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Abstract—We study the complexity of the problem of verifying
differential privacy for while-like programs working over boolean
values and making probabilistic choices. Programs in this class
can be interpreted into finite-state discrete-time Markov Chains
(DTMC). We show that the problem of deciding whether a
program is differentially private for specific values of the privacy
parameters is PSPACE-complete. To show that this problem is
in PSPACE, we adapt classical results about computing hitting
probabilities for DTMC. To show PSPACE-hardness we use a
reduction from the problem of checking whether a program
almost surely terminates or not. We also show that the problem of
approximating the privacy parameters that a program provides is
PSPACE-hard. Moreover, we investigate the complexity of similar
problems also for several relaxations of differential privacy:
Rényi differential privacy, concentrated differential privacy, and
truncated concentrated differential privacy. For these notions,
we consider gap-versions of the problem of deciding whether a
program is private or not and we show that all of them are
PSPACE-complete.

I. INTRODUCTION

Differential privacy [20] provides a formal framework for

guaranteeing that programs respect the privacy of the individ-

uals contributing their data as input. The idea at the heart of

differential privacy is to use carefully calibrated random noise

to guarantee that an individual’s data has a limited influence

on the result of a data analysis. The literature on differential

privacy shows how this can be done for numerous tasks across

statistics, optimization, machine learning, and more. However,

showing that a program satisfies differential privacy can be

difficult, subtle, and error prone [37], [40]. For this reason,

several techniques have been proposed in order to verify or

find violations in differential privacy programs, e.g. [4], [8],

[9], [18], [25], [45], [53].

Despite tremendous progress in the development of methods

and tools to support the deployment of differential privacy,

there are fundamental open questions about the complexity of

the problems these tools address. In this paper, we focus on

one of these problems:

Decide (ε, δ)-DP: Given a Boolean program and

parameters ε, δ, decide whether a program is (ε, δ)-
differentially private or not.

Barthe et al. [4] showed that a version of this problem,

for probabilistic while-like programs using both finite and

infinite data, is undecidable. However, it becomes decidable

when a restriction is imposed on the way infinite data are

used in while loops. Gaboardi et al. [26] showed that, for

probabilistic programs over finite data domains and without

loops, when the parameters are rational, this problem is

coNP#P-complete for (ε, 0)-differential privacy and even

harder for (ε, δ)-differential privacy. In this work we consider
the case where programs can contain loops and work over

finite data, and the parameters are given as dyadic numbers

(rational numbers whose denominator is a power of two).

We show that adding loops and maintaining the restriction

on finite data preserves decidability but significantly increases

the complexity of the problem, even for just (ε, 0)-differential
privacy.

Our contributions

We consider programs from a simple probabilistic while-like

programming language over boolean data, where randomness

is represented as probabilistic choice. We call this language

BPWhile. This language can be seen as a low-level target

language for differential privacy implementations which are

intrinsically over finite data types [3], [27], [33], [41].

As a first step, we show PSPACE-hardness for Decide
(ε, δ)-DP over this language, with respect to the size of the

program. We show this result by using a reduction from

the problem of deciding almost sure termination for pro-

grams in BPWhile. Programs in this language can be seen

as discrete-time recursive Markov chains for which almost

sure termination has been shown PSPACE-complete [22].

Intuitively, the hardness of verifying whether a program is

differentially private comes from the fact, that we need to

compare distributions on outputs for neighboring pairs of

inputs. Understanding such distributions essentially gives us a

way to check whether a program terminates with probability

1 or not. We use this idea in all PSPACE-hardness proofs
in this work.

We then present an algorithm for Decide (ε, δ)-DP which

uses polynomial space, completing our proof of PSPACE-
completeness for Decide (ε, δ)-DP. Our algorithm is based on

classical results showing that computing hitting probabilities

in discrete-time Markov chains can be done in a space efficient

way. Our proof of PSPACE-completeness even holds in the
case where the privacy parameter δ is zero—this setting is

usually called pure differential privacy.
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Similarly to [26], we also consider a related problem con-

cerning the approximation of privacy parameters. In particular,

we study the following gap-promise variant of the problem.

Distinguish (ε, δ)-DP: Given a program that is

promised to either be (0, 0)-differentially private or

not (ε, δ)-differentially private, decide which is the

case. Here, ε, δ may be fixed constants independent
of the input.

We show that this problem is also PSPACE-hard via an-

other reduction from the problem of deciding almost sure

termination. At first glance, the statement seems specific to

(0, 0)-differentially privacy, but it implies more generally that
it is hard to distinguish between (ε, δ)-differentially private

programs and programs which fail to be (ε + α, δ + β)-
differentially private for positive constants α, β. In particular,

it is hard even to approximate the best ε and δ parameters for
which a program guarantees differential privacy.

Further, we consider several relaxations of the definition of

differential privacy which have recently appeared in the litera-

ture. Specifically, we consider deciding Rényi-differential pri-

vacy (RDP) [42], concentrated differential privacy (CDP) [12],

and truncated concentrated differential privacy (tCDP) [11].

For each of these privacy notions we define a gap version

of the problem of deciding whether a program is private or

not and we show that all of them are PSPACE-complete.
To show membership in PSPACE we use similar approach

as in the PSPACE-algorithm for Decide (ε, δ)-DP. The
main difference is that definitions of RDP, CDP, and tCDP

involve computations of Rényi divergences and, as we are

working with probabilities that can have exponentially long

descriptions, we carefully apply known uniform families of

polylogarithmic depth circuits to perform these calculations.

We prove our lower bounds using reductions from Distinguish
(ε, δ)-DP.
To summarize, our contributions are:

1) We give a proof of PSPACE-hardness for the problem
of deciding (ε, δ)-differential privacy (by showing a

polynomial time reduction from the language of almost

surely terminating programs, Section V-D).

2) We show a PSPACE algorithm for deciding (ε, δ)-
differential privacy (Section V-C).

3) We show PSPACE-hardness for the problem of ap-

proximating the privacy parameters (Section VI).

4) We show PSPACE algorithms for deciding Rényi-

differential privacy (Section VII-A), concentrated differ-

ential privacy (Section VII-B), and truncated differential

privacy (Section VII-C).

5) We also give a proof of PSPACE-hardness for de-

ciding Rényi-differential privacy (Theorem 17), concen-

trated differential privacy (Theorem 22), and truncated

concentrated differential privacy (Theorem 26) (via re-

ductions from the problem of approximating privacy

parameters, Section VI).

II. RELATED WORK

Verification tools for differential privacy: Several tools

have been developed with the goal of supporting programmers

in their effort to write code that is guaranteed to be differen-

tially private, including type systems [6], [25], [44], [45], [53],

program logics [5], [7], [8], and other program analyzers [2],

[15], [24], [39], [49]. Other tools help programmers find

violations in differentially private implementations [9], [18],

[54]. Finally, several recent tools address both problems at the

same time [4], [23], [51]. Most of these tools are capable of

analyzing complex examples corresponding to the state of the

art in differential privacy algorithm design [19], [36].

Implementations on finite computers: Several works have

studied how to implement differentially private algorithms

using finite arithmetics. Mironov [41] showed that naı̈ve im-

plementations of the Laplace distribution using floating point

numbers are actually not private. Gazeau et al. [27] showed

that similar problems as the one identified by Mironov are

not only due to the non-uniformity of floating points but they

are actually intrinsically due to the use of finite precision

arithmetic. Ilvento [33] showed that similar considerations can

be applied also to algorithms that are in principle discrete,

such as the exponential mechanism. Balcer and Vadhan [3]

showed how to implement several important differentially

private algorithms in an efficient way on finite precision

machines.

Related Results in Complexity: Murtagh and Vadhan [43]

studied the complexity of finding the best privacy parameters

for the composition of multiple differentially private mech-

anisms and showed it to be #P-complete. This work, in

part, led to the development of several variants of differential

privacy, most of which we consider here, with better com-

position properties. Barthe et al. [4] showed that deciding

differential privacy for probabilistic while-like programs using

both finite and infinite data is undecidable, but it becomes

decidable when a restriction is imposed on the way infinite

data are used in while loops. However, they do not study

the computational complexity of this problem. Gaboardi et

al. [26] showed coNP#P-completeness for the problem of

deciding (ε, 0)-differential privacy for probabilistic programs

over finite data domains and without loops. They also stud-

ied this problem and approximate versions of it for (ε, δ)-
differential privacy. Chadha et al. [14] recently showed that

deciding differential privacy for a class of automata that can

be used to describe classical examples from the differential

privacy literature can be done in linear time in the size of

the automata. This class of automata includes computations

over unbounded input data, such as real numbers. Chistikov et

al. [15], [16] studied several complexity problems concerning

differential privacy in the setting of labelled Markov chains.

They showed that the threshold problem for a computable

bisimilarity distance giving a sound technique to reason about

differential privacy is in NP [15]. Further, they proved that

another distance, based on total variation, which can be used to

more precisely reason about differential privacy is undecidable

397



in general, and the problem of approximating it is #P-hard, and

in PSPACE [16].

There are also other related results from the program

verification and privacy literatures. Courcoubetis and Yan-

nakakis [17] studied the complexity of several verification

problems for probabilistic programs. Etessami and Yan-

nakakis [22] studied the complexity of several problems for

recursive Markov chains. Notably, they showed that decid-

ing almost sure termination for this computational model

is PSPACE-complete. Kaminski et al. [35] studied the

arithmetic complexity of almost sure termination for general

probabilistic programs with unbounded data types. Chadha et

al. [13] showed PSPACE-completeness for the problem of

bounding quantitative information flow for boolean programs

with loops and probabilistic choice. A bound on pure dif-

ferential privacy entails a bound on quantitative information

flow, but not the other way around, and hence their result does

not directly apply in our context. Gilbert and McMillan [29]

studied the query complexity of verifying differential privacy

programs modeled as black boxes.

III. PRELIMINARIES

A. Boolean Programs with Loops and Random Assignments

In this paper we consider a simple while-like language

working over booleans, extended with probabilistic choice.

This language, which we call BPWhile, can be seen as a prob-

abilistic extension of the language for input/output bounded

boolean programs studied in [30]. The syntax of the language

is defined by the following grammar.

b ::= true | false | random | x | b ∧ b | b ∨ b | !b
c ::= skip | x := b | c; c | if b then c else c |

while b then c
C ::= input(x, . . . , x); c; return(x, . . . , x)

All of the constructs are standard. The expression random

represents a random fair coin, which with probability 1/2

evaluates to true and with probability 1/2 evaluates to false.

The semantics for BPWhile programs is also standard and

we omit it here. However, notice that program may fail to

terminate, and we also have to consider this when analyzing

probabilities. To mark non-termination we will use the symbol

⊥. We also remark that a given BPWhile program operates

only on boolean inputs of a single fixed length n, specified
(implicitly) in the program description.

Our language is very similar to the one studied in [26]. The

main difference is that we have an additional loop construction

while b then c. Without loops, programs in this language can

be interpreted into boolean circuits of roughly the same size.

However, this cannot be done in presence of loops, as the

straightforward approach of unfolding loops gives a circuit of

size exponential in the program length. To avoid analyzing

boolean circuits of exponential size, we will instead analyze

programs as discrete-time Markov chains, in a manner similar

to [4]. This is possible because BPWhile programs use a

bounded amount of memory (that is at most linear in the size

of the input program), corresponding to an exponential, in the

size of the input, number of states in the resulting Markov

chain. The precise translation will be given in Theorem 7.

Similarly to [26] we measure the complexity of the prob-

lems we are interested in as functions of the size of the input

program, rather than, e.g., the number of bits the input program

itself takes as input.
Language expressivity: We use booleans as our basic

data type to keep our proofs simple. However, all of the

results we show also hold for programs where values are

from a fixed finite domain. In fact, the language we use here

can be thought as a low-level language which could be the

target of implementations of differential privacy primitives.

As shown in several works, one has to be very careful when

implementing differentially private primitives [3], [27], [33],

[41]. One way to guarantee correctness for this process could

be to give a translation into BPWhile and then decide whether

the given program is differentially private or not. We illustrate

how this process could work with an example.

Using 1 + n + m boolean values we can represent arbi-

trary positive and negative fixed-point numbers with range

(−2n + 1, 2n − 1) and precision 2−m, and perform standard

arithmetic operations and comparison over them. We can

then think about working with blocks of variables of size

1 + n + m, which we denote using vector notation, e.g.

�x, �y, . . .. Notice that using this representation we can also

easily encode a uniform sampling operation for elements in

a range (v,w], which we denote uniform(v, w]. We can,

for example, implement the bounded Geometric Mechanism

from [28], using this encoding and the implementation in

finite precision arithmetic provided in [3]. Given a positive

integer n and a private positive integer value c ≤ n, this
discrete mechanism selects an integer element z from the range

[0, n] with probability proportional to e
−ε|z−c|

2 . Essentially, the

mechanism implements inverse transform sampling based on

the inverse CDF of the output distribution. Given c, n and ε,
this mechanism can be described in BPWhile as in Figure 1.

All the operations in this piece of code are assumed to work

on blocks of variables and of booleans that are long enough

to avoid overflow and approximations. This algorithm samples

from a uniform distribution (line 3) for a value of �d large

enough and uses a while loop to go through the integers in

the range [0, n] to find the right element to return. A faster

implementation could be based on binary search. The nested

conditionals (lines 7-14) implement the checks required for

the inverse transform sampling to identify the right element to

return.

We gave this example to show that the language is expres-

sive enough to implement a real-world mechanism. However,

we also chose this example because identifying the privacy

guarantee provided by this algorithm is non-trivial. Balcer and

Vadhan [3] showed this algorithm to be (ε̃, 0)-differentially
private when ε̃ = ln(1 + 2−�log(2/ε)�) and ε̃ ∈ (2/9ε, ε/2],
where the complexity in the expression for ε̃ comes from the

implementation. This example shows why several works have

designed methods to decide differential privacy, and why it is

important to understand the complexity of this problem.
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0. input(�c, n, ε);

1. �k := �log(2/ε)�;
2. �d := (2

�k+1 + 1)(2
�k + 1)n−1;

3. �u := uniform(0, �d];
4. �z := 0;
5. �r := n;
6. while�z < �n ∧ �r = n then
7. if �z < �c then

8. if �u ≤ 2
�k(�c−�z)(2

�k + 1)n−(�c−�z)

9. then �r := �z
10. else skip

11. else

12. if �u ≤ d− 2
�k(�z−�c+1)(2

�k + 1)n−1−(�z−�c)

13. then �r := �z
14. else skip

15. �z = �z + 1;
16. return(�z);

Fig. 1. Example: Bounded Geometric Mechanism in finite precision arith-
metic

B. Almost Sure Termination and Configuration Graph

Our approach will rely on the hardness of the problem

of deciding almost sure termination for probabilistic boolean

programs (Lemma 4). Almost sure termination is a natural

probabilistic extension of the concept of termination.

Definition III.1. A program C almost surely terminates if on
all inputs it terminates with probability 1.

Deciding almost sure termination for general probabilistic

programs on unbounded data types is known to be Π0
2-

complete [35] while for programs representing recursive

Markov chains it is known to be PSPACE-complete [22].

In the following, it will be convenient to analyze BPWhile

programs using their configuration graph. To do this, we

assume that the code of a program comes with lines of code

associated to each command, in a way similar to the code in

Figure 1.

Definition III.2. Consider a BPWhile program C with l lines
of code and v Boolean variables. A state s of C is a pair
(m, i) where m ∈ {0, 1}v represents a potential value of the
memory, i.e. values for all the variables, and i ∈ [l] is a line
of code. The size of the program is the number of symbols in
the description of the program.

Note that as the description of each variable, input value

and line in the program requires at least one symbol, we get

that l, v, and the size of the input of the program are always

at most the size of the program. Throughout this paper we

measure complexity of the verifying procedures based on the

size of the program.

Definition III.3. The configuration graph G = (V,E) of a
BPWhile program C on input x has a vertex for every possible
state of the program and a directed edge ((m, i), (m′, i′)) ∈ E
if the probability of getting the memory m′ starting from the

memory m and executing the command at line i′ is strictly
greater than 0.

We will also sometimes use the term state graph to refer to

the configuration graph. The starting state of a program is the

state at the beginning of C’s execution on x, where the input
variables are set to x and the index of the execution line is 0.
A final state is any state following the execution of the last

line of code (the final return command). We denote the set of

final states in a configuration graph by Vf ⊆ V .

C. Markov Chains

To analyze the probability that a boolean program C on

input x outputs a specific value, we need to associate proba-

bilities to each transition in the configuration graph. By doing

this, we turn a configuration graph into a discrete time Markov

chain.

Definition III.4 ( [31], [38], [50]). A discrete-time Markov
chain M = (V,E, {puw | (u,w) ∈ E}, {p0(v)|v ∈ V })
consists of a set of states V , a set E ⊆ V × V of transitions
between states, a list puw of positive probabilities for all
transitions (u,w) such that for each state u ∈ V , we have∑

w∈V puw = 1, and an initial probability distribution p0 on
states in V .

Following [17] we view a Markov chain as a directed graph

(V,E), with weights puw on all edges (u,w). Moreover, as in

a configuration graph, we associate each vertex in the graph to

a state of a BPWhile program, and a transition between states

to one possible execution step of the program. As an initial

probability distribution we use a unit distribution that places

weight 1 on the unique start state of the program.

To verify whether a BPWhile program is differentially

private, as we will see in the next section, we need to compare

the probabilities of outputting the same output on neighboring

inputs. We will do this by computing hitting probabilities of

final states with a fixed output values.

Definition III.5. The hitting probability of a state s ∈ V in a
Markov chain M = (V,E, p, p0) is the probability of reaching
s in M starting with a initial probability distribution p0 after
an arbitrary number of steps.

D. Differential Privacy

Differential privacy is a property of a program that can

be expressed in terms of a neighboring relation over possible

program inputs. Here we view an input as a sensitive dataset,

and say that two inputs are neighboring if they differ in one

individual’s information. As our focus in this paper is on

boolean programs, we define two datasets to be neighboring

when they differ in a single bit.

Definition III.6. Two boolean vectors of the same length are
said to be neighboring if their Hamming distance (the number
of positions in which these vectors differ) equals 1.

Notice that this is a strong notion of neighboring, which

makes our hardness results stronger. That is, our hardness
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results extend naturally to other more involved notions of

neighboring. Moreover, our upper bound arguments apply to

any neighboring relation between boolean vectors (or more

generally, vectors over any fixed finite data domain) as long

as that relation can be checked in polynomial space. Using

the notion of neighboring we introduced above we can now

formulate differential privacy.

Differential privacy guarantees that a change of any one

data in the input will not change much the observed output

of the program. More formally, differential privacy guarantees

that the distributions of outputs of a program when run on

neighboring datasets are close.

Definition III.7 (Differential Privacy [20]). A boolean pro-
gram C with inputs of length n and producing outputs of
length l is (ε, δ)-differentially private if for every pair of
neighboring inputs x, x′ ∈ {0, 1}n and for every set of
possible outputs O ⊆ {0, 1}l ∪ {⊥} :

Pr[C(x) ∈ O] ≤ eε · Pr[C(x′) ∈ O] + δ. (1)

This version of differential privacy is often called approxi-
mate differential privacy to distinguish it from pure differential
privacy, which is the special case where δ = 0. We will denote

the latter by ε-differential privacy.
In the following, it will be convenient at times to work with

the following reformulation of differential privacy.

Lemma 1 (Point-wise differential privacy [7]). A program C
is (ε, δ)-differentially private if and only if for all neighboring
inputs x, x′ ∈ {0, 1}n,∑

o∈{0,1}l∪{⊥}
δx,x′(o) ≤ δ,

where δx,x′(o) = max(Pr[C(x) = o]− eε(Pr[C(x′) = o]), 0).

IV. COMPLEXITY OF CHECKING ALMOST SURE

TERMINATION

In this section we give intuition for the hardness of deciding

differential privacy by discussing the complexity of almost

sure termination. While it is known that almost sure termina-

tion for Markov chains is PSPACE-complete [22], we believe it

is instructive to understand where this complexity comes from.

We start with a helpful characterization, proved in Appendix B,

of almost sure termination of a BPWhile program in terms of

reachability in the program’s configuration graph.

Theorem 2. A program C terminates almost surely if and only
if for every input x and every vertex v in the configuration
graph of C(x) that is reachable from the start state, there is
a path from v to one of the final states.

The main intuition of this theorem is that the only way for

a program to fail to terminate with probability 1 is if there is

some positive probability that it enters an infinite loop from

which it cannot exit. This is possible if and only if there exists

a state that is reachable from the start state, but from which

we cannot reach any of the final states.

Theorem 2 immediately suggests a simple exponential-time

(and exponential-space) algorithm for checking almost sure

termination. For each possible input to the program, we can

construct the configuration graph of the program on that input.

Using breadth-first search, we can mark which states are

reachable from the start state, and for each such state we

check whether any of the final states are reachable. If there

exists an input and a state in its configuration graph that is

reachable from the start state but cannot reach a final state,

then by Theorem 2 we get that the program doesn’t terminate

almost surely. If for every input, there is no such state, then

the program almost surely terminates.

Constructing the configuration graph explicitly and running

breadth-first search uses exponential space. In what follows,

we describe how to reduce the space complexity to polyno-

mial.

We can improve the previous algorithm by avoiding storing

the whole configuration graph, and instead providing implicit

access to any edge in the graph. This requires us to re-compute

on-the-fly information about the set of reachable states from

any given vertex, but fortunately, this can still be done in

polynomial space.

Theorem 3. There is a deterministic algorithm for checking
almost sure termination of a BPWhile program using space
polynomial in the size of the program.

To show PSPACE-hardness of checking almost sure

termination we reduce from the PSPACE-complete true

quantified boolean formula (TQBF) problem. This is the

problem of deciding whether a fully quantified propositional

boolean formula is true. For a formula φ with t quantifiers,
we define a BPWhile program with t nested while-loops to

evaluate the formula. The reduction is similar to the reduction

in [30] from TQBF to the reachability problem for extended

hierarchical state machines. We prove the following theorem

in Appendix C.

Theorem 4. The problem of checking whether a BPWhile
terminates almost surely is PSPACE-hard.

V. VERIFYING DIFFERENTIAL PRIVACY

We reason about differential privacy in a manner similar

to almost sure termination. In particular, we use a Markov

chain interpretation of a program C. We first give an ineffi-

cient (exponential-time) but simple algorithm (Section V-A),

followed by a PSPACE-algorithm for verifying whether a

program is pure (Section V-B) or approximate differentially

private (Section V-C).

A. Exponential-Time Algorithm for Checking (ε, 0)-
Differential Privacy

To give an exponential-time algorithm for checking (ε, 0)-
differential privacy, we first review the algorithm for comput-

ing the probability of reaching any given final state sf in a

Markov chain from [4]:

1) For each state v, initialize a variable qv representing the
probability of reaching sf from this state.
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2) Set qsf = 1 for the final state sf .
3) For each state v from which sf is not reachable set

qv = 0.
4) For any state v for which we do not yet have an equation,

we introduce the equation qv =
∑

u∈V qu · pvu, where
pvu is the probability of transitioning from v to u in one
step. If there is no transition from v to u, then pvu = 0.

5) The previous steps give us a set of equations, one for

each possible state of the Markov chain. The number of

variables equals the number of equations. This linear

system can be solved unambiguously by using any

polynomial-time algorithm for solving systems of linear

equations.

We can now state our exponential time algorithm for deciding

differential privacy for BPWhile programs.

Theorem 5. For a fixed rational number eε, the problem
DECIDE (ε,0)-DP, checking whether a BPWhile program
is (ε, 0)-differentially private, is solvable by a deterministic
algorithm using time exponential in the size of a program.

Proof: By Lemma 1 for checking (ε, 0)-Differential Pri-
vacy for a program C it is sufficient to compare for every

pair of neighboring dataset the output distributions on every

possible value. Using this approach, we get the following

simple algorithm:

1) For neighboring inputs x, x′ of size n and a program

C of size N construct two Markov chains, with one

start-state in each, set these start-states to x and x′,
respectively.

2) Find the probabilities of each final state in each Markov

chain.

3) Compare the probability of the same states in the two

Markov chains. If there is at least one output c such that
P [C(x) = c] > eεP [C(x′) = c], terminate and output

“Not (ε, 0)-DP”. Otherwise continue.
4) If the checks were successful for all pairs, terminate with

an output: “(ε, 0)-DP”.

This algorithm explicitly store probabilities of reaching all of

up to 2N final states, as well as a system of linear equations

of size exponential in N . As the input of the algorithm is

a program C of size N , we get that this algorithm requires

exponential space and time in the size of its input.

B. PSPACE Algorithm for Checking (ε, 0)-Differential Privacy

A classic line of work [10], [34], [48] showed that com-

puting the hitting probabilities of final states can be done

efficiently in space. This is what we need to design a PSPACE

algorithm to check differential privacy. In designing this al-

gorithm we use the work of Simon [48] who showed that

given a Markov chain of size M , the hitting probability of

any state can be computed in space O((logM)6). Subse-
quent work [10], [34] improved this result by showing that

O((logM)2) is enough. Nevertheless, we focus our exposi-

tion on Simon’s algorithm as its presentation simplifies the

description of our algorithm, and improving the polynomial

does not affect membership of our problem in PSPACE.

Simon’s result can be formally stated as follow:

Lemma 6. [48] Let M be a Markov chain (represented by its
transition matrix) with at most 2L states, an initial distribution
placing all mass on one state s, a set of final states F each
with only one self-transition, and the property that every state
not in F each outgoing transition probability is either 0 or
1/2. There is an O(L6)-space deterministic algorithm that
computes the hitting probabilities of every state in F .

To apply the algorithm from the previous lemma we need

to do an extra pre-processing step to remove all non-final

recurrent states of a Markov chain.

Definition V.1. A recurrent state in a Markov chain is a state
such that, after reaching it once, the probability of reaching
it again is 1.

A similar pre-processing step appears in Simon’s paper,

and we describe our removal process below in our proof of

Theorem 7.
Now we are ready to show that (ε, 0)-differential privacy

for BPWhile programs can be decided in polynomial space.

Theorem 7. For a fixed rational number eε, the problem of
checking whether a BPWhile program is (ε, 0)-differentially
private is solvable by a deterministic algorithm using space
polynomial in the size of the program.

Proof:
To apply the algorithm from Lemma 6 and conclude that

polynomial space is sufficient in order to compute the final

probabilities, we need to be able to compute the probability

of each transition in the Markov chain using polynomial space.

We cannot explicitly store the whole Markov chain using space

that is polynomial in the size of a program. Instead, we can

construct an algorithm working in polynomial space which

gets as input a description of the BPWhile program C, the
program input x, and two states u, v of the Markov chain

corresponding to C(x). It outputs the transition probability of
edge (u, v) (the probability that C(x) gets from state u to state
v in one step).
We need to find the probability of hitting each reachable

final state of the Markov chain of C(x). Note that these

probabilities can be as small as 1/22
p(N)

for some polynomial

p(N), where N is the size of the input program. This is

because a Markov chain for a program of size N has a

number of states which is at most exponential in N , and

as each transition probability is either 0, or 1/2, or 1, there

can be a simple path in the Markov chain from the start

state to the final state that goes through all the states with

probability 1/22
p(N)

. Storing these values requires exponential

space, so the PSPACE algorithm described further only

provides implicit access to these probabilities, i.e., the ability

to compute any desired bit of a probability.
Here are the conditions that the Markov chain we construct

needs to satisfy in order to apply Lemma 6.

• The transition probability between every two states in the

Markov chain of size O(2poly(N)) should be computable
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in polynomial space. Every final state has a self-transition

with probability 1.
• Each transition in the Markov chain for all non-final

states has to have weight either 1/2 or 0, and the graph

underlying the Markov chain shouldn’t contain multiple

edges. This can be done by duplicating every state, except

the start state, increasing the number of vertices by a

factor of 2. Every duplicate final state is also marked

as a final state. Let a and b be vertices in the original

Markov chain of the program that are transformed to two

pairs of vertices a1, a2 and b1, b2 respectively. Then we

re-assign the weight of edge e from a to b in the original
Markov chain as follows:

– If the original weight of e is 1/2, then we add two

edges (a1, b1), (a2, b2) each of weight 1/2 to the new
Markov chain.

– If the weight of e is 1 we add four edges

(a1, b1), (a1, b2), (a2, b2), (a2, b1) each of weight

1/2.
– If the weight of e is 0, we do not add any edges

between vertices a1, a2 and b1, b2.

Therefore, for each original edge we add at most 4 new

edges, so we do not increase the size of the Markov chain

by more than a factor of 4. Moreover, for every pair of

vertices in the new Markov chain, we can recompute the

weight of the edge based on the the weight of the edge

in the original Markov chain in linear time. Overall, this

transformation is computable in the space polynomial in

the size of the input BPWhile program and it guarantees

that the probability of getting from one vertex to any

other in one step is either 0 or 1/2.
• All recurrent states except the final states should be

deleted. We simulate this deletion as follows. Whenever

our algorithm reads the probability on an edge (u, v), we
check whether either u or v are recurrent and zero out

this probability if so. This check is similar to the one

that we discussed earlier for almost sure termination. We

consider the graph underlying the Markov chain of the

program. To check whether state u is recurrent, we run

a search algorithm checking whether there is at least one

path through edges with non-zero weight to at least one

of the final states. We can use Savitch’s algorithm [47]

to do this check in space polynomial in the size of the

program.

To verify whether a program C is ε-differentially private

we can now enumerate all pairs x, x′ of neighboring inputs,

and all possible outcomes o. For each outcome o, we com-

pute Pr[C(x) = o] by summing the hitting probabilities of

reaching final states in the configuration graph of C on x that

result in outputting o. Finally, we compare Pr[C(x) = o] to
eε Pr[C(x′) = o]. Note that if eε is a rational number with

numerator a and denominator b, then we can avoid division

by comparing b · Pr[C(x) = o] to a · Pr[C(x′) = o].

We remark that the necessary arithmetic operations on

exponentially long (implicitly represented) numbers can be

carried out in polynomial space (though exponential time is

still required) using classic logspace algorithms for addition

and multiplication.1 In particular, this works even if eε is an
exponentially long rational number provided as input to the

problem.

C. PSPACE Algorithm for Checking (ε, δ)-Differential Pri-
vacy

Now, using the pointwise definition of differential privacy

from Lemma 1 and using similar ideas to the algorithm in

Section V-B we can construct a PSPACE-algorithm for

checking (ε, δ)-differential privacy of BPWhile programs.

Theorem 8. For fixed rational numbers eε, δ, the problem of
checking whether a BPWhile program is (ε, δ)-differentially
private is solvable by a deterministic algorithm using space
polynomial in the size of the input program.

Proof: Let eε = a/b for natural numbers a, b. As in

the algorithm in Section V-B we iterate through all pairs of

neighboring inputs (x, x′), and for each of them compute

bδx,x′(o) = max(bPr[A(x) = o]− aPr[A(x′) = o], 0),

using the algorithm from Theorem 6. Then we add this value

to the sum
∑

o∈{0,1}l∪{⊥}
bδx,x′(o), until we have iterated over

all possible inputs, or until the partial sum is greater than bδ.
In the former case we terminate with the output “not DP”,

otherwise we do not terminate until checking the last output,

and output “DP”.

Again, the necessary arithmetic computations (maximum,

addition, subtraction, and multiplication) on exponentially long

rational numbers can be done in polynomial space.

D. PSPACE Hardness

To show PSPACE-hardness of checking whether a BP-

While program is differentially private, we reduce from the

problem of checking almost sure termination. All of our

hardness results have a similar structure: for a program C
we construct another program C ′ that is differentially private

(with some parameters) if and only if program C terminates

almost surely. We show such reductions for the problems of

DECIDE (ε,0)-DP, DECIDE (ε,δ)-DP, and for DISTINGUISH

(ε,δ)-DP.

Lemma 9. For a fixed rational eε > 1, the problem of check-
ing almost sure termination for BPWhile Boolean programs
is poly-time Karp-reducible to the problem of checking (ε, 0)-
differential privacy for those programs.

Proof: Let C(x) be a BPWhile program for which we

want to check almost sure termination. We construct a new

program C ′ that will receive an input x and one additional bit

of input b, and runs C as a subroutine. The BPWhile language

doesn’t support procedure calls, but we can encode the same

behavior using the following code representing a template for

1We can construct uniform NC1 and NC2 circuits for these operations.
Simple constructions are explained in [52].
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the code of the program C ′. In this reduction we consider two
inputs to a program C ′ as neighboring if they disagree only

in one bit.

Here is the template code for C ′:

input(x, b); if b == 1 then C(x) else skip; return(1)

Notice that the return statement is executed only if C(x) halts
or b == 0.
As we add constant number of extra lines to the original

program C, it takes linear time to construct C ′. Hence the

reduction takes linear time.

To show correctness of the reduction we need to check that

it maps yes-instances of the almost sure termination problem to

yes-instances of DECIDE (ε,0)-DP problem, and no-instances

to no-instances. If a program C almost surely terminates on

all inputs, then for all possible values of bit b we get that

C ′(x, b) outputs 1 with probability 1. Hence this program is

(ε, 0)-differentially private for every ε ≥ 0.
If the program C is not almost surely terminating, then there

exists an input x such that program C(x) fails to terminate

with some probability ρ > 0. Hence, we get that:

Pr[C ′(x, 1) doesn’t halt] = ρ > 0.

On the other hand, on the neighboring input (x, 0) we get

Pr[C ′(x, 0) doesn’t halt] = 0.

Therefore C ′ is not ε-DP for any ε.

Lemma 10. For any fixed rational eε and dyadic δ ∈ (0, 1),
the problem of checking almost sure termination for BPWhile
Boolean programs is poly-time Karp-reducible to the problem
of checking (ε, δ)-differential privacy for those programs.

Proof: As in the proof of Lemma 9, let C(x) be a

BPWhile program for which we want to check almost sure

termination. We construct a new program C ′ that will receive
an input x and one additional bit of input b, that runs C as

a subroutine. We denote by delta rand a subroutine that

outputs 1 with probability 1−δ, and outputs 0 with probability
δ. For any dyadic rational constant δ = a/2m, this can be

constructed using m calls to the the random operator. Note

that the length of the program computing this subroutine is a

constant independent of the length of the input program C.
The following is a template for the code of C ′:

1. input(x, b);
2. if b == 1 then

3. C(x);
4. r = delta rand();
5. if r == 0 then

6. while true then

7. skip;
8. else skip;
9. else skip;
10. return(1)

Notice that the while-loop in line 6-7 is potentially infinite.

As delta rand can be computed by a program of constant

size, this reduction takes linear time as in the analysis of

Lemma 9. Now to analyze the correctness of the reduction,

first assume that C almost surely terminates. Then C ′(x, b)
either outputs 1 with probability 1, or it outputs 1 with

probability 1−δ and doesn’t halt with probability δ. For every
pair of input (x, b), (x′, b′), the statistical distance between the
possible distributions on outputs is at most δ. Hence C ′(x, b)
is (0, δ)-DP, hence (ε, δ)-DP.
If C(x) doesn’t almost surely terminate, then there exists

some α > 0 such that on some input x program C(x) enters
an infinite loop with probability α. Hence overall we get that
C ′(x, 1) enters an infinite loop with probability at least δ +
α, but C ′(x, 0) terminates and outputs 1 with probability 1.
Hence we get that

Pr[C ′(x, 1) doesn’t halt] = α+ δ >

eε Pr[C ′(x, 0) doesn’t halt] + δ = 0 + δ,

and therefore C ′(x, b) is not (ε, δ)-DP.
Combining the fact that the problems DECIDE (ε,0)-DP

and DECIDE (ε,δ)-DP are PSPACE-hard with the algorithms
from Theorem V-B and Theorem V-C we conclude that they

are PSPACE-complete.

Corollary 11. For any rational ε and dyadic δ ∈ (0, 1) the
problems of checking whether a BPWhile program is ε-DP or
whether a BPWhile program is (ε, δ)-DP are both PSPACE-
complete.

VI. HARDNESS OF APPROXIMATION OF PRIVACY

In this section, we show a strong sense in which the

privacy parameters of a BPWhile program are hard even to

approximate. We do this by showing that for any constant

parameters ε, δ, it is PSPACE-hard even to distinguish

between the case where a program is (0, 0)-DP or whether

it fails to be (ε, δ)-DP. This, for example, implies that the

privacy parameters of a program are hard to approximate up

to an additive (ε/2, δ/2).

Lemma 12. For any rational constants ε, δ ∈ (0, 1) the
problem of checking almost sure termination for BPWhile pro-
grams is Karp-reducible to the promise problem of determining
whether BPWhile program is (0, 0)-differentially private or it
is not (ε, δ)-differentially private.

Proof: Our reduction consists of two parts:

1) Given a BPWhile program C, we construct a new

BPWhile program C ′ such that if C almost surely termi-

nates, then C ′ almost surely terminates too. Meanwhile,

if C doesn’t almost surely terminate, then C ′ terminates
with probability at most 1

2 .

2) As in the reductions in the proofs of Lemma 9 and

Lemma 10 we construct a program C ′′ that calls C ′

with the property that C ′′ is (0, 0)-DP if C ′ is almost
sure terminating, and C ′′ is not (ε, δ)-DP if C ′ halts
with probability at most 1

2 .

For the first step, we use the following claim that we prove

in Appendix D.
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Claim 13. If C is a BPWhile program, then we can construct
in polynomial-time a new program C ′ that almost surely
terminates if C almost surely terminates, and terminates with
probability at most 1/2 if C is not almost surely terminating.

As in the reductions in Lemma 9 and Lemma 10, we now

construct a new program C ′′ that receives an input x and

one additional bit of input b, and runs C ′ as a subprogram.

We repeat the execution of C ′(x) a total of m times, where

eε · 2−m + δ < 1. Note that m depends only on the privacy

parameters ε, δ and not on the program C ′. Now we construct

the following program C ′′.
1. input(x, b);
2. if b == 1 then

3. C ′(x); # run C ′(x) m times

4. ...
5. C ′(x);
6. else skip;
7. return(1)

The time complexity of constructing C ′′(x, b) is linear in
the size of C ′ as m is a constant. To show correctness, assume

that C, and hence C ′ terminates almost surely. Then C ′′(x, b)
outputs 1 with probability 1 on all inputs. Hence C ′′(x, b) is
(0, 0)-DP.
If C(x) does not terminate almost surely then there exist

an input x and some α > 1/2 such that C ′(x) fails to halt

with probability α. As we chose the number of repetitions m
in such way that

eε · Pr[m sequential runs of C ′(x) halt] + δ < 1,

we get that C ′′(x, b) is not differentially private on neighboring
inputs (x, 0) and (x, 1), since

eε · Pr[C ′′(x, 1) halts] + δ < 1 = Pr[C ′′(x, 0) halts].

Therefore, if the original program C(x) is not almost surely
terminating, we transformed it via the intermediate program

C ′(x) to a program C ′′(x, b) that is not (ε, δ)-differentially
private.

Corollary 14. For any rational constants eε, δ the problem
DISTINGUISH (ε, δ)-DP is PSPACE-hard.

VII. OTHER DEFINITIONS OF DIFFERENTIAL PRIVACY

Pure and approximate differential privacy degrade smoothly

under composition: the overall privacy guarantee of a se-

quence of DP algorithms remains DP. However, in the worst

case it is #P-hard to compute the best possible parameters

achievable by a composition of approximate differentially

private algorithms [43]. Other variants of differential privacy,

such as Rényi [42], concentrated [12], [21], and truncated

concentrated differential privacy [11], were introduced, in part,

to address this problem. All of these notions lead to efficiently

computable optimal composition bounds.

We show PSPACE-completeness for each of the problems
of verifying (up to a precision parameter given as input)

whether a BPWhile program is Rényi differentially private,

concentrated differentially private, or truncated concentrated

differentially private.

A. Rényi Differential Privacy

Definition VII.1. Let P = (p1, . . . , pn) and Q = (q1, . . . , qn)
be probability distributions over 1, . . . , n. For α > 1, the Rényi
divergence of P from Q is

Dα(P‖Q) =
1

α− 1
log

(
n∑

i=1

pαi
qα−1
i

)
.

Definition VII.2. [42] A program C is (α, ρα)-Rényi-DP if
for all neighboring inputs x, x′,

Dα(C(x)‖C(x′)) ≤ ρα.

We can check whether a BPWhile program C is (α, ρα)-
Rényi-DP using an algorithm similar to the one for checking

(ε, δ)-DP from Section V-C. A technical issue that arises here

is that when computing Rényi divergences, we need to expo-

nentiate possibly exponentially long numbers to exponentially

large degrees α and α − 1. We do not have the space to

perform such computations exactly, so instead we consider

a “gappped promise” version of the problem which takes an

additional precision parameter η as input, and distinguishes

between the case where the program is (ρ, ρα)-RDP and the

case where it fails to be (ρ, ρα+2−η)-RDP. The inclusion of
this precision parameter allows us to approximately compute

Rényi divergences via additions of logarithms of exponentially

long numbers to at most exponential precision.

Definition VII.3. In the GAP-RÉNYI-DP problem, an in-
stance (C,α, ρ, η) consists of a BPWhile program C, two
dyadic rational numbers α and ρ, and a binary integer pa-
rameter η. The problem is to distinguish between the following
two cases:

1) Yes instances: for all neighboring inputs x, x′ we have
Dα(C(x)‖C(x′)) ≤ ρα,

2) No instances: there exists a pair of neighboring inputs
x, x′ such that Dα(C(x)‖C(x′)) ≥ ρα+ 1

2η .

Theorem 15. The gap problem GAP-RÉNYI-DP is solvable
by a deterministic algorithm using space polynomial in the
size of the instance.

Proof: Consider an instance (C,α, ρ, η) of the problem

GAP-RÉNYI-DP. Following the definition of the problem, we

iterate through all pairs of neighboring inputs (x, x′), and
check that Rényi divergence is smaller than ρα. If the length
of an instance is at most n, then, as the length of the program
C is bounded by the length of the instance, we have at most

2n possible output values. Denote the set of output values

(including the non-termination outcome ⊥) as O. We need to

check the following condition:

log
∑
o∈O

Pr[C(x) = o]α

Pr[C(x′) = o]α−1
≤ ρα(α− 1),
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which we can rewrite as∑
o∈O

Pr[C(x) = o]α

Pr[C(x′) = o]α−1
≤ 2ρα(α−1).

First of all, we observe that for any pair of neighboring

inputs x, x′, if for some outcome o we have Pr[C(x) = o] > 0
but Pr[C(x′) = o] = 0, then we automatically have a no-

instance of the problem. This is because for every possible ρ
and α we would get

Pr[C(x) = o]

Pr[C(x′) = o]
> 2ρα(α−1),

and so such C is not Rényi differentially private for these

parameters. So for each pair of neighboring inputs and for

each potential outcome, we first check whether at least one

of the probabilities is equal to zero, and output “no-instance”

if the second probability is non-zero. As all probabilities are

finite and represented by numerators and denominators of at

most exponential length, this can be performed in polynomial

space.

Since α and ρ are given as part of the input, the lengths of
α and ρ are at most n. Hence α, ρ ≤ 2n. Therefore, |ρα(α−
1)| ≤ 23n and we can compute 2ρα(α−1) in polynomial space.2

Taking base-2 logarithms of Pr[C(x) = o] and Pr[C(x) = o],
our goal is to (approximately) determine whether∑

o∈O
2log Pr[C(x)=o]·α−log Pr[C(x′)=o]·(α−1) ≤ 2ρα(α−1).

As this is a comparison between a sum of at most 2n

numbers and a number of length 23n, it suffices to compute

23n + α−1
2η + n bits of the quantity

2log Pr[C(x)=o]·α−log Pr[C(x′)=o]·(α−1)

for each o ∈ O to determine which of the two cases we are

in:

1)
∑
o∈O

2log Pr[C(x)=o]·α−log Pr[C(x′)=o]·(α−1) ≤ 2ρα(α−1), or

2)
∑
o∈O

2log Pr[C(x)=o]·α−log Pr[C(x′)=o]·(α−1) ≥ 2ρα(α−1)+α−1
2η .

As in our previous PSPACE-algorithms, we cannot ex-

plicitly store the value of each partial sum in the memory, as

each has exponential length. So below, when we say that we

“compute” an exponentially long number, we mean that we

provide a polynomial space procedure that computes every bit

of the number if its index is at most 2q(n), where q(n) is a
fixed polynomial.

Again as in the algorithm for DECIDE (ε,δ) in Section V-C,
our goal is to compute a sum of 2n numbers. But now each of

this numbers have more complicated form 2
log Pra

Prb
·α+log Prb ,

where Pra and Prb are exponentially long numbers, and α is a

dyadic rational number of length at most n. For each element
of the sum we need only to compute the 23n + α−1

2η + n

2We can print ‘1’ followed by 2ρα(α−1) zeros by using a counter up to
ρα(1− α) to output the correct number of zeros.

most significant bits to guarantee that we underestimate each

element of the sum by at most 2−(α−1)/2η−n. This yields an

overall underestimate of the sum of all 2n elements is at most

2−(α−1)/2η . Therefore, we underestimate the logarithm of this

sum by at most −(α − 1)/2η . Hence we always distinguish

case 1 from case 2, by performing a comparison3 to determine

whether 2
log Pra

Prb
·α+log Prb is greater than 2ρα(α−1)+α−1

2η or

smaller than 2ρα(α−1).

All that remains is to show that we can compute (i.e.,

give implicit access to each bit of) each term of the form

2
log Pra

Prb
·α+log Prb in polynomial space. Every bit of the in-

teger logarithm can be computed using uniform circuits of

polylogarithmic depth [46] in the length of the input integer

and the index of the requested bit, so we can compute numbers

of the form log(Pra /Prb) and log Prb. Further, using space-

efficient algorithms for addition and multiplication of expo-

nentially long numbers, as in Theorem V-B, we can compute

log Pra
Prb

· α + log Prb. Therefore, we can implicitly compute

log Pra
Prb
·α+log Prb with a polynomial space algorithm. Finally,

the exponential function has a representation as power series,

and such power series can be computed by uniform families

of logarithmic-depth circuits [46, Corollary 2.2]. So we can

exponentiate 2 to a dyadic rational degree using an algorithm

that runs in space logarithmic in the length of the exponent.

Combining polynomial space computations we obtain a poly-

nomial space algorithm for computing 2
log Pra

Prb
·α+log Prb .

To show PSPACE-hardness, we use Theorem 12, and

the following fact to reduce from DISTINGUISH (ε, δ)-DP to

GAP-RENYI-DP:

Theorem 16 ( [42]). If C is an (α, ρα)-RDP program, it also
satisfies (ρα+ log 1/δ

α−1 , δ)-differential privacy for any δ ∈ (0, 1).

Combining this with Theorem 12, which states that it is

PSPACE-hard to determine whether a BPWhile program is

(0, 0)-differentially private or not (ε, δ)-differentially private,

we obtain:

Theorem 17. GAP-RÉNYI-DP is PSPACE-hard.

Proof: Fix two dyadic rational numbers ε, δ ∈ (0, 1). Let
η, ρ and α be positive numbers with finite binary representa-

tions such that

0 < ρα+
log (1/δ)

α− 1
+

1

2η
< ε.

To reduce from DISTINGUISH (ε, δ)-DP to the GAP-RÉNYI-

DP problem, we map an instance C of DISTINGUISH (ε, δ)-
DP to the instance (C,α, ρ, η) in deterministic linear time.

To show correctness of this reduction, first consider the

case where C is a yes-instance of DISTINGUISH (ε, δ)-DP.
That means that C is (0, 0)-DP. Then the distributions on the
outputs of C are identical for every pair of neighboring inputs.

Hence C is also (α, ρα)-Rényi-DP, so (C,α, ρ, η) is a yes-

instance of GAP-RÉNYI-DP.

3Exponentially long numbers can be compared in polynomial space by
finding the most significant bit on which they differ.
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Now, consider the case where C is a no-instance of DIS-

TINGUISH (ε, δ)-DP. We need to show that (C,α, ρ, η) is a
no-instance of GAP-RÉNYI-DP. We do this by contraposition:

If (C,α, ρ, η) is not a no-instance, then for all neighboring

inputs x, x′ it holds that Dα(C(x)‖C(x′)) ≤ ρα + 1
2η . Then

for ρ′ = ρ+ 1
α2η , we have that C is (α, ρ′α)-Rényi-DP. Then

by Theorem 16, C is (ρ′α+ log (1/δ)
α−1 , δ)-DP. But by our choice

of the parameters, ρ′α + log (1/δ)
α−1 = ρα + 1

2η + log (1/δ)
α−1 < ε,

hence C is (ε, δ)-DP. This implies that C is not a no-instance

of DISTINGUISH (ε, δ)-DP.
Since we showed in Theorem 12 we showed that DIS-

TINGUISH (ε, δ)-DP is PSPACE-hard, it follows that GAP-

RÉNYI-DP is PSPACE-hard.
Combining the results of Theorem 15 and Theorem 17 we

obtain:

Corollary 18. GAP-RÉNYI-DP is PSPACE-complete.

B. Concentrated Differential Privacy

Definition VII.4. [12], [21] A program C is ρ-Concentrated-
DP if for every neighboring inputs x, x′ and every α ∈
(1,+∞)

Dα(C(x)‖C(x′)) ≤ ρα.

As in Section VII-A we consider a gapped version of the

problem for an integer precision parameter η provided as input.

Definition VII.5. An instance of the GAP-CONCENTRATED-

DP problem (C, ρ, η) consists of a BPWhile program C, a
dyadic rational number ρ, and a binary integer precision
parameter η. The goal is to distinguish between the following
two cases:
1) Yes-instances: for all neighboring inputs x, x′ and for

all α ∈ (1,+∞), we have Dα(C(x)‖C(x′)) ≤ ρα,
2) No-instances: there exists a pair of neighboring inputs

x, x′ and α ∈ (1,+∞) such that Dα(C(x)‖C(x′)) ≥
ρα+ 1

2η .

In order to verify whether an instance (C, ρ, η) is a

yes-instance of GAP-CONCENTRATED-DP we should verify

whether the inequality Dα(C(x)‖C(x′)) ≤ ρα holds not only

for all pairs (x, x′), but also for all α > 1. This is equivalent
to verifying that C is (α, ρα)-Rényi-DP for every α > 1. But
as there is an unbounded continuum of possible α to consider,

we do not immediately obtain an algorithm by attempting to

exhaustively check them. The following lemma shows that to

solve the gapped version of the problem, we need only to

consider finitely many α within a finite range.

Lemma 19. Suppose (C, ρ, η) is a no-instance of the GAP-

CONCENTRATED-DP problem. Then there exists a polynomial
p(n), neighboring inputs x, x′, and α ∈ (1, 1 + 2p(n)/ρ) an
integer multiple of 2−η−1/ρ such that Dα(C(x)‖C(x′)) ≥
ρα+ 1

2η+1 .

We provide the proof of the lemma in Appendix E. Com-

bining this lemma with the algorithm from Theorem 15 we

get the following theorem:

Theorem 20. The gap problem GAP-CONCENTRATED-DP is
solvable by a deterministic algorithm using space polynomial
in the size of the instance.

Similarly to the proof of Theorem 17 we can use the fact that

concentrated DP implies approximate DP to give a reduction

from DISTINGUISH (ε, δ)-DP to GAP-CONCENTRATED-DP.

Theorem 21 ( [12]). If C is an ρ-CDP program, it also
satisfies (ρ + 2

√
ρ log (1/δ), δ)-differential privacy for any

δ ∈ (0, 1).

Theorem 22. GAP-CONCENTRATED-DP is PSPACE-hard.

Combining the results of Theorem 20 and Theorem 22 we

get the corollary:

Corollary 23. GAP-CONCENTRATED-DP is PSPACE-
complete.

C. Truncated Concentrated Differential Privacy

Definition VII.6. [11] A program C is ω-Truncated ρ-
Concentrated-DP if for every neighboring inputs x, x′ and
every α ∈ (1, ω)

Dα(C(x)‖C(x′)) ≤ ρα.

Again, we introduce a promise version of the problem. This

allows us to consider quantities of fixed precision parameter-

ized by η:

Definition VII.7. In the GAP-TRUNCATED-

CONCENTRATED-DP problem, an instance (C, ρ, ω, η)
consists of a BPWhile program C, two dyadic rational
numbers ρ and ω, and a binary integer precision parameter
η. The goal is to distinguish between the following two cases:
1) Yes-instances: for all neighboring inputs x, x′ and for

all α ∈ (1, ω),

Dα(C(x)‖C(x′)) ≤ ρα,

2) No-instances: there exists a pair of neighboring inputs
x, x′ and α ∈ (1, ω) such that

Dα(C(x)‖C(x′)) ≥ ρα+
1

2η
.

As we need to verify a bounded range of values of

the parameter α the verification procedure is analogous to

the algorithm for verifying concentrated differential privacy.

Therefore, we get the following theorem:

Theorem 24. The promise problem GAP-TRUNCATED-

CONCENTRATED-DP is solvable by a deterministic algorithm
using space polynomial in the size of the instance.

Similarly to the proof of Theorem 17 and Theorem 22 we

use an existing result connecting the parameters of approxi-

mate and truncated concentrated differential privacy to show

reduction from DISTINGUISH (ε, δ)-DP to GAP-TRUNCATED-

CONCENTRATED-DP.
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Theorem 25 ( [11]). If C is an (ρ, ω)-TCDP mechanism, then
it also satisfies (ρ+2

√
ρ log (1/δ), δ)-differential privacy for

any δ ∈ (0, 1) that satisfies log (1/δ) ≤ (ω − 1)2ρ.

The proof of hardness is then similar to the hardness result

for GAP-RÉNYI-DP.

Theorem 26. GAP-TRUNCATED-CONCENTRATED-DP is
PSPACE-hard.

Combining the results of Theorem 24 and Theorem 26 we

get the corollary:

Corollary 27. GAP-TRUNCATED-CONCENTRATED-DP is
PSPACE-complete.

VIII. TERMINATION-SENSITIVE VS

TERMINATION-INSENSITIVE DIFFERENTIAL PRIVACY

In the definition of differential privacy we have consid-

ered in this paper, Definition III.7, we considered sets of

outcomes over {0, 1}l ∪ {⊥}. This definition corresponds to

a “termination-senstive” differential privacy model where the

adversary can observe the program’s termination behavior. As

in information flow control, one can also study a “termination-

insensitive” model where we require Condition 1, in Defini-

tion III.7, to hold only for sets of outcomes O ⊆ {0, 1}	
and where the probabilities are conditioned on the program

C terminating. It is easy to see that, up to a factor of

2, termination-sensitive (pure) ε-differential privacy implies

termination-insensitive (pure) ε-differential privacy. Indeed,
for all neighbors x, x′ and O ⊆ {0, 1}	 we have:

Pr[C(x) ∈ O | C(x) �= ⊥] = Pr[C(x) ∈ O]

Pr[C(x) �= ⊥]
≤ eε Pr[C(x′) ∈ O]

e−ε Pr[C(x′) �= ⊥] = e2ε Pr[C(x′) ∈ O|C(x′) �= ⊥].

This argument does not work for (ε, δ)-differential privacy.
Indeed, a program that given a boolean input b returns b with
probability δ and ⊥ with probability 1 − δ is termination-

sensitive (0, δ)-differentially private, but is not termination-

insensitive (ε, δ)-differentially private for any ε <∞ or δ < 1.
Meanwhile, even termination-insensitive pure differential

privacy does not imply termination-sensitive differential pri-

vacy. For example, a program that on input 0 returns 0
with probability 1, and on input 1 returns 0 with probability

0.01, and ⊥ with probability 0.99 is termination-insensitive

0-differentially private, but is not termination-sensitive (ε, δ)-
differentially private for any δ < 0.99.
In this work, we focused on the termination-sensitive model

because it is the most natural from a probabilistic perspective

and because it is less susceptible to timing side-channel

attack as the one illustrated in the latter example above.

Nevertheless, all of our results can be adapted to work for

the termination-insensitive model as well. Our algorithmic

results can be adapted by explicitly normalizing the computed

probabilities by the probability of termination, which can be

computed in PSPACE. Meanwhile, our lower bounds hold

by replacing all steps where we explicitly enter an infinite

loop with steps where we output a special failure symbol.

This modification should be made to both the specification

and reduction we consider for almost-sure termination, as well

as for our reductions from almost-sure termination to privacy

verification problems.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that the problem of deciding a

probabilistic boolean program to be differentially private, for

several notions of differential privacy, is PSPACE-complete.
In addition we have shown that also an approximate version

of this problem is PSPACE-hard. These results can help

identify the limitations of automated verification methods.

One direction that our results point to is the use of QBF

solvers [1] for reasoning about differential privacy and almost

sure termination for BPWhile programs. But first, to apply

a QBF solver to verify whether an input BPWhile program

is differentially private, the program should be efficiently

converted to a quntatified boolean formula. In current work we

only showed reduction in the opposite direction, namely we

converted a QBF formula to a BPWhile program in Lemma C.

We leave the discussion of the applicability of QBF solvers

for future work.

Our proofs of the PSPACE-hardness results for

Gap-Rényi-DP, Gap-Concentrated-DP, and Gap-Truncated-

Concentrated-DP uses simple reduction from PSPACE-
hardness of Distinguish (ε, δ)-DP that doesn’t rely on any

specific properties of BPWhile language. The similar reduction

can be used to show, for example, NP- and coNP-hardness
of Gap-Rényi-DP, Gap-Concentrated-DP, and Gap-Truncated-

Concentrated-DP for loops-free boolean language from [26].

Results that we discuss show that a problem of checking

various properties of probabilistic boolean programs with

while loops require exactly polynomial space. A problem that

generalizes all these results is the problem of checking whether

a probability distributions on the outputs of the program satisfy

a property expressed by a polynomial-space computation.

The PSPACE-hardness of verification of such generalized

property is implied by the almost sure termination. That is

so as we have an easily verifiable property of the output

distribution, we just need to check whether a sum of the

probabilities of the outputs is 1 or not. But can we show that

every property of the output distribution can be computed by a

polynomial space algorithm, if we are given an implicit access

to the distribution through the algorithm that outputs every

requested bit of the probability of requested output?
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APPENDIX A

COMPUTING HITTING PROBABILITIES IN

POLYLOGARITHMIC SPACE

Here we give a brief overview of Simon’s algorithm [48]

for computing the hitting probabilities of a Markov chain with

n states using O(log6 n) space.
The original application in Simon’s paper was to show that

unbounded-error probabilistic Turing machines can be simu-

lated in deterministic polynomial space. That is, he showed

that one can determine in PSPACE whether the accept

configuration in the configuration graph of a probabilistic TM

is reached with probability strictly greater than 1/2. This in
turn is accomplished by interpreting the configuration graph as

a Markov chain and exactly computing the hitting probability

of the accept configuration.

We now describe the algorithm for computing hitting prob-

abilities captured in Lemma 6. Recall that we are given a

Markov chain M = (V,E, p, p0) with 2L states. The Markov

chain is represented by its transition matrix (an object of size

2O(L)), so each entry can be addressed using O(L) space. We

assume that p0 is supported on a single start state, that all

non-final states are non-recurrent (i.e., upon leaving a non-

final state, the probability the Markov chain returns to it is

less than 1) and that for all non-final states, every outgoing

transition has probability either 0 or 1/2.
Simon first described an algorithm using O(L3) time in the

random access machine with multiplication (MRAM) model –

a model of parallel computation with unit-cost multiplication.
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This implies an O(L6)-space algorithm on a deterministic TM

using a generic simulation of time T (n) MRAM algorithms

by space O(T 2(n))-space deterministic TMs [32].

The MRAM algorithm works as follows. Let P denote

the transition matrix of the Markov chain M . Let Q be the

submatrix of P corresponding to the non-final states. For a

given final state f , let vf be the column of P corresponding

to state f , but restricted to the entries corresponding to non-

final states. Let vTs be the row vector with a 1 in the entry

corresponding to the start state and 0’s elsewhere. Then letting
Q∞ = Q + Q2 + Q3 + . . . , we have that the probability

of reaching the final state f from the start state s is a =
vTs Q∞Vf . The goal now becomes to compute this matrix-

vector product.

The key idea is that since Q consists only of non-recurrent

states, then Q∞ is well-defined and Q∞ = (I − Q)−1 − I .
Matrix inversion (more precisely, computing the numerators

and denominators of the resulting entries separately) can be

performed on an MRAM in time O(L3) using a variant

of Csanksy’s algorithm. This dominates the runtime of the

algorithm, which just has to perform the matrix-vector product.

APPENDIX B

PROOF OF THEOREM 2

We prove our simple criterion for determining whether a

program terminates almost surely based on the topology of its

state graph.

Proof of Theorem 2: For the “if” direction, suppose x is

an input such that for every reachable vertex in the state graph

G = (V,E) of C(x), there is a path from v to one of the final
states. Let m = |V | be the number of vertices. Since every

simple path in G has at most m edges, we have that for every

v, the probability of reaching a final state after at most m
additional steps of computation starting from v is least 2−m.

Therefore, for any k ≥ 1, the probability that the program fails

to terminate on input x after km steps is at most (1− 2−m)k.
Taking k →∞, we see that that the program fails to terminate

with probability 0. Therefore, C terminates almost surely on

input x.
For the “only if” direction, suppose there is an input x and

a vertex v in the state graph of C(x) that is reachable from
the start state but cannot reach any final state. Then on C(x)
reaches state v with probability at least 2−m by following

the simple path from the start state to v. Once the program

has reached v, it is impossible to terminate. So the program

terminates with probability at most 1− 2−m < 1.

APPENDIX C

REDUCTION FROM TQBF TO ALMOST SURE TERMINATION

Suppose we have a fully quantified Boolean formula

ψ = ∀x1 ∈ {0, 1}∃x2 ∈ {0, 1} . . . ∀xt ∈ {0, 1}φ(x1, . . . , xt)
in prenex normal form. We wish to check whether ψ ∈ TQBF.

We create a BPWhile program, the template for which we give

below, such that the program terminates almost surely iff ψ is

true. As in previous reductions, for the sake of readability we

use a few extra constructions that BPWhile doesn’t formally

support, such as variables that take on constant-size integer

values.

A:

i n p u t ( b ) ; # dummy i n p u t b i t t h a t

# t h e program i g n o r e s

c1 = 0 ;

x1 = 0 ;

wh i l e x1 <= 1 t h en

c2 = 0 ;

x2 = 0 ;

wh i l e x2 <= 1 t h en

c3 = 0 ;

x3 = 0 ;

wh i l e x3 <= 1 t h en

. . .

wh i l e x t <= 1 t h en

i f ph i ( x1 , . . . , x t )==1 t h en

c t ++;

x t ++;

i f c t == 2 t h en

c ( t −1)++;

. . .

i f c3 == 2 t h en

c2 ++;

x2 ++;

i f c2 >= 1 t h en

c1 ++;

x1 ++;

i f ( c1 < 2) t h en # p s i i s f a l s e

wh i l e t r u e t h en # e n t e r i n f i n i t e loop

s k i p ;

r e t u r n ( 1 )

The first part of the program uses t nested while loops to

evaluate the QBF formula ψ. Each loop corresponding to a

universal quantifier checks that both assignments to its variable

return 1. Meanwhile, each loop corresponding to an existential

quantifier checks that at least one of the assignments returns

1.

After evaluating the entire formula, the program enters an

infinite loop if it evaluates to false, and otherwise terminates

with probability 1.
Hence this construction produces a BPWhile program that

terminates with probability 1 iff the formula ψ is true. The

construction of the program takes time polynomial in the size

of ψ, so checking almost sure termination is PSPACE-hard.

APPENDIX D

ADDITIONAL PROOFS FROM SECTION VI

Proof of Claim 13: Suppose P is not almost surely

terminating and that x is an input on which the program

is not terminating with some positive probability. Consider

the Markov chain corresponding to the execution of P (x).
This Markov chain has a reachable, recurrent non-final state.

Since a program of size N has at most 2poly(N) states,
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this recurrent state is reachable within 2poly(N) transitions.

Moreover, since each transition has probability either 0, 1/2,
or 1, the probability of reaching this recurrent state is at least

2−2poly(N)

.

The program P ′ will amplify the probability of reaching this
recurrent state (i.e., entering this infinite loop) by repeating P
many times. Below we describe how to encode this number

of repetitions succinctly. We provide a code template where

we operate with two vectors of m + 1 boolean variables

Counter and B, that we use in this program to represent

integers in the range [0, 2m+1). We compare and increment

these variables, and both of these operations can be encoded

as simple procedure of polynomial size in the length of m
with boolean variables only.

1. input(x);
2. while true then

3. B = 0;
4. Counter = 0;
5. while (Counter < 2m) then
6. increment(Counter);
7. a = random;
8. if a = 1 then

9. increment(B);
10. if B < 2m then

11. P (x);
12. else
13. return(1)

In short, this program terminates if and only if out of

2m coin tosses in the inner while loop, we get 2m 1’s. As

the probability of this event is 1/22
m

, we get that we need

approximately 22
m

iterations of the external loop to finally

get exactly 2m ones in 2m coin tosses. As in each iteration of

the external loop we run the program P that with probability

at least 1/22
m

enters an infinite loop, overall we enter this

loop with constant probability when it exists.

We now analyze the guarantee of P ′ more formally. Let

X be the number of rounds in which the outer loop runs,

and q = 2−2m be the probability of getting B = 2m after

the inner loop run. Then we get that X is distributed as a

geometric random variable

Pr[X = 1] = q,Pr[X = 2] = q(1− q),

Pr[X = 3] = q(1− q)2, . . .

Then we can estimate the probability that P ′ halts as:

Pr[P ′ halts] ≤
∞∑
k=1

q(1− q)k−1 · (1− q)k = q
∞∑
k=1

(1− q)2k−1

=
q

1− q ·
∞∑
k=1

(1− q)2k =
q

1− q ·
(1− q)2

1− (1− q)2

=
q · (1− q)
1− (1− q)2 =

q(1− q)
q(2− q) =

1− q
2− q = 1/2− 0.5q

2− q .

Hence, if 0 < q < 1 we get that Pr[P ′ halts] < 1/2.

APPENDIX E

ADDITIONAL PROOFS FROM SECTION VII

Proof of Lemma 19: The problem we are interested in

is as follows. Given implicit descriptions of two finite proba-

bility distributions d1(i) and d2(i), where each probability is

discretized to 1/22
p(n)

, and a rational parameter ρ, determine
whether

1

α
Dα(d1‖d2) = 1

α(α− 1)
log
∑
i

(d1(i))
α(d2(i))

1−α ≤ ρ,

for all dyadic rational α ∈ (1,∞) with precision 1/2p(|x|),
or whether for at least one dyadic rational α ∈ (1,∞) with
precision 1/2p(|x|) it holds that

1

(α− 1)
log
∑
i

(d1(i))
α(d2(i))

1−α ≥ ρα+
1

2η
.

Let m = 22
p(n)

, so each probability in d1(i) and d2(i) are
discretized to 1/m. We claim that it suffices to check this

condition for all α < 1 + logm/ρ. Either

1) There exists i in the probability space such that d1(i) >
0 and d2(i) = 0, in which case Dα(d1‖d2) is infinite
for every α > 1; or

2) For every outcome i, the value m is an upper bound

on the ratio d1(i)/d2(i). In this case, the quantity
1
αDα(d1‖d2) we are interested in is at most

1

α(α− 1)
log
∑
i

mα · d2(i) ≤

1

α(α− 1)
log(mα) ≤ logm

α− 1
,

which is at most ρ for α ≥ 1 + logm
ρ .

In both cases we need to check values of α within the

interval (1, 1 + logm/ρ).
That still leaves us with the infinite number of values of α

we need to check. To finish the proof of the lemma we show

that it is enough to consider values of α discretized to 2−η

ρ :

Claim 28. Fix distributions P and Q and ρ > 0. If
Dα(P‖Q) ≤ ρα+ 2−η for every α > 1 that is discretized to
an integer multiple of 2−η/ρ, then Dα(P‖Q) < ρα+ 2−η+1

for every α > 1.

Proof: It suffices to show that if 0 < α1 < α2 =
α1 + 2−η/ρ are such that Dα1

(P‖Q) ≤ ρα1 + 2−η and

Dα2(P‖Q) ≤ ρα2+2−η , then for every α′ with α1 < α′ < α2

we have Dα′(P‖Q) < ρα′+2−η+1. As the Rényi divergence

between two distributions increases monotonically as a func-

tion of α, we have

Dα′(P‖Q) ≤ Dα2
(P‖Q) ≤ ρα2 + 2−η

= ρ(α′ + (α2 − α′)) + 2−η = ρα′ + ρ(α2 − α′) + 2−η.

From the facts that α2 − α1 = 2−η/ρ and α1 < α′ < α2 we

get (α2−α′) < 2−η/ρ. Hence Dα′(P‖Q) < ρα′+2−η+1.
This completes the proof of the lemma, as we showed that

we can consider values of α discretized to 2−η/ρ in a bounded
range.
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