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A Fingerprint Location Framework for Uneven
WiFi Signals Based on Machine Learning

Xu Lu , Kejie Zhong , Zhiwei Guan , and Jun Liu

Abstract—WiFi fingerprint positioning is a common method
for indoor location determination. Existing methods are
susceptible to fluctuations in WiFi signal strength during the
offline phase, leading to unevenly received signals. Additionally,
during online positioning, there is a lack of integration with
historical trajectory information. These problems can result in
errors in both offline fingerprint acquisition and online location
positioning. To address these problems, we propose a method
that combines normality detection in the offline phase and
Location Weighted K-nearest Neighbor(LWKNN) positioning in
the online phase. In the offline phase, initial Received Signal
Strength Indication(RSSI) samples undergo preprocessing based
on skewness and kurtosis for normality detection. If the samples
conform to a normal distribution model, the probability density
is estimated using the normal distribution function. If not,
estimation occurs using the kernel density function model.
Subsequently, values are averaged after Kalman filtering to
establish a high-precision fingerprint database. During the
online positioning phase, the LWKNN algorithm is employed.
Initially, the Weighted K-nearest Neighbor method estimates the
position, and this information is utilized as features to construct
a Long Short Term Memory(LSTM) network model. The
optimal path is determined through the least square method.
Finally, the obtained outputs are integrated with historical
data from the fingerprint positioning trajectory to enhance
target positioning accuracy. Experimental results demonstrate
that our indoor localization method significantly improves
WiFi fingerprint localization accuracy compared to traditional
localization methods.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8668

Index Terms—WiFi fingerprint positioning, Normality detec-
tion, Trajectory prediction, LWKNN, LSTM.

I. INTRODUCTION

The Internet of Medical Things [1] (IoMT) was born as the
number of connected medical devices increased, support-

ing advances in medical level data collection and transmission,
interconnection technologies, service systems, and software.
In terms of smart patient services, IoMT is able to target
special or critically ill patients in the hospital, and services
include inhospital navigation, personnel location, and alarm
assistance. By wearing a smart bracelet on the patient and
using its indoor positioning function, medical staff can view
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the patient’s walking route and realtime location in real time
according to the intelligent monitoring system, and once the
patient goes out of the limited area, an alarm can be generated,
and then medical staff will assist the patient to return to the
safe area in time to prevent accidents. In addition, when the
patient is in discomfort and urgently needs help, a key alarm
can be realized through the smart wearable device [2], and
medical personnel can respond quickly to protect the patient’s
life safety.

Therefore, for indoor places with complex environments
such as hospitals and nursing homes, it is important to locate
the location of the target effectively and precisely in a timely
manner [3]. For this problem, many technical solutions have
been explored to meet the demand for indoor location services.
Currently, WiFi is widely used for public networks in various
cities, as well as home and office networks [4]. Therefore,
WiFi-based indoor positioning technology can make full use
of ubiquitous WiFi signals without requiring any additional
hardware equipment, greatly reducing the cost positioning
while ensuring positioning accuracy and high signal coverage
[5]. The most widely used algorithm for WiFi-based indoor
positioning technology is the fingerprint positioning method
[6]. The method consists of two stages [7]: The training stage
(Offline Stage) and the online positioning stage. In the training
stage, the main task is to evenly and reasonably set several
fingerprint reference points across the positioning area. Then,
we collect the signal at the location of the fingerprint reference
point (Pedestrian), and use it to establish the fingerprint. In the
online positioning stage, the goal is to collect the Access Point
signal value at the target location in real time, then estimate
the exact location of the point with the location fingerprint
positioning algorithm.

WiFi signals are easily detected in indoor environments such
as hospital, but they are also easily affected by the outside
world during propagation. External factors, such as walls, the
ground, human bodies, temperature, and humidity, can reflect
and scatter WiFi signals during propagation. This causes high
variation with respect to time in the received RSSI signal at
a fixed position in the room [8]. The most common methods
to deal with this problem are mean model [9], median model
and normal distribution model [10]. The normal distribution
model uses the normal distribution function to filter out signal
values with high probability, which results in a better signal
filtering effect than the mean and median models. However,
in complex indoor environments, not all samples satisfy the
normal distribution, so the normal distribution model does not
provide accurate estimates for the total number of RSSI signal
samples received by each fingerprint point.
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For the online positioning stage, a Nearest Neighbor al-
gorithm can locate the position of the target, but struggles
to predict the category if sample numbers are unbalanced.
Thus, the accurate position of the target cannot be accurately
determined. The K-nearest Neighbors method finds the K
data vectors nearest to the measured vector, then averages the
position coordinates of the K vectors to estimate the position
output of the terminal. However, in the case of the same
number of AP points, the weight of AP points that dominate
the target location positioning is not considered. Each AP
point under the same weight will bring greater positioning
error. The Weighted K-nearest Neighbors method [11] differs
from the KNN algorithm by multiplying the coordinates of
each database vector by a weighting coefficient. However, this
method does not consider that the signal strength similarity is
not completely consistent with the position similarity in the
online matching stage, which amplifies the positioning error.

In order to solve the above two problems, this paper
proposes a positioning method that combining skewness and
the kurtosis normality test [12] with the trajectory prediction
model. In the offline phase, we detect the overall distribution
of RSSI signal samples by skewness kurtosis. If the sample
population accepts the null hypothesis, we use the normal
distribution method to estimate the probability density of
the fingerprint points. If the normal model is not satisfied,
we instead use the kernel density function to estimate the
probability density, then filter out high probability signals.
After smoothing the RSSI data, we store the average value
in the database. In the online positioning stage, we first locate
the target using WKNN, then establish an LSTM model using
the obtained location information as the feature information.
We use the optimized path obtained by the least square method
as the output to supervise the training. Finally, we obtain more
accurate target positioning by combining our output with the
historical data of fingerprint positioning trajectory. The main
contributions of this paper include:

a) A positioning method based on normality detection and
trajectory prediction, which is a fusion of offline and
online positioning methods, that can adaptively adjust the
positioning process.

b) The normality detection module proposed in this paper
divides and preprocesses the fingerprint information in
the existing fingerprint database without re-collecting
signal data.

c) The trajectory prediction model is combined with fin-
gerprint positioning for the first time. This method can
effectively utilize positioning history information.

II. RELATED WORK

In recent years, researchers have made many improvements
in the acquisition and application of WiFi signals in the offline
phase. Luo et al. [13] proposed a Gaussian Mixture Model
(GMM) for offline fingerprint clustering. The positioning
area is divided into several subregions through offline data,
and the corresponding subregion label training forest-based
random subregion classifier. This method can significantly
reduce errors without any hardware calibration. To address

the problems of signal instability and fingerprint drift, Wang
et al. [14] proposed a preprocessing method of RSSI value and
CSI amplitude value based on Kalman filters and the Gaussian
function, and added an improved CSI phase after a linear
transformation. After effectively eliminating the mutation and
noise data, one can achieve accurate and smooth outputs of
RSSI and CSI values. Finally, they perform dimensionality
reduction on the obtained high dimensional data values and
establish a fingerprint database. The method performs well
on tasks such as denoising, fusion positioning, and realtime
filtering. Guo et al. [15] proposed a method to construct multi-
fingerprint groups by collecting Hyperbolic position Finger-
prints and signal intensity Difference Fingerprints from RSS
fingerprints. The offline phase obtains MFTC by obtaining
multiple fingerprint groups and continuous training of each
basic classifier for each fingerprint. This method can enhance
the RSSI fingerprint, but does not consider the impact of WIFI
timevarying. Huang et al. [16] proposed a new scheme to
adapt radio maps to environmental dynamics online by using
lowcost crowdsourcing RSS measurement. A coarse grained
radio map is created by using standard Gaussian Process
Regression in the offline phase. Extended GPR alleviates drops
in model accuracy caused by noise location labels, and can
effectively improve localization and positioning accuracy. One
disadvantage of this approach is that the radio map needs to
be updated several times in real time. Li et al. [17] proposed
a localization method based on sparse fingerprint acquisition
and an improved weighted K nearest neighbor algorithm.
The reference points are sparsely selected, and the abnormal
values of the collected RSS are preprocessed according to the
faulttolerant quartile method. The Gaussian process regression
model is trained on the processed fingerprint data. Optimal
hyperparameters for the model are obtained by a symbiotic
biological search algorithm, which improves the generalization
ability of the model. Finally, they predict the RSS of the
nonreference points in the positioning area, and the database
is built. This method has good strong fingerprint prediction
ability and positioning performance, but does not consider the
impact of time varying RSS signals in the actual place. Thus,
it is only suitable for indoor static positioning.

Researchers have also made many improvements in the
online positioning stage by further developing the weighted
K nearest neighbor method. Kong et al. [18] divided the
reference points into K subclasses with the K-means clustering
algorithm, so as to reduce the fingerprint search space and
improve matching efficiency. They then combine the weighted
calculation of the adjacent points in the selected subclass with
WKNN to improve the calculation proportion of the higher
correlation reference points. Cao et al. [19] first analyzed the
geometric structure of the K-nearest point, then removed the
point with the longest distance between the center of the K-
nearest point and itself. They proceed to analyze the geometric
position of the unknown point, and the weights of the algo-
rithm are determined by the geometric distance between the
adjacent point and the center point, as well as the Euclidean
distance between the adjacent point and the unknown point.
This method avoids the use of matching points with devia-
tions in positioning calculations, and improves stability and
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accuracy of positioning. However, it does not consider the
positional stability at the actual boundary, and as a result,
the positioning error at the geometric edge of the fingerprint
database is still large. Chen et al. [20] proposed a variance-
based weighted distance to improve the WKNN algorithm.
The calculation weight of the distance is designed according
to the variance information of the signal strength distribution
of the sampling points. The similarity of the unit point is
calculated by the weighted distance to weaken the influence
of the RSS unstable access point. This method effectively
reduces the influence of WiFi signal instability on position-
ing effect and improves positioning accuracy. However, the
actual fingerprint information is affected by various factors
in the actual situation. Collected data has a large matching
error with the fingerprint database, which is only suitable for
static environment. Pan et al. [20] proposed an AHPWKNN
indoor positioning method combining AHP technology and
weighted K nearest neighbor algorithm. They use AHP to
assign weights when using WKNN to select fingerprints for
positioning. AHP technology amplifies the influence of the
received signal strength gap between reference points on the
weight, which leads to better positioning performance. This
method is robust against fluctuations in the RSSI, as well as
deviations from the measured RSS. Zhao et al. [21] proposed
an asymmetric Gaussian filtering algorithm IWKNN based on
the signal strength distribution characteristics of smart venues.
The method combines a specific signal distribution model and
proposes asymmetric Gaussian filtering to improve generaliza-
tion ability. Because it meets the requirements of realtime and
high precision, it obtains lower delay by discarding useless
information and improves the utilization of the database to
ensure higher precision. Li et al. [22] proposed a K-nearest
neighbor indoor fingerprint localization method based on a
coarse localization circle and a highest similarity threshold.
This method forms a circular domain in the coarse positioning
process, reduces the positioning range, and solves the inter-
ference problem of irrelevant fingerprints. Additionally, they
introduce the faulttolerant mechanism to dynamically adjust
the circle domain to ensure that the coarse positioning circle
domain contains the highest similarity reference point, which
improves the fault-tolerant ability of coarse positioning.

We propose an indoor positioning algorithm that integrates
skewness and kurtosis for normality detection and trajectory
prediction in order to effectively reduce the influence of
diffraction, scattering, reflection and timevarying of WiFi sig-
nals during propagation. The influence of WiFi signal instabil-
ity arises in two different forms. Unstable RSSI measurements
during fingerprint acquisition leads to the inability to establish
an accurate fingerprint database. Additionally, unstable RSSI
values in the positioning stage greatly affect the final result of
the WKNN matching algorithm.

The proposed method not only preprocesses the collected
fingerprint information to establish a high precision WiFi
fingerprint database, but also makes effective use of localiza-
tion history information to reduce the error of the matching
algorithm caused by WiFi time variation. Compared with tra-
ditional localization methods, our proposed algorithm obtions
higher localization accuracy.

III. METHOD

The general framework of the proposed method is shown
in Fig. 1.

The offline stage analyzes the received signal strength values
by skewness and kurtosis analysis. The collected signal values
can be processed in the following two cases. The first case is
that the collected signal values follow a normal distribution
(black in the figure), where the probability density of the
sample is estimated by using a normal distribution function.
The second case is that a small number of sample values
do not follow a normal distribution (blue in the figure),
so we instead use the kernel density function to calculate
the overall probability of the sample. Our method also uses
the RSSI value processed by the Kalman filter algorithm to
smooth the RSSI data. Finally, we record the average value
as the determined RSSI value into the fingerprint database.
In the online positioning stage, we first perform preliminary
position estimation through the WKNN algorithm. Then, we
use historical positioning information as feature information
to establish the LSTM model. Through training, predicted
results are fed back to the next target location positioning,
which excludes location points with large deviation from the
predicted trajectory, and finally outputs the target location.

A. Normality Dection Module Based on Skewness and Kurto-
sis

In this paper, we propose a normality detection method
based on skewness and kurtosis to divide the RSSI signal of the
existing database to establish a more accurate WiFi fingerprint
database. The main steps are shown in Fig. 2.

a) Normal distribution test: The analysis of skewness and
kurtosis is used to determine whether the collected signal
intensity values meet the normal distribution.

b) Normal model processing: If the normal distribution
model is satisfied, we use the normal distribution function
to estimate the probability density of the sample.

c) Kernel density function model processing: If the normal
distribution model not satisfied, we use the kernel func-
tion to calculate the overall probability.

d) The mean value of the high probability signal value is
stored in the WiFi fingerprint database.

Skewness and kurtosis are statistics that characterize the
steepness and symmetry of the data distribution. By measuring
the skewness coefficient, one can determine the degree and
direction of data distribution asymmetry. Specifically, the
skewness of random variable refers to the normalized third
order standard central moment:

γ1 = E

[(
E − µ

σ

)3
]
=

E[(x− µ)3]

(E[(x− µ)]2)
3
2

(1)

Kurtosis is:

γ2 = E

[(
E − µ

σ

)4
]
=

E[(x− µ)4]

σ4
(2)

Where X is a random variable, µ is the expected value of
the random variable, and µ is the variance of the random
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Fig. 1. Overview of the proposed framework.

Fig. 2. Simulation diagram of signal acquisition and processing in
offline stage.

variable. For example, if a random variable X follow the
normal distribution, skewness γ1 = 0 and kurtosis γ2 = 3.

By testing whether the data samples obey the normal
distribution, the sample data can be divided into two parts.
The first part is the sample data obeying normal distribution,
and the second part is the sample data not satisfying normal
distribution model. Assume X1, X2, , Xn represents the WiFi
sample, X̄ represents the average value of the sample, and
mi =

1
n

∑n
j=1(Xj − X̄)i represents the sequential center dis-

tance of the sample. The skewness and kurtosis of the normal
distribution are both 0. The equations for obtaining skewness
and kurtosis are as follows:

bs =
E(X − EX)3

[V ar(X)
3
2 )]

(3)

k =
E(X − EX)4

[V ar(X)2]
− 3 (4)

The condition for using skewness and kurtosis normality tests
is that all samples must have prior information that deviates
from the normal state of skewness and kurtosis. Therefore, we
assume that Ho: obeys the normal distribution, H1: does not
obey the normal distribution. Where Ho is the original hy-
pothesis, the conditions are bs = 0 and k = 0. The conditions
of H1 are: bs ̸= 0, k ̸= 0 . First calculate the statistics.

T =
b̂2s(n+ 1)(n+ 3)

6(n+ 2)
+
(k̂ + 6

(n+1) )
2(n+ 1)2(n+ 3)(n+ 5)

24n(n− 2)(n− 3)
(5)

According to the statistical limit distribution, the degree of
freedom is χ2 distribution of 2, so its test rejection region

is {T > χ2
(1−α)(2)} , where χ2

(1−α)(2) is the distribution of
1− α quintile degree of freedom of χ with 2.

As mentioned above, the RSSI samples collected in the
offline phase are tested to determine whether the rejection
domain of H0 meets the requirements. If they are not satisfied,
accept H0 . When the significance level is α(0 < α < 1), the
overall sample is considered to obey the normal distribution.
At this time, the probability density of the sample is about:

f(x) =
1√
2πσ

exp

[
− (x− µ)

(2σ2)

]
(6)

Where µ = 1
n

∑n
i=1 Xi and σ =

√
1
n

∑n
i=1[Xi − µ]2 are

the parameters of the normal distribution, H0 represents the
RSSI value in the ith sample, and n is the capacity of the
RSSI sample.

If the total number of RSSI signal samples collected in the
offline phase negates the H0 hypothesis, it means that the
overall distribution of the sample is significantly different from
the normal distribution. Thus, the significance level is α, which
means that the sample population does not obey the normal
distribution, in which case we use the kernel density function
to estimate the overall distribution of samples. Kernel density
estimation is a method to estimate the overall probability
density when the overall distribution is unknown.

Let f(x) denote the probability density of the whole sample
of X , and X1, X2, , Xn denote the sample of population
X , and there is a bounded function k(y) ≥ 0 on the whole
line. This function satisfies the following four conditions:∫ −∞
+∞ |k(y)|dy < +∞, lim

|n|→+∞
yk(y) = 0, k(−y) = k(y),∫ +∞

−∞ k(y)dy = 1.
f̂h(x) = 1

nh

∑n
i=1 k(

x−Xi

h ) is the kernel estimate of the
unknown probability density f(x), where h is the kernel width
and k(y) is the kernel function.

We select kernel functions:

k(y) =
1√
2π

exp

[
−x2

2

]
(7)

The kernel function is used to estimate the probability
density function for the entire sample

f(x) =
1

nh

n∑
i=1

exp

[
− (Xi − x)2

2h2

]
(8)
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Fig. 3. Simulation diagram of signal acquisition and processing in
offline stage.

The normality detection module based on skewness and
kurtosis proposed above is for signal acquisition of the ex-
perimental environment in the offline phase. By screening out
some sample data that does not meet the normal distribution,
the kernel density function is used to estimate the overall
distribution of the sample. Then, by using the Kalman filter
to remove the impact of system errors, we can finally take the
average as a determined RSSI value recorded in the fingerprint
database.

B. LWKNN Prediction Positioning Module

In the online positioning stage, the traditional location
fingerprint positioning algorithm based on RSSI mainly in-
cludes one of the following: NN, KNN, WKNN [18]. We
propose the LWKNN algorithm, which is a fusion target
trajectory prediction method based on the traditional WKNN.
The WKNN method is used to locate the pedestrian’s initial
position by using the preprocessed fingerprint database. The
initial coordinate position information is input into the input
layer, and then we establish the LSTM network using this
information. Finally, the final positioning result is obtained by
training the positioning coordinates obtained by WKNN.

The LWKNN module proposed in this paper is shown in
Fig. 3. This input layer input dimension is horizontal and
vertical coordinates, that is, the dimension is 2. The hidden
layer information ht−1 and ct−1 default to 0 at the initial
time.

First, the mobile terminal collects the RSSI value of each
AP point in real time, denoted as x = [x1, x2, obtion.., xn].
Suppose the data in the fingerprint database is Xi =
[RSSIi1, RSSIi2, RSSIi3, ..., RSSIin], where n represents the
number of AP points ; i ∈ [1, N ], N is the number of records
in the fingerprint database ; RSSIin denotes the signal strength
of the nth AP point collected by the ith fingerprint point. Find
the Euclidean distance between x and Xi :

Li =

√√√√ n∑
j=1

(xi −RSSIji )× (xj −RSSIji ) (9)

Marked as L = {L1, L2, ..., Ln}, sort the Euclidean dis-
tance from small to large, find the first K(K ≥ 2) fingerprint
reference points in the sequence L , multiply the coordinates
corresponding to each fingerprint reference point by a weight-
ing factor and sum it up. The weighting factor is based on the
matching value in the NN algorithm. The specific function is:

(x̂, ŷ) =

K∑
i=1

1
Li(1+α)∑K

j=1
1

Lj(1+α)

(xi, yj), (k > 2) (10)

Among them, (x̂, ŷ) represents the final positioning result,
Ln is the Euclidean distance between the node to be deter-
mined and the n-th fingerprint point, (xi, yj) represents the
coordinates of the ith reference point, and K represents the
number of fingerprint reference points that are most matched.
To prevent Eq. 10 from being meaningless, the value of α is
as small as possible but not 0.

Next, we create a long short term memory network is
established. A LSTM unit is divided into three gates, namely,
forgetting gate, input gate and output gate. The network
calculation is performed according to the following steps:

1) Determines whether part of the information is retained
from the cell state, selectively forgetting the information
from the previous cell state.

2) Decide to store information in the cell state and selec-
tively record new information into the cell state.

3) Process the input of the current sequence position, deter-
mine the information that needs to be updated, and update
the old cell state.

4) Determine the output content based on the content of cell
state preservation, that is, selectively output the content
of cell state preservation.

The result (x̂, ŷ) of the initial WKNN positioning is passed

as input to the LSTM network model, denoted as
[
x̂t

ŷt

]
.

Its forgotten door is:

ft = σ

(
wf

[
ht−1 ht−1

x̂t ŷt

]
+ bf

)
(11)

The input door is:

it = σ

(
wi

[
ht−1 ht−1

x̂t ŷt

]
+ bi

)
(12)

The input unit state is:

℘t = tanh

(
wc

[
ht−1 ht−1

x̂t ŷt

]
+ bc

)
(13)

ct = ftoct−1 + ito℘t (14)

The output door is:

ot = σ

(
wo

[
ht−1 ht−1

x̂t ŷt

]
+ b0

)
(15)

Where σ is the sigmoid function, ω is the corresponding
weight matrix, and b is the bias term.

The final output of LWKNN is:[
x̂1
t

ŷ1x

]
= ototanh(ct) (16)
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Fig. 4. Indoor data collection.

The LWKNN module proposed above integrates the LSTM
model based on the WKNN, and finally combines the pre-
dicted trajectory coordinate information to obtain the pedes-
trian’s final target location.

IV. DATA AND EXPERIMENTS

A. Datasets

The datasets used in the experiment were published by
Barsocchi et al. [23]. The overall floor plan of the acquisition
is shown in Fig.4. During the data collection process, the
smartphone remains at the chest level with the screen facing
up. Each time the user is in a predefined location, the device
will record the following additional data about the detected
WIFI access point. The database includes: wireless network
name, AP MAC address, AP received signal strength, where
WiFi signal strength is expressed in dB.

B. RSSI Data Preprocessing Experiment

In IoMT, most medical sites are indoor with complex
environments and a large number of medical personnel. WiFi
received signal strength belongs to link layer information,
which is susceptible to multipath propagation, human ab-
sorption, shadow effect and other factors in highly crowded
medical settings. This paper analyzes the overall distribution
of RSSI samples in indoor WiFi environment. The analysis
of the RSSI sample data from the randomly selected dataset
yields that a large proportion of the selected RSSI sample data
have sample values that do not obey a normal distribution.

We use the above data set to verify the normality detection
method based on skewness and kurtosis. By arbitrarily select-
ing 30 groups of RSSI samples from the target AP (receiving)
point in the database and a single AP transmitting node, the
sample data is preprocessed by the fusion of skewness kurtosis
normality detection and Kalman filter. Its comparison with the
mean model, median model, and normal distribution model is
shown in Fig. 5.

The experimental results show that the skewness and kur-
tosis based normality detection method proposed in this paper
can restore the ideal values well and eliminate the error values
better in the offline stage. The high precision WiFi fingerprint
database established on this basis can effectively improve the
localization accuracy of the patients in medical sites during
the localization phase.

Fig. 5. Comparison of RSSI results of different models.

TABLE I
AVERAGE ERROR OF DIFFERENT VALUES OF K WHEN

USING NORMAL DISTRIBUTION MODEL

Value of K Average Error /m
K=2 1.1483
K=3 1.0465
K=4 1.0317
K=5 1.1686

C. Experiment of Localization

In the fingerprint positioning algorithm WKNN, the posi-
tioning accuracy is the highest by comparing several experi-
ments. Tab. I shows the average positioning errors for different
values of K when using the normal distribution model. There-
fore, we default the K-weighted proximity algorithm with a
value of 4.

The trajectory prediction method proposed in this paper
relies upon historical positioning information to establish the
LSTM information base, so we obtained 100 sets of contin-
uous positioning coordinate information through the WKNN
positioning method. We verify the positioning accuracy of the
LWKNN positioning algorithm using the LSTM information
library. In this experiment, the first 80 coordinates in the
continuous coordinate information are selected as the training
set, and the remaining 20 coordinate information are used as
input to compare the positioning effect of the two methods.
As shown in Fig. 6, the positioning effect of LWKNN is
better than that of WKNN and is closer to the true value.
One of the reasons for the large error of WKNN is that the
received unstable signals cannot be handled well during the
online phase.

This paper uses the updated fingerprint database to compare
the actual positioning error between the LWKNN method and
the traditional WKNN method. We randomly select continuous
LWKNN and WKNN coordinate information and pedestrian
real coordinate information. We then import the coordinate
information database, then calculate the difference between
the LWKNN output and the real value, as well as the dif-
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Fig. 6. Comparison of WKNN/LWKNN positioning effects.

Fig. 7. Comparison result of positioning error value.

TABLE II
COMPARISON OF WKNN/LWKNN POSITIONING ERRORS

WKNN LWKNN

Maximum error/m 2.824 1.928

Average error/m 1.0317 0.8776

Maximum deviation/m 1.192 0.938

Standard deviation/m 1.3422 0.9961

Average deviation/m 1.3753 1.021

ference between the WKNN output and the real value, using
MATLAB. The experimental results are shown in Fig. 7.

It can be seen from the above figure that the LWKNN
method proposed in this paper can reflect the actual pedestrian
real motion trajectory more smoothly than the traditional
WKNN method, and has lower error. Compared with WKNN
algorithm, the method proposed in this paper can effectively
reduce the error and improve the localization accuracy in
medical place environment.

By comparing the difference data between WKNN,
LWKNN and real data, the following tables can be obtained.

From tab. II, it can be seen that the proposed localization
algorithm based on fusing skewness and kurtosis of normality

detection with LWKNN significantly outperforms the WKNN
method just based on normality detection. The maximum error
is reduced by 31.72%, the average error is reduced by 14.9%,
the average deviation is reduced by 25.7%, and the maximum
deviation is reduced by 21.3%.

V. CONCLUSION

The complexity of the current indoor environment in ma-
jor hospitals makes it impossible to correctly estimate the
distribution of RSSI samples measured by a single function.
We propose two key steps to effectively improve positioning
accuracy. First, we estimate the distribution of RSSI samples
accurately in the offline phase and establish a more stable and
accurate fingerprint database. The second part is to improve
the positioning accuracy through efficient positioning methods
in the positioning stage. In this paper, our proposed method,
which fuses skewness and the kurtosis normality test with
an improved WKNN method, effectively eliminates both the
singular values in the collected RSSI signals and fluctuations
in the data to establish a stable and accurate fingerprint
database. The LWKNN algorithm effectively reduces the error
impact caused by WiFi time variation and makes full use
of historical information of pedestrian trajectory. Experiments
show that our proposed method has lower error than both the
traditional mean model and normal distribution model. Com-
pared with the traditional WKNN method in IoMT, LWKNN
can effectively improve the positioning accuracy of medical
staff to patients and reduce potential safety hazards.

In the future, we will conduct research from the following
two aspects. First, more deep learning techniques, especially
convolutional neural networks (CNNs) in signal feature extrac-
tion, can be introduced to achieve finer feature extraction and
create high-precision fingerprint databases. For the long short-
term memory network model, we can also improve it to better
incorporate historical trajectory information, so as to improve
the accuracy of position prediction. These improvements will
help to further improve the performance and application range
of the LWKNN method in indoor positioning.
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