defined by a set of derivation rules, similar to the inference
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rules above. The premise of a rule is a formula with no free

variables. Its conclusion is a transition of the form s
(t,�)id−−−−→ s′.

Unless otherwise specified, variables in our derivation rules are

universally quantified. For run identifiers, we use id ∈s Id to

denote that id is chosen from the set Id in such a way that id
has not been used in the state s. The function max time: Q→
R+ gives the maximum timestamp used by an event in a given

state. If labels(s) = ∅, then max time(s) = 0, otherwise

max time(s) = max{t|(t, e) ∈ labels(s)}.
Our first rule is one that adds an empty run to a state by

instantiating either a protocol role or an adversarial role.

s ∈ Q, t ≥ max time(s), R ∈ R, a ∈ Agent,
id ∈s Id, a ∈ Honest =⇒ R ∈ roles(P)

s
(t,createa(P(R)))id−−−−−−−−−−−−→ s ∪ {(id, ε, R, a)}

CreateP

Here P denotes the protocol specification whose behaviour is

being modelled. This rule ensures that honest agents instantiate

a protocol role, i.e. that honest agents do not deviate from the

protocol specification. Dishonest agents, on the other hand,

can influence the protocol execution by instantiating arbitrary

role specifications, which we refer to as an adversarial role.

The remaining transition rules express how a run of the

system state can make progress by executing a single event.

There are three of these rules, which can all be defined as an

extension of the following rule template:

s ∈ Q, t ≥ max time(s), (id, τ, R, a) ∈ s,
τ = (t1, e1) · · · (ti, ei),

e1 · · · eiei+1 ∈s\(id,τ,R,a) insts(R),
[ ]

s
(t,ei+1)

id

−−−−−−→ (s \ {(id, τ, R, a)}) ∪ {(id, τ · (t, ei+1), R, a)}
,

where the bracketed part [ ] is a placeholder to add premises.

This rule template triggers the execution of an event ei+1 at

time t if i) t is greater than or equal to the largest timestamp

in s, and ii) there exists a run (id, (t1, e1) · · · (ti, ei), R, a)
in the state satisfying that e1 · · · ei+1 is an instantiation of R.

The condition e1 · · · eiei+1 ∈s\(id,τ,R,a) insts(R) ensures that

nonces assigned to role variables in other runs, i.e. in s minus

(id, τ, R, a), are not used in the current run.

We use → [p1, . . . , pn] to denote the rule obtained from the

above rule template by replacing the placeholder [ ] by the set

of premises {p1, . . . , pn}. Using this notation, we define the

remaining rules for our LTS in the following.

The Send rule:

→
[
ei+1 = senda(m), a �{e1,...,ei} m

]
Send

allows agents to send messages to the network. The Send rule

restricts both honest and dishonest agents to send messages

whose content is inferable from their initial knowledge, con-

stants, and the sequence of events already executed in the run.

This is expressed by the premise a �{e1,...,ei} m, and means

that our model does not consider an omnipresent adversary

overseeing all events sent to the network. Instead, our model

forces dishonest agents to collaborate by messaging each other.

The Recvd rule:

→
[
ei+1 = recva(m), (t

′, sendb(m′)) ∈ labels(s),
d(a, b) ≤ c(t− t′),m =E m′

]
Recvd

models how agents receive messages from other agents, en-

forcing that the time of flight of a message exchange is

consistent with the distance between sender and receiver. The

rule is parameterised on a distance metric d: Agent×Agent→
R+, and assumes a constant propagation speed c of the

communication channel.

The rule Recvd triggers the execution of a receive event

recva(m) at time t if ei+1 = recva(m) and there exists a

timed send event (t′, sendb(m′)), where m =E m′, in some

run in the state such that the distance between the sender and

receiver is smaller than or equal to c(t− t′).
It is worth pointing out that the Recvd rule does not consider

that messages may fade away as they travel, implying that

secrets revealed to nearby agents leak to the entire network.

This is a deliberate choice made with the goal of making no

assumptions about signal strength, nor about the distance at

which a message can be eavesdropped. For example, RFID

eavesdropping on messages at a range of 20m or more has

proven feasible, depending on the power of the devices [25].

The Equal rule

→
[
ei+1 = equala(〈m1,m2〉),m1 =E m2,
a �{e1,...,ei} m1, a �{e1,...,ei} m2

]
Equal

states that an event equala(〈m1,m2〉) only executes when m1

and m2 are equal modulo the equational theory E. This type

of event is used, e.g., to model the verification of signatures.

The Signal rule

→ [ei+1 ∈ SignalEvent] Signal

models the execution of signal events. Signal events are

useful for instrumenting security properties, which often rely

on expectations announced by agents by means of signal

events, such as claim events. Formally, the set of signal

events is defined by SignalEvent = {e ∈ Evg|�a,m : e ∈
{senda(m), recva(m), equala(m)}}.
Definition 3 (Protocol semantics). The semantics of a protocol
P w.r.t. a distance function d is the LTS (Q,Λ,→, s0) where,

• Q = P(Id× (R+ × Evg)
∗ × R× Agent)

• Λ = R+ × (Evg ∪ {createa(R)|a ∈ Agent, R ∈ R})× Id

• →= CreateP ∪ Send ∪ Recvd ∪ Equal ∪ Signal.
• s0 = ∅
We use [[P]]d to denote the set of traces obtained from P’s

semantics with respect to the distance function d.

Example 2. Let E an adversarial role specification with all
role variables of type nonce:

E = sende(〈pk(ke), sign(P, ke)〉) · recve(Nv))·
sende(Nv ⊕ ne) · recve({Kvp}pk(ke)

) · sende({〈ne, P 〉}Kvp
)
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Assuming that the pairwise distance between the agents a, b
and c is 100c, and that s = sign(b, k′), an execution trace of
our running example protocol Pex is the following:

s0
(0,createa(id1,Pex(V ))−−−−−−−−−−−−−−→ s1

(0,createb(id2,Pex(P ))−−−−−−−−−−−−−−→ s2

(0,createe(id3,E))−−−−−−−−−−−→ s3
(0,sende(〈pk(k′),s〉))−−−−−−−−−−−−−→ s4

(100,recva(〈pk(k′),s〉))−−−−−−−−−−−−−−→ s5
(100,senda(n

′))−−−−−−−−−−→ s6
(200,recve(n

′))−−−−−−−−−→ s7

(200,sende(n
′⊕ n))−−−−−−−−−−−−→ s8

(300,recva(n
′⊕ n))−−−−−−−−−−−−→ s9

(300,clocka(2,3))−−−−−−−−−−−→ s10

(300,senda({k′′}pk(k′)))−−−−−−−−−−−−−−−→ s11
(400,recve({k′′}pk(k′)))−−−−−−−−−−−−−−−→ s12

(400,sende({〈n,b〉}k′′ ))−−−−−−−−−−−−−−−→ s13
(500,recva({〈n,b〉}k′′ ))−−−−−−−−−−−−−−−→ s14

(500,equala(〈verify(s,b,pk(k′)),true〉))−−−−−−−−−−−−−−−−−−−−−−−→ s15
(500,claima(sec,〈b,k′′〉))−−−−−−−−−−−−−−−→ s16

F. Security properties, claims, and protocol correctness

We define a security property ψ as a predicate on traces

and integers such that ψ(τ, i) means that ψ is satisfied at step

i of the trace τ . For illustration purposes, we define next the

secrecy property used in our running example, whereby an

agent expects the adversary to not know a given term.

sec((t1, e1), . . . , (tn, en)), i) ⇐⇒
ei = claima(sec, 〈b,m〉) ∧ b ∈ Honest =⇒
�c ∈ Dishonest : c �{e1,...,en} m

As in this example, we consider properties instrumented by

claim events. A security claim denotes a belief about the pro-

tocol execution that led to the claim, e.g. claima(sec, 〈b,m〉)
denotes a’s belief that as long as its communicating partner

is honest, no adversary knows the secret term m. Note the

slight abuse of notation in the definition of secrecy: sec is

used as a claim identifier and a predicate symbol. We shall

keep this convention from now on to make the connection

between claims and their intended meaning explicit. That is,

for every claim event claima(ψ,m), we consider ψ to be the

predicate giving ψ its meaning. Hence the following definition

of protocol correctness with respect to a security claim follows.

Definition 4 (Claim correctness). A claim event claima(ψ,m)
is said to be correct in a protocol P , denoted P � ψ, if for
every distance function d, trace τ ∈ [[P]]d, and index i ∈
{1, . . . , |τ |}, ψ(τ, i) holds.

The next section is dedicated to extending the definition of

claim correctness with time restrictions and assumptions about

the honesty of agents in relation to their distance to another

agent, making it possible for Pex, and several other modern

protocols, to formalise their security goals.

IV. MODELLING SECURITY REQUIREMENTS BASED ON

THE DISTANT-ATTACKER ASSUMPTION

The formal model introduced in the previous section can

be used to specify the structure and behaviour of a security

protocol with time measurements. This section introduces a

new class of security requirements that captures the intended

security goals of a relatively recent wave of protocols based

on proximity [1], [3], [4], [6], [7], [26], [27]. Such pro-

tocols aim at classical security properties, such as secrecy

and authentication, but rely on a particular trust assumption

that has not been captured within a formal security model.

We are referring to trust assumptions that are based on the

(dis)honesty of agents in the neighbourhood of another agent,

usually a verifier. We call this assumption the distant-attacker
assumption, as it considers the neighbourhood of a verifier to

be free of attackers.

The goal of this section is to formalise the distant-attacker

assumption and instrument it within classical security proper-

ties. The result is a class of security requirements expressed

as a premise-conclusion formula, where the premise is a

proximity check in conjunction with a distant-attacker claim,

and the conclusion is a standard trace-based property. In the

subsequent sections, we show such a class of security require-

ments to be sufficient for the verification of a large number

of security protocols based on proximity which currently lack

formal correctness proofs.

A. The distant-attacker assumption

The security goals of many modern protocols are contingent

upon the assumption that no attacker is in the vicinity of the

verifier. When formalising this assumption, we shall allow the

verifier’s communicating partner (the prover) to be both mali-

cious and close, as it allows us to model memory attestation

and erasure properties [7] for free. Hence, our task next is to

formalise the following statement - agents making a security
claim are aware of what attackers (if any) are in their vicinity.

We define the vicinity of an agent as the locus of a circle

with radius δ centred in the agent’s location. We also use

the auxiliary function dishonest agents(claima(ψ,m)) which

gives the set of dishonest agents that a allows to be close when

claiming the property ψ. For the case of secrecy, for example,

it follows that dishonest agents(claima(sec, 〈b,m〉)) = ∅ for

every b and m. This is, indeed, the case for authentication

properties, as the verifier does not expect to authenticate a

corrupt prover. In remote memory erasure and attestation pro-

tocols, however, the prover is considered dishonest, implying

that the function dishonest agents(·) should return the prover

agent for erasure and attestation claims. This leads to the

following formalisation of the distant-attacker assumption as

a predicate with domain T × Z+, where T is the universe of

traces. For every τ = (t1, e1) · · · (tn, en), distance threshold δ
and index i,

dist attackerδ(τ, i) ⇐⇒ ei = claima(ψ,m) ∧
∀c ∈ (actors(τ) ∩ Dishonest) : d(a, c) > δ ∨
c ∈ dishonest agents(ei)

The distant-attacker assumption holds for a claim ei =
claima(ψ,m) in a trace τ = (t1, e1) · · · (tn, en), if all dishon-

est agents in the trace are either far from a, i.e. at a distance

larger than δ, or are part of a list of expected dishonest agents

dishonest agents(ei).
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B. Round-trip-time restrictions

Intuitively, for a protocol to use the distant-attacker as-

sumption effectively, it needs to provide agents with the

ability to measure distance to other agents. Our security model

allows protocols to accomplish this by means of clock events,

syntactically establishing the calculation of the time difference

between two events. Semantically, time measurements are

local to protocol runs. That is, any two events involved in

the calculation of a time measurement should be part of the

same protocol session or run. We thus need a mechanism

to extract runs from traces, which we obtain by exploiting

the run identifiers present in protocol traces. Given a trace

τ = (t1, e1)
id1 · · · (tn, en)idn and run identifier id, we use

run(τ, id) to denote the subtrace (ti1 , ei1)
id · · · (tik , eik)id of

maximum cardinality, i.e. run(τ, id) denotes the full run in τ
with run identifier id.

Here we formalise an interpretation of time measurements

in relation to a security claim and the distant-attacker as-

sumption, leading to a definition of correctness that we show

is applicable to a large class of protocols. Clock events are

used to measure the round-trip-time of a message exchange

with a communicating partner, with the expectation that the

communicating partner is within a δ radius, for some distance

parameter δ. If a time measurement is below 2δ/c where

c is the speed of the communication medium, then we say

that such measurement is correct with respect to the distance

bound δ. If all clock events in a given protocol run are

correct, then we say that such a run has correct time measure-

ments. Formally, the correctness of the time measurements

of the run run(τ, idi) = (ti1 , ei1) · · · (tik , eik) in the trace

τ = (t1, e1)
id1 · · · (tn, en)idn , where ei is a claim event by

agent a is defined by:

correct timeδ(τ, i) ⇐⇒ ∀j ∈ {i1, . . . , ik} :
(ej = clocka(x, y) ∧ j < i) =⇒ tiy − tix < 2 · δ/c

Note that in the definition of correct timeδ(τ, i) we only

consider clock events that precede the event ei. The predicate

ensures that for every possible run of the protocol resulting

in the trace τ , the time measurements performed by the agent

that produced the event ei are all below the threshold 2 · δ/c.

Now we are ready to define a class of security requirements

that extend classical security properties by making them con-

ditional to round-trip-time restrictions and the distant-attacker

assumption.

Definition 5 (Claim correctness under the distant-attacker

assumption). Let P be a protocol and δ a distance value.
A claim event claima(ψ,m) is said to be correct in P
under the distant-attacker assumption, denoted P �δ ψ, if
for every distance function d, trace τ ∈ [[P]]d, and index
i ∈ {1, . . . , |τ |},

correct timeδ(τ, i) ∧ dist attackerδ(τ, i) =⇒ ψ(τ, i)

As a security requirement, correctness with respect to �δ is

weaker than correctness with respect to � (see Definition 4),

i.e. for every protocol P , every claim claima(ψ,m), and every

δ > 0, it follows that P �ψ =⇒ P �δ ψ. That said, we argue

that the relation �δ better captures the intended goal of many

other modern protocols, including the running example used

in this article. Therefore, we dedicate the remainder of this

article to introducing a verification framework for (dis)proving

the correctness of protocols with respect to �δ .

V. A CAUSALITY-BASED INTERPRETATION OF LOCALITY

A security model that explicitly carries the notion of time

and location, as introduced in the previous section, is useful to

reach consensus on the formal definition of the distant-attacker

assumption and how to instrument it as a security requirement.

However, it defies computer-aided reasoning since modern

protocol verification tools, such as Tamarin and ProVerif, do

not cope well with temporal and spatial information.

Our goal in this section is to provide a timeless protocol

semantics, denoted [[·]]π , and a correctness relation of protocols

with respect to a security property ψ, denoted [[P]]π�∼ψ where

∼ is an equivalence relation on the set of agents that encodes

proximity, such that ∀ d: [[P]]d �δ ψ ⇐⇒ ∀ ∼ : [[P]]π �∼ ψ
is valid. This will allow us to analyse the property ψ on the

timeless semantics by considering �∼ to be the security goal,

rather than �δ .

Due to space restrictions, we have moved most proofs to

the Appendix B.

A. Properties of the timed semantics

We start by proving properties of the time-based semantics

introduced in Section III.

The relation defined in the following definition is essential

for determining when a trace can be generated by our timed

semantics, as it represents a precedence relation between

events in the trace.

Definition 6. Given a trace τ = (t1, e1) · · · (tn, en) ∈ [[P]]d,
let �τ be the relation defined as follows:
(ti, ei)�τ (tj , ej) iff i < j and either:
• actor(ei) = actor(ej) or
• ei = senda(mi) ∧ ej = recvb(mj) ∧ a �= b ∧ mi =E

mj ∧ d(a, b) ≤ (tj − ti) · c ∧
¬(∃k ∈ {1, . . . , n}, ∃mk : k < i ∧ ek = sendc(mk) ∧
mi =E mk ∧ d(c, b) ≤ (tj − tk) · c).

We denote the transitive closure of �τ by �∗τ .

When timed events are related by �∗τ , there are constraints

on the times at which they can occur, as shown by the next

two lemmas.

Lemma 1. Let τ ∈ [[P]]d be a trace. Then for each pair of
timed events such that (ti, ei)�∗τ (tj , ej) we have:

tj − ti ≥
d(actor(ei), actor(ej))

c

Lemma 2. Let τ = (t1, e1) · · · (tn, en) ∈ [[P]]d be a trace,
i, j ∈ {1, . . . , n} such that actor(ei) = actor(ej) = a,
and δ ∈ R+ a constant. If tj − ti ≤ 2δ

c , then for all
k ∈ {i, . . . , j} such that (ti, ei) �∗τ (tk, ek) �∗τ (tj , ej) we
have d(a, actor(ek)) ≤ δ.

24



The following definition states the minimal necessary con-

dition that needs to be satisfied by a sequence of timed events

in order for it to be a valid trace of some protocol: for each

recv event there is a corresponding send event.

Definition 7. A sequence of timed events (t1, e1) · · · (tn, en)
is time valid if t1 ≤ . . . ≤ tn and:

∀i ∈ {1, . . . n}, ∀m : ei = recva(m)

=⇒ ∃j ∈ {1, . . . n}, ∃m′ : (tj , ej)�τ (ti, ei)∧
ej = sendb(m

′) ∧m =E m′.

The following definition introduces a notation for the local

view of a trace by an agent.

Definition 8. Given a trace τ = (t1, e1) · · · (tn, en) ∈ [[P]]d,
and an agent a ∈ Agent, we define τa to be the sequence of
timed events in τ executed by a. The timeless projection of τ ,
denoted by π(τ) is the list e1 · · · en.

At this point, we state a general result that relates two traces

given by the semantics of a protocol.

Lemma 3. Let τ = (t1, e1) · · · (tn, en) and τ ′ =
(t′1, e

′
1) · · · (t′n, e′n) be two time valid sequences of events,

and P a protocol. If ∀a ∈ Agent : π(τa) = π(τ ′a) then
τ ∈ [[P]]d ⇐⇒ τ ′ ∈ [[P]]d.

The next lemma proves the existence of a trace in a protocol

which will be useful for the main result in this section. Given

a trace, for each pair of events by the same actor, it is possible

to construct another trace for which all the events in between

the pair are executed by close agents. In the new trace some

events are postponed and others are anticipated with respect

to the pair. This result relies heavily on Lemmas 2 and 3.

Lemma 4. Let P be a protocol and a ∈ Agent. Let τ =
(t1, e1) · · · (tn, en) ∈ [[P]]d be a trace such that there exist
two timed events (tu, eu), (tv, ev) ∈ τ with u < v, tv − tu ≤
2·δ
c and actor(eu) = actor(ev) = a. Then there exists a

trace τ ′ = (t′1, e
′
1) · · · (t′n, e′n) ∈ [[P]]d and a bijection f from

{1, . . . , n} to {1, . . . , n} such that:

• ∀i ∈ {1, . . . , n} : e′f(i) = ei; the events of τ ′ are a
permutation of the events in τ

• ∀a ∈ Agent : π(τa) = π(τ ′a); the permutation preserves
the local order of events for each agent

• t′f(v)− t′f(u) ≤ 2·δ
c and f(u) < f(v); the time restriction

in τ translates to a corresponding time restriction in τ ′

• ∀k ∈ {f(u), . . . , f(v)} : d(a, actor(e′k)) ≤ δ; agents
executing events between f(u) and f(v) have a bounded
distance to a

The following example shows how the transformation of the

previous lemma works for a simple trace.

Example 3. Let τ be the following execution of Pex:

s0
(0,createa(id1,Pex(V ))−−−−−−−−−−−−−−−→ s1

(0,createb(id2,Pex(P ))−−−−−−−−−−−−−−→ s2
(0,createe(id3,E))−−−−−−−−−−−→ s3

(0,sendb(〈pk(k),sign(n,k)〉))−−−−−−−−−−−−−−−−−→ s4

(100,recva(〈pk(k),sign(n,k)〉))−−−−−−−−−−−−−−−−−−→ s5
(100,senda(n

′))−−−−−−−−−−→ s6
(200,recvb(n

′))−−−−−−−−−→ s7

(200,sendb(n
′⊕ n))−−−−−−−−−−−−→ s8

(250,recve(n
′))−−−−−−−−−→ s9

(250,sende(n
′⊕m′))−−−−−−−−−−−−−→ s10

(300,recva(n
′⊕ n))−−−−−−−−−−−−→ s11

(300,clocka(2,3))−−−−−−−−−−−→ s12
(300,senda({k′}pk(k)

))

−−−−−−−−−−−−−−→ s13

(400,recvb({k′}pk(k)
))

−−−−−−−−−−−−−−→ s14
(400,sendb({〈n,b〉}k′ ))−−−−−−−−−−−−−−→ s15

(500,recva({〈n,b〉}k′ ))−−−−−−−−−−−−−−→ s16
(500,equala(〈verify(sign(n,k),b,pk(k)),true〉))−−−−−−−−−−−−−−−−−−−−−−−−−−→ s17

(500,claima(sec,〈b,k′〉))−−−−−−−−−−−−−−−→ s18

Then according to Lemma 4 with δ = c·200
2

, d(a, b) = 0, d(a, e) >
δ, u = 6, v = 11, one possible τ ′ is:

s0
(0,createa(id1,Pex(V ))−−−−−−−−−−−−−−−→ s1

(0,createb(id2,Pex(P ))−−−−−−−−−−−−−−→ s2
(0,createe(id3,E))−−−−−−−−−−−→ s3

(0,sendb(〈pk(k),sign(n,k)〉))−−−−−−−−−−−−−−−−−→ s4

(100,recva(〈pk(k),sign(n,k)〉))−−−−−−−−−−−−−−−−−−→ s5
(100,senda(n

′))−−−−−−−−−−→ s6
(200,recvb(n

′))−−−−−−−−−→ s7

(200,sendb(n
′⊕ n))−−−−−−−−−−−−→ s8

(300,recva(n
′⊕ n))−−−−−−−−−−−−→ s9

(300,clocka(2,3))−−−−−−−−−−−→ s10

(300,senda({k′}pk(k)
))

−−−−−−−−−−−−−−→ s11
(301,recve(n

′))−−−−−−−−−→ s12
(301,sende(n

′⊕m))−−−−−−−−−−−−→ s13

(400,recvb({k′}pk(k)
))

−−−−−−−−−−−−−−→ s14
(400,sendb({〈n,b〉}k′ ))−−−−−−−−−−−−−−→ s15

(500,recva({〈n,b〉}k′ ))−−−−−−−−−−−−−−→ s16
(500,equala(〈verify(sign(n,k),b,pk(k)),true〉))−−−−−−−−−−−−−−−−−−−−−−−−−−→ s17

(500,claima(sec,〈b,k′〉))−−−−−−−−−−−−−−−→ s18

B. Security properties

The following corollary applies Lemma 4 to a protocol trace

and to the events defined inside a clock event of interest.

Corollary 5. Let τ ∈ [[P]]d be an execution trace. If ei =
claima(ψ,m) is a claim in τ and correct timeδ(τ, i) is true,
then there exists a trace τ ′ ∈ [[P]]d such that the following
conditions hold:

1) ∀c ∈ Agent : π(τc) = π(τ ′c).
2) e′i = ei
3) {e1, e2, . . . , ei} = {e′1, e′2, . . . , e′i}
4) If run(τ ′, idi) = (t′i1 , e

′
i1
)idi · · · (t′ik , e′ik)idi then:

∀j ∈ {i1, . . . , ik} : e′j = clocka(x, y) =⇒
(∀z : (ix < z < iy =⇒ d(actor(e′z), a) ≤ δ))

Before introducing the main result in this section, we need

to restrict the security properties in our model, specified in the

next definition, so that the previous lemma is applicable.

Definition 9. Let P a protocol and ψ a security property. We
say ψ is a robust security property iff for all τ, τ ′ ∈ [[P]]d
such that ei = claima(ψ,m), and the first three conditions in
Corollary 5 hold, we also have

dist attackerδ(τ, i) ∧ correct timeδ(τ, i) =⇒ ψ(τ, i)

⇐⇒
dist attackerδ(τ

′, i) ∧ correct timeδ(τ
′, i) =⇒ ψ(τ ′, i)
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The next lemma enables the use of any robust security

property in our main equivalence result.

Lemma 6. Let ψ be a robust security property. Then for all
τ ∈ [[P]]d, such that ei = claima(ψ,m), τ ′ as defined in
Corollary 5 with respect to τ , then:

dist attackerδ(τ, i) ∧ correct timeδ(τ, i) =⇒ ψ(τ, i)

⇐⇒
dist attackerδ(τ

′, i) ∧ correct timeδ(τ
′, i) =⇒ ψ(τ ′, i)

Next, we define formally the main security properties our

model supports, which we employ in the case studies later.

Definition 10 (Secrecy).

∀τ ∈ [[P]]d, τi = (ti, claima(sec, 〈b, k〉)) :
dist attackerδ(τ, i) ∧ correct timeδ(τ, i) =⇒
(�c ∈ Dishonest : c �τ k) ∨ b ∈ Dishonest

For some protocols the communication partner is not

known. The next definition covers this case, which we call

anonymous secrecy.

Definition 11 (Anonymous Secrecy).

∀τ ∈ [[P]]d, τi = (ti, claima(a sec, k)) :

dist attackerδ(τ, i) ∧ correct timeδ(τ, i) =⇒
(�c ∈ Dishonest : c �τ k)

In our case studies we use the non-injective agreement

property [28], its anonymous variant and the secure remote

erasure [7], as defined in appendix C. We prove all these

properties are robust in Proposition 9.

C. A timeless protocol semantics

Now we simplify the security model by eliminating the no-

tion of time from the original model, and provide a causality-

based characterisation of the dist attacker predicate. We do

so by removing all occurrences of the time variables in the

rules CreateP , Send, Recvd, Equal and Signal, producing

their timeless equivalent CreatePπ, Sendπ , Recvπ , Equalπ
and Signalπ . For reference, the modified rules can be found

in Appendix A. The timeless protocol semantics associated

with these rules produces a sequence of events, rather than a

sequence of timed events.

Definition 12 (Timeless protocol semantics). The timeless
semantics of a protocol P is the LTS (Q,Λ,→, s0) where,

• Q = P(Id× Evg
∗ × R× Agent)

• Λ = Evg × Id ∪ {createa(id, R)id|a ∈ Agent, id ∈
Id, R ∈ R}

• →= CreatePπ ∪ Sendπ ∪ Recvπ ∪ Equalπ ∪ Signalπ .
• s0 = ∅

We use [[P]]π to denote the set of traces obtained from P’s
timeless semantics.

D. A causality-based interpretation of the distant-attacker
assumption

In the previous section, we introduced the notion of a distant

attacker. This notion depended on a distance parameter δ that

defines the vicinity of the actor in question. Here we provide

a similar definition adapted to the timeless case. Let ∼ be an

equivalence relation on the set of actors with two equivalence

classes. Intuitively, actors in the same class (a ∼ b) are

near, and those in different classes are far. The dist attackerπ
predicate is defined by:

dist attackerπ(τ, i) ⇐⇒ ∀c ∈ (actors(τ) ∩ Dishonest) :

¬(a ∼ c) ∨ c ∈ dishonest agents(ei)

Our definition of correct time for the timeless case is

inspired by the causal characterisation of distance bounding

given in [9]. Our main result later shows how this definition

exactly fits our objective. For every trace τ = eid1
1 · · · eidn

n

and every index i such that ei is a claim event by agent a and

run(τ, idi) = ei1 · · · eik we have:

correct timeπ(τ, i) ⇐⇒ ∀j ∈ {i1, . . . , ik} ∀b ∈ Agent :

(ej = clocka(x, y) ∧ j < i ∧ ¬(a ∼ b))

=⇒ �k : (ix ≤ k ≤ iy ∧ actor(ek) = b)

A protocol P satisfies ψ conditional to the trust assump-

tion dist attackerπ and the proximity check correct timeπ
within the timeless semantics if, for every trace τ ∈ [[P]]π
and every i ∈ {1, . . . , |τ |}, where ei is a claim event

with security property ψ, it holds that dist attackerπ(τ, i) ∧
correct timeπ(τ, i) =⇒ ψ(τ, i). We denote this property by

[[P]]π �∼ ψ.

E. Equivalence between the timed and the timeless semantics

Finally we prove that, for every robust security property ψ
defined as a first-order statement on sequence of events, ψ is

correct in the timeless protocol semantics if and only if it is

secure in the timed protocol semantics.

Lemma 7. Let τ ∈ [[P]]d and π(τ) be the timeless projection
of τ . Then π(τ) ∈ [[P]]π .

Proof sketch. Notice that if τ is generated according to the

rules in the timed semantics of P , then π(τ) can also be

generated by the corresponding rules in the timeless semantics,

as the latter is less restrictive than the former.

Now we are ready to formulate the main result.

Theorem 8. Given a protocol P and a robust security property
ψ. Then ∀ d: [[P]]d �δ ψ ⇐⇒ ∀ ∼ : [[P]]π �∼ ψ.

VI. AUTOMATED VERIFICATION: CASE STUDIES

This section demonstrates how the theoretical development

of previous sections can be used to analyse the (in)security

of protocols that rely on the distant-attacker assumption. The

section starts by introducing a verification methodology, which

we showcase using three recent protocols. Then we report

on the security analysis of a number of protocols which, to
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the best of our knowledge, were lacking a formal analysis.

This analysis was aided by the Tamarin prover. The coding

of each protocol in Tamarin, together with their security

lemmas, can be accessed online at https://gitlab.uni.lu/regil/

distant-attacker-tamarin.

A. Methodology

Our methodology consists of six steps, whose implementa-

tion are showcased by carrying on the analysis of three recent

protocols: Move2Auth [3], Amigo [4] and SPEED [6].

1) Description of the original protocol, security requirements

and assumptions.

2) Abstraction of the original protocol into a symbolic

model.

3) Definition of the security property to be verified as a

member of the property class given in Definition 5, i.e.

as a timeless security property conditional to the distant-

attacker assumption.

4) Prove that the underlying timeless property satisfies Def-

inition 9.

5) Replacement of proximity checks, such as signal strength

and visual inspection, by distance bounding based on

round-trip-time measurements. This is a workaround

intended to fit into our framework proximity-checking

protocols that are not based on round-trip-time.

6) Use of a protocol verification tool, such as Tamarin, to

implement and verify the resulting protocol within the

symbolic model introduced in Section V.

7) If attacks are found, map them back to the original setting

of the protocol to ensure they are not a result of the

abstraction step.

Steps 2 and 5 above may impose a risk of losing accuracy

with respect to the original protocol. The former is standard

in symbolic verification, the latter a choice made to analyse

several similar protocols within our framework. We acknowl-

edge Step 5 to be a workaround and not a proper solution to

the problem of analysing protocols based on signal-strength.

The workaround is useful, though, since some attacks found

in a protocol modelled with round-trip-time are explainable

in a context where signal strength is used (see attacks on

Amigo [4] and Move2Auth [3] below). Because radio waves

travel very close to the speed of light, it is harder for an

attacker to manipulate their distance to honest participants

by increasing the propagation speed of the communication

channel, compared to manipulating signal strength (which

can be amplified). The last step of the methodology is used

to tackle the risk of over-abstracting or miss-representing a

protocol, by ensuring that attacks found in the abstracted

model apply to the original protocol.

B. Analysing Move2Auth

The protocol Move2Auth [3] aims to provide a secure com-

munication channel between an IoT device and a smartphone.

This protocol uses variations in the Received Signal Strength

(RSS) perceived by a single antenna to detect proximity. The

protocol starts when the smartphone connects to the WiFi

P (IoT) V (Smartphone)

nonce k nonce nv, kvp
〈P, pk(k)〉

nv

max Δsign(nv, k)

{kvp}pk(k)
{nv}kvp

kvp is secretkvp is secret

V is communicating with P

Fig. 3: A symbolic specification of Move2Auth-RTT

network of the device, identified by its SSID. Then the IoT

device sends a public key to the smartphone. Immediately after

that, the IoT device uses the corresponding private key to en-

crypt information about its MAC address and its identity. This

encrypted data is sent several times to the smartphone, which

uses variations on the signal strength of the received packets to

determine proximity to the IoT device. The smartphone also

verifies that the received packets are correct with respect to

the public key received at the start of the protocol. If both

signatures and signal strength measurements are correct, the

smartphone sends the freshly generated key kvp encrypted with

the public key, and concludes that it has correctly exchanged

the secret key kvp with the IoT device.

To analyse Move2Auth, we substitute RSS measurements by

round-trip-time measurements using a technique established in

the literature [14]. This technique consists of a verifier sending

a nonce to a prover, expecting to receive as a response a

message containing the nonce and a secret key identifying

the prover. We added an extra message at the end to let the

prover use the exchanged key, as it would in a real scenario.

The resulting protocol is displayed in Figure 3.

In our abstraction of Move2Auth (Move2Auth-RTT), the

device (P ) sends its identity (which could represent the SSID

of the Wi-Fi network) and a fresh public key pk(k). Then the

smartphone (V ) sends a nonce nv to be used during the fast

phase, and expects a message consisting of the signature of

nv with key k, which could only be constructed by the device.

Then V generates a fresh key kvp and sends it encrypted to

P . Finally, P replies with the nonce nv encrypted by kvp,

showing V that it received the shared key.

We modelled the authentication property from the smart-

phone’s point of view as non-injective agreement on the key

kvp. We found this property to be false. The attack consists

of an attacker that modifies the identity in the first message.

We modelled the secrecy claim by the device as (anonymous)

secrecy and found this property to be false, as expected, given

that the P does not execute a proximity check on the verifier.

The secrecy claim made by the smartphone, on the other hand,
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is proven correct by Tamarin.

Attacks: The attack on secrecy by P is realized in a trace in

which a distant attacker impersonates an honest agent in the

verifier role. In the original setting the same attacks applies,

as the last message can be sent by the attacker itself. This

vulnerability can be potentially exploited because it allows

the attacker to control the IoT device by sending encrypted

commands, which the IoT device will accept as correct.

Regarding the authentication claim by V , the vulnerability

derives from the fact that the identity in the first message is

not tied to the rest of the messages of the protocol, and it is not

protected cryptographically, so the attacker can easily modify

it. In the original protocol, this attack would correspond to a

situation in which the attacker sets up a fake Wi-Fi network.

C. Analysing Amigo

Amigo [4] is another protocol for mobile device authentica-

tion that depends on proximity. Similar to Move2Auth, each

device computes a signature based on the radio environment,

and uses it to detect if the other device is near. This is

coupled with a key exchange based on Diffie-Hellman. As in

Move2Auth-RTT, we modified the protocol to rely on round

trip time rather than signal strength.

A B

nonce a, na, ka nonce b, nb, kb
〈A, ga〉
〈
B, gb

〉

k = (gb)a k = (ga)b

na

max Δ na ⊕ {h(B, k)}kb

nb

max Δnb ⊕ {h(A, k)}ka

ka

kb

k is secretk is secret

B is communicating with AA is communicating with B

Fig. 4: A representation of the Amigo-RTT protocol

The modified protocol Amigo-RTT starts by a traditional

Diffie-Hellman exchange, after which a fast phase is executed

by each agent. The rapid phase uses a commitment scheme by

encrypting the hash of the agent’s identity (A or B) and the

common key (k). The encryption key (ka or kb) is revealed at

the end of the protocol. The abstracted protocol is shown in

Figure 4.

Attacks: We modelled non-injective agreement and secrecy

claims with respect to key k for each role. All claims are

invalid. The attack on secrecy for role A works as follows.

Two nearby honest agents A and B execute the protocol. The

attacker E captures the first two messages, and modifies them

so that the new messages are 〈A, 1〉 and 〈A, 1〉 where 1 is the

unit value in the multiplication group. The protocol continues

without any intervention from E, resulting in an exchanged

key equal to 1, which is known to E. We note that this attack

can be prevented by following a Diffie-Hellman public key

validation2. Such validation is optional in the specification,

but our analysis shows it to be necessary in Amigo-RTT. We

found this attack by using the TAMARIN extension developed

in [29].

The attack on the role A’s authentication claim is as follows.

Two nearby honest agents X , Y execute the protocol. The

attacker E manipulates the messages so that X finishes the

execution in role A with Y , while Y was also executing the

role A rather than B. Both X and Y send messages 〈X, gx〉
and 〈Y, gy〉, which the attacker delays such that both are

received by the other agent as the second message. When Y
starts the proximity check by sending ny , the attacker responds

with a random message m. Notice Y cannot check whether

this message is correct until later, so it continues executing

the protocol. Then X starts the proximity check by sending

nx, and Y sends the correct response nx ⊕{h(Y, k)}ky
, even

though for Y this is the second proximity check, while for X
it is still the first. Y continues the protocol by sending ky . At

this point, E has enough information to complete the protocol

with X , by executing the final proximity check in role B.

We finish the analysis of Amigo-RTT by noting that attacks

on the claims made by role B are similar to those shown above

for role A.

D. Analysing SPEED

SPEED [6] aims to guarantee that an IoT device has erased

its memory. By using a combination of software memory

isolation techniques and distance bounding based on round

trip time measurements, the protocol enables a device acting

as verifier to erase the memory of another device, of low

computational power, acting as prover, only when the verifier

is nearby the prover. The protocol starts with a distance-

bounding phase based on [30], which allows the prover to

check the verifier is nearby. The information exchange in this

phase is then used by the prover to compute a fresh key k
and a MAC on its memory. The abstraction of the protocol

is shown in Figure 5. For our security analysis we used the

memory erasure property from [7]. This property is formally

stated and proved robust in Appendix B. The analysis revealed

that the security claim made by the verifier is invalid. This

is not a surprise given that the verifier does not check its

proximity to the prover. Given that prover and verifier do not

share cryptographic information before the protocol execution,

a trivial impersonation attack can be executed by a distant

attacker.

22.1.5. Public Key Validation https://tools.ietf.org/html/rfc2631
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V (Verifier) P (Prover)

nonce anonce m h(m)

a

max Δa⊕m

k = h(a⊕m)k = h(a⊕m)

H =MAC(MeM, k)

〈H,MAC(H, k)〉

claimV (erasure, P )

Fig. 5: A representation of the SPEED protocol

E. Summary of analysis results

We extended the analysis methodology described above to

four more protocols [2], [4], [6], [27] (see Table I). The

analysed protocols include (anonymous) secrecy, (anonymous)

authentication and memory erasure properties. All of these

properties can be defined without the notion of time, and, as

proved in the previous section, they are compatible with our

equivalence results. All of them have the common character-

istic of using proximity checks to (hopefully) assure that the

communication partner is in the vicinity.

Most protocols that consider the distant-attacker assumption

are key-exchange protocols. Two close agents without any

previously shared data nor public key infrastructure need to

communicate in a secure way using a network that may be

controlled by distant attackers. These protocols necessarily

use some kind of asymmetric cryptography, given that the

adversary will receive (with some delay) all the transmitted

messages, and from that it should be impossible to deduce the

secret shared keys.

Protocol Secrecy Auth. MemE
P V P V

DB-Based-Diffie-Hellman [2] � � � � -
MedicalDB [1] � � � � -
BluetoothJW-RTT [27] � � � � -
Move2Auth-RTT [3] � � - � -
Amigo-RTT [4] � � � � -
SPEED [6] - - - - �
DB-Based-Erasure-Protocol [7] - - - - �

TABLE I: Analysis results

Table I shows that three out of five of the key exchange pro-

tocols analysed are correct. The other two, namely Move2Auth

and Amigo, fail to ensure secrecy of the key exchanged.

Our analysis results on memory erasure protocols coincide

with those provided in [7], including the proof of correctness

for the memory erasure protocol introduced there. We note,

however, that [7] provides manual proofs, while our proofs

are computer-generated.

F. Comments on the Tamarin encoding

Our Tamarin code needs to mark adversary actions in the

trace, as they are part of our security properties. We do so

by creating rules representing a channel that can be used

by honest agents and adversaries alike. When modelling all

the network interactions using this channel, we faced non-

termination issues. For this reason, we decided to restrict this

channel usage to the messages directly related to the time

measurement. This resulted in an over-approximation, in the

sense that with this encoding some false attacks could appear,

given that not all actions by adversaries are marked. That said,

we manually checked this was not the case for any of the

protocols analysed.

VII. CONCLUSION

In this article we identified and formalised the distant-

attacker assumption, which has so far been used informally to

establish the security requirements of various communication

protocols for, e.g., IoT devices. We did so by introducing

a time-based security model where round-trip-time measure-

ments and the location of agents is used to determine whether

the neighbourhood of an agent is free of attackers. To enable

computer-aided verification of protocols written in our speci-

fication language, we provided a reduction of the time-based

model by eliminating the notions of time and location, and

defining proximity checks and the distant-attacker assumption

as causal relations on the protocol events. We also introduced

a class of security requirements that we proved hold in both

the time-based and the causality-based model. Because the

causality-based model is translatable to TAMARIN, we were

able to formally verify, for the first time, the (in)security of five

key exchange protocols and two memory erasure protocols,

finding unreported vulnerabilities on three of them.

The results presented in this article can be extended in

various ways. For example, the protocol specification language

we use does not allow for conditionals and non-determinism,

and only supports basic round-trip-time calculations. Hence

extending our results to richer specification languages would

contribute to capturing a larger class of protocols. It is also

worth generalising our proofs to a causality-based specification

model that is a subset of the model supported by a state-of-

the-art protocol verification tool, such as TAMARIN, since it

would reduce the gap between theory and practice. Lastly,

like previous verification frameworks for distance-bounding

protocols, our methodology assumes that agents do not move.

Dropping that assumption is of interest for both classes of

protocols.
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APPENDIX

A. Timeless Semantics

The timeless semantics is obtained by removing the times-

tamps from the rules used in the time-based model. This means

that traces obtained from this semantics are just a sequence of

events. The resulting rules are as follows.

s ∈ Q,R ∈ R, a ∈ Agent, id ∈s Id,
a ∈ Honest =⇒ R ∈ roles(P)

s
(createa(R))id−−−−−−−−−→ s ∪ {(id, ε, R, a)}

CreatePπ ,

Template rule for the timeless semantics:

s ∈ Q, (id, τ, R, a) ∈ s, τ = e1 · · · ei,
e1 · · · eiei+1 ∈s\(id,τ,R,a) insts(R),

[ ]

s
(ei+1)

id

−−−−−→ (s \ {(id, τ, R, a)}) ∪ {(id, τ · ei+1, R, a)}
,

→
[
ei+1 = senda(m), a �{e1,...,ei} m

]
Sendπ

→
[
ei+1 = recva(m), sendb(m

′) ∈ labels(s),
m =E m′

]
Recvπ

→ [ei+1 = equala(〈m1,m2〉),m1 =E m2] Equalπ

→ [ei+1 ∈ SignalEvent] Signalπ

B. Proofs

Proof of Lemma 1. From the definition of�τ we deduce that

if (tx, ex)�τ (ty, ey) we have:

ty − tx ≥
d(actor(ex), actor(ey))

c
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Lets assume (ti, ei) = (ti1 , ei1) �τ . . . �τ (tik , eik) =
(tj , ej). The property above and the triangle inequality lead

to the required result:

tj − ti = tik − ti1 =
k−1∑
j=1

tij+1
− tij

≥
k−1∑
j=1

d(actor(eij ), actor(eij+1
))

c

≥ d(actor(ei1), actor(eik))

c
=
d(actor(ei), actor(ej))

c

Proof of Lemma 2. By the previous lemma, we have that:

2δ

c
≥ tj − ti = (tj − tk) + (tk − ti) ≥

d(a, actor(ek)) + d(actor(ek), a)

c
=
2 · d(a, actor(ek))

c
=⇒ d(a, actor(ek)) ≤ δ

Proof of Lemma 3. By symmetry, it is only necessary to prove

that τ ∈ [[P]]d =⇒ τ ′ ∈ [[P]]d.

Notice that as τ ∈ [[P]]d, then τ can be generated inductively

by applying the rules defined in the semantics in [[P]]d.

Furthermore, in this semantics, all time constraints in τ are

generated by the application of the Recvd rule.

We prove that each prefix of τ ′ can be generated by applying

the rules in the semantics. The proof follows by induction in

the size of the prefixes. The base case is the empty trace, which

by definition is a valid trace of any protocol. For the induction

step, assume for some i that (t′1, e
′
1) · · · (t′i, e′i) ∈ [[P]]d and

that a = actor(e′i+1). We prove that (t′1, e
′
1) · · · (t′i+1, e

′
i+1) ∈

[[P]]d by case analysis:

• e′i+1 is a receive event: as τ ′ is a time valid sequence of

timed events, it can be generated by applying the Recvd
rule at time t′i+1.

• e′i+1 is not a receive event: notice that

π(τa) = π(τ ′a) =⇒ ∃j ∈ {1, . . . , n} :
π(((t′1, e

′
1) · · · (t′i+1, e

′
i+1))a) = π(((t1, e1) · · · (tj , ej))a)

∧ e′i+1 = ej

The same rule that was used to generate (tj , ej) can also

be used to generate (t′i+1, e
′
i+1), given that this rule only

depends on the sequence of previous events by agent a.

We conclude all events in τ ′ can be generated inductively

by the rules, as was needed.

Proof of Lemma 4. For any trace τ∗ = (t∗1, e
∗
1) · · · (t∗n, e∗n),

let Kτ∗ ⊆ {1, . . . , n} : k ∈ Kτ∗ ⇐⇒ d(a, actor(e∗k)) >
δ ∧ u < k < v. The set Kτ∗ thus contains the indices of all

timed events between u and v that are executed by an agent

outside the vicinity of a.

Let τ0 = (t01, e
0
1) · · · (t0n, e0n) = τ and r = |Kτ |. If r =

0 then all the necessary conditions are fulfilled for τ ′ = τ
and f the identity. Otherwise, there exist τ1, . . . , τ r, where

∀i ∈ {1, . . . , r} : τ i = (ti1, e
i
1) · · · (tin, ein), and a sequence of

bijections f1, . . . , fr such that:

• ∀i ∈ {1, . . . , r} : fi is a bijection between {1, . . . , n} and

{1, . . . , n} such that ∀j ∈ {1, . . . , n} : ei−1
j = eifi(j)

• ∀i ∈ {1, . . . , r}, ∀a ∈ Agent : π(τ ia) = π(τ i−1
a )

• ∀i ∈ {1, . . . , r}, ∃k ∈ Kτ i−1 : Kτ i = Kτ i−1 \ {k}
• t1f1(u) = t0u = tu ∧ t1f1(v) = t0v = tv

• ∀i ∈ {2, . . . , r} : tif1◦...◦fi(u) = ti−1
f1◦...◦fi−1(u)

∧
tif1◦...◦fi(v) = ti−1

f1◦...◦fi−1(v)

• ∀i ∈ {1, . . . , r} : τ i is a time valid sequence.

Notice τ ′ = τ r and f = f1 ◦ . . . ◦ fr fulfill the required

conditions in the lemma:

• ∀a ∈ Agent : π(τa) = π(τ ′a) and ∀i ∈
{1, . . . , n} : e′f(i) = ei are true by definition of f ,

given it is the composition of functions that possess the

same properties.

• Kτ ′ = ∅ =⇒ ∀k ∈
{f(u), . . . , f(v)} : d(a, actor(e′k)) ≤ δ

• t′f(u) = tu ∧ t′f(v) = tv , as t′f(u) = trf1◦...◦fr(u) =

tr−1
f1◦...◦fr−1(u)

= . . . = t1f1(u) = t0u = tu and the same

can be deduced for v. Then t′f(v)− t′f(u) = tv− tu ≤ 2·δ
c

τ ′ ∈ [[P]]d follows from Lemma 3, as we have τ ′ =
τ r is a time valid sequence by definition, and that ∀a ∈
Agent : π(τa) = π(τ ′a) as mentioned above. We complete

the proof by showing how to construct the trace τ i and the

bijection fi from τ i−1, for any index i.
To simplify notation, in what follows we will refer to traces

τ , τ ′ (instead of τ i, τ i+1), bijection f (instead of fi), integers

x and y (instead of f1 ◦ . . . ◦ fi−1(u) and f1 ◦ . . . ◦ fi−1(v)).
Let k ∈ Kτ , then by Lemma 2 (tx, ex) �∗τ (tk, ek) ∧

(tk, ek)�∗τ (ty, ey) is false. We analyse two cases:

• (tk, ek)�∗τ (ty, ey) is false

• (tx, ex)�∗τ (tk, ek) is false

We will focus on the first case, the other one can be analysed in

an analogous way. Let ω be a constant greater than ty−tk and

τ ′′ = (t′′1 , e
′′
1) · · · (t′′n, e′′n) a sequence of timed events defined

as follows:

1) for each timed event (ti, ei) ∈ τ such that i > y, let

(t′′i , e
′′
i ) = (ti + ω, ei)

2) for each timed event (ti, ei) ∈ τ such that i < y and

(tk, ek) �∗τ (ti, ei), let (t′′i , e
′′
i ) = (ti + ω, ei). In this

case clearly i ≥ k
3) for every other timed event (ti, ei) ∈ τ , let (t′′i , e

′′
i ) =

(ti, ei)

Next, we define a bijection f from {1, . . . , n} to {1, . . . , n}
according to the following property:

• ∀i, j ∈ {1, . . . , n} : (t′′i < t′′j ) ∨ (t′′i = t′′j ∧ i < j) ⇐⇒
f(i) < f(j)

Notice that f exists and it is unique as it defines a stable order

for the values of t′′1 , . . . , t
′′
n.

At this point we are ready to define the trace τ ′ =
(t′1, e

′
1) · · · (t′n, e′n). For all i ∈ {1, . . . , n} let (t′i, e

′
i) =

(t′′f−1(i), e
′′
f−1(i)). Then we deduce ∀i ∈ {1, . . . , n} : e′f(i) =

ei ∧ (t′f(i) = ti ∨ t′f(i) = ti + ω)

Notice this f and τ ′ fulfill the required conditions:
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• By construction ∀i ∈ {1, . . . , n} : ei = e′f(i)
• Assume i, j ∈ {1, . . . , n} such that i < j ∧ actor(ei) =
actor(ej). Then (ti, ei) �∗τ (tj , ej) is true, and t′f(j) =
tj + ω =⇒ t′f(i) = ti + ω. We conclude that ∀a ∈
Agent : π(τa) = π(τ ′a)

• By construction t′f(x) = tx ∧ t′f(y) = ty
• t′f(k) = tk + ω > ty = t′f(y) =⇒ f(k) > f(y) =⇒
¬(f(x) < f(k) < f(y))

• τ ′ is a time valid sequence given that by construction:

∀i, j ∈ {1, . . . , n} : (ti, ei)�∗τ (tj , ej) ⇐⇒
(t′f(i), e

′
f(i))�∗τ (t′f(j), e′f(j))

Proof sketch of Corollary 5. This is a direct application of the

Lemma 4 to the events mentioned in the clock events in the

same run as the claim.

Notice that as the predicate correct time is true, for all

clock events clocka(x, y) in the run corresponding to ei, we

get that tiy − tix ≤ 2·δ
c . As such, we can apply Lemma 4

and obtain a new trace in which all actors executing an event

between ix and iy are near a. Doing this procedure for each

clock event, we get the desired trace. This is possible given

that the segments events referenced in clock events do not

intersect.

C. Consistency proofs for standard security properties with
our equivalence results

Definition 13 (Non injective agreement).

∀τ ∈ [[P]]dτi = (ti, claima(non in agree, 〈b,m〉)) :
dist attackerδ(τ, i) ∧ correct timeδ(τ, i)

=⇒ (∃j < i : ej = runningb(〈roleB, a,m〉))
∨ b ∈ Dishonest

Definition 14 (Anonymous non injective agreement).

∀τ ∈ [[P]]d, τi = (ti, claima(a non in agree,m)) :

dist attackerδ(τ, i) ∧ correct timeδ(τ, i)

=⇒ (∃b ∈ Agent, j < i : ej = runningb(〈roleB,m〉))
Definition 15 (Remote Memory Erasure).

∀τ ∈ [[P]]d, τi = (ti, claima(erasure, 〈b,m〉)), :
dist attackerδ(τ, i) ∧ correct timeδ(τ, i) =⇒
∃j < i : (tj , sendb(m)) ∈ τ ∨ (tj , recvb(m)) ∈ τ

Proposition 9. The security properties sec, a sec,
non in agree, a non in agree, and erasure are robust
security properties.

Proof. Let τ, τ ′ ∈ [[P]]d such that the first three conditions in

Corollary 5 hold. Then the condition ∀c ∈ Agent : π(τc) =
π(τ ′c) implies that in both traces the knowledge deduced by

dishonest agents is the same, so sec and a sec are robust.
The properties non in agree, a non in agree and

erasure are robust given that both depend on the existence

of events before ei, and by definition {e1, e2, . . . , ei} =
{e′1, e′2, . . . , e′i}.

Proof of Theorem 8. We prove the left right implication first:

∀ d: [[P]]d �δ ψ =⇒ ∀ ∼ : [[P]]π �∼ ψ
We will formally prove the contrapositive.
Assuming ∀ ∼ : [[P]]π �∼ ψ is false, we deduce

∃ ∼, a ∈ Agent, p ∈ {1, . . . , n}, τ ∈ [[P]]π :
ep = claima(ψ,m) ∧ dist attackerπ(τ, p)∧
correct timeπ(τ, p) ∧ ¬ψ(τ, p)

We will construct a trace τ ′ = (t′1, e
′
1) · · · (t′n, e′n) ∈ [[P]]d,

for some distance function d, such that τ = π(τ ′). To achieve

this, we will assign locations to actors such that the feasible

values of t′i exist.
For simplicity we assume the run corresponding to

ep contains only one clock event. Let run(τ, idp) =
(ep1

)idp · · · (epk
)idp , epi

= clocka(x, y), u = px and v = py .

We assign locations to actors such that b ∼ c =⇒ d(b, c) = 0
and ¬(b ∼ c) =⇒ d(b, c) > δ. As correct timeπ(τ, p) is

true, we have ∀k ∈ {u, . . . , v} : d(actor(ek), a) = 0. We also

deduce that dist attackerπ(τ, p) =⇒ dist attackerδ(τ
′, p).

Let γ > 0 be an arbitrarily large constant. Then we are

ready to define the values of t′i:
• t′1 = 0
• 1 < i ≤ u =⇒ t′i = (i− 1) · γ
• u < i < v =⇒ t′i = (i− u) · 2·εc + t′u
• t′v = t′u +

2·δ
c

• v < i ≤ n =⇒ t′i = (i− v) · γ + t′v
Notice for sufficiently large γ and sufficiently small ε, all

necessary conditions are fulfilled (the time stamps are ordered,

no message travels faster than the speed of light, and t′v −
t′u ≤ 2·δ

c which implies correct timeδ(τ
′, p) is true). Then, we

deduce τ ′ can be generated inductively with the rules defined

within [[P]]d. On the other hand, as ψ(τ, p) doesn’t depend on

time, then τ ′ also represents an attack in [[P]]d, as needed.
In what follows we prove the other implication also using

the contrapositive:

∀ ∼ : [[P]]π �∼ ψ =⇒ ∀ d: [[P]]d �δ ψ
Let τ = (t1, e1) · · · (tn, en) ∈ [[P]]d, p ∈ {1, . . . , n} such

that τ is an attack trace:

ep = claima(ψ,m) ∧ dist attackerδ(τ, p)∧
correct timeδ(τ, p) ∧ ¬ψ(τ, p)

By Corollary 5, a trace τ ′ = (t′1, e
′
1)

id′
1 · · · (t′n, e′n)id

′
n ∈

[[P]]d exists such that:

• ∀c ∈ Agent : π(τc) = π(τ ′c).
• e′p = ep and {e1, e2, . . . , ep} = {e′1, e′2, . . . , e′p}
• run(τ ′, id′p) = (t′p1

, e′p1
)id

′
p · · · (t′pk

, e′pk
)id

′
p ∧

∀j ∈ {p1, . . . , pk} : e′j = clocka(x, y) ∧ ∀z : px < z < py

=⇒ d(actor(e′z), a) ≤ δ
Let ∼ be an equivalence relation such that d(c, a) ≤

δ ⇐⇒ c ∼ a. We deduce that dist attackerπ(π(τ
′), p) ∧

correct timeπ(π(τ
′), p) is true by definition, and that

¬ψ(π(τ ′), p) is also true given that ψ is robust. So π(τ ′) ∈
[[P]]π is an attack trace, as was needed.
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