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Abstract—Noninterference offers a rigorous end-to-end guar-
antee for secure propagation of information. However, real-world
systems almost always involve security requirements that change
during program execution, making noninterference inapplicable.
Prior works alleviate the limitation to some extent, but even for a
veteran in information flow security, understanding the subtleties
in the syntax and semantics of each policy is challenging, largely
due to very different policy specification languages, and more
fundamentally, semantic requirements of each policy.

We take a top-down approach and present a novel information
flow policy, called Dynamic Release, which allows information
flow restrictions to downgrade and upgrade in arbitrary ways.
Dynamic Release is formalized on a novel framework that,
for the first time, allows us to compare and contrast various
dynamic policies in the literature. We show that Dynamic Release
generalizes declassification, erasure, delegation and revocation.
Moreover, it is the only dynamic policy that is both applicable
and correct on a benchmark of tests with dynamic policy.

I. INTRODUCTION

While noninterference [27] has become a cliché for end-

to-end data confidentiality and integrity in information flow

security, this well-accepted concept only describes the ideal

security expectations in a static setting, i.e., when data sensitiv-

ity does not change throughout program execution. However,

real-world applications almost always involve some dynamic

security requirements, which motivates the development of

various kinds of dynamic information flow policies:

• A declassification policy [6], [9], [21], [46], [25], [26],

[37], [45] weakens noninterference by deliberately re-

leasing (i.e., declassifying) sensitive information. For in-

stance, a conference management system typically allows

deliberate release of paper reviews and acceptance/rejec-

tion decisions after the notification time.

• An erasure policy [17], [18], [32], [22], [29], [4] strength-

ens noninterference by requiring some public information

to become more sensitive, or be erased completely when

certain condition holds. For example, a payment system

should not retain any record of credit card details once

the transaction is complete.

• An delegation/revocation policy [3], [31], [50], [38]

updates dynamically the sensitivity roles in a security

system to accommodate the mutable requirements of

security, such as delegating/revoking the access rights of

a new/leaving employee.

Moreover, there are a few case studies on the needed secu-

rity properties in the light of one specific context or task [5],

[30], [43], [49], and build systems that provably enforces

some variants of declassification policy (e.g., CoCon [33],

CosMeDis [11]) and erasure policy (e.g., Civitas [20]).

Although the advances make it possible to specify and verify

some variants of dynamic policy, cherry-picking the appropri-
ate policy is still a daunting task: different policies (even when

they belong to the same kind) have very different syntax for

specifying how a policy changes [47], very different nature

of the security conditions (i.e., noninterference, bisimulation

and epistemic [15]) and even completely inconsistent notion

of security (i.e., policies might disagree on whether a program

is secure or not [15]). So even for veteran researchers in

information flow security, understanding the subtleties in the

syntax and semantics of each policy is difficult, evidenced by

highly-cited papers that synthesize existing knowledge on de-

classification policy [47] and dynamic policy [15]. Arguably, it

is currently impossible for a system developer/user to navigate

in the jungle of unconnected policies (even for the ones in the

same category) when a dynamic policy is needed [15], [47].

In this paper, we take a top-down approach and propose

Dynamic Release, the first information flow policy that enables

declassification, erasure, delegation and revocation at the same

time. One important insight that we developed during the

process is that erasure and revocation both strengthen an

information flow policy, despite their very different syntax

in existing work. However, an erasure policy by definition

disallows the same information leaked in the past (i.e., before

erasure) to be released in the future, while most revocation

policies allow so. This motivates the introduction of two kinds

of policies, which we call persistent and transient policies.

The distinction can be interpreted as a type of information

flow which is permitted by some definitions but not by others,

called facets [15].

Moreover, Dynamic Release is built on a novel formaliza-

tion framework that is shown to subsume existing security con-

ditions that are formalized in different ways (e.g., noninterfer-

ence, bisimulation and epistemic [15]). More importantly, for

the first time, the formalization framework allows us to make

apple-to-apple comparison among existing policies, which are

incompatible before (i.e., one cannot trivially convert one

to another). Besides the distinction between persistent and

transient policies mentioned earlier, we also notice that it is

more challenging to define a transient policy (e.g., erasure), as

it requires a definition of the precise knowledge gained from
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1 // bid : S
2 submit := bid;
3 output(submit, S);
4 // bid : P
5 output(submit, P);

1 // credit_card : M
2 copy := credit_card;
3 output(copy, M);
4 // credit_card : �
5 copy := 0;
6 output(copy, M);

1 //book : bk, notes : Alice
2 //bk→ Alice
3 notes := half(book);
4 output(notes, Alice);
5 //bk �→ Alice
6 output(notes, Alice);

(i). Secure Program (i). Secure Program (i). Secure Program

1 // bid : S
2 submit := bid;
3 output(submit, P);
4 // bid : P
5 output(submit, P);

1 // credit_card : M
2 copy := credit_card
3 output(copy, M);
4 // credit_card : �
5 // No Clear Up
6 output(copy, M);

1 //book : bk, notes : Alice
2 //bk→ Alice
3 notes := half(book);
4 output(notes, Alice);
5 //bk �→ Alice
6 output(book, Alice);

(ii). Insecure Program (ii). Insecure Program (ii). Insecure Program

A. Declassfication B. Erasure C. Delegate/Revoke

Fig. 1: Examples of Dynamic Policies.

observing one output event, rather than the more standard cu-
mulative knowledge that we see in existing persistent policies.

Finally, we built a new AnnTrace benchmark for testing

and understanding variants of dynamic policies in general.

The benchmark consists of examples with dynamic policies

from existing papers, as well as new subtle examples that we

created in the process of understanding dynamic policies. We

implemented our policy and existing policies, and found that

Dynamic Release is the only one that is both applicable and

correct on all examples.
To summarize, this paper makes the following contributions:

1) We present a language abstraction with concise yet ex-

pressive security specification (Section III) that allows us

to specify various existing dynamic policies, including

declassification, erasure, delegation and revocation.

2) We present a new policy Dynamic Release (Section IV).

The new definition resolves a few subtle pitfalls that we

found in existing definitions, and its security condition

handles transient and persistent policies in a uniform way.

3) We generalize the novel formalization framework behind

Dynamic Release and show that it, for the first time, al-

lows us to compare and contrast various dynamic policies

at the semantic level (Section V). The comparison leads

to new insights that were not obvious in the past, such

as whether an existing policy is transient or persistent.

4) We build a new benchmark for testing and understand-

ing dynamic policies, and implemented our policy and

existing ones (Section VI). Evaluation on the benchmark

suggests that Dynamic Release is the only one that is

both applicable and correct on all examples.

II. BACKGROUND AND OVERVIEW

A. Security Levels
As standard in information flow security, we assume the

existence of a set of security levels L, describing the intended

confidentiality of information1. For generality, we do not as-

1Since integrity is the dual of confidentiality, we will assume confidentiality
hereafter.

sume that all levels form a Denning-style lattice. For instance,

delegation and revocation typically use principals/roles (such

as Alice, Bob) where the acts-for relation on principals can

change at run time. For simplicity, we use the notation � ∈ L
if all levels form a lattice L, rather than L ∈ L. Moreover,

we use P (public), S (secret) to represent levels in a standard

two-point lattice where P � S but S �� P.

B. Terminology

Some terms in dynamic policy are overloaded and used

inconsistently in the literature. For instance, declassification

is sometimes confused with dynamic policy [15]. To avoid

confusion, we first define the basic terminology that we use

throughout the paper.

Definition 1 (Dynamic (Information Flow) Policy): An in-

formation flow policy is dynamic if it allows the sensitivity of

information to change during one execution of a program.

As standard, we say that a change of sensitivity is down-
grading (resp. upgrading) if it makes information less sensitive

(resp. more sensitive).

Next, we use the examples in Figure 1 to introduce the major

kinds of dynamic policies in the literature. For readability,

we use informal security specification in comments for most

examples in the paper; a formal specification language is given

in Section III.

a) Declassification: Given a Denning-style lattice L,

declassification occurs when a piece of information has its

sensitivity level �1 downgraded to a lower sensitivity level �2
(i.e., �2 � �1). Consider Figure 1-A which models an online

bidding system. When bidders submit their bids to the system

during the bidding phase, each bid is classified that no other

bidders are allowed to learn the information. When the bidding

ends, the bids are public to all bidders. In the secure program

(i), the bid is only revealed to a public channel with level P

(Line 5) when bidding ends. However, the insecure program

(ii) leaks the bid during the bidding phase (Line 3).

b) Erasure: Given a Denning-style lattice L, information

erasure occurs when a piece of information has its sensitivity
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level �1 upgraded to a more restrictive sensitivity level, or

an incomparable level �2 (i.e., �2 �� �1). Moreover, when

information is erased to level �, the sensitive information

must be removed from the system as if it was never inputted

into the system. Figure 1-B is from a payment system. The

user of the system gives her credit card information to the

merchandiser (at level M) as payment for her purchase. When

the transaction is done, the merchandiser is not allowed to

retain/use the credit card information for any other purpose

(i.e., its level changes to �). The secure program (i) only uses

the credit card information during the transaction (Line 3), and

any related information is erased after the transaction (Line 5).

The insecure program (ii), however, fails to protect the credit

card information after the transaction (Line 6).

c) Delegation and Revocation: Delegation and revoca-

tion are typically used together, in a principal/role-based

system [1], [24], [41]. In this model, information is associated

with principals/roles, and a dynamic policy is specified as

changes (i.e., add or remove) to the “acts-for” relationship on

principals/roles. Figure 1-C is from a book renting system,

where its customers are allowed to read books during the

renting period. In this example, Alice acts-for bk (bk →
Alice) before line 3. Hence, she is allowed to take notes

from the book. When the renting is over, the book is no

longer accessible to Alice (bk �→ Alice), but the notes

remain accessible to Alice. The secure program (i) allows

the customer to get their notes (Line 6) learned during the

renting period. The insecure program (ii) fails to protect the

book (Line 6) after the renting is over.

C. Overview

We use Figure 1 to highlight two major obstacles of

understanding/applying various kinds of dynamic policies.

First, we note that a delegation/revocation policy (Example

C) and an erasure policy (Example B) use different formats

to model sensitivity change. A delegation/revocation policy

attaches fixed security levels to data throughout program

execution; policy change is modeled as changing the acts-

for relation on roles. On the other hand, an erasure policy

uses a fixed lattice throughout program execution; policy

change is modeled as mutable security levels on data. These

two examples are similar from policy change perspective, as

they are both upgrading policies. But due to the different

specification formats, their relation becomes obscure.

Second, we note that Example B.ii and C.i are semantically

very similar: both examples first read data when the policy

allows so, and then try to access the data again when the

policy on data forbids so. However, B.ii is considered insecure
according to an erasure policy, while C.i is considered secure
according to a revocation policy. Even when we only consider

policies of the same kind (e.g., delegation/revocation), such

inconsistency in the security notion also exists, which is called

facets of dynamic policies [15].

Broberg et al. [15] have identified a few facets, but identi-

fying other differences among existing policies is extremely

difficult, as they are formalized in different nature (e.g.,

noninterference, bisimulation and epistemic). We can peek at

the semantics-level differences based on a few examples, but

an apple-to-apple comparison is still impossible at this point.

In this paper, we take a top-down approach that rethinks

dynamic policy from scratch. Instead of developing four kinds

of policies seen in prior work, we observe that there are only

two essential building blocks of a dynamic policy: upgrading

and downgrading. With an expressive specification language

syntax (Section III), we show that in terms of upgrading and

downgrading sensitivity, declassification (resp. erasure) is the

same as delegation (resp. revocation). In terms of the formal

security condition of dynamic policy, we adopt the epistemic

model [6] and develop a formalization framework that can be

informally understood as the following security statement:

A program c is secure iff for any event t pro-

duced by c, the “knowledge” gained about secret

by learning t is bounded by what’s allowed by the

policy at t.

We note that a key challenge of a proper security definition

for the statement above is to properly define the “knowledge”

of learning a single event t. During the process of developing

the formal definition, we discovered a new facet of upgrading

policies; the difference is that whether an upgrading policy

automatically allows information leakage (after upgrading)

when it has happened in the past. Consequently, we pre-

cisely define the “knowledge” of learning a single event and

make semantics-level choices (called transient and persistent
respectively) of the new facet explicit in Dynamic Release

(Section IV).

To compare and contrast various dynamic policies (includ-

ing Dynamic Release), we cast existing policies into the for-

malization framework behind Dynamic Release (Section V).

We find that the semantics of erasure and revocation are

drastically different: erasure policy is transient by definition,

and most revocation policies are persistent. The semantics-

level difference sheds light on why Example B.ii and C.i have

inconsistent security under erasure and revocation policies,

even though they are similar programs.

III. DYNAMIC POLICY SPECIFICATION

We first present the syntax of an imperative language with

its security specification. Based on that, we show that the

policy specification is powerful enough to describe declassifi-

cation, erasure, delegation and revocation policies. Finally, we

define a few notations to be used throughout the paper.

A. Language Syntax and Security Specification

In this paper, we use a simple imperative language with

expressive security specification, as shown in Figure 2. The

language provides standard features such as variables, as-

signments, sequential composition, branches and loops. Other

features are introduced for security:
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Variables (Vars) x, y, z

Events (S) s

Expressions (E) e ::= x | n | e op e

Commands c ::= skip | c1; c2 | x := e | while (e) c
| if (e) then c1 else c2 | output(b, e)
| EventOn(s) | EventOff(s)

Level Sets (L) L

Security Labels (B) b ::= L | cnd?b1 ◦ b2;
Conditions cnd ::= s | e | cnd ∧ cnd

| cnd ∨ cnd | ¬cnd
Mutation Directions ◦ ::= −→ | ←− | �
Policy Specification Γ : Vars 	→ B[
]
Policy Type 
 ::= Tran | Per

Fig. 2: Language Syntax with Security Specification.

• We explicitly model information release by a release

command output(b, e); it reveals the value of expression

e to an information channel with security label b.2

• We introduce distinguished security events S. An event

s ∈ S is similar to a Boolean; we distinguish s and

x in the language syntax to ensure that security events

can only be set and unset using distinguished commands

EventOn(s) and EventOff(s), which set s to true and

false respectively. We assume that all security events

are initialized with false.

1) Sensitivity Levels: For generality, we assume a prede-

fined set L of all security levels, and use level set L ⊆ L to

specify data sensitivity. Intuitively, a level set L consists of

a set of levels where the associated information can flow to.

Hence, L1 is less restrictive as L2, written as L1 � L2 iff

L2 ⊂ L1, and L1 � L2 iff L2 ⊆ L1.

Although the use of level set is somewhat non-standard, we

note that it provides better generality compared with existing

specifications, such as a level from a Denning-style lattice [23]

or a role in a role-based model [1], [24], [41].

• Denning-style lattice: let L be a security lattice. We can

define L and the level set that represents � ∈ L as follows:

L = {� | � ∈ L}; L� � {�′ ∈ L | � � �′} (1)

Consider a two-point lattice {P, S} with P � S. It can be

written as the follows in our syntax:

L � {P, S}; LS � {S}; LP � {P, S};
• Role-based model: let P be a set of principals/roles and

actsfor be an acts-for relation on roles. We can define

L and the level set that represents P ∈ P as follows:

L = P(P); LP � {P ′ ∈ P | P ′ actsfor P} (2)

2In the literature, it is also common to model information release as updates
to a memory portion visible to an attacker. This can be modeled explicitly
as requiring an assignment x := e where x has label b to emit a release
command output(b, v).

Consider a model with two roles Alice and Bob with

Alice actsfor Bob but not the other way around. It

can be written as the follows in our syntax:

L � {Alice, Bob}; LAlice � {Alice};
LBob � {Alice, Bob};

2) Sensitivity Mutation: The core of specifying a dynamic

policy is to define how data sensitivity changes at run time.

This is specified by a security label b.

A label can simply be a level set L, which represents im-

mutable sensitivity throughout program execution. In general,

a label has the form of cnd?b1 ◦ b2 where:

• A trigger condition cnd specifies when the sensitivity

changes. There are two basic kinds of trigger conditions:

a security event s and a (Boolean) program expression e.

A more complicated condition can be constructed with

logical operations on s and e. We assume that a type

system checks that whenever cnd is an expression e, e is

of the Boolean type.

• The mutation direction ◦ specifies how the information

flow restriction changes. There are two one-time mutation

directions: cnd?b1 → b2 (resp. cnd?b1 ← b2) allows a

one-time sensitivity change from b1 to b2 (resp. b2 to b1)

the first time that cnd evaluates to false (resp. true).

On the other hand, a two-way mutation cnd?b1 � b2
allows arbitrary number of changes between b1 and b2
whenever the value of cnd flips.

3) Policy Specification: The information flow policy on a

program is specified as a function from variables Vars to

security labels B and a policy type �. The policy type can

either be transient, or persistent (formalized in Section IV).

B. Expressiveness

Despite the simplicity of our language syntax and security

specification, we first show that all kinds of dynamic policies

in Figure 1 can be concisely expressed. Then, we discuss how

the specification covers the well-known what, who, where and

when dimensions [47], [48] of dynamic policies.3 Finally, we

show that the specification language is powerful enough to

encode Flow Locks [12] and its successor Paralocks [14],

a well-known meta policy language for building expressive

information flow policies.

1) Examples: We first encode the examples in Figure 1.

a) Declassification and Erasure: Both policies specify

sensitivity changes as mutating security level of information

from some level �1 to �2, where both �1 and �2 are drawn from

a Denning-style lattice L. Such a change can be specified as

L�1 → L�2 , where L�1 and L�2 are the level sets representing

�1 and �2, as defined in Equation (1).

For example, the informal policy on credit card in Fig-

ure 1-B can be precisely specified as erase?{} ← {M} [Tran]

3The original definitions focus on declassification policy, but the dimensions
are applicable for dynamic policies as well.
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(we will discuss why erasure is a transient policy in Sec-

tion IV) with the security command EventOn(erase) being

inserted to Line 4 to trigger the mutation.
b) Delegation and revocation: Both policies specify

sensitivity changes as modifying the acts-for relationship on

principals, such as Alice and Bob. Such a change can be

specified as the old and new sets of roles who acts-for the

owner, say P , of information. That is, a change from from

actsfor1 to actsfor2 can be specified as L1 → L2, where

Li � {P ′ ∈ P | P ′ actsfori P}.

For example, the policy on book in Figure 1-C can be

specified as revoke?{} ← {Alice} [Per] (we will discuss

why revocation is a persistent policy in Section IV) with a

security command EventOn(revoke) being inserted to Line 5

to trigger the mutation. 4

2) Dimensions of dynamic policy [47], [48]:
a) What: The what dimension regulates what informa-

tion’s sensitivity is changed. Since the policy specification is

defined at variable level, our language does not fully support

partial release, which only releases a part of a secret (e.g., the

parity of a secret) to a public domain. However, we note that

the language still has some support of partial release. Consider

the example in Figure 1-C.i. The policy allows partial value

half(book) to be accessible by Alice after Line 5, while the

whole value of book is not. As shown in Section III-B1, the

partial release of half(book) in this example can be precisely

expressed in our language. We leave the full support of partial

release as future work.

Moreover, we emphasize that the policy specification regu-

lates the sensitivity on the original value of the variable. For

example, consider Γ(h) = S,Γ(x) = s?S → P for program:

x := h; EventOn(s); output(P, x);

The policy on x states that its original value, rather than its

value right before output (i.e., the value of h), is declassified

to P. Hence, the program is insecure. Therefore, the specifi-

cation language rules out laundering attacks [45], [47], which

launders secrets not intended for declassification.
b) Where: The where dimension regulates level locality

(where information may flow to) and code locality (where

physically in the code that information’s sensitivity changes).

It is obvious that a label cnd?b1◦b2 declare where information

may flow to after a policy change, and the security event s
with the security commands EventOn(s) and EventOff(s)
specify the code locations where sensitivity changes.

c) When: The when dimension is a temporal dimension,

pertaining to when information’s sensitivity changes. This is

specified by the trigger condition cnd. For example, a policy

(paid?P ← S) allows associated information (e.g., software

key) to be released when payment has been received. This is

an instance of “Relative” specification defined in [47].
d) Who: The who dimension specifies a principal/role,

who controls the change of sensitivity; one example is the

4We note that our encoding requires all changes to the acts-for relation
to be anticipated, whereas a general delegation/revocation policy might also
offer the flexibility of changing the acts-for relation dynamically.

// x: {D,N}⇒a
// y: {N}⇒a
// z: {}⇒a
open(D);
y:=x;
close(D);
open(N);
z:=y;

// x: sN?{a}� {}
// y: sN?{a}� {}
// z: {a}
EventOn(sD);
y:=x; output(sN?{a}� {}, y)
EventOff(sD);
EventOn(sN );
z:=y;output({a}, z)

Fig. 3: An Example of Encoding Paralock for A = 〈a, {D}〉.

Decentralized Label Model (DLM) [40], which explicitly

defines ownership in security labels. While our specification

language does not explicitly define ownership, we show next

that it is expressive enough to encode Flow Locks [12] and

Paralocks [14], which in turn are expressive enough to encode

DLM [14]. Hence, the specification language also covers the

who dimension to some extent.
3) Encoding Flow Locks [12]: Both Flow Locks [12] and

its successor Paralocks [14] introduce locks, denoted as σ, to

construct dynamic policies. Let Locks be a set of locks, and

P be a set of principals. A “flow lock” policy is specified with

the following components:

• Flow locks in the form of Σ ⇒ P where Σ ⊆ Locks is

the lock set for principal P ∈ P.

• Distinguished commands open(σ), close(σ) that open

and close the lock σ ∈ Locks.

To simplify notation, we use Γ(x, P ) = Σ to denote the

fact that {Σ⇒ P} is part of the “flow locks” of x. Paralocks

security is formalized as an extension of Gradual Release [6].

In particular, paralock security is defined based on sub-security
condition for each hypothetical attacker A = (PA,ΣA) where

PA ∈ P and ΣA ⊆ Locks:

• A variable is considered “public” for attacker A when

Γ(x, PA) = Σx ⊆ ΣA; otherwise, it is considered

“secret” for attacker A.

• A “release event”, in gradual release sense, is defined as

a period of program execution when the set of opened
locks Σopen satisfies Σopen �⊆ ΣA, as any such lock state

might allow some “secret” to A to be released [14].

Consider the example in Figure 3 and a hypothetical attacker

A = (a, {D}). Since Γ(x, a) = {D,N} �⊆ {D}, variable x
is considered “secret” for A. Moreover, the first assignment

y := x is not under a release event since the set of opened

locks, {D}, satisfies {D} ⊆ {D} = ΣA. On the other hand,

the last assignment z := y is under a release event since

Σopen = {D,N} �⊆ {D} = ΣA. Therefore, we need to ensure

that the first assignment, which is not under a releasing event,

does not reveal the value of x.

For each concrete attacker A = (PA,ΣA), we can encode

Paralocks security as follows:

• We define a security event sσ for each lock σ ∈ Σ and the

lock command open(σ) (resp. close(σ)) is converted to

EventOn(sσ) (resp. EventOff(sσ)).
• Let Γ′(x) = {PA} when Γ(x, PA) = Σx ⊆ ΣA;

otherwise, Γ′(x) = {} (i.e., secret for PA).
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• We define the dynamic policy of x as cnd?{PA} � Γ′(x)
where cnd �

∨
σ �∈ΣA

sσ . Note that by definition, infor-

mation x is under a release event (i.e., has level set {PA})

whenever at least one lock not in ΣA is currently open,

which implies that Σopen �⊆ ΣA, as defined in Paralock.

Consider the transformed code in Figure 3 for an attacker

A = 〈a, {D}〉. We note that under the encoding, the first

assignment y := x is not under declassification of x since sN
is closed and the effective level set of x is {}, which prohibits

attacker A from learning its value. This is consistent with

Paralock semantics, where the first assignment is not under

a release event. On the other hand, the second assignment

z := y is under a release event since the effective level set of

both x and y are {a} (note that we have sN as the security

event is turned on), which allows attacker A to learn their

values. This is also consistent with Paralock semantics, where

the second assignment is under a release event.

Hence, we can encode Paralocks by explicitly checking that

for every hypothetical attacker, the corresponding transformed

program is secure.

C. Interpretation of Security Specification

Intuitively, the security specification in Figure 2 specifies at

each program execution point, what is the sensitivity of the

associated information. We formalize this as an interpretation

function of the label, denoted as �b�τ , which takes in a label

b and a trace τ , and returns a level set L as information flow

restrictions at the end of τ .

a) Execution trace: As standard, we model program

state, called memory m, as a mapping from program variables

and security events to their values. The small-step semantics of

the source language is mostly standard (hence omitted), with

exception of the output and security event commands:

〈e,m〉 ⇓ v

〈output(b, e),m〉 〈b,v〉−−−→ 〈skip,m〉
S-OUTPUT

〈EventOn(s),m〉 → 〈skip,m{s �→ true}〉 S-SET

〈EventOff(s),m〉 → 〈skip,m{s �→ false}〉 S-UNSET

The semantics records all output events, in the form of 〈b, v〉,
during program execution, as these are the only information

release events during program execution. Moreover, the dis-

tinguished security events s are treated as boolean variables,

which can only be set/unset by the security event commands.

Based on the small-step semantics, executing a program c
under initial memory m produces an execution trace τ with

potentially empty output events:

〈c,m〉 b1,v1−−−→ 〈c1,m1〉 · · · bn,vn−−−→ 〈cn,mn〉.
We use τ [i] to denote the configuration (i.e., a pair of

program and memory) after the i-th evaluation step in the τ ,

and ‖τ‖ to denote the number of evaluation steps in the trace.

For example, τ [0] is always the initial state of the execution,

τ [‖τ‖] is the ending state of a terminating trace τ . We use τ [:i]

�L�τ = L

�cnd?b1 → b2�τ =

{
�b1�τ , first(cnd, τ, false) = −1
�b2�τ [i:] , i = first(cnd, τ, false) ≥ 0

�cnd?b1 ← b2�τ =

{
�b2�τ , first(cnd, τ, true) = −1
�b1�τ [i:] , i = first(cnd, τ, true) ≥ 0

�cnd?b1 � b2�τ =

{
�b1�τ [i+1:] , i = last(cnd, τ, false) �= ‖τ‖
�b2�τ [i+1:] , i = last(cnd, τ, true) �= ‖τ‖

where first(cnd, τ, bl) returns the first index of τ such that cnd
evaluates to bl, or−1 if such an index does not exist; last(cnd, τ, bl)
returns the last index of τ such that cnd evaluates to bl, or −1 if
such an index does not exist.

Fig. 4: Interpretation of Security Labels

(resp. τ [i:]) to denote a prefix (resp. postfix) subtrace of τ from

the initial state up to (starting from) the i-th evaluation step.

We use τ [i:j] to denote the subtrace of τ between i-th and j-th

(inclusive) evaluation steps. Finally, we write τ1 � τ2 when

τ1 is a prefix of τ2.

b) Interpretation of labels: We formalize the label se-

mantics �b�τ in Figure 4. �b�τ returns a level set L that

precisely specifies where the information with policy b can

flow to at the end of trace τ . For a (static) level set L, its

interpretation is simply L regardless of τ .

For more complicated labels, the semantics also considers

the temporal aspect of label changes. For example, a one-

time mutation label cnd?b1 → b2 allows a one-time sensitivity

change from b1 to b2 when the first time that cnd evaluates

to false. Hence, let i be the first index of τ such that cnd
evaluates to false. Then, �cnd?b1 → b2�τ reduces to �b1�τ
when no such i exists (i.e., cnd always evaluates to true

in τ ), and it reduces to �b2�τ [i:] otherwise. Note that in the

latter case, it reduces to �b2�τ [i:] rather than �b2�τ to properly

handle nested conditions: any nested condition in b2 can only

be evaluated after cnd becomes false. The dual with ←
is defined in a similar way. Note that cnd?b1 → b2 and

¬cnd?b2 ← b1 are semantically the same; we introduce both

for convenience.

Finally, the bi-directional label (with �) is interpreted

purely based on the last configuration of τ : let i be the last
index in τ such that cnd evaluates to false. Then, i �= ‖τ‖
implies that cnd evaluates to true at the end of τ ; hence, the

label reduces to b1. Note that b1 is evaluated under τ [i+1:] in

this case to properly handle (potentially) nested conditions in

b1: any nested condition in b1 can only be evaluated after cnd
becomes true.

Moreover, we can derive a dynamic specification for each

execution point i, written as γi, such that

∀x. γi(x) = �Γ(x)�τ[:i]

Additionally, we overload γi to track the dynamic interpre-

tation of a label b for each execution point i:

∀b. γi(b) = �b�τ[:i]
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To simplify notation, we write

〈c0,m0〉 ↪→ �t

if the execution 〈c0,m0〉 terminates5 with an extended out-

put sequence �t, which consists of extended output events

t � 〈b, v, γ〉, where b, v are the output events on τ , and γ
is the dynamic specification at the corresponding execution

point. We use t.b, t.v and t.γ to refer to each component in

the extended output event. We use the same index notation

as in trace, where �t[i] returns the i-th output event, and �t[:i]

returns the prefix output sequence up to (included) the i-th
output. �t[:0] returns an empty sequence.

IV. DYNAMIC RELEASE

In this section, we define Dynamic Release, an end-to-

end information flow policy that allows information flow

restrictions to downgrade and upgrade in arbitrary ways.

A. Semantics Notations

a) Memory Closure: For various reasons, we need to

define a set of initial memories that are indistinguishable from

some memory m. Given a set of variables X , we define the

memory closure of m to be a set of memories who agree on

the value of each variable x ∈ X:

Definition 2 (Memory Closure): Given a memory m and a

set of variables X , the memory closure of m on X is:

�m�X � {m′ | ∀x ∈ X. m(x) = m′(x)}
For simplicity, we use the following short-hands:

�m�L,γ � �m�{x |γ(x)⊆L}
�m��=b � �m�{x |Γ(x)�=b}

where �m�L,γ is the memory closure on all variables whose

sensitivity level is less or equally restrictive than level L
according to γ, and �m��=b is the memory closure on variables

whose security policy is not b: a set of memories whose values

only differ on variables with policy b.
b) Trace filter: For various reasons, we need a filter on

output traces to focus on relevant subtraces (e.g., to filter out

outputs that are not visible to an attacker). Each trace filter

can be defined as a Boolean function on 〈b, v, γ〉. With a

filter function f (that returns false for irrelevant outputs),

we define the projection of outputs as follows:

Definition 3 (Projection of Trace):

��t�f � 〈〈b, v, γ〉 ∈ �t | f(b, v, γ)〉
We use the following short-hand for a commonly used filter,

L-projection filter, where the resulting trace consists of outputs

to channels that are observable to an attacker at level L :

��t�L � ��t�λb,v,γ. γ(b)⊆L

5In this paper, we only consider output sequences �t produced by
〈c0,m0〉 ↪→ �t. Hence, only the terminating executions are considered in
this paper, making our knowledge and security definitions in Section IV
termination-insensitive. Termination sensitivity is an orthogonal issue to the
scope of this paper: dynamic policy.

B. Key Factors of Formalizing a Dynamic Policy

Before formalizing Dynamic Release, we first introduce

knowledge-based security (i.e., epistemic security) [6], which

is widely used in the context of dynamic policy. Our formal-

ization is built on the following informal security statement,

which is motivated by [3]:

A program c is secure iff for any event t pro-

duced by c, the “knowledge” gained about secret by

observing t is bounded by what’s allowed by the

policy at t.

We first introduce a few building blocks to formalize

“knowledge” and “allowance” (i.e., the allowed leakage).

1) Indistinguishability: A key component of information

flow security is to define trace indistinguishability: whether

two program execution traces are distinguishable to an attacker

or not. Given an attacker at level set L, each release event

〈b, v, γ〉 is observable iff γ(b) � L by the attack model. Hence,

as standard, we define an indistinguishability relation, written

as ∼L, on traces as

∼L � {(�t1,�t2) | ��t1�L � ��t2�L}
Note that an attacker cannot rule out any execution whose

prefix matches t1. Hence, the prefix relation is used instead of

identity.

2) Knowledge gained from observation: Following the

original definition of knowledge in [6], we define the knowl-

edge gained by an attacker at level set L via observing a trace
�t produced by a program c as:6

k1(c,�t, L) � {m | 〈c,m〉 ↪→ �t′ ∧ �t ∼L
�t′} (3)

Intuitively, it states that if one initial memory m produces

a trace that is indistinguishable from �t, then the attacker

cannot rule out m as one possible initial memory. Note that

by definition, the smaller the knowledge set is, the more

information (knowledge) is revealed to the attacker.

Recall that by definition, 〈c,m〉 ↪→ �t′ only considers termi-
nating program executions. Hence, the knowledge definition

above is the termination-insensitive version of knowledge

defined in [6]. As a consequence, the security semantics that

we define in this paper is also termination-insensitive.

3) Policy Allowance: To formalize security, we also need

to define for each output event t on a trace, what is the

allowed leakage to an attacker at a level set L. As knowledge,

policy allowance, written as A(m,�t, b, L), is defined as a

set of memories that (1) only differs from the actual initial

memory m in variables whose label is b, and (2) should remain

indistinguishable to m for an attacker at L who observes an

output sequence �t according to the dynamic policy.

Consider a dynamic label b ∈ B, memory m and output

sequence �t of interest, as well as an attacker at level L, one

possible policy allowance can be:

A(m,�t, b, L) � �m��=b

6We slightly modified the original definition to exclude “initial knowledge”,
the attacker’s knowledge before executing the program.
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Intuitively, it specifies the initial knowledge of an attacker at

level set L: the attacker cannot distinguish any value difference

among variables with the dynamic label b. Thus, any variable

with the label b is initially indistinguishable to the attacker.

Eventually, Dynamic Release checks that for each label b ∈ B,

gained knowledge is bounded by the allowance with respect

to b. Hence, the security of each variable is checked.

C. Challenges of Formalizing a General Dynamic Policy

We next show that it is a challenging task to formalize

the security of a general-purpose dynamic policy that allows

downgrading and upgrading to occur in arbitrary ways.

Challenge 1: Permitting both increasing and decreasing
knowledge: Allowing both downgrading and upgrading in

arbitrary ways means that our general policy must permit

reasoning about both increasing knowledge (as in declassi-

fication) and decreasing knowledge (as in erasure). While

Equation 3 and its variants are widely used to formalize

declassification policy [6], [14], they cannot reason about

increasing knowledge. The reason is that, it is easy to check

that for any c,�t � �t′, L, the knowledge set decreases:

�t � �t′ ⇒ k1(c,�t, L) ⊇ k1(c, �t′, L)

As other variants, the knowledge set k1 is monotonically

decreasing (hence, the knowledge that it represents is increas-

ing by definition) as more events on the same execution are

revealed to an attacker [6], [3], [51].

However, we need to reason about decreasing knowledge

for an erasure policy. Consider the example in Figure 1-

B, where the value of credit card is revealed by the first

output at Line 3. Given any program execution 〈c,m〉 ↪→ �t,
we have k1(c,�t

[:i],M) = {m} for all i ≥ 1. However, as

the sensitivity of credit card upgrades from M to � when

i = 2 (i.e., the second output), the secure program (i) can

be incorrectly rejected: k1(c,�t
[:2],M) = {m} means that the

value of credit card is known to the attacker, which violates

the erasure policy at that point.

Observation 1. Equation 3 is not suitable for an upgrading

policy, since it fails to reason about decreasing knowledge. The

issue is that knowledge gained from �t is defined as the full

knowledge gained from observing all outputs on �t. Return to

the secure program in Figure 1-B.i. We note that the first and

second outputs together reveal the value of credit card, but

the second event alone reveals no information, as it always

outputs 0. Hence, we need to precisely define the exact
knowledge gained from learning each output to permit both

increasing and decreasing knowledge.

Challenge 2: Indistinguishability ∼L is inadequate for a
general dynamic policy: As shown earlier, indistinguishability

∼L is an important component of a knowledge definition; in-

tuitively, by observing an execution 〈c,m〉 ↪→ �t, an attacker at

level set L can rule out any initial memory m′ where m �∼L m′

(i.e., m′ �∈ k1(c,�t, L)). However, the naive definition of ∼L

might be inadequate for declassified outputs. Consider the

following secure program, where x is first downgraded to P

and then upgraded to S.

1 // x : P
2 if (x>0) output(P, 1);
3 output(P, 1)
4 // x : S
5 output(P, 2)

Note that the program is secure since the only output when x
is secret reveals a constant value. Assume that the initial value
of x is either 0 or 1. Then, there are two possible executions
of the program with γ1(x) = P and γ2(x) = S:

〈c,m1〉 ↪→ 〈P, 1, γ1〉 · 〈P, 2, γ2〉
〈c,m2〉 ↪→ 〈P, 1, γ1〉 · 〈P, 1, γ1〉 · 〈P, 2, γ2〉

The issue is in the first execution. By observing the first

output, an attacker at P cannot tell if the execution starts from

m1 or m2, as both of them first output 1. However, the attacker

can rule out m2 by observing the second output with the value

of 2. Note that the change of knowledge (from {m1,m2}
to {m1}) violates the dynamic policy governing the second

output: the policy on x is S, which prohibits the learning of

the initial value of x.

Observation 2. The inadequacy of relation ∼L roots from

the fact that, due to downgrading, the public outputs of

different executions might have various lengths. Therefore,

outputs at the same index but produced by different executions

might be incomparable. To resolve the issue, we observe that

any information release (of x) when x is P is ineffective, in the

sense that the restriction on x is not in effect. In the example

above, the outputs with value 1 are all ineffective, as x is

public when the outputs at lines 2 and 3 are produced. This

observation motivates the secret projection filter, which finds

out the effective outputs for a given secret.

Definition 4 (Secret Projection of Trace): Given a policy b
and an attacker at level L, a secret projection of trace is a

subtrace where information with policy b cannot flow to L
and the output channel is visible to L :

��t�b,L � ��t�λb′,n,γ. γ(b)�⊆L ∧ γ(b′)⊆L

Return to the example above, the effective subtraces starting

from m1 and m2 are both 〈P, 2, γ2(x) = S〉, which remains

indistinguishable to an attacker at level P.

Challenge 3: Effectiveness is also inadequate: With Obser-

vation 2, it might be attempting to define indistinguishability

based on ��t�b,L, rather than ��t�L. However, doing so is

problematic as shown by the following program.

1 // x : S
2 if (x>0) output(P, 1);
3 // x : P
4 if (x<=0) output(P, 1);

With two initial memories m1(x) = 0,m2(x) = 1, we have

〈c,m1〉 ↪→ 〈P, 1, γ1(x) = P〉
〈c,m2〉 ↪→ 〈P, 1, γ2(x) = S〉

Note that only the value of x is revealed on the public channel.

Hence, the program is secure as it always outputs 1. However,

the effective subtrace starting from m1 is ∅ and that starting

from m2 is 〈P, 1, γ2(x) = S〉, suggesting that the program is
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insecure: the value of x is revealed by the first output from

m2, while the policy at that point (S) disallows so.

Observation 3. We note that both indistinguiability and

effectiveness are important building blocks of a general-

purpose dynamic policy. However, the challenge is how to

combine them in a meaningful way. We will build our security

definition on both concepts and justify why the new definition

is meaningful in Section IV-D.

Challenge 4: Transient vs. Persistent Policy: So far, the

policy allowance A(m,�t, b, L) ignores what information has

been leaked in the past. However, in the persistent case such as

Figure 1-C, the learned information (note) remains accessible

even after the policy on book upgrades. In general, we define

transient and persistent policy as:

Definition 5 (Transient and Persistent Policy): A dynamic

security policy is persistent if it always allows to reveal

information that has been revealed in the past. Otherwise, the

policy is transient.

Observation 4. Both transient and persistent policy have

real-world application scenarios. Hence, a general-purpose

dynamic policy should support both kinds of policies, in a

unified way.

D. Dynamic Release

We have introduced all ingredients to formalize Dynamic

Release, a novel end-to-end, general-purpose dynamic policy.

To tackle the challenges above, we first formalize the

attacker’s knowledge gained by observing the last event t′

on a trace �t · t′. Note that simply computing the knowledge

difference between observing �t · t′ and observing �t does

not work. Consider the example in Figure 1-B.ii. Given any

program execution 〈c,m〉 ↪→ �t, we have k1(c,�t
[:i],M) = {m}

for all i ≥ 1. Hence, the difference between the knowledge

gained with or without the output at Line 6 is ∅, suggesting

that no knowledge is gained by observing the output at Line 6

alone, which is incorrect as it reveals the credit card number.

Instead, we take inspiration from probabilities to formalize

the attacker’s knowledge gained by observing a single event

on a trace. Consider a program c that produces the following

sequences of numbers give the corresponding inputs:

input 1: s1 = (1 · 1 · 3)
input 2: s2 = (2 · 2 · 3)
input 3: s3 = (1 · 1 · 3)
input 4: s4 = (2 · 2 · 2)

Consider the following question: what is the probability that

the program generates a sequence where the last number is

identical to the last number of s1? Obviously, besides s1,

we also need to consider sequences s2 and s3 since albeit a

different sequence, s2 is consistent with s1 in the sense that the

last output is 3, and s3 is indistinguishable (i.e., identical) to

s1. More precisely, we can compute the probability as follows:

Σs∈consist(s1)P (s)

where the consistent set consist(s1) is the set of sequences

that produce the same last number as s1, i.e., {(1 · 1 · 3), (2 ·
2 · 3)}. Assuming a uniform distribution on program inputs,

we have that the probability is P (1 · 1 · 3) + P (2 · 2 · 3) =
(0.25 + 0.25) + 0.25 = 0.75. Note that the indistinguishable

sequences s1 and s3 are implicitly accounted for in P (1 ·1 ·3).
To compute the knowledge associated with the last event

on a trace �t, we first use effectiveness to identify consistent
traces whose last event on the effective subset is the same:

Definition 6 (Consistency Relation): Two output sequences
�t1 and �t2 are consistent w.r.t. a policy b and an attack level L,

written as �t1 ≡b,L �t2 if

n = ‖��t1�b,L‖ = ‖��t2�b,L‖ ∧ ��t1�[n]b,L = ��t2�[n]b,L

Note that despite the extra complicity due to trace projec-

tion, the consistency relation is similar to the consistent set

consist(s1) in the probability computation example. Next,

we define the precise knowledge gained from the last event

of �t based on both the consistency relation and knowledge.

Note that since knowledge is a set of memories, rather than

a number, the summation in the probability case is replaced

by a set union. Similar to the probability of observing each

sequence, the knowledge k1 also implicitly accounts for all

indistinguishable traces (Equation 3).

Definition 7 (Attacker’s Knowledge Gained from the Last
Event): For an attacker at level set L, the attacker’s knowledge

w.r.t. information with policy b, after observing the last event

of an output sequence �t of program c, is the set of all

initial memories that produce an output sequence that is

indistinguishable to some consistent counterpart of �t:

k2(c,�t, L, b) =
⋃

∃m′,j. 〈c,m′〉↪→�t′∧t′[:j]≡b,L�t

k1(c, �t′
[:j]

, L)

To see how Definition 7 tackles Challenges 2 and 3, we

revisit the code example under each challenge.
• Challenge 2: Recall that with m1(x) = 0, m2(x) = 1,
γ1(x) = P and γ2(x) = S, there are two execution traces

〈c,m1〉 ↪→ 〈P, 1, γ1〉 · 〈P, 2, γ2〉
〈c,m2〉 ↪→ 〈P, 1, γ1〉 · 〈P, 1, γ1〉 · 〈P, 2, γ2〉

It is easy to check that the two output sequences are

consistent w.r.t. the label of x and an attacker at P

according to Definition 6 since all outputs are ineffective.

Hence, in both traces, the knowledge gained from the last

output is {m0,m1}, due to the big union in k2. Hence,

we correctly conclude that no information is leaked by

the last output in both traces.
• Challenge 3: Recall that with m1(x) = 0, m2(x) = 1,

there are two execution traces

〈c,m1〉 ↪→ 〈P, 1, γ1(x) = P〉
〈c,m2〉 ↪→ 〈P, 1, γ2(x) = S〉

While the two traces are not consistent with each

other, we know that k1(c, 〈P, 1, γ2(x) = S〉, P) =
{〈P, 1, γ1(x) = P〉, 〈P, 1, γ2(x) = S〉} since the two

traces satisfy ∼P. Hence, the knowledge gained from the
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last event is {m0,m1}, and we correctly conclude that

no information is leaked by the last output.

To tackle Challenge 4, we observe that a persistent policy

allows information leaked in the past to be released again,

while a transient policy disallows so. This is made precise by

the following refinement of policy allowance:

A(m,�t, b, L) �
{

�m��=b, b is transient

�m��=b ∩ k1(c,�t
[:‖�t‖−1], L), b is persistent

(4)

where k1(c,�t
[:‖�t‖−1], L) is the knowledge from every output

event in �t except the last one. Note that since the knowledge

here represents the cumulative knowledge gained from observ-

ing all events, we use the standard knowledge k1 instead of

the knowledge gained from the last event k2 here.

Putting everything together, we have Dynamic Release secu-

rity, where for any output of the program, the attacker’s knowl-

edge gained from observing the output is always bounded by

the policy allowance at that output point.

Definition 8 (Dynamic Release):

∀m,L ⊆ L, b ∈ B,�t. 〈c,m〉 ↪→ �t =⇒ ∀1 ≤ i ≤ ‖�t‖.

k2(c,�t
[:i], L, b) ⊇

{
�m��=b, transient

�m��=b ∩ k1(c,�t
[:i−1], L), persistent

V. SEMANTICS FRAMEWORK FOR DYNAMIC POLICY

While various forms of formal policy semantics exist in

the literature, different policies have very different nature of

the security conditions (i.e., noninterference, bisimulation and

epistemic [15]). In this section, we generalize the formalization

of Dynamic Release (Definition 8) by abstracting away its key

building blocks. Then we convert various existing dynamic

policies into the formalization framework and provide the first

apple-to-apple comparison between those policies.

A. Formalization Framework for Dynamic Policies

We first abstract way a few building blocks of Definition 8.

To define them more concretely, we consider an output se-

quence �t produced by 〈c,m〉, i.e., 〈c,m〉 ↪→ �t, as the context.

As already discussed in Section IV, the building blocks are:

• Output Indistinguishability, written as ∼: two output

sequences �t1 and �t2 satisfies �t1 ∼ �t2 when they are

considered indistinguishable to the attacker.

• Policy Allowance, written as A: a set of initial memory

that should be indistinguishable to m according to the

dynamic policy.

• Consistency Relation, written as ≡: when trying to pre-

cisely define the knowledge gained from each output

event, two sequences are considered “consistent”, even

if they are not identical (Definition 6).

With the abstracted parameters, we first generalize the

knowledge definition of k1 (Equation 3) on an arbitrary

relation ∼ on output sequences:

Definition 9 (Generalized Knowledge):

K(c,�t,∼) � {m | 〈c,m〉 ↪→ �t′ ∧ �t ∼ �t′ } (5)

Therefore, with abstract ∼, A and ≡, we can generalize

Definition 8 as the following framework:

Definition 10 (Formalization Framework): Given trace in-

distinguishability relation ∼, consistency relation ≡ and policy

allowance A, a command c satisfies a dynamic policy iff the

knowledge gained from observing any output does not exceed

its corresponding policy allowance:

∀m,L ⊆ L, b ∈ B,�t. 〈c,m〉 ↪→ �t =⇒ ∀1 ≤ i ≤ ‖�t‖.⋃
∃m′,j. 〈c,m′〉↪→�t∧�t′[:j]≡�t[:i]

K(c, �t′[:j],∼) ⊇ A(m,�t[:i], b, L)

Let ∼DR� {(�t1,�t2) | ��t1�L � ��t2�L}, ADR be as defined in

Equation (4), and ≡DR be as defined in Definition 7, it is easy

to check that Definition 10 is instantiated to Definition 8.

Moreover, when ≡ is instantiated with an equality relation

=, a case that we have seen in all existing dynamic policies,

the general framework can be simplified to the following form:

∀c,m,L ⊆ L, b ∈ B,�t. 〈c,m〉 ↪→ �t =⇒ ∀1 ≤ i ≤ ‖�t‖.
K(c,�t[:i],∼) ⊇ A(m,�t[:i], b, L)

We use this simpler form for existing dynamic policies

where consistency is simply defined as equivalence.

B. Existing works in the formalization framework

We incorporate existing definitions into the formalization

framework; the results are summarized in Table I. We first

highlight a few insights from Table I. Then, for each work

(except for Paralock due to space constraint), we sketch how

to convert it into the formalization framework. The conversion

of Paralock and the correctness proofs of all conversions are

available in the full version of this paper [36].

1) Insights from Table I: To the best of our knowledge,

this is the first work that enables apple-to-apple comparison

between various dynamic policies. We highlight a few insights.

First, an erasure policy (e.g., According to Policy and

Cryptographic Erasure) defines indistinguishability ∼ in a

substantially more complicated way compared with others.

The complexity suggests that formalizing an erasure policy

is more involved compared with other dynamic policies.

Second, besides Dynamic Release, Gradual Release, Par-

alock and Forgetful Attacker also have K(c,�t[:i−1],∼) as part

of policy allowance. Recall that K(c,�t[:i−1],∼) represents the

past knowledge excluding the last output on �t. Hence, these

policies are persistent policies. On the other hand, all other

dynamic policies are transient policies.

Third, since an erasure policy by definition is transient,

persistent policies such as Gradual Release and Paralock

cannot be used as an erasure policy, such as the example in

Figure 1-B.

2) Gradual Release: Gradual Release assumes a mapping

Γ from variables to levels in a Denning-style lattice. A

release event is generated by a special command x :=
declassify(e). Informally, a program is secure when illegal
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∼ (�t1,�t2) A(m,�t, b, L), i = ‖�t‖ ≡ (�t1,�t2)

Gradual Release ��t1�L � ��t2�L �m�L,�t[i].γ ∩ K(c,�t[:i−1],∼GR) =

Tight Gradual Release ��t1�L � ��t2�L �m�L,�t[i].γ =

NI According to Policy ∃R. ∀(i, j) ∈ R. ��t1[i]�b,L ∼= ��t2[j]�b,L �m��=b =

Cryptographic Erasure ��t1�L = ��t2�[i:j]L

⋂
t∈�t�m�L,t.γ =

Forgetful Attacker ∃�t′ � �t2. atk(��t1�L) = atk(��t′�L) �m�L,�t[i].γ ∩ K(c,�t[:i−1],∼FA) =

Paralock ��t1�A � ��t2�A
{

�m�A ∩ K(c,�t[:i−1],∼PL), �t[i].Δ ⊆ ΣA

�m�∅, otherwise
=

Dynamic Release ��t1�L � ��t2�L
{

�m��=b, b is transient

�m��=b ∩ K(c,�t[:i−1],∼), b is persistent
��t1�[n]b,L = ��t2�[n]b,L

TABLE I: Existing End-to-End Security Policies and Dynamic Release Written in the Formalization Framework.

flow w.r.t. Γ only occurs along with release events. Hence, at

policy syntax level, we encode a release event as

EventOn(r);x := e; output(Γ(x), e); EventOff(r);

where r is a distinguished event for release, and we set

∀x. Γ′(x) = r?L � Γ(x) to state that any leakage of any

variable is allowed when this is a release event. But otherwise,

the information flow restriction of Γ is obeyed.

At semantics level, Gradual Release is formalized on the in-

sight that “knowledge must remain constant between releases”:

Definition 11 (Gradual Release [6]): A program c satisfies

gradual release w.r.t. Γ if7

∀c,m,L, i,�t. 〈c,m〉 ↪→ �t =⇒
∀i not release event. k(c,m,�t[:i], L,Γ) = k(c,m,�t[:i−1], L,Γ)

where k(c,m,�t, L,Γ) �

{m′ | m′ ∈ �m�L,Γ ∧ 〈c,m〉 ↪→ �t′ ∧ �t � �t′} (6)

While the original definition does not immediately fit our

framework, we prove that they are equivalent by:

∼GR� {(�t1,�t2) | ��t1�L � ��t2�L} ≡GR�=

AGR � �m�L, �t‖�t‖.γ ∩ K(c,�t[:‖�t‖−1],∼GR)

Note that in our encoding, a release event sets security event

r which sets all dynamic labels in the form of r?L � Γ(x)
to the least restrictive level set L. Hence, when there is a

release event, the allowance check K(. . . ) ⊇ A trivially true,

resembling Definition 11.

Lemma 1: With ∼�∼GR, ≡�≡GR and A � AGR, Defini-

tion 10 is equivalent to Definition 11.

3) Tight Gradual Release: Tight Gradual Release [2], [7] is

an extension of Gradual Release. Similar to Gradual Release,

it assumes a base policy Γ and uses x := declassify(e)
to declassify the value of e. However, the encoding of de-

classification command is different for two reasons. First, we

can only encode a subset of Tight Gradual Release where

7Note that 〈c,m〉 ↪→ �t only considers terminating program executions by
definition. So we used the termination-insensitive version of Gradual Release.

declassification command contains declassify(x), since our

language does not fully support partial release (Section III-B2).

Second, declassification in Tight Gradual Release is both pre-

cise (i.e., only variable x in declassify(x) is downgraded)

and permanent (i.e., the sensitivity of x cannot upgrade after

x is declassified). Hence, we encode x′ := declassify(x) as

EventOn(rx);x
′ := x; output(Γ(x′), x);

where rx is a distinguished security event for releasing just x,

and we set Γ′(x) = rx?L ← Γ(x) to state that x is declassified

once rx is set.

Tight Gradual Release uses the same knowledge definition

from Gradual Release, except that its execution traces also

dynamically track the set of declassified variables X:

〈c,m, ∅〉 →∗ 〈c′,m′, X〉
Definition 12 (Tight Gradual Release): A program c satisfies

tight gradual release if for any trace �t, initial memory m and

attacker at level L, we have

∀i. 1 ≤ i ≤ ‖�t‖. (�m�L,Γ ∩ �m�Xi
) ⊆ k(c,m,�t[:i], L,Γ)

where Xi is the set of declassified variables associated with

the i-th output.

Due to the encoding of declassification commands, we know

that for each output at index i in �t we have:

�m�L,�t‖�t‖.γ = (�m�L,Γ ∩ �m�Xi
)

Hence, we can rephrase Tight Gradual Release as follows:

∼TGR� {(�t1, �t2) | ��t1�L � ��t2�L}
≡TGR�= ATGR � �m�L,�t‖�t‖.γ

Lemma 2: With ∼�∼TGR, ≡�≡TGR and A � ATGR, Defini-

tion 10 is equivalent to Definition 12.

Observation: Tight Gradual Release is more precise than

Gradual Release since the policy precisely downgrades the

sensitivity of x but not any other variables, while as Gradual

Release downgrades all variables under a release event.

Compared to Dynamic Release, the most important differ-

ence is that the consistency relation ≡ is defined in com-
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pletely different ways. As discussed in Section IV-C, it is

important to define it properly for general dynamic policies.

The other major difference is that the security semantics of

Tight Gradual Release cannot model erasure policies. Consider

the example in Figure 1-B.i with m1(credit card) = 0,

m2(credit card) = 1 and attacker level M . Given a program

execution 〈c,m1〉 ↪→ �t, we have K(c,�t[:i],∼TGR)= {m1} for

all i ≥ 1. However, credit card is upgraded from M to �
when i = 2 (i.e., the second output), the secure program

(i) is incorrectly rejected by Tight Gradual Release since

K(c,�t[:2],∼TGR) = {m1} �⊇ {m1,m2} = �m1�M,�t[2.γ .

4) NI According to Policy: Chong and Myers propose

noninterference according to policy [17], [18] to integrate

erasure and declassification policies. We use the formalization

in the more recent paper [18] as the security definition.

This work uses compound labels, a similar security speci-

fication as ours: a label is either a simple level � drawn from

a Denning-style lattice, or in the form of q1
e→ q2, where q1

and q2 are themselves compound labels. Hence, converting the

specification to ours is straightforward.

Noninterference according to policy is defined for each

variable in a two-run style. In particular, it requires that for

any two program executions where the initial memories differ

only in the value of the variable of interest, their traces are

indistinguishable regarding a correspondence R:

Definition 13 (Noninterference According To Policy [18]):
A program c is noninterference according to policy if for any

variable x (with policy b) we have:8

∀m1,m2, �,�t1,�t2. ∀y �= x. m1(y) = m2(y)

∧ 〈c,m1〉 ↪→ �t1 ∧ 〈c,m2〉 ↪→ �t2 =⇒
∃R.

(
∀(i, j) ∈ R, �. � �∈ �b�τ1[:i]

∧ � �∈ �b�τ2[:j]
⇒ τ[i] ≈� τ

′
[j]

)
where a correspondence R between traces τ1 and τ2 is a subset

of N× N such that:

1) (Completeness) either {i | (i, j) ∈ R} = {i ∈ N | i <
|τ1|} or {j | (i, j) ∈ R} = {j ∈ N | j < |τ2|}, and

2) (Initial configurations) if ‖R‖ > 0 then (0, 0) ∈ R, and

3) (Monotonicity) for all (i, j) ∈ R and (i′, j′) ∈ R, if i < i′

then j ≤ j′ and symmetrically, if j < j′ then i ≤ i′.

To transform Definition 13 to our framework, we make a

few important observations:

• The definition relates two memories that differ in exactly
one variable (i.e., ∀y �= x. m1(y) = m2(y)), which is

different from the usual low-equivalence requirement in

other definitions. However, it is easy to prove that (shown

shortly) it is equivalent to a per-policy definition �m��=b in

our framework, that considers memories that differ only
for variables with a particular policy b.

8The original definition uses a specialized label semantics, denoted as
�b�〈c,m〉, and requires (〈ci,mi〉, �) �∈ �b�〈c,m〉 which means that if by the
time 〈c,m〉 reaches state 〈ci,mi〉, confidentiality level �′ may not observe
the information. It is easy to convert that to � �∈ �b�τ[:i] in our notation.

• The component of � �∈ �q��t1[:i] ∧ � �∈ �q��t2[:j] filters out

non-interesting outputs, which functions the same as the

filtering function ��t�b,L.

• We define ∼= on two output sequence as below:

�t1 ∼= �t2 ⇐⇒ ¬(‖�t1‖ = ‖�t2‖ ∧ ∃i. �t [i]1 �= �t
[i]
2 )

Based on the observations, we convert Definition 13 into

our framework as follows:

∼AP� {(�t1, �t2) | ∃R. ∀(i, j) ∈ R. ��t1[i]�b,L ∼= ��t2[j]�b,L}
≡AP�= AAP � �m��=b

Lemma 3: With ∼�∼AP, A � AAP, and outside equivalence

≡�≡′
AP, Definition 10 is equivalent to Definition 13.

Observation: Compared with Gradual Release and Tight

Gradual Release, the most interesting component of According

to Policy is in its unique indistinguishability definition, which

uses the correspondent relationship R. Intuitively, According

to Policy relaxes the indistinguishability definition in the way

that two executions are indistinguishable as long as a corre-

spondence R exists to allow decreasing knowledge. However,

as shown later in the evaluation, the relaxation with R could

be too loose: it falsely accepts some insecure programs.

5) Cryptographic Erasure: Cryptographic erasure [4] also

uses compound labels to specify erasure policy and knowledge

is defined as:

kCE(c, L,�t) = {m | 〈c,m〉 �t1−→ ∗〈c1,m1〉 �t2−→ ∗〈c′,m′〉
∧ ��t2�L = ��t�L}

Unlike other policies, the definition specifies knowledge based

on the subtrace relation, rather than the standard prefix re-

lation. The reason is that it has a different attack model: it

assumes an attacker who might not be able to observe program

execution from the beginning.

Definition 14 (Cryptographic Erasure Security [4]): A pro-

gram c is secure if any execution starting with memory m, the

following holds:

∀c0,m0, ci,mi, cn,mn, �t1, �t2, L, i, n.

〈c0,m0〉 �t1−→ ∗〈ci,mi〉 �t2−→ ∗〈cn,mn〉
⇒ kCE(c, L, �t2) ⊇

⋂
t∈�t2

�m�L,t.γ

To model subtraces, we adjust the ∀1 ≤ i ≤ ‖�t‖ quantifier in

the framework with ∀1 ≤ i < j ≤ ‖�t‖, and write �t[i : j] for

the subtrace between i and j. Then, converting Definition 14

into our framework is relatively straightforward:

∼CE� {(�t1, �t2) | ��t1�L subtrace of ��t2�L}
≡CE�= ACE �

⋂
t∈�t

�m�L,t.γ

Lemma 4: With ∼�∼CE, ≡�≡CE and A � ACE, Defini-

tion 10 with adjusted attack model is equivalent to Defini-

tion 14.
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Observation: Compare with other dynamic policies, the

most interesting part of cryptographic erasure is that its

indistinguishability and policy allowance are both defined

on subtraces; moreover, the latter uses the weakest policy

on the subtrace. Intuitively, we can interpret Cryptographic

Erasure security as: the subtrace-based knowledge gained

from observing a subtrace should be bounded by the smallest

allowance (i.e, the weakest policy) on the trace.

6) Forgetful Attacker: Forgetful Attacker [3], [51] is an

expressive policy where an attacker can “forget” some learned

knowledge. To do so, an attacker is formalized as an automaton

Atk〈QA, qinit, δA〉, where QA is a set of attacker’s states,

qinit ∈ QA is the initial state, and δA is the transition function.

The attacker observes a set of events produced by a program

execution, and updates its state accordingly:

Atk(ε) =qinit

Atk(�t�i) =δ(AtkA(�t�i−1), t[i])

Given a program c, an automaton Atk and attacker’s level

L, knowledge is defined as the set of initial memory that could

have resulted in the same state in the automaton:

kFA(c, L, Atk,�t) = {m | 〈c,m〉 �t1−→ ∗〈c′,m′〉 �t2−→ ∗m′′

∧ Atk(��t1�L) = Atk(��t�L)}
Definition 15 (Security for Forgetful Attacker [3]): A pro-

gram c is secure against an attacker Atk〈QA, qinit, δA)〉 with

level L if:

∀c, c′,m,m′,�t, t′, L. 〈c,m1〉 ↪→ �t · t′ ⇒
kFA(c, L, Atk,�t · t′) ⊇ kFA(c, L, Atk,�t) ∩ �m�L,γ′

The conversion of Definition 15 to our framework is

straightforward:

∼FA� {(�t1, �t2) | ∃�t′ � �t2. Atk(�t1) = Atk(�t′)}
≡FA�= AFA � K(c,�t[:‖�t‖−1],∼FA) ∩ �m�L,�t[‖�t‖].γ

Lemma 5: With ∼�∼FA, A � AFA, and outside equivalence

≡�≡FA, Definition 10 is equivalent to Definition 15.

Observation: We note that Forgetful Attacker was origi-

nally formalized in a similar format as our framework, making

the conversion straightforward. However, there are various dif-

ferences compared with Dynamic Release. Most importantly,

Forgetful Attacker security is parameterized by an automaton

Atk; in other words, a program might be both “secure” and

“insecure” depending on the given automaton. Consider the

program in Figure 1-B(i). The program satisfies Forgetful

Attacker security with any automation that forgets about

the credit card information. Nevertheless, characterizing such

“willfully stupid” attackers is an open question [3]. Second, the

definition of the consistency relation ≡ is completely different.

As discussed in Section IV-C, it is important to define it

properly to allow information flow restrictions to downgrade

and upgrade in arbitrary ways.

lat=Lattice() 
lat.add_sub(Label("M"), Label(“Top")) 
Program( 
    secure=True,  
    source_code=""" 
        // credit_card: M 
        copy := credit_Card 
        output(copy, M); 
        // credit_card: Top 
        copy := 0; 
        output(copy, M)""",  
    persistent=False, 
    traces=[ 
        Trace(init_memory=dict(cc=0), outputs=[ 
            Out('M', 0, {'cc': 'M'}), 
            Out('M', 0, {'cc': 'Top'})]), 
        Trace(init_memory=dict(cc=1), outputs=[ 
            Out('M', 1, {'cc': 'M'}), 
            Out('M', 0, {'cc': 'Top'})]), 
        Trace(init_memory=dict(cc=2), outputs=[ 
            Out('M', 2, {'cc': 'M'}), 
            Out('M', 0, {'cc': 'Top'})])    
    ], 
    lattice=lat ) 

Fig. 5: Annotated Program for Fig. 1-B(i)

VI. EVALUATION

In this section, we introduce AnnTrace benchmark and

implement the dynamic policies as the form shown in Table I.

The benchmark and implementations are available on github9.

A. AnnTrace Benchmark

To facilite testing and understanding of dynamic policies,

we created the AnnTrace benchmark. It consists of a set

of programs annotated with trace-level security specifica-

tions. Among 58 programs in the benchmark, 35 of them

are collected from existing works [6], [3], [4], [45], [18],

[13]. References to the original examples are annotated in

the benchmark programs. The benchmark also includes 23

programs that we created, such as the programs in Figure 1,

and the counterexamples in Figure 6.

The benchmark is written in Python. Fig. 5 shows an

example of annotated program for the source code in Fig. 1-

B(i). As shown in the example, each program consists of:

• secure, a boolean value indicating whether this program

is a secure program; the ground truth of our evaluation.

• source code, written in the syntax shown in Fig 2;

• persistent, a boolean value indicating whether the in-

tended policy in this program is persistent (or transient);

• lattice, L , the security lattice used by the program10;

• traces, executions of the program. Each trace τ has:

– initial memory, m , mapping from variables to integers

– outputs, �t, a list of output events, each t in type Out:

∗ output level, � , a level from the lattice L
9https://github.com/psuplus/AnnTrace
10We use lattice instead of level set for conciseness in the implementation.
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Examples in Fig 1 Existing(35) New (23)

A(i) A(ii) B(i) B(ii) C(i) C(ii) � × - � × -

Gradual Release � � - - � � 28 2 5 14 1 8

Tight Gradual Release � � - - � � 18 0 17 8 0 15

According to Policy p � � � × - - 17 6 12 12 4 7

Cryptographic Erasure - - � � - - 21 0 14 7 1 15

Forgetful Attacker-Single � � � × � � 31 4 0 19 4 0

Dynamic Release � � � � � � 35 0 0 23 0 0

‘�’ means the policy checks the program as intended (same as ground truth); ‘×’ means the policy fails to check
the program as intended. ‘-’ means the program is not in the scope of the policy (not applicable).

TABLE II: Evaluation Results.

∗ output value, v, an integer value

∗ policy state, γ, mapping from variables to levels

Given a program in existing work, we (1) use the claimed

security of code as the ground truth, (2) convert the program

into our specification language and to a security lattice, (3)

mark persistent (or transient) according to if the correponding

paper presents a persistent (or transient) policy, and (4) man-

ually write down a finite number of traces that are sufficient

for checking the dynamic policy involved in the example.

B. Implementation

We implemented all dynamic policies in Table I in Python,

according to the formalization presented in the table. With ex-

ception of Forgetful Attacker and Paralocks, all implemented

policies can directly work on the trace annotation provided by

the AnnTrace benchmark. Forgetful Attack policy requires an

automaton as input. So we use a single memory automaton

that only remembers the last output and forgets all previous

outputs. Paralocks security requires “locks” in a test program

but most tests do not have locks. So we are unable to directly

evaluate it on the AnnTrace benchmark.11

Existing policies are not generally applicable to all tests.

Recall that each test has a persistent/transient field. Moreover,

for each test, we automatically generate the following two

features from the traces field:

A. there is no policy upgrading in the trace;

B. there is no policy downgrading in the trace;

These tags are used to determine if a concrete policy is

appliable to the test. For example, Cryptographic Erasure is

a transient policy that only allows upgrading. Hence, it is

applicable to the tests with tag transient and B.

C. Results

The evaluation results are summerized in Table II. For

the examples shown in Figure 1 (classical examples for

declassification, erasure and delegation/revocation), we note

that Dynamic Release is the only one that is both applicable

and correct in all cases.

Among the 35 programs collected from prior papers and the

23 new programs, Dynamic Release is still both applicable

and correct to all programs. In contrast, the existing works

11Although we are unable to evaluation Paralocks directly, we believe its
results should resemble those of Gradual Release, as its security condition is
a generalisation of the gradual release definition [14].

// x : L
output(L, 0);
// x : H
if (x == 0)

output(L, 0);

// h, h1: {D}⇒a
// l, l2: {}⇒a
open(D);
if (h) { l2:=h1;}
close(D);
l:=0;

(A) (B)

Fig. 6: Counterexamples for Crypto-Erasure and Paralocks.

fall short in one way or another: with limited applicability

or incorrect judgement on secure/insecure programs. Interest-

ingly, According to Policy, Cryptographic Erasure and Gradual

Release all make wrong judgment on some corner cases. Here,

we discuss a few representative ones.

For According to Policy, the problematic part is the R
relation. The policy states that as long as a qualified R can be

found to satisfy the equation, a program is secure. We found

that the restriction on R is too weak in many cases: a qualified

R exists for a few insecure programs.

For Crypto-Erasure policy, the failed examples is shown in

Figure 6-(A). It is an insecure program as the attacker learns

that x = 0 if two outputs are observed. However, Crypto-

Erasure accepts this program as secure for the reason that their

policy ignores the location of an output. In this example, for

the output 0, the security definition of Crypto-Erasure assumes

that two executions are indistinguishable to the attacker if there

exists a 0 output anywhere in the execution. Therefore, an

execution with a single 0 output appears indistinguishably to

the execution with two 0 outputs (both exists a 0 output). Thus,

the policy fails to reject this program.

For Gradual Release, it fails on the following secure pro-

gram, where h, h1 : S and l, l2 : P.

if (h) then l2 := declassify(h1);

l := 0;

This example might seem insecure on the surface, as the

branch condition h was not part of the declassify expres-

sion. But in the formal semantics (Section V-B2), a release

event declassifies all information in the program (i.e., Gradual

Release does not provide a precise bound on the released

information as pointed out in [6], [2]). The program is secure

since h1 is assigned to l2 when both h and h1 are declassified
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by the release event.

To check if a similar issue also exists in Paralocks, whose

security condition is a generalization of the Gradual Release,

we created a Paralock version of the same code, as shown

in Figure 6-(B). Thanks to the cleaner syntax of Paralocks,

it is more obvious that the program is secure: h and h1
have the same lock set {D}. Lock D is opened before the

if statement, allowing value of both h and h1 to flow to l, l2.

So the assignment in the if branch is secure. After that, only a

constant 0 is assigned to l when the lock D is closed. However,

the Paralock implementation rejects this program as insecure.

To understand why, Paralocks requires the knowledge of an

attacker remains the same if the current lock state is a subset

of the lock set that the attacker have. We are interested in

attacker A1 = (a, ∅), who has an empty lock set. When lock

D is open, since {D} �⊆ ∅, there is no restriction for the

assignment l2 := h1. However, for the assignment l := 0, the

current lock set is ∅, which is a subset of A’s lock set (∅). That

is, for all the executions, the attacker A’s knowledge should

not change by observing the output event from assignment

l := 0. However, this does not hold for the execution starting

with h = 0. The initial knowledge of attacker A knows nothing

about h or h1 since they are protected by lock D. With h = 0,

the assignment in the branch is not executed. The attacker only

observes the output from l := 0. By observing that output, the

attacker immediately learns that h = 0. Therefore, Paralock

rejected this program as insecure.

VII. RELATED WORK

The most related works are those present high-level discus-

sions on what/how end-to-end secure confidentiality should

look like for some dynamic security policy. The major ones

are already discussed and compared in the paper.

To precisely describe a dynamic policy, RIF [35], [34] uses

reclassification relation to associate label changes with proram

outputs. While this approach is highly expressive, writing

down the correct relation with regards to numerous possible

outputs is arguably a time-consuming and error-prone task.

Similarly, flow-based declassification [44] uses a graph to pin

down the exact paths leading to a declassification. However,

the policy specification is tied up to the literal implementation

of a program, which might limit its use in practice.

Bastys et al. [10] present six informal design principles for

security definitions and enforcements. They summarize and

categorize existing works to build a road map for the state-of-

art. Then, from the top-down view, they provide guidance on

how to approach a new enforcement or definition. In contrast,

the framework and the benchmark proposed in this paper are

post-checks after one definition is formalized.

Recent work [19] presents a unified framework for express-

ing and understanding for downgrading policies. Similar to

Section IV, the goal of the framework is to make obvious the

meaning of existing work. Based on that, they move further to

sketch safety semantics for enforcement mechanism. However,

they do not provide a define a formalization framework that

allows us to compare various policies at their semantics level.

Many existing work [39], [28], [16] reuses or extends the

representative policies we discussed in this paper. They adopt

the major definition for their specialized interest, which are

irrelevant to our interest. Hunt and Sands [32] present an

interesting insight on erasure, but their label and final security

definition are attached to scopes, which is not directly com-

parable with the end-to-end definitions discussed in this work.

Contextual noninterference [42] and facets [8] use dynamic

labels to keep track of information flows in different branches.

The purpose of those labels is to boost flow- or path-sensitivity,

not intended for dynamic policies.

VIII. CONCLUSION AND FUTURE WORK

We present the first formalization framework that allows

apple-to-apple compassion between various dynamic policies.

The comparison sheds light on new insights on existing

definitions, such as the distinguishing between transient and

persistent policies, as well as motivates Dynamic Release, a

new general dynamic policy proposed in this work. Moreover,

we built a new benchmark for testing and understanding

dynamic policies in general.

For future work, we plan to investigate semantic security

condition of dynamic information flow methods, especially

those use dynamic security labels. Despite the similarity that

security levels are mutable, issues such as label channels

might be challenging to be incorporate in our formalization

framework. Moreover, Dynamic Release offers a semantic

definition for information-flow security, but checking it on real

programs is infeasible unless only small number of traces are

produced. We plan to develop a static type system to check

Dynamic Release in a sound and scalable manner.

Another future direction is to fully support partial release

with expression-level specification. However, doing so is tricky

since the expressions might have conflicting specifications. For

example, consider a specification x, y : S and x+ y, x− y : P.

It states that the values of x and y are secrets, but the values

of x + y and x − y are public. Mathematically, learning the

values of x+ y and x− y can also reveal the concrete values

of x and y. Thus, it becomes tricky to define security in the

presense of expression-level specification.
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