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Abstract—Compared to ordinary concurrent and distributed
systems, cryptographic protocols are distinguished by the need to
reason about interference by adversaries. We suggest a new lay-
ered approach to tame that complexity, via an executable protocol
language whose semantics does not reveal an adversary directly,
instead enforcing a set of intuitive hygiene rules. By virtue of
those rules, protocols written in this language provably behave
identically with or without interference by active Dolev-Yao-style
adversaries. As a result, formal reasoning about protocols can be
simplified enough that even naı̈ve model checking can establish
correctness of a multiparty protocol, through analysis of a state
space with no adversary.

We present the design and implementation of SPICY, short for
Secure Protocols Implemented CorrectlY, including the semantics
of its input languages; the essential safety proofs, formalized in
the Coq theorem prover; and the automation techniques. We
provide a preliminary evaluation of the tool’s performance and
capabilities via a handful of case studies.

I. INTRODUCTION

It is distressingly common for a cryptographic mechanism

to be carefully designed, implemented, and deployed, only

for attackers to later discover critical flaws and vulnerabilities

that undermine the system [1], [2], [3], [4], [5], [6], [7], [8].

Attackers have the advantages of time, resources, a complex

design space to exploit, and the ability to employ attack

methods and capabilities that the system designers did not

(or could not) anticipate. With an ever-growing reliance on

cryptography in critical systems, there is an urgent need for

new approaches to evaluating the soundness of cryptographic

mechanisms in the face of strong, unpredictable adversaries.

Could it be possible to establish protocol-development lan-

guages that prevent adversary interference in the same way

that, e.g., Java prevents buffer overflows? Such a language

would include at least two unusual constructs. First, as Java

hides memory management and thus the chance to make

mistakes in memory management, our new kind of protocol

language would expose higher-level constructs that make cer-

tain kinds of bugs impossible to express. Second, as Java raises

an exception on an out-of-bounds array access, our new kind

of protocol language could similarly signal exceptions when

it detects that certain conservative best practices are not being

followed. Protocol designers would want to prove that, in fact,

such exceptions are never signaled. With such reasoning in

hand, it becomes possible to analyze protocol execution with

no adversary, porting the results to strong classes of active

adversaries. As Java takes opinionated stances, such as forcing

programmers to manage memory in certain ways, our new

language would do the same, making no claim to represent

all or even most cryptographic protocols found in the world

today. However, developers of a new protocol could adopt our

language and find a drastically simplified setting for rigorous

reasoning about security. Indeed, much as Java programmers

need not be educated about buffer overflows, developers who

understand distributed systems but not cryptography could

conceivably use our new language to develop new secure

protocols.

We report on the first steps in developing that kind of

language and its associated formal-verification tooling, as a

library within the Coq [9] theorem prover. Here, we will

demonstrate that it is, in fact, possible to design languages that

abstract away adversarial capability into a few “safety rules”

akin to type-safety checks, so that protocol designers and

developers can focus on the details of protocol development

rather than reasoning explicitly about safety. Verifying the

safety properties within Coq using simple model-checking

techniques, which can be applied automatically, shows that our

ideas are implementable at a cost of verification performance,

which can be overcome with future engineering work.

This effort falls within the growing field of Computer-Aided

Cryptography (CAC) [10]. By applying rigorous, machine-

checked verification and analysis to every level of the crypto-

graphic stack – from the design of cryptographic protocols to

the implementation of the low-level primitives on which those

protocols depend – CAC tools can provide strong assurances of

soundness. Mainstream software is increasingly incorporating

CAC techniques: for example, CAC tools verified the design
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and many implementations of TLS 1.3 [11], [12], and the

popular Chrome and Firefox browsers currently ship with

verified cryptographic primitives [13], [14].

At the top of the CAC stack sit so-called “design-level”

tools [10]. Though this is hardly a homogeneous space, tools

of this variety all strive to catch vulnerabilities early in the life

cycle of a protocol. Design-level CAC tools are used to detect

flaws in higher-level reasoning, and a protocol blessed by such

a tool may be considered sound given reasonable assumptions

about lower-level primitives.

While these tools share a common goal, they vary in the

interfaces they present to protocol designers. Whereas an ideal

verifier might simply consume a protocol description and

declare it sound or unsound, this is rarely, if ever, viable for

practical protocols. Instead, some tools (e.g., EasyCrypt [15])

require that the protocol designer write a machine-checkable

proof similar to the pen-and-paper proof that a cryptographer

would write. Others trade some of that proof obligation for

stronger assumptions about, e.g., the cryptographic model.

Regardless of the strength of the assumptions, as the class of

potential adversaries grows so too does the number of ways

a protocol’s execution might be perturbed, forcing the tool to

consider more cases.

To see this problem in action, consider the CAC technique

of model checking. By exhaustively traversing the state space

of a system (usually after simplifying the space with clever

choices of abstraction), a model checker evaluates whether

the system is correct according to a formal specification.

Even in a nonadversarial setting, a system’s state space can

be immense. For example, concurrent programs can force a

model checker to explore exponentially many interleavings of

threads. Introducing an adversary who executes unknown code

compounds the challenge, leading to a state space that can

grow arbitrarily large – if it can be enumerated at all.

Contributions. We demonstrate in this work a protocol-

language design that supports coding and formal verification

of new protocols with no need to reason about adversary
behavior. We fix the adversary class and the language of

protocols, which allows us to shift the burden of adversarial

reasoning off of particular protocols and onto the language as
a whole. Specifically, we prove a Strong Preservation Theorem

(Thm. 1), which states that any protocol in our language that

is safe in a world without an adversary is also safe in a world

with an active Dolev-Yao [16] adversary.

We develop this idea in Secure Protocols Implemented

CorrectlY (SPICY), a framework written and verified in Coq.

Borrowing the terminology of the Real/Ideal paradigm from

traditional cryptography proofs, but requiring no familiarity

with that paradigm, SPICY protocols are developed in two

domain-specific languages (DSLs). The Ideal World specifi-

cation language presents a simpler syntax that abstracts away

cryptographic primitives from the Real World implementation

language. Typically, a protocol designer would develop her

protocol specification first (using the Ideal World DSL) and

then implement the specification (using the Real World DSL).

SPICY would then formally check that the implementation

matches the specification and that no safety violations were

encountered. Real World protocols are executable, for exam-

ple, via the standard Coq extraction pipeline to high-level

functional code. One easy execution engine is a lightweight

interpreter that takes protocol descriptions like ours as input,

invoking crypto and messaging side effects as appropriate.

The same technique has been used in other projects like the

FSCQ verified file system [17], where experiments showed

competitive performance versus conventional file-system im-

plementations. We use a symbolic model of cryptography

and fix the adversary to the Dolev-Yao malicious active

attacker who is unable to take actions that require an unknown

private key. This adversary also obtains any message passing

through the network; is a legitimate user and thus can initiate

conversations, as either herself or someone else; and can replay

received messages. We prove, as a property of the language,

that if the Real World protocol simulates the specification then

it behaves the same in a world with or without an arbitrary

(Dolev-Yao) adversary.

With the Strong Preservation Theorem in hand, we auto-

mate the simulation-argument construction in an adversary-

free world using a symbolic model-checking technique. We

demonstrate that this technique is viable for a collection of

protocols inspired by the literature. Our goal in this paper

is to highlight how symbolic-model verification tools can be

constructed as little more than direct interpreters for carefully

designed programming languages, allowing for much shorter

tool implementations than for competitors (roughly a factor-

of-10 savings in implementation length; see §IV-B), despite

achieving significantly higher levels of rigor (via Coq proofs).

Organization. The remainder of the paper is structured

as follows. In §II, we walk through the development of

an example protocol, identifying and iteratively eliminating

common errors along the way. We then apply SPICY to the

example, showing how it (1) helps the protocol designer avoid

these pitfalls and (2) fosters correct design of the protocol.

In §III, we introduce the proposed framework, consisting of

two DSLs used to model protocol behavior, the languages’

operational semantics, and formalized correctness and safety

guarantees (including the Strong Preservation Theorem). We

evaluate our framework in §IV, discussing protocols we have

proven correct. We consider related work in §V and conclude

and discuss avenues for future work in §VI.

Availability The source code, including the library and

example protocols can be found at https://github.com/MIT-

LL/spicy.

II. VERIFYING A SAMPLE PROTOCOL

To demonstrate how protocol development and verification

work in SPICY, consider the SECRET SHARING PROTOCOL:

two parties with mutually authenticated channels establish a

secure communication channel, then one party sends a secret

to the other.1 We begin with a high-level intent, attempt to

1This example is illustrative; details of the semantics of the language will
be covered in later sections.
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write a safe implementation in pseudocode, and then demon-

strate writing a formal, Ideal World specification and valid

Real World implementation. Finally, we demonstrate a further

simplified Ideal World specification which more succinctly

captures the essence of the protocol.

First pseudocode attempt. A naı̈ve first program may look

like the pseudocode shown in Fig. 1. In this program, Bob

generates an asymmetric encryption key (line 6), shares it with

Alice (7), and waits for Alice to respond with a secret (8).

Alice listens for the message containing the key (1), generates

a secret (2), encrypts it with the key she received from Bob

(3), sends it to Bob (4), and exits (5). Finally, Bob decrypts

(9) and exits (10).

1 pkεB = recv ( )
2 SECRET = rng ( )
3 c = encrypt ( SECRET , pkεB )
4 send (Bob , c )
5 pr in t ( SECRET )

(a) Alice’s protocol code.

6 (pkεB , skεB ) = asym keygen ( )
7 send (Alice , pkεB )
8 c = recv ( )
9 m = decrypt ( c , skεB )

10 pr in t (m)

(b) Bob’s protocol code.

Fig. 1: Insecure implementation of the SECRET SHARING PRO-

TOCOL. Since this implementation does not verify message

authenticity (lines 3-4 and 8-9), an attacker could trick Alice

into divulging the secret.

The program in Fig. 1 includes notation for several com-

monly used primitives. We adopt a convention for keys such

that pk and sk represent asymmetric public and private keys,

respectively; and κ represents a symmetric key. We use sub-

scripts on the keys to indicate ownership and use superscripts

to clarify the purpose of each key, ε for encryption keys and

σ for signing keys. To send or receive a message, we use

send and recv. The primitives encrypt and decrypt
secure message confidentiality, while sign and verify
handle message authenticity. As a proxy for the secret, we

use rng to generate a number nondeterministically. To obtain

an asymmetric public/private key pair, we use asym_keygen
(sym_keygen will be used for symmetric keys).

There is an obvious security problem in this implementa-

tion: an attacker could send a message to Alice pretending

to be Bob, tricking Alice into sending the secret meant for

Bob to the adversary. We solve this problem by using digital

signatures to protect message authenticity. Furthermore, while

not a security issue, this implementation could be improved

with a hybrid encryption scheme. Rather than encrypting the

secret with the asymmetric key, a modern, practical public-key

cryptosystem should encrypt the payload with a symmetric key

(which is more efficient), then encrypt the symmetric key with

an asymmetric key (which is more convenient) since a more

general version of this protocol might send payloads much

longer than a symmetric key.
Second attempt. The next version of the protocol (Fig. 2)

addresses both issues. All messages are signed and verified,

and Alice encrypts the message data with a symmetric encryp-

tion key (line 7) rather than with the asymmetric key.

1 (pkεA , skεA ) = asym keygen ( )
2 c1 = sign (pkεA , skσA )
3 send (Bob , c1 )
4 c2 = recv ( )
5 κε = ver i fy ( c2 , pkσB )
6 SECRET = rng ( )
7 c3 = sign encrypt ( SECRET , skσA , κε )
8 send (Bob , c3 )
9 pr in t ( SECRET )

(a) Alice’s protocol code.

10 c1 = recv ( )
11 pkεA = ver i fy ( c1 , pkσA )
12 κε = sym keygen ( )
13 c2 = sign (κε , skσB )
14 send (Alice , c2 )
15 c3 = recv ( )
16 m = decrypt verify ( c3 , κε , pkσA )
17 pr in t (m)

(b) Bob’s protocol code.

Fig. 2: A second (also insecure) implementation of the SECRET

SHARING PROTOCOL. This time, Bob forgets to encrypt the

shared key before sending it over the wire (12-14). As a result,

an adversary can intercept the message, learn the key, and read

any messages that are encrypted using it.

This second version still overlooks a catastrophic mistake

(which our framework will catch). Bob sends the symmetric

key (lines 12-14) without first encrypting it, so an attacker

could steal it and use it to decrypt any secrets encrypted

with that key. We fix that error and produce our almost-final

protocol, shown in Fig. 3.
Third attempt. The implementation in Fig. 3 protects the

symmetric key (line 13) and digitally signs all ciphertexts

(2,7,13). The protocol is bootstrapped with preshared public

signing keys amongst the honest parties, which would be

handled in practice by a public key infrastructure (PKI) or

similar service.
Two main nuisances remain. First, the adversary may send

garbage messages that fail signature checking, aborting the

protocol. Second, the adversary may replay legitimate mes-

sages, similarly aborting the protocol or, worse, tricking an

honest participant into proceeding. We wait for our final

implementation, in our new protocol language, to deal with

those concerns.
Typically, the issues we iterated through are manually

discovered via code reviews or bug reports. In the next

paragraphs, we show how SPICY can prevent these errors

automatically, with a digression through a formal specification

for the protocol, before we return to a secure implementation.
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1 (pkεA , skεA ) = asym keygen ( )
2 c1 = sign (pkεA , skσA )
3 send (Bob , c1 )
4 c2 = recv ( )
5 κε = decrypt verify ( c2 , skεA , pkσB )
6 SECRET = rng ( )
7 c3 = sign encrypt ( SECRET , skσA , κε )
8 send (Bob , c3 )
9 pr in t ( SECRET )

(a) Alice’s protocol code.

10 c1 = recv ( )
11 pkεA = ver i fy ( c1 , pkσA )
12 κε = sym keygen ( )
13 c2 = sign encrypt (κε , skσB , pkεA )
14 send (Alice , c2 )
15 c3 = recv ( )
16 m = decrypt verify ( c3 , κε , pkσA )
17 pr in t (m)

(b) Bob’s protocol code.

Fig. 3: A third implementation of the SECRET SHARING

PROTOCOL. Private keys and secrets are encrypted before

being sent (7,13), and all ciphertexts are digitally signed

(2,7,13). However, garbage messages or replays would still

interrupt proper protocol execution.

Ideal World specification. A developer using SPICY begins

with a formal protocol specification (written in the Ideal World
DSL) that precisely explains the protocol intent and is used to

verify the correctness of the implementation. The specification

language treats messages as members of permissioned chan-

nels upon which each user can be granted read (r-), write (-w),

or read-write (rw) access. Users may share their own chan-

nel permissions with others by sending permission-granting

messages. Messages are never removed from channels, so

granting access to one gives the receiving user access to the

full message history on that channel. Further, to model an

active network adversary properly, we want to be prepared for

message reorderings, so Ideal World programs may receive

duplicate and out-of-order messages. One complication arises

via the channel-intersection (∩) operation, which allows a

user to create a new channel implicitly with the permissions

constructed from the least permissive bits of the user’s access

for each constituent channel. Fig. 4 shows a specification for

the SECRET SHARING PROTOCOL.

We begin with “authenticated” communication channels be-

tween the two parties Alice and Bob: chAB and chBA, meaning

everyone can read on the channels, but only Alice can write

to chAB, and only Bob can write to chBA. SPICY is currently

specialized to the existence of that kind of bootstrapping key

distribution, much like how Java is specialized to particular

memory layouts in a garbage-collected heap. Alice starts the

protocol by creating a new channel (line 1) and sending

-w access on that channel to Bob (2). The new channel

created here will be used to help establish the symmetric

1 ch1 ← CreateChannel
2 ← Send (ch1 �→ -w ) chAB

3 chs ←Recv (ch1 ∩ chBA )
4 SECRET ← Gen
5 ← Send SECRET (chs ∩ chAB )
6 Return SECRET

(a) Alice’s protocol specification.

7 ch1 ←Recv chAB

8 chs ← CreateChannel
9 ← Send (chs �→ rw ) (ch1 ∩ chBA )

10 SECRET ←Recv (chs ∩ chAB )
11 Return SECRET

(b) Bob’s protocol specification.

Fig. 4: Specification for the SECRET SHARING PROTOCOL.

The channels chAB and chBA are preprovisioned authentication

channels whose names are in scope for both users’ specifica-

tions.

1 (pkε1, sk
ε
1) ← GenerateKey Asym Encrypt ion

2 c1 ← Sign skσA ûB pkε1
3 ← Send ûB c1
4 c2 ← Recv ( SignedEncrypted pkσB pkε1 )
5 κε ←Decrypt c2
6 SECRET ← Gen
7 c3 ← SignEncrypt skσA κε ûB SECRET
8 ← Send ûB c3
9 Return SECRET

(a) Alice’s protocol implementation.

10 c1 ← Recv ( Signed pkσA )
11 pkε1 ← Ver i fy pkσA c1
12 κε

2 ← GenerateKey Sym Encrypt ion
13 c2 ← SignEncrypt skσB pkε1 ûA κε

2

14 ← Send ûA c2
15 c3 ← Recv ( SignedEncrypted pkσA κε

2 )
16 m ← Decrypt c3
17 Return m

(b) Bob’s protocol implementation.

Fig. 5: Real World description of the SECRET SHARING

PROTOCOL. We bootstrap the protocol with globally accessible

shared public signing keys for authentication (pkσA, pkσB) so

that the honest parties can communicate securely.

communication channel (akin to sharing a public encryption

key). Bob receives the permission (7), creates another channel

that the pair can use for secure communication (8), and grants

Alice full access (rw) to this channel (9). Note, Bob sends this

full permission grant using the “intersect” operation where he

combines the properties of his authentication channel with the

private channel received from Alice in (7). At this point, both

parties have a channel that is secure (known to both as chs)

along with their authentication channels, so they can perform

secure authenticated communication. Alice generates a random

secret (4) and securely sends it to Bob, line (5).
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Real World implementation. The final Real World protocol

that can pass the requirements in our language (Fig. 5) looks

very similar to the result of the iterative process, so we do

not describe it in detail. One bit of undescribed notation that

can be found in the protocol implementation are references

to honest parties (e.g., ûA) which act as addresses to the

users participating in the protocol. This implementation shows

off the primary distinctive high-level features of SPICY. Most

clearly, inputs from the network are associated with message
patterns (see lines 4, 10, and 15), which spell out crypto-

graphic requirements on messages, with the semantics that the
first compliant message in the message queue is read, while
noncompliant messages are ignored. In that way, no matter

how much of a nuisance an adversary creates by sending

messages, the honest parties may experience some denial of

service, but, so long as the protocol finishes, its result will

be as if the adversary sat on the sidelines. This guarantee

holds even when the adversary replays honest messages, since

SPICY builds in runtime generation and checking of nonces

(activated on every send or receive by honest parties), much

as Java improves safety with runtime storage and checking of

array lengths.
SPICY enforces several rules that are necessary to overcome

attacks by an active adversary. Centrally, we track a pool of

honest keys, initialized with the bootstrapping key distribution

and charged never to be leaked to the adversary. When a

violation of an associated conservative rule is detected at

runtime, SPICY effectively raises an exception (though really

this convention is a proof technique, as we always prove that

protocols do not raise exceptions). For example, SPICY pre-

vents man-in-the-middle attacks by requiring all honest parties

to sign their messages with honest keys, protects honest parties

from leaking honest keys by ensuring that all private keys are

encrypted before being sent, and guarantees that honest parties

will not fall prey to message-replay attacks by properly adding

nonces to ciphertexts and checking them on received messages.

We defer to §III-C both the formal description of our safety

result and the full analysis of how these safety properties

emerge from our efforts in producing that final safety proof,

where we describe the Strong Preservation Theorem (Thm. 1).

1 SECRET ← Gen
2 ← Send SECRET chAB

3 Return SECRET

(a) Alice’s simple protocol specification.

4 m ← Recv chAB

5 Return m

(b) Bob’s simple protocol specification.

Fig. 6: Simple specification, distilling the essence of the

SECRET SHARING PROTOCOL in which we simply share the

(random) secret between two parties by sending it over a

preprovisioned channel.

The reader may reasonably wonder what makes Fig. 4

the right, simplest specification for the SECRET SHARING

PROTOCOL. In fact, the specification in Fig. 4 arguably

contains a bit too many ancillary details to instill absolute

confidence in its validity2 In effect, we consider this protocol

specification to be one step in the verification process – leaking

perhaps a bit too many protocol details, so that we can make

the connection to the protocol implementation. Indeed, we

expect that a full protocol analysis would involve proof of

these specifications against others that avoid leaking protocol

details. For instance, a natural choice here is to convey the

secret directly using channels that are already shared. Though

deriving such “simplest” specifications has not been the focus

of our project to date, we have constructed one for the SECRET

SHARING PROTOCOL (Fig. 6), distilling the protocol to its

essence: Alice generates a secret and shares it with Bob over

a predefined permissioned channel. The correctness of Fig. 6

relies almost exclusively on the proper permissioning of chAB,

leaving very little opportunity for the specifier to make a

mistake.

The point is that our method shows the process of refining

a specification in a language that does not require any explicit
adversary modeling. As a result, the rest of the correctness

proof can be “just” a traditional verification of a message-

passing concurrent system.

III. DESIGN AND IMPLEMENTATION OF SPICY

A. Ideal World Semantics

Protocols written in the Ideal World language capture

high-level correctness properties like communication patterns

and information flow. The correctness of these specifications

should either be obvious or easily verifiable (e.g., by hand).

Constraints that would be imposed on realistic communica-

tions (e.g., the use of encryption) are abstracted away, and

users instead communicate via perfectly secure, permissioned

channels. Permissions Φ are two-bit records defined as: Φ ::=
{read : B;write : B}. Messages M contain either arbitrary

content (modeled here as naturals N), permissions, or pairs of

messages (M ::= N | Φ | M×M).

The Ideal World language is defined as a mixed embed-
ding [18] in Gallina, Coq’s functional specification language.

This means that Ideal World programs may appear in Gallina

programs, and Gallina programs (G) may appear in Ideal
World programs. The syntax for the Ideal World is as follows:

Return : G→ exp

Bind : exp→ (G→ exp)→ exp

Gen : exp

Send : M→ ι→ exp

Recv : ι→ exp

CreateChannel : exp

2In this case, since the protocol is relatively straightforward, maybe this
specification is good enough, but it is not hard to imagine scenarios to the
contrary.
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〈cv, μ[û �→ 〈ps, c1〉〉 �→ 〈cv′, μ[û �→ 〈ps′, c′1〉]〉
BINDRECURSE

〈cv, μ[û �→ 〈ps, x← c1; c2〉〉 �→ 〈cv′, μ[û �→ 〈ps′, x← c′1; c2〉]〉
BINDPROCEED〈cv, μ[û �→ 〈ps, x← Return(v); c(x)〉]〉 → 〈cv, μ[û �→ 〈ps, c(v)〉]〉

ps[ch] = p -w ≤ p ∀(ch′, φ) ∈ m. φ ≤ ps[ch′]
SEND

〈cv[ch �→ ms], μ[û �→ 〈ps, Send(m, ch)〉]〉 m→ 〈cv[ch �→ {m} ∪ ms], μ[û �→ 〈ps,Return()〉]〉
ps[ch] = p r- ≤ p m ∈ cv[ch]

RECV
〈cv, μ[û �→ 〈ps,Recv(ch)〉]〉 m−→ 〈cv, μ[û �→ 〈ps ∪ {p | p ∈ m},Return(m)〉]〉

fresh ch
CREATECHANNEL

〈cv, μ[û �→ 〈ps,CreateChannel〉]〉 ε−→ 〈cv[ch �→ []], μ[û �→ 〈ps[ch �→ rw],Return(ch)〉]〉
GENCONTENT

〈cv, μ[û �→ 〈ps,Gen〉]〉 ε−→ 〈cv, μ[û �→ 〈ps,Return(v)〉]〉

Fig. 7: Small-step semantics for the Ideal World specification language.

Return and Bind are the standard monadic metalanguage def-

initions adapted to the mixed-embedded setting. As usual, we

adopt the notation x← exp1; exp2 for Bind exp1 (λx. exp2).
Gen is a primitive for nondeterministic number generation,

used as a proxy for some secret value unknown at the time of

specification or implementation. Send and Recv are primitives

for communication over channels drawn from ι. Commu-

nication may take place over a “single” channel (created

by CreateChannel) or an “intersection” channel created by

merging two single channels together (deriving permissions

as Φ1 ∩ Φ2 = {read : Φ1.r ∧ Φ2.r; write : Φ1.w ∧ Φ2.w}).
Fig. 7 presents the operational semantics for the Ideal

World – a small-step semantics using labels to track message

movements. We annotate the stepping relation, as c
�→ c′

which states that the program steps from c to c′ while emitting

label � (silent steps have no annotation). Each rule chooses a

single party to step, then executes the appropriate step for

that party. Configurations are pairs 〈cv, μ〉, where cv (channel

vector) maps channel identifiers to message heaps and μ maps

party identifiers to parties. From these maps we draw ps and c
for the currently stepping party, where ps represents a mapping

from channel identifiers to that party’s permissions on that

channel, and c is the remaining program for that party. Initial

configurations contain any preprovisioned channels.3

The rules BINDRECURSE and BINDPROCEED are defined

as usual. SEND adds a specified message to the heap associated

with the specified channel (assuming the sending party has

write permission to the channel and is not sharing a permission

that it does not itself have) and emits a label with the message

m. RECV picks a message from the specified channel, adds

any permissions granted by the message to the receiving

party’s permission set, and emits a label m. RECV requires

read permissions on the receiving channel and that a message

(chosen nondeterministically) be present on that channel (i.e.,

Recv is blocking). CREATECHANNEL creates a fresh channel

3Bootstrapping these initial configurations is out-of-scope for SPICY.

with an empty message heap, read-write permissions for the

creating party, and no permissions elsewhere. GENCONTENT

nondeterministically produces a natural number.

B. Real World Semantics

Protocols written in the Real World language reintroduce

the usual primitives that secure realistic communications (e.g.,

signatures and encryption). Messages are no longer sent on

perfectly secure, permissioned channels but over public net-

works. Permissions from the Ideal World correspond to cryp-

tographic keys in the Real World. All keys are either symmetric

or asymmetric, used either for signing (σ) or encrypting (ε),

and each is uniquely identified by some kID ∈ K.

Messages M in the Real World are either plaintexts or

ciphertexts C. Plaintext messages take the same shape as Ideal
World messages, but with Φ ::= K ⊗ {pub, priv}, where the

latter component indicates whether the permission has full

access to the key (i.e., if the key is symmetric or the permission

is the private part of an asymmetric key). A ciphertext message

wraps a plaintext message, affixing both a signature (to prevent

forgery) and a unique nonce (to prevent replay), and may

optionally be encrypted.

As in the Ideal World, the Real World is defined as a mixed

embedding in Gallina, with the following syntax:

Return : G→ exp

Bind : exp→ (G→ exp)→ exp

Gen : exp

Send : M→ û→ exp

Recv : pat→ exp

SignEncrypt : kσ → kε →M→ exp

Decrypt : kσ → kε → C→ exp

Sign : kσ →M→ exp

Verify : kσ → C→ exp

GenerateKey : keytype→ usage→ exp
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Return, Bind, and Gen are just as in the Ideal World. Send
and Recv are the standard communication primitives, where û
is a user, and pat is a receive pattern that acts as a filter for the

next message to draw from the queue. A receive pattern can

either allow all messages or check for ciphertexts according

to the following grammar:

pat ::= Accept | Signed kσ | SignedEncrypted kσ kε

Recall that this pattern mechanism is the most visible novelty

of SPICY over past languages for protocol design. It is im-

portant that protocol execution ignores unmatching messages,

thus completely filtering the adversary’s futile attempts to

interfere, so long as the patterns are chosen wisely, i.e. to

check signatures using keys the adversary does not have.

Also recall that sending and receiving implicitly generate and

check nonces, protecting against replay attacks. For resource-

constrained environments, where minimizing message size is

important, alternative replay-prevention strategies could be

employed (like the implicit message-sequence numbering of

TLS), though we have not yet implemented any.

Another important point to make is that any user may

send a message to any other user, and the recipient does not

automatically receive any kind of proof of who sent it. Thus, it

is easy to model a strong, active adversary as a designated user

in the same language, with the extra benefit of being delivered

a copy of each message sent by others. That adversary may

then flood the honest parties with as many messages as he

likes, computed in any way consistent with the Dolev-Yao

rules for symbolic cryptography. In other words, we do not

require the separate adversary message deduction rules that

related tools use to model adversary capabilities; instead, the

adversary is modeled as another (unknown) program in the

same DSL, constrained by the same operational semantics,

with a few advantages versus honest parties that we summarize

in this section.

SignEncrypt, Decrypt, Sign, and Verify are the usual

cryptographic primitives, defined over encryption and sig-

nature keys where appropriate. Keys may not change us-

age after initialization. Finally, GenerateKey, analogous to

CreateChannel, creates a fresh key given a keytype (symmetric

(Sym) or asymmetric (Asym)) and a usage (either Encryption
[ε] or Signing [σ]).

The operational semantics for the Real World is given in

Fig. 8. As in the Ideal World, it is a labeled small-step seman-

tics that traces message movement, where each rule chooses a

user to step and then executes the step. Global configurations
are triples 〈�, κ, μ〉, where � maps cipher identifiers to their

ciphertexts, κ maps key identifiers to their keys, and μ maps

user identifiers to local user configurations. Local user con-

figurations, which track the computation from the perspectives

of individual parties, are five-tuples 〈ς, ks,�, ð, c〉, where ς is

a local ciphertext heap, ks is a local key heap, � is a message

queue, ð is a three-tuple 〈 next nonce value, nonces sent,

nonces received 〉, and c is the remaining program.

The rules BINDRECURSE, BINDPROCEED, and GENCON-

TENT work as they did in the Ideal World (modulo the change

in configurations). GENKEY takes information about key type
and usage, returning (kID, priv) where kID is a fresh key

identifier and adding the generated key to the global key

heap κ. SIGN and ENCRYPT similarly create ciphertexts of

the appropriate kinds with fresh identifiers, checking that

the user has the right level of access to the keys used to

sign and/or encrypt (priv access for signing and at least pub
access for encrypting). SIGN and ENCRYPT also increment

the user’s current nonce value and affix it to the ciphertext4,

checking that the message only contains keys possessed by

the user. Any of these hypotheses that we describe informally

as “checks” can also be seen as analogous to an array-out-of-

bounds exception in Java, a kind of signal that a conservative

safety rule has been violated. The checks in SPICY differ from

array-out-of-bounds checks in Java in a very important way

– the checks in SPICY are performed completely statically,

without the need for a runtime monitor. That is, we formulate

this operational semantics as a proof tool, then prove that

specific protocols never raise exceptions.

VERIFY and DECRYPT are the inverses of the previous

operations, again checking that the necessary keys are owned

by the stepping user (priv access for decrypting and at least

pub access for verifying). There is an additional check that

the ciphertext is in the user’s local cipher heap. SEND adds a

message to the receiving user’s message queue after checking

that all keys within the message are in the sending user’s key

heap, that all ciphers within the message are in the sending

user’s local cipher heap, and that the receiving and sending

users are not the same. SEND also records the nonce of the

sent ciphertext, and although it is not depicted in the rules,

delivers the message to the adversary. Finally, RECV reads

the next message in the user’s message queue that matches

the receive pattern, adds all unencrypted keys contained in the

message to the user’s local key heap, and records the nonce

of the received ciphertext.

C. Protocol Hygiene and Adversary Safety

The top-level correctness property of SPICY protocols

demonstrates that any possible program trace (generated via

labels of the operational semantics) that can be produced by

the Real World can be matched by one produced in the Ideal
World. The ultimate safety property requires that these traces

must be executed in an environment in which an adversary

is actively attempting to disrupt the behavior of the protocol.

A key benefit of SPICY is that it allows a protocol developer

to design her protocol in a gentler, adversary-free context. As

long as the developer follows a few rules, SPICY can appeal

to the Strong Preservation Theorem to ensure that the final

protocol is safe in the presence of an adversary.

To demonstrate program-trace inclusion, we generate a

stronger criterion in the form of a simulation argument

between the Real and Ideal protocol descriptions, i.e., we

construct a binary relation R between the Real (R) and Ideal

4Adversary protocol rules differ here: they may use any nonce-generation
strategies they choose.
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〈�, κ, μ[û �→ 〈ς, ks,�, ð, c1〉]〉 → 〈�′, κ′, μ[û �→ 〈ς ′, ks′,�′, ð′, c′1〉]〉
BINDRECURSE〈�, κ, μ[û �→ 〈ς, ks,�, ð, x← c1; c2(x)〉]〉 → 〈�′, κ′, μ[û �→ 〈ς ′, ks′,�, ð′, x← c′1; c2(x)〉]〉

BINDPROCEED〈�, κ, μ[û �→ 〈ς, ks,�, ð, x← Return(v); c2(x)〉]〉 → 〈�, κ, μ[û �→ 〈ς, ks,�, ð, c2(v)〉]〉
fresh kID κ′ = κ[kID �→ (keytype, usage)] ks′ = ks[kID �→ priv]

GENKEY〈�, κ, μ[û �→ 〈ς, ks,�, ð,GenerateKey(keytype, usage)〉]〉 → 〈�, κ′, μ[û �→ 〈ς, ks′,�, ð,Return(kID)〉]〉
fresh cID ks[kσ] = priv ∀(k′

ID, φ) ∈ m. φ ≤ ks[k′
ID] �′ = �[cID �→ (m, kσ, ûrec)]

SIGN〈�, κ, μ[û �→ 〈ς, ks,�, ð, Sign(kσ, ûrec,m)〉]〉 → 〈�′, κ, μ[û �→ 〈ς ∪ {cID}, ks,�, incNon(ð),Return(cID)〉]〉
fresh cID ks[kσ] = priv ks[kε] ≥ pub ∀(k′

ID, φ) ∈ m. φ ≤ ks[k′
ID] �′ = �[cID �→ (m, kσ, kε, ûrec)]

ENCRYPT〈�, κ, μ[û �→ 〈ς, ks,�, ð, SignEncrypt(kσ, kε, ûrec,m)〉]〉 → 〈�′, κ, μ[û �→ 〈ς ∪ {cID}, ks,�, incNon(ð),Return(cID)〉]〉
cID ∈ ς ks[kσ] ≥ pub �[cID] = (m, kσ, û′)

VERIFY〈�, κ, μ[û �→ 〈ς, ks,�, ð,Verify(kσ, cID)〉]〉 → 〈�, κ, μ[û �→ 〈ς, ks,�, ð,Return(m)〉]〉
cID ∈ ς ks[kε] = priv ks[kσ] ≥ pub �[cID] = (m, kσ, kε, û′) ks′ = ks ∪ {k | k ∈ m}

DECRYPT〈�, κ, μ[û �→ 〈ς, ks,�, ð,Decrypt(kσ, kε, cID)〉]〉 → 〈�, κ, μ[û �→ 〈ς, ks′,�, ð,Return(m)〉]〉
∀k ∈ m. k ∈ ks1 ∀c ∈ m. c ∈ ς1 û 
= ûrec μ[ûrec] = 〈ς2, ks2,�2, ð2, c2〉 μ′ = μ[û �→ 〈ς1, ks1,�1, updSents(ð1,m),Return()〉

SEND

〈�, κ, μ[û �→ 〈ς1, ks1,�1, ð1, Send(m, ûrec)〉]〉 (m,û)→ 〈�, κ, μ′[ûrec �→ 〈ς2, ks2,�2 ++ [m], ð2, c2〉]〉
� = ms1 ++m :: ms2 m ∈ p ∀m ∈ ms1. m /∈ p ks′ = ks ∪ {k | k ∈ m}

RECV

〈�, κ, μ[û �→ 〈ς, ks,�, ð,Recv(p)〉]〉 (m,û)→ 〈�, κ, μ[û �→ 〈ς ∪ {c | c ∈ m}, ks′,ms1 ++ms2, updRecvs(ð,m),Return(m)〉]〉
GENCONTENT〈�, κ, μ[û �→ 〈ς, ks,�, ð,Gen〉]〉 → 〈�, κ, μ[û �→ 〈ς, ks,�, ð,Return(v)〉]〉

Fig. 8: Small-step semantics for the Real World language.

(I) universe states. The simulation statement for SPICY is

comprised of three clauses, explaining the allowed transitions

between elements of R. A Real World silent step (→) is

matched by any number of Ideal World silent steps (→∗).

A Real World labeled step (
�→) requires any number of Ideal

World silent steps followed by a matching labeled step for the

same user. Finally, we ensure that when the protocol is finished

running (i.e., cannot take any more steps), any users whose

protocols are terminal (Return) have matching Return values

in the specification.5 We illustrate these simulation-stepping

rules in the commutative diagrams shown in Fig. 9.

Remember, the labels in SPICY’s operational semantics

correspond to observable (send/receive) actions. We mark

secrecy-enforcing operations (as well as adversary steps) as

silent, which allows us to use a simpler semantics in the

Ideal World. In general, the correspondence of cryptographic

operations with actions on channels is very loose indeed, and

there will be many ways of correctly matching the specifi-

cation. To match labels (comprised essentially of messages)

between Real and Ideal representations, we define an equiv-

alence between messages. Simply, the underlying messages

must be the same (after unwrapping Real World ciphers);

5Incidentally, to prove refinement of the Ideal World to simplified Ideal
World specification for the SECRET SHARING PROTOCOL, we used a simula-
tion statement that only checks these final return labels, allowing intermediate
labels to vary.

R I

R′ I′

R

∀→ ∃→∗

R−1

R I

I′

R′ I′′

R

∀ �→

∃→∗

∃ �→

R−1

Fig. 9: Commutative diagrams depicting the simulation-

statement stepping rules. Real World silent steps (R → R′)
allow the Ideal World to step silently. Real World labeled steps

(R
�→ R′) allow the Ideal World to take any number of silent

steps followed with a matching labeled step.

i.e., bare payloads must match, corresponding elements of

paired messages must be the same, and permissions in the

Ideal World must properly correspond to keys in the Real
World. The permission-key correspondence is a little subtle.

Access to a symmetric key or a private asymmetric key confers

complete control over how that key is used, meaning the user

must also have full control over the corresponding channel

(rw). A signing key corresponds to an authenticated channel

from one user to any number of others, representing r- access.

Similarly, a public encryption key corresponds to a secure

communication channel from any number of users to the key
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owner, representing -w access.

To ensure that protocols are implemented safely, we break

from standard practice and add an additional clause to the

simulation statement which enforces the hygiene rules. Ulti-

mately, these rules ensure that honest parties cannot be tricked

into leaking honest keys to adversaries. They refer to a set

of honest keys, initialized to the bootstrapping keys of the

protocol and growing to include all keys generated by any

honest participants. The hygiene rules are defined step-by-step

as a predicate (safety) over the next (honest) command to be

executed, with interesting behavior for only the Real World
DSL commands:

• Sign: all keys in a signed message are honest and public.

• Encrypt: messages are only encrypted with honest keys,

and all keys within the payload must be honest.

• Receive: all receive patterns check for honest signing

keys and enforce replay protection.

• Send: every sent message is encrypted or encrypted and

signed by the sender, sent to the user it is addressed to,

and has not been sent before.

These conditions are further analogues of e.g. Java array-

bounds checks, a sort of dynamic opportunity to note that

conservative safety rules have been violated. Actually, a better

analogy would be (since the SPICY checks do not require

dynamic runtime monitoring) trying to call a nonexistent

method on a Java object, which should be caught statically.

Interestingly, as for many aspects of Java type safety, we can

check our safety rules statically, via a simple type checker we

wrote to apply to honest-party protocol code (and proved to

imply the declarative conditions). Provided that the developer

adheres to these rules, SPICY provides a final safety proof in

the presence of an adversary running arbitrary code.

We are ready now to state the Strong Preservation Theorem,

beginning by defining “refinement.” Given Real (R) and Ideal
(I) protocol descriptions, the Real World refines the Ideal
World (R � I) if there exists a simulation relation (R)

between them. The refinement condition is used to prove

trace inclusion between the Real and Ideal Worlds. Addi-

tionally, since we have augmented the simulation statement

with cryptographic-best-practice rules, SPICY can lift the

refinement condition that the protocol developer proves in

a Real World universe without adversaries into one with an

active adversary. More precisely:

Theorem 1 (Strong Preservation Theorem). Given a Real

World (R)6 and an Ideal World (I), if R � I in an adversary-
free Real World, and we inject arbitrary adversary code
(Acode) into R, then any trace of the augmented Real World

R �Acode can also be produced by I.

The key supporting lemma for Theorem 1 lifts refinement

proofs from an adversary-free Real World to the Real World
with an adversary executing arbitrary protocol code. Consider

refinements predicated over the strength of the adversary R �

6Honest users’ mailboxes must start with only honest messages, and all
preprovisioned keys and ciphertexts must be honest.

I / P , where R and I are the Real and Ideal universe states

respectively, and P is a predicate over the adversary: P :
Acode → B. Then we state the following lemma:

Lemma 1.1. Given PR(A) = (∃ r. A = Return r) and R �

I / PR, we can derive a new refinement condition for an
adversary with arbitrary code: R � I / True.

The big insight in completing the proof of Lemma 1.1

is that we can derive a simulation relation (R′) for the

adversary-augmented Real World (R′) by simply stripping

out all vestiges of the adversary from R′ and appealing to

the original simulation relation R. Specifically, the stripping

operation:

1) Removes dishonest keys from the global key heap and

all users’ permission heaps.

2) Removes dishonest ciphers from the global cipher heap.

3) Removes non-honestly-signed or replayed messages from

all message queues.

4) Sets the adversary’s code to a no-op (Return).

We can use the new derived simulation relation R′ within

the following lemma to prove Lemma 1.1 directly:

Lemma 1.2. Given a simulation relation R for a protocol
within a Real World without adversaries, if we augment the
Real World with arbitrary adversary code (R′ = R �Acode)
with (R′, I) ∈ R′, then for any Real World step (R′ → R′′),
we can find appropriate Ideal World step(s) (I →∗ I′) such
that (R′′, I′) ∈ R′.

There is an important point here that justifies SPICY’s

codified hygiene rules. The only reason we are able to derive

R′ after performing the stripping operation is because of

hygiene rule enforcement. Indeed, the rules emerged during

the development of SPICY as necessary conditions for being

able to lift the refinement property from an adversary-free

Real World into one with an active adversary. Essentially, the

hygiene rules place the necessary restrictions on honest-party

protocols, allowing us to strengthen the induction hypothesis

via automatically maintained predicates over the Real World
universe state. These universe predicates are observations that

the Real World universe state has not gone “wrong” and are

only implementable because of the hygiene rules. The good

news is that these emergent rules are simply part of the lore of

building secure cryptographic protocols and do not represent

anything that experts in the field do not already know.

We also want to return here to the subject of adversary

message deduction rules. Other protocol-analysis approaches

must mention those rules explicitly in the primary security

condition for a protocol, to force consideration of every way

an adversary could interfere. Thanks to our hygiene conditions,

we avoid any explicit consideration of adversary actions. There

truly is no analogue to those deduction rules in our framework;

while our baseline Real World operational semantics are also

applied to adversary processes, we do not need to reason

explicitly about any such process, in verifying a protocol.
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D. Automated Protocol Model Checking

For a wide range of Real and Ideal World protocol descrip-

tions, we can automatically generate the simulation relation

R via symbolic protocol execution while simultaneously per-

forming the necessary model-checking exploration. A predi-

cate, align, checks that each Real World user who can make

a labeled step has a corresponding, matching labeled Ideal
World step. The step-relation rules found in Fig. 10 show how

we track a tuple of Real World/Ideal World universe states

(R � I) through allowed transitions.

R→ R′
ε

(R, I)→ (R′, I)
¬ align(R, I) ⊥
(R, I)→ ⊥

R
�r→ R′ I→∗ I′ I′ �i→ I′′ �r ∼= �i align(R, I)

�
(R, I)→ (R′, I′′)

Fig. 10: Rules for model-checking state-space exploration.

The rules are driven by Real World steps describing how we

transition for silent steps (ε), misaligned steps (⊥), and aligned

labeled steps (�).

Using the state-transition rules in Fig. 10, we begin from

an initial state with the full protocol description, along with

any necessary predistributed channels and keys. From there,

we continuously apply the stepping rules, which accommodate

nondeterminism in the protocol execution by following all

possible protocol paths, until the protocol gets stuck or there

is a label misalignment (upon which we know the protocol

is invalid and can terminate model checking). We check

whether each intermediate state satisfies the necessary safety

properties: align and safety. A lemma verifies the soundness

of our model-checking procedure.

Lemma 1.3. Given an initial protocol state (R, I), whose
transition system is defined by Fig. 10: if R only contains
honest preprovisioned keys and empty message queues and
align and safety are invariants of the transition system, then
R � I.

As stated, the model-checking state space is essentially

infinite in at least two different ways. We use the Strong

Preservation Theorem to “quotient out” the adversary, focusing

the search on honest-party execution paths while ignoring

the arbitrarily large adversary executions. We further reduce

the possible honest-party execution paths by performing silent

steps greedily, since one party’s silent steps have no observable

consequences for others. One other source of state-space

explosion is, e.g., in the space of possible plaintexts that are

potentially allowed to pass among honest parties. Our model

checker, implemented as a tactic in Coq, detects that kind

of free variable of states and automatically quantifies them

existentially in the simulations it computes. All of these state-

space simplifications are justified via framework theorems

which automatically tie per-protocol safety results to the top-

level refinement condition.

In summary, using nearly the most naı̈ve technique possible,

we have demonstrated in SPICY that we can verify protocols

with essentially infinitely sized state spaces using two tricks.

First, we eliminate the infinitude of possible adversary exe-

cution interleavings by appealing to the Strong Preservation

Theorem. Second, we allow for arbitrarily large message and

ciphertext spaces by representing them symbolically during

state exploration. In the next section, we evaluate how well

this technique works on a collection of nontrivial protocols.

IV. EVALUATION

As we have discussed in prior sections, SPICY is an

experiment set up to study whether it is possible to design and

implement a custom language for cryptographic protocols that

forces security of implementations without the protocol author

having to reason about adversaries explicitly. We implemented

SPICY in the Coq proof assistant, providing us with strong

security guarantees, at a cost in verification performance. In

this first iteration, we chose to use naı̈ve model-checking

techniques to check safety of our case-study protocols and

ensured that we could automate the proof scripts, giving the

user a mostly push-button verification experience for correct

protocols. Our high-level safety proofs (in particular, the

Strong Preservation Theorem) establish the soundness of this

approach.

In this evaluation of SPICY, we choose protocols that,

together, a) exercise the main features of the languages, b) are

close to real-world protocols, and c) exercise the limitations of

our model-checking approach. We want to show that SPICY
can, in fact, verify realistic protocols and that it can do so using

a reasonable amount of resources on commodity hardware.

To that end, for each protocol we measure proving time,

proving memory, number of parties involved, and lines of

code (LoC) and specification (LoS). The performance numbers

were gathered on a Dell XPS 15 (2019) laptop with an

Intel i9-9980HK processor and 64GB of RAM and should be

considered approximate. Note that in all cases, the correctness

proofs have been automated, and all that the SPICY user

must provide are valid, corresponding Real and Ideal protocol

descriptions.

A. The Evaluation Protocols

We have implemented and proven correct four protocols to

demonstrate the capabilities of SPICY. Many of the protocols

highlight the benefits that the mixed-embedding style provides

SPICY – that one can run arbitrary Gallina computations as a

part of a protocol without having to encode them directly as

features of the DSL. The specification code, implementation

code, and bootstrapping configurations for all of the following

protocols can be found in the Appendix.

PGP variant. In §II, we presented SECRET SHARING PRO-

TOCOL, which demonstrated a number of language features

including key generation and cryptographic and messaging

operations. A few tweaks to that protocol bring us one quite

similar to the well-known PGP [19] protocol, with one key

difference: a single PGP message is split into two consecutive
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messages. In PGP, the sender transmits both the symmetrically

encrypted content and the asymmetrically encrypted content

key to the recipient in a single, signed message. SPICY
currently only allows the creation of ciphertexts via a single

operation, so ciphertexts cannot include message payloads that

are signed differently or encrypted with different keys.

Secure DNS variant. Next, we present a three-party proto-

col: an adaptation of the DNSCurve [20] secure DNS protocol

proposed by D. J. Bernstein. In DNSCurve, when a user wants

to resolve an IP address by name, she first requests a response

from a local DNS cache. That cache makes a signed, encrypted

request to an authoritative server, and if the server can resolve

the name, it returns a response, which the local DNS cache

forwards back to the user. In our adaptation, we assume a

single DNS cache and authoritative server that can always

resolve requested IP addresses, eliding some particulars of

the way in which keys are managed in the actual DNSCurve

protocol.7

Secret aggregation. The third protocol we examine is a

four-party protocol where three parties trust a server to perform

a sensitive computation on data aggregated from each of the

parties. This example is a bit contrived but further illustrates

embedding arbitrary computations within protocol definitions.

Here, each user sends an encrypted message containing their

salary to the server, which then computes and reports the

average of the results.

Network authentication. As a final example, we developed

a simple protocol for mutual authentication over an insecure

network using a trusted third party. This protocol demonstrates

an alternative bootstrapping mechanism for distributing public

signing keys based on the trusted identity of a single server

rather than pairwise secrets established between all parties. In

our implementation here, two users who want to communicate

securely ask the server for a (symmetric) key they can use to

establish a secure communication channel.

B. Discussion

In this section, we discuss how SPICY fares verifying the

protocols from §IV-A, placed into context with some of the

popular tools in this space, specifically ProVerif [21] and

Tamarin [22]. We defer a more detailed analysis of related

work to the next section and focus here on verifier performance

versus tool implementation and usage complexity.

SPICY presents a programming model that should be fairly

familiar to developers, particularly those with functional-

programming experience. By leveraging a mixed embedding

within Gallina, we are able to present small DSLs while

still allowing developers to use more complex programming-

language features. For example, the example protocols include

features like pattern matching, server loops, associative map

lookups, and arithmetic calculations, by appealing to the Gal-

lina metalanguage rather than extending our formal DSLs. This

kind of capability allows SPICY to handle stateful protocols,

7For example, DNSCurve servers publish their public keys as parts of their
hostnames.

something that ProVerif cannot handle (though Tamarin can).

The programming experience feels very much like writing

secure-messaging protocols, with the added benefits of the

safety checks that SPICY provides. Both Tamarin and ProVerif

present an arguably less familiar programming interface (ad-

ditionally requiring explicit setup for how the adversary could

impact the modeled protocol), though they currently handle

a wider variety of protocols than SPICY can (something we

hope to address in future work).

TABLE I: Evaluation Protocol Metrics

Protocol
Characteristics Performance

Parties LoC LoS Time Mem.
(min) (GB)

PGP variant 2 12 8 1 2
Secure DNS var. 3 23 15 3 4
Aggregation 4 10 16 16 14
Network auth. 3 21 13 36 30

LoC: lines of code, LoS: lines of specification

SPICY successfully proves all example protocols correct,

with reasonable performance numbers, taking minutes to tens

of minutes and using a couple of GB to tens of GB of

memory. A quick glance at the summary performance numbers

in Table I shows that the labeled-step nondeterminism of

Secret aggregation and Network authentication increases the

proving cost in both time and memory. Though all four

of these protocols could be modeled in both Tamarin and

ProVerif with better performance characteristics, we note that

SPICY both uses a fairly naı̈ve model-checking procedure

and implements this procedure as a tactic in Coq, running

into bottlenecks in Coq’s tactic engine (e.g., certain primitive

tactics requiring time quadratic in goal size or worse). While

the assurance guarantees that we obtain by implementing the

model-checking procedure in Coq are solid, the performance

characteristics are not on par with standalone tools. Ulti-

mately, Coq was not optimized for this kind of use case, and

performance bottlenecks incurred via the Coq implementation

could be overcome by implementing as a standalone tool (like

both Tamarin and ProVerif). As an estimate of the difficulty

to implement a standalone version of SPICY, in comparison

to other popular tools, we use the SCC [23] program to

estimate the lines of code, shown in Table II. Though the full

implementation of SPICY with complete proofs is ∼ 25 kLoC,

we have eliminated theorem proofs and nonessential theorem

statements since they would not be present in a standalone

implementation.

TABLE II: Implementation complexity

Tool Implementation kLoCLanguage
SPICY Coq 4
Tamarin Haskell 23
ProVerif OCaml 44

kLoC: thousands of lines of code

The point here is that SPICY demonstrates feasibility of

small, well-designed languages to build developer tooling for
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writing safe cryptographic protocols. A few example protocols

show the limits of the model-checking method, and indeed

we explored this method as something of a worst case for

application of our new operational semantics. We conclude

that eliminating the adversary has restricted state spaces by

enough that even brute-force methods can validate interesting

protocols. To improve performance, follow-on efforts would

use more powerful reasoning tools, e.g. relational program

logics, on top of our languages as well as creating a more

efficient implementation, perhaps though extracting the anal-

ysis from Coq into a lower-level language.

C. Limitations

Let us step back for a moment to discuss some broader

limitations of the current implementation of SPICY. We have

shown (§IV-B) that, despite limiting both the implementation

and specification languages, we can implement and prove

correct a wide variety of interesting cryptographic protocols.

There are, however, extensions we envision that would expand

the implementable protocols. SPICY cannnot, for example,

handle protocols which allow communication amongst poten-

tially dishonest individuals. In this initial work, we require

honest messages to be signed, and the security analysis ex-

ploits this restriction. We would have to think carefully about

how to relax this requirement, and we think it would be a

good direction for future work. Additionally, we currently

examine only single protocol executions, while some protocols

(like Signal) rely on particular mechanisms to ensure their

security when multiple sessions are running. When we extend

this work with more powerful reasoning capabilities (beyond

simple model checking), it would be appropriate to examine

this kind of use case as well.

In summary, we view this work as a first step towards a new

way of performing protocol analysis. Future work could extend

our languages, reasoning capabilities, and adversarial models

so that we can examine an even wider range of protocols and

threat models. We think this research direction is an exciting

one and look forward to exploring it even further.

V. RELATED WORK

Recent work [10] provides a taxonomy of tools in the

computer-aided-cryptography (CAC) space, categorizing them

based on their focus (protocol design, correctness and opti-

mization, or deployment) and cryptographic model (symbolic

or computational). SPICY fits into the design-level, symbolic

category. In comparison to other tools in this category, the

kinds of protocols that SPICY can analyze sit at a higher level

of abstraction.

The big idea in SPICY is that we can formally codify what it

means for a cryptographic protocol to be secure into a pair of

languages specialized for this purpose. Using these languages,

we develop a top-level Strong Preservation Theorem which

justifies disregarding the adversary as long as the protocol

developer follows these formal safety rules (which are checked

by SPICY). Cortier et al. [24] proposed a related technique

with very much the flavor of compiling the SPICY Ideal World

specifications into Real World implementations. Specifically,

they transform a cryptographic protocol automatically into

one that is safe from an active adversary (they also handle

unbounded numbers of protocol executions, which SPICY does

not yet handle). Their approach is a bit more heavy-handed

than ours, requiring all messages to be encrypted (rather than

just signed) and imposing stronger PKI assumptions (whereas

protocols in SPICY can be written to bootstrap identity man-

agement). Developers can write cryptographic applications in

SPICY and produce executable code, while Cortier et al. stick

to traditional sequential message-sending charts.

Sprenger and Basin [25] present a similar idea to ours in

that they verify protocols via refinement, much like we have

the Real World implementation refine the Ideal World speci-

fication. Though their approach has larger scope in terms of

protocols and security arguments, it requires specific formal-

methods work for each new protocol to be verified. Each

new simulation argument involves cleverness in finding the

right simulation relations and invariants, followed by a manual

tactic-based proof. In contrast, we provide to programmers

what we hope is an intuitive property similar to type safety,

which can be understood independently of formal methods.

Fully automated security proofs follow in some cases that we

demonstrated. Unlike SPICY, Sprenger and Basin’s protocols

do not seem designed to be executed in real deployments.

Other symbolic cryptographic protocol analyzers, like

SPICY, have substantial automated verification steps. Unlike

SPICY, the object of their verification is to prove security

properties per protocol, always in a world with an attacker.

Tools backed by model checking search for “failed” states

in which the adversary has violated a desired property, while

others (e.g., Maude-NPA [26], Tamarin [22], and Sapic [27])

consume models of adversarial behavior and descriptions of

failure states. In either case, adversarial activity balloons the

search space, though these tools use an array of specialized

techniques to manage the complexity. Other tools take a

language-based approach similar to ours, treating the adver-

sary as a program executing arbitrary code. The F7 family

[28], [29] employs a refinement type system with which

the programmer can encode a variety of security properties.

Adversary programs are ascribed a distinguished type, and

proving safety amounts to type checking (which is discharged

via an SMT solver). Like SPICY, scyther-proof [30] formalizes

the operational semantics for its language in a proof assistant,

Isabelle/HOL; however, the proof-generation algorithm that

exercises those semantics always does so in a world with an

adversary (c.f. R �Acode from §III-C).

Regarding the ability to input programs within a familiar
language and generate executable code, the tools based on F#

(like F7 and fs2pv [31]) are the most similar to SPICY. Other

tools tend to express protocols with an (arguably) difficult

syntax for nonexperts. Like F7 and fs2pv, SPICY stands out

in that we have a relatively straightforward path to executable

protocol code. Unlike some other CAC tools (e.g., Fiat Cryp-

tography [14]), SPICY does not focus on the correct, efficient

implementation of low-level cryptographic code. We have
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ideas on how to extend SPICY’s code-generation capabilities

but leave that to future work. To our knowledge in comparing

with this category, SPICY’s mechanisms of message patterns
and automatic nonce tracking are novel and facilitate full

isolation of the adversary away from observations by honest

parties, simplifying proofs.

The story for equational theories is a bit more nuanced, as

many tools include at least partial support. Equational theories

are used, e.g., to define algebraic properties of cryptographic

functions or refine adversary capabilities. SPICY currently

does not allow users to extend the language in this way.

We see analogies (e.g. in the way we handle nonce tracking

automatically) to work on cryptographic compilers (e.g. [32],

[33], [34]) that take suitably annotated programs and compile

them to run in interesting models like secure multiparty

computation. However, the mission of those tools is to start

with ordinary programs and add elements of secure distributed

execution automatically (modulo certain annotations), while

SPICY exposes distributed computation directly, at a higher

level of abstraction than usual (i.e., with no adversary) while

giving protocol designers more freedom to optimize.

There has been significant past work using proof assis-

tants like Coq to prove the security of cryptographic proto-

cols. One of the best-known frameworks is CertiCrypt [35],

which performs computational-model proofs, therefore pro-

viding stronger assurance than with symbolic-model proofs

but also requiring substantial human effort to write the proofs

(which are then checked automatically). The follow-on tool

EasyCrypt [15] is a standalone implementation, not a library

within a proof assistant, which enables more automation while

growing the trusted code base. Other proof-assistant-based

frameworks in this family (based on sequences of games with

proofs of probabilistic refinement) include CryptHOL [36] and

the Foundational Cryptography Framework (FCF) [37]. A gen-

eral concern in these frameworks is explicit modeling of which

computations the adversary could perform in polynomial time,

while our framework justifies dropping the adversary from

proofs (albeit without computational-hardness bounds). Some

exercises have been carried out connecting these frameworks

to lower-level functional correctness. For instance, Beringer

et al. [38] connected an HMAC security proof in FCF to a

correctness proof for a C implementation fed to a verified

compiler. We are eager to study this kind of connection for

our own work.

VI. CONCLUSIONS AND FUTURE WORK

SPICY is a new toolchain that enables practitioners not

versed in formal methods or cryptography to design and

develop secure cryptographic protocols. We have demonstrated

through a suite of examples that SPICY can be used to

create secure designs of a variety of protocols – though the

scope is intentionally not all protocols, any more than Java

should be considered the right language for all program-

ming. Rather, we carefully designed a language that enforces

certain pieces of conventional protocol-design wisdom using

certain conservative mechanisms, therefore guaranteeing that

the adversary-free intuitions of everyday programming are

sound for developers to apply.

The past few decades have seen a thriving design ecosys-

tem for type-safe programming languages, with new features

appearing to strike new balances between flexibility, perfor-

mance, and safety. We hope to see the same for adversary-safe

languages. From the starting point of SPICY, adding lower-

level crypto primitives and allowing for ephemeral keys would

allow analysis of more complex protocols. Relaxing restric-

tions on how cryptographic operations can be combined within

messages, as discussed in PGP variant, would permit analysis

of a variety of modern protocols. Increasing the complexity

of the protocol languages would also increase the value of

further automation of the correspondence between the simple

Ideal World and intermediate Ideal World implementations.

Naı̈ve model checking is only the beginning of reasoning

tools taking advantage of adversary safety. We hope to explore

both classic model-checking optimizations (e.g., partial-order

reduction and modularity) and alternative proof techniques like

relational program logics. Finally, we would like to extend the

code-generation capabilities, providing a proved connection to

efficient low-level protocol-implementation code.
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APPENDIX

In this appendix, we show the source code for the protocols

described in the case studies of §IV; including the specification

code, the implementation code, and the initial configuration

of the channels and keys for each user. In order to make

the examples easier to read, we have eliminated some of the

“ceremony” that is required in the current implementation of

our languages (e.g., abbreviating some function calls, elimi-

nating others, and dropping constructors of datatypes such as

messages and permissions). We adopt the same convention for

keys as §II (pk and sk represent asymmetric public and private

keys, respectively; and κ represents a symmetric key). We

use uppercase letters to name users (so, the first user in each

protocol is ûA). We label user-to-user channels with subscripts

indicating source and destination: so, a channel from ûA to

ûB is called chAB. All keys have subscripts that indicate their

“ownership,” where appropriate. Function calls that we do use

are described along with each protocol. Initial configurations

include the initial channel permissions (for specifications) and

owned keys (for implementations).
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User Initial Configuration Specification Implementation

ûA

[ chAB 
→ rw, chBA 
→ r- ]

{pkσA, skσA, pkεA, skεA, pkσB}
chS ← Recv chBA

Σ ← Recv ( chS ∩ chBA )
Return Σ

c1 ← Recv ( SignedEncrypted pkσB pkεA )
κε
S ← Decrypt c1
c2 ← Recv ( SignedEncrypted pkσB κε

S )
Σ ← Decrypt c2
Return Σ

ûB

[ chAB 
→ r-, chBA 
→ rw ]

{pkσA, pkεA, pkσB, skσB}

chS ← CreateChannel
← Send ( chS �→ rw ) chBA

Σ ← Gen
← Send Σ ( chs ∩ chBA )

Return Σ

κε
S ← GenerateKey Sym Encrypt ion
c1 ← SignEncrypt skσB pkεA ûA κε

S

← Send ûA c1
Σ ← Gen
c2 ← SignEncrypt skσB κε

S ûA Σ
← Send ûA c2

Return Σ

Fig. 11: Our PGP variant definition is fairly similar to the SECRET SHARING PROTOCOL we described in §II. ûB establishes

the secure channel (symmetric key) over which ûB can send the secret (Σ). As was stated in §IV, one difference between our

implementation and that of the true PGP protocol is that we separately encrypt the generated symmetric key and the message

payload, sending them in consecutive messages rather than a single one. Initial configurations contain preshared (asymmetric)

keys and channels.

User Initial Configuration Specification Implementation

ûA

[ chAB 
→ -w, chBA 
→ r- ]

{pkσA, skσA, pkεA
,skεA, pk

σ
B, pk

ε
B}

serverLoop niter vret (
m ← Recv chBA

l e t i p :=
match names ? m wi th
| None => 0
| Some a => a
end

i n
← Send i p chAB

Return i p )

serverLoop niter vret (
c ← Recv ( SignedEncrypted pkσB pkεA )
m ← Decrypt c
l e t i p := match names ? m wi th

| None => 0
| Some a => a
end

i n ipC ← SignEncrypt skσA pkεB ûB i p
← Send ûB ipC

Return i p )

ûB

[chAB 
→ r-, chBA 
→ -w
,chBC 
→ -w, chCB 
→ r-]

{pkσA, pkεA, pkσB, skσB
,pkεB, sk

ε
B, pk

σ
C, pk

ε
C}

req ← Recv chCB

← Send req chBA

ip1 ← Recv chAB

← Send ip1 chBC

Return ip1

reqc ← Recv ( SignedEncrypted pkσC pkεB )
req ← Decrypt reqc
c1 ← SignEncrypt skσB pkεA û1 req
← Send û1 c1

hostC ← Recv ( SignedEncrypted pkσA pkεB )
host ← Decrypt hostC
c2 ← SignEncrypt skσB pkεC û3 host
← Send û3 c2

Return host

ûC

[chBC 
→ r-, chCB 
→ -w]

{pkσB, pkεB, pkσC
, skσC, pk

ε
C, sk

ε
C}

← Send hostname chCB

ip1 ← Recv chBC

Return ip1

c ← SignEncrypt skσC pkεB û2 hostname
← Send û2 c

hostC ← Recv ( SignedEncrypted pkσB pkεC )
host ← Decrypt hostC
Return host

Fig. 12: Our implementation of the Secure DNS variant includes a few interesting features. In this protocol ûA is the DNS

server. As a server, we expect it to loop indefinitely, taking in requests. Neither of our languages support loops, so we

implemented generic looping constructs within Gallina functions which allow us to construct servers that perform the same

operation repeatedly. In this example, the serverLoop functions take in two numbers, the maximum number of loop iterations

and a value to return upon loop exit. Gallina does not allow infinitely executing functions, but without much effort we are

able to implement something that behaves like one by choosing arbitrarily large “loop iteration values.” A last note about this

example: the function call names ? m represents a lookup of the hostname in the DNS database, modeled here as a retrieval

from an associative-map data structure for simplicity.
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User Initial Configuration Specification Implementation

ûA

[ chAD 
→ -w ]

{pkσA, skσA, pkεD}
← Send sal1 chAD

Return sal1

c ← SignEncrypt skσA pkεD û4 sal1
← Send û4 c

Return sal1

ûB

[chBD 
→ -w]
{pkσB, skσB, pkεD}

← Send sal2 chBD

Return sal2

c ← SignEncrypt skσB pkεD û4 sal2
← Send û4 c

Return sal2

ûC

[chCD 
→ -w]
{pkσC, skσC, pkεD}

← Send sal3 chCD

Return sal3

c ← SignEncrypt skσC pkεD û4 sal3
← Send û4 c

Return sal3

ûD

[chAD 
→ r-, chBD 
→ r-
,chCD 
→ r-]

{pkσA, pkσB, pkσC, pkεD, skεD}

m1 ← Recv chAD

m2 ← Recv chBD

m3 ← Recv chCD

Return ( (m1+m2+m3 ) / 3)

salC1 ← Recv ( SignedEncrypted pkσA pkεD )
salC2 ← Recv ( SignedEncrypted pkσB pkεD )
salC3 ← Recv ( SignedEncrypted pkσC pkεD )
sal1 ← Decrypt salC1
sal2 ← Decrypt salC2
sal3 ← Decrypt salC3
Return ( ( sal1+sal2+sal3 ) / 3)

Fig. 13: Secret aggregation is another example of performing computations with Gallina code. The idea here is that each of

the users ûA, ûB , ûC wants to perform some calculation over some secret data (say their salary). They trust a third party ûD

to perform that computation and not leak the raw data. In principle, we could have implemented a much more complicated

calculation.
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ûA

[chA 
→ rw, chAC 
→ -w
,chCA 
→ r-]

{pkσA, skσA, pkεA
,skεA, pk

σ
C, pk

ε
C}

← Send ûB chAC

( , chS ) ← Recv chCA

n ← Gen
← Send n ( chA ∩ chS )

Return n

c1 ← SignEncrypt skσA pkεC û3 û2

← Send ûC c1
c2 ← Recv ( SignedEncrypted pkσC pkεA )
( , κε

S ) ← Decrypt c2
n ← Gen
c3 ← SignEncrypt skσA κε

S û2 n
← Send ûB c3

Return n

ûB

[chB 
→ rw, chBC 
→ -w
,chBA 
→ r-]

{pkσB, skσB, pkεB
,skεB, pk

σ
C, pk

ε
C}

← Send ûA chBC

( , chS ) ← Recv chCB

n ← Recv ( chA ∩ chS )
Return n

c1 ← SignEncrypt skσB pkεC û3 û1

← Send û3 c1
c2 ← Recv ( SignedEncrypted pkσC pkεA )
( pkσA , κε

S ) ← Decrypt c2
c3 ← Recv ( SignedEncrypted pkσA κε

S )
n ← Decrypt c3
Return n

ûC

[chA 
→ r-, chB 
→ r-
,chAC 
→ r-, chCA 
→ -w
,chBC 
→ r-, chBA 
→ -w]

{pkσA, pkεA, pkσB, pkεB
, pkσC, sk

σ
C, pk

ε
D, sk

ε
D}

m1 ← Recv chAC

m2 ← Recv chBC

chS ← CreateChannel
← Send ( chA �→ r-

, chS �→ rw ) chCB

← Send ( chB �→ r-
, chS �→ rw ) chCA

Return 1

c1 ← Recv ( SignedEncrypted pkσA pkεC )
c2 ← Recv ( SignedEncrypted pkσB pkεC )
m1 ← Decrypt c1
m2 ← Decrypt c2
κε
S ← GenerateKey SymKey Encrypt ion
c3 ← SignEncrypt skσC pkεA û1 ( pkσB , κε

S )
c4 ← SignEncrypt skσC pkεB û2 ( pkσA , κε

S )
← Send û2 c4
← Send û1 c3

Return 1

Fig. 14: In Network authentication, ûC acts as the server, awaiting requests from the other two parties to establish a secure

communication channel. When both messages are received, ûC generates a symmetric key and shares it with them. The users

then use the key to establish a secure communication channel.
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