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Lightweight Real-Time Object Detection via
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Interaction for Complex Traffic Scenarios
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Abstract—Due to unfavorable factors such as cluttered spatial
and temporal distribution of multiple types of targets, occlusion
of background objects of different shapes, and blurring of
feature information by inclement weather, the low detection
accuracy in complex traffic scenarios has been a troubling issue.
Regarding the above-mentioned issues, the paper proposes a
lightweight real-time detection network to augment multi-scale
object perception capabilities in traffic scenarios while ensuring
real-time detection speed. First, we construct a novel global
feature extraction (GFE) structure by cascading orthogonal
band convolution kernels that capture the global dependencies
between pixels to improve feature discrimination. Then, an
intra-layer multi-scale feature interaction (IMFI) module is
proposed to reinforce the effective reuse and multi-level transfer
of salient features. In addition, we build a multi-branch
scale-aware aggregation (MSA) module that captures abundant
context-associated features to improve the target decision-
making capability and the self-adaptive capability of the model
when dealing with diverse object scales. Experimental results
demonstrate that the proposed approach attains a significant
improvement of 5.6 percentage points in AP50 with fewer
parameters and computational power compared to the baseline
model, with an improved FPS of 73. Furthermore, our approach
strikes the optimal speed-accuracy balance when compared
against other excellent object detection algorithms of the same
magnitude.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8420

Index Terms—Object detection, Complex autonomous driving,
Real-time, Global dependencies, Multi-branch scale-aware

I. INTRODUCTION

Object detection plays a fundamental role in addressing
computer vision problems explored, enabling accurate

identification of object classes and recognition of object con-
tour sizes from specified scenes. Due to tremendous leaps
in innovative technologies and artificial intelligence, this task
has been broadly implemented across various fields, such as
autonomous driving [1], intelligent transport systems [2], [3],
and smart city [4]. In particular, as autonomous driving per-
ception technology has increasingly matured within the realm
of intelligent transportation, it has attracted considerable atten-
tion from scholars and society. Moreover, an important core
technology of autonomous driving is the accurate detection
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and classification of diverse road traffic objects. However, the
problem of achieving real-time and accurate object detection in
complex traffic scenarios has been a persistent and perplexing
issue.

Deep learning-based object detection methods have come
out ahead of traditional detection methods developed in the
past few years and have demonstrated better performance
regarding accuracy and speed. In general, object detection
methods can be categorized into two-stage pipelines and
single-stage pipelines. Two-stage detection approaches typi-
cally employ selective search techniques to generate potential
region proposals prior to determining the object class and
position, such as Fast R-CNN [5] and Faster R-CNN [6].
In contrast, single-stage detection algorithms transform the
detection as an issue of category labeling and placement
estimation using regression, such as SSD [7] and YOLO [8],
[9], [10], [11]. Both types of detectors achieve excellent de-
tection performance in simple general-purpose scenarios, but
when applied in more intricate circumstances, their detection
accuracy and robustness are greatly diminished. In complex
traffic environments, issues like similar targets or different
classes of targets with different scales, different degrees of
occlusion overlap between various targets, and interference
from complex buildings of different shapes can make accu-
rate object detection more challenging. Furthermore, when in
foggy weather conditions, the brightness and contrast of the
detection environment are decreased, the image background is
blurred, and the feature details are severely lost, which also
further increases the difficulty of the detection algorithm to
make decisions on object categories.

For the above-mentioned issues, many scholars and re-
searchers have utilized techniques like Feature Pyramid Net-
work (FPN) [12], Path Aggregation Network (PAN) [13],
or Bi-directional Feature Pyramid Network (BiFPN) [14] to
improve feature utilization and cross-scale information flow.
By leveraging multi-level feature maps and top-down and
lateral connections between pyramid levels, these methods
allow better aggregation of semantic and spatial information
across different scales. However, feature pyramid-based archi-
tectures mainly focus on feature propagation across layers,
while overlooking the inter-dependencies between features
within each layer. Additionally, since the Vision Transformer
(ViT) [15] model was first applied to visual tasks and achieved
impressive performance, some researchers have started to
leverage the powerful global context modeling capabilities of
the transformer to improve object detection accuracy, e.g.,
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PVT [16], Swin Transformer [17], and DETR [18]. However,
self-attention layers in Transformers exhibit quadratic com-
putational complexity with respect to sequence length, these
models typically possess a substantial number of parameters
and require massive computational resources. Especially in
detection tasks with high input image resolutions, this can
result in an enormous computational burden and severely slow
down real-time detection speeds.

In the following, a lightweight real-time object detection
algorithm is proposed to reinforce the model’s robustness
and multi-object detection capability in complicated traffic
environments while sustaining swift detection speeds. Firstly,
we design an enhanced feature extraction structure, called
Global Feature Extraction (GFE), which can capture the global
position of the object features through the interaction of
horizontal and vertical information. The GFE module utilizes
fully convolution neural networks to achieve transformer-
like global modeling capability and requires only a small
amount of computation. Secondly, to ensure the network can
obtain richer feature presentation and learn an implicit rela-
tion between pixels/objects. An intra-layer multi-scale feature
interaction (IMFI) module is proposed to enrich the diversity
and completeness of image features. Thirdly, larger receptive
fields are beneficial for capturing rich contextual features and
neighboring pixel information, so we propose a multi-branch
scale-aware aggregation (MSA) structure to improve long-
range dependencies between objects and suppress redundant
background clutter. In addition, considering that collecting
and annotating real foggy images is extremely difficult, and
existing foggy image datasets are few in number and lacking in
diversity. Therefore, to ensure the applicability and robustness
of the model to more complex environments, we use data
enhancement techniques to simulate complex foggy traffic
scenarios by leveraging the depth information contained within
the images to increase the diversity of the dataset [19].

II. METHODS

We propose a lightweight real-time detection framework
in this section that can markedly improve object detection
accuracy under difficult traffic conditions while maintaining
high detection efficiency in real-time. To accomplish our goal,
we are focusing on three main aspects. Firstly, to enhance
the quality and precision of extracted features under complex
conditions, we construct the GFE structure to strengthen the
representation of global position contexts within the image
features. Secondly, we embed the proposed IMFI module in
the feature pyramid network to ensure that more effective
and significant features are retained during feature transfer.
Finally, the different scale perceptual fields of the output
feature maps are aggregated using the MSA module to improve
the adaptability to objects at different scales. The complete
structure is represented in Fig. 1.

A. Global Feature Extraction (GFE)

The quality of the effective feature representations extracted
by the backbone network plays a crucial role in the subsequent

effective fusion and interaction of different feature informa-
tion. In the backbone, a series of cascaded convolutional layers
with varying characteristics are used to progressively extract
higher-level features from the input image in a hierarchical
manner. While the convolutional operation captures pixel-level
information within its local receptive field through a sliding
window approach, it lacks sensitivity to associations between
distant or non-adjacent regions within the feature maps and
does not explicitly encode the global positional information
of each pixel or region relative to the full image context.
However, in traffic scenes with objects appearing at varying
scales and locations, recognizing the global context and precise
position of the object is crucial for accurate detection and
localization tasks. To address this, we propose the GFE module
to compensate for the inherent limitations of convolutional
layers in modeling long-range relationships and accessing
global positional awareness, aiding in understanding the entire
scene and locating the target from a more macro view.

Specifically, we employ two large convolutional kernels
oriented orthogonal to each other in the horizontal and vertical
axes to aggregate the relationships between pixels across
different directions. By interactively stacking the horizontal
and vertical pixel tensors, generates a global receptive field
to obtain the global spatial dependencies of each pixel in
the feature map. In other words, it encodes each pixel’s
dependencies not just within its local neighborhood, but also
concerning distant pixels in both the horizontal and verti-
cal directions across the entire feature map. Essentially, it
expands the local neighborhood conventionally processed by
convolutional filters into a holistic global scope. The use of
orthogonal convolutional kernels that operate along different
axes effectively expands the traditional local receptive fields
of convolutional layers into a true global receptive field,
enabling the modeling of long-range dependencies between
pixels throughout the feature map.

As shown in the top part of Fig. 1, the input feature maps
are each passed through two parallel 1×1 regular convolutions
to halve the number of channels. Then, a cheap operation,
PDConv, is performed on one of the branches, using a smaller
number of parameters to achieve the effect of a normal
convolution. Specifically, given input feature FH×W×C with
height H , width W , and channel’s number C. Firstly, a 1×1
point-wise convolution (PWConv) is applied to extract the
important features and compress the number of channels, as
shown in the following Eq. (1)

Y1 = F ∗ PWConv1×1 (1)

where Y1 ∈ H × W × C1 is the output feature map, and
its output channel number C1 is half of C. * denotes the
convolution operation. Then, a 3×3 depth-wise convolution
(DWConv) is utilized to independently extract distinct features
for each channel, as shown in Eq. (2)

Y2 = Y1 ∗DWConv3×3 (2)

where the number of output channels of Y2 ∈ H ×W × C1
remains the same. Finally, the two convolution outputs are
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Fig. 1. The overall architecture of the proposed method.

combined by concatenating them along the channel dimension,
as demonstrated in Eq. (3)

Fout = Concat[Y1, Y2] (3)

where Fout ∈ H ×W × Cout is the output feature. Next, we
proceed by using orthogonal convolutions to aggregate distinct
locations of each pixel in the horizontal and vertical directions.
The concatenated outputs undergo a Sigmoid normalization
and ranking operation to generate a global perceptual attention
feature map and then are upsampled to restore the original
feature map size. This attention map is then element-wise
multiplied with the input feature Fout. This multiplication
operation effectively strengthens the representation by incorpo-
rating long-range spatial dependencies captured distinctly by
the orthogonal convolutions. Furthermore, unlike self-attention
[15], our design does not incur the high memory overhead
or increased inference latency associated with computing
pairwise interactions between all spatial positions explicitly.

As such, it enables capturing of global contextual cues to
augment feature learning, while maintaining the computational
efficiency of standard convolutional networks.

B. Intra-layer Multi-scale Feature Interaction (IMFI)

A single input image often contains objects of different
scales with varying sizes and contour shapes. To enhance
better scale-invariant object detection ability of the network,
FPN [12] enables the propagation of high-level semantic
features to lower feature maps to facilitate inter-layer feature
interactions. PAN [13] incorporates a bottom-up path into the
original FPN design, transferring lower-level location cues
to higher pyramid levels. This inter-layer feature interaction
mechanism combines shallow positional features and deep
semantic features, fusing multi-scale representations from dif-
ferent network layers to enhance object detection performance.
However, such approaches are still focused on layer-to-layer



LIANG et al.: LIGHTWEIGHT REAL-TIME OBJECT DETECTION VIA ENHANCED GLOBAL PERCEPTION 315

Fig. 2. The architecture of IMFI.

information transmission. In this paper, we propose the IMFI
module to perform multi-scale feature interaction at a finer
granularity level and better integrate information within a
single block. It constructs hierarchical feature cascading within
a block via feature splitting and grouped convolutions, progres-
sively increasing the receptive field ranges between groups. By
modeling intra-layer multi-scale interactions and aggregating
outputs with parallel group convolutional branches and varied
receptive fields, the IMFI module combines positional and
semantic cues at a more granular level and realizes a more
optimal combination of local and global scales through its
granular intra-block design compared to solely relying on
inter-layer propagation.

Specifically, as demonstrated in Fig. 2, the input features are
equally divided into four groups along the channel dimensions
after 1×1 convolution to reduce the dimensionality, as shown
in Eq. (4)

F → Split(X1, X2, X3, X4) (4)

where F denotes the output after 1×1 convolution and Xi

represents four different parts. Next, the previous group of
features is concatenated with the neighboring next group of
features and then convolved by a regular convolution of 3×3
for significant feature extraction. It can be summarized as Eq.
(5

Yi = Conv3×3 ∗ (Xi−1 ⊕Xi), 2 ≤ i ≤ 4 (5)

where * denotes the convolution operations and ⊕ represents
the summation operation. Finally, to better integrate infor-
mation of different scales, outputs from different groups are
concatenated and fused through a 1×1 convolution layer, as
shown in Eq. (6)

Fout = Conv1×1 ∗ (Concat[X1, X2, X3, X4]) (6)

As mentioned above, multiple groups of convolutional residual
linking operations within the intra-layer allow for progressive
adjustments in receptive field scales, capturing both local
and global information at a more fine-grained level. The
combined effect of different inter-group features and multiple
3×3 convolutional overlays allows the output of IMFI to
contain different combinations of different amounts and scales
of receptive field information, facilitating the extraction of
more equivalent feature scales and contextual information.
Consequently, the proposed IMFI module achieves a finer
network multi-scale modeling by transferring and fusing dif-
ferent intra-layer features, which further enhances the feature
pyramid’s ability to detect various objects.

C. Multi-branch Scale-aware Aggregation (MSA)

In CNNs, larger receptive fields allow the network to capture
more global context and consider a wider area of the image.
However, blindly pursuing expansive receptive fields without
justification is inadvisable, as the size of the field of perception
required for different scale targets is different. While a small
receptive field is better suited for detecting small objects, a
field close to or smaller than the object scale does not leverage
enough contextual information. With a limited field of view
that only includes the target, important surrounding context is
missed. This makes it difficult to discriminate the target from
its surroundings and hinders object detection performance.

We introduce a novel MSA module to address the fixed
receptive field limitations of CNNs for multi-scale target
detection. The MSA module comprises parallel convolution
branches with identically configured filters except for the di-
lation rates. This design allows the network to simultaneously
incorporate diversified receptive field sizes. As shown in Fig.
3, the module first splits the input feature F equally into three
branches and applies 3×3 convolution with unique dilation
rates ranging from 1 to 3. This results in effective receptive
fields across branches spanning from local to larger contex-
tual scales. The convolved feature maps from all branches
are then concatenated to form a stacked multi-scale feature
H = {F1, F2, F3}. Subsequently, 1×1 convolutions encode
channel dependencies between hierarchical scales, facilitating
the fusion of fine-grained and global representations.

The MSA module captures multi-scale features through its
branches with varied dilation rates. Smaller dilations extract
fine-grained details, while larger ones encompass a broader
context. Features captured from different dilation branches can
provide complementary representations, capturing fine details
as well as global context. By aggregating representations from
multiple branches, the MSA combines complementary scale-
specific details. The aggregation of multi-branch receptive
fields allows the network to perceive more differences between
objects at different scales, richer contextual feature informa-
tion, and correlation of feature information, thus enhancing
the model’s perceptual adaptability to scale variations and
improving the target detection accuracy. Its multi-branch scale-
aware design overcomes the limitations of fixed receptive
fields, providing a robust and scalable solution for multi-scale
visual tasks.

Fig. 3. The architecture of MSA.
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III. EXPERIMENTS AND DISCUSSION

A. Datasets

This paper is based on extensive experiments with the
publicly available complex cityscape dataset Cityscapes [20]
and the PASCAL VOC [21].

Cityscapes comprises street view images captured by in-car
cameras across 50 diverse urban streets, including 2975 train-
ing images and 500 test images. It includes eight categories
such as people, riders, cars, trucks, buses, motorbikes, and
bicycles. Based on this dataset, We use the data enhancement
method in the literature [19] to perform fogging operations
on the images in the training and test sets, respectively, so
as to achieve the simulation of complex foggy environments.
The final hybrid dataset utilized for this paper comprised 5950
images for training and 1000 for testing, with a 1:1 ratio
between foggy and clear images.

PASCAL VOC is a prevalent benchmark dataset for object
detection comprising VOC2007 and VOC2012, which contain
images across 20 common object classes. In this work, the
training and validation subsets from VOC2007 and VOC2012,
totaling 16,551 images, are used for model training. The
VOC2007 test set, containing 4,952 images, is employed for
model testing.

B. Evaluation Metrics and Implementation Details

For a fair comparison, our experiments mainly adopt pri-
mary evaluation metrics used in MS COCO [22] to gauge de-
tection performance. These established measures are Average
Precision (AP) and Average Recall (AR). Besides, it can be
subdivided into AP50 (IoU=0.50), AP75 (IoU=0.75), and the
overall AP (IoU=0.50:0.95) depending on different IoUs. In
addition, the APS , APM , and APL represent small, medium,
and large objects respectively. To provide a holistic assessment
of the proposed methods, we also use Parameters (Params),
GFLOPs, and Frames Per Second (FPS) as our comparison
criteria.

To demonstrate the effectiveness of our proposed method,
we use YOLOv5-6.1 as the baseline model without pre-trained
weights. All experiments are conducted on a PC with an
Intel i5-12600KF CPU at 3.70GHz and an NVIDIA GeForce
GTX3060 GPU (12GB) based on the PyTorch 1.10 framework
and CUDA 11.3. During the training phase, the optimizer
utilizes SGD with a momentum of 0.937, a weight decay of
1e-5, and a warmup momentum of 0.8. The initial learning
rate (lr) is set to 1e-2, and the cosine function is employed to
dynamically reduce the lr. In addition, both training and test
image sizes are uniformly resized to 640×640 size. Only basic
common image enhancement methods such as 50% random
horizontal flip, 0.0-0.5 times random scale, and 10% image
translation are applied to the training images. These parameters
are kept consistent for all experiments, training for 100 epochs
with a batch size of 16.

C. Main Results

Considering the autonomous driving traffic scenarios often
require fast and real-time detection of objects, models with

a smaller number of parameters and lower computational
requirements are better positioned for pragmatic engineering
practices and tangible deployment scenarios. We compare the
proposed algorithm with several popular real-time detectors,
including YOLOX [23], YOLOv6 [24], and YOLOv7 [25].
At the same time, we also conduct comparison experiments
using the newly released lightweight backbone FasterNet [26]
replacement in the benchmark model. To fully compare the
effectiveness of the algorithms, we also perform multiple data
comparisons of algorithms with larger model volumes, such
as QARepNext [27] and Swin Transformer [17].

As can be seen from the results in Table I, our method
achieves the best performance among lightweight models in
terms of AP50, AP75, and AP . Notably, all the results in
Table I are for the mixed test set containing 500 original
images and 500 synthetic foggy images. Comparing the first
and last rows, our model decreases parameters and GFLOPs
compared to the YOLOv5s baseline, while improving the
AP50 metric by 5.6 percentage points. Furthermore, as can
be seen from the data in the penultimate row of the table,
our application of the improvements proposed in this paper to
the YOLOv7-Tiny model also yielded stunning results, with
AP , AP50, and AP75 improving by 2.0%, 4.6%, and 1.3%,
respectively. Against state-of-the-art single-stage lightweight
models YOLOX, YOLOv6, and YOLOv7-Tiny, the proposed
model also achieves the highest AP50, achieving the best
trade-off between speed and accuracy. When replacing the
YOLOv5s backbone with the lighter FasterNet, parameters,
and computation are further reduced but at the cost of de-
creased AP . In addition, compared with algorithms with larger
model sizes, while our lightweight model is lower than theirs
in AP, the huge computational parameters can severely reduce
the model inference speed and increase the deployment cost.
As can be seen from the comparison of FPS in the table, the
FPS of the large model is much lower than that of our 73 FPS.
In addition, to evaluate the generalizability and effectiveness
of the proposed method, we conduct comparative experiments
on the commonly used generalized object detection dataset
PASCAL VOC [21]. As shown in the results in Table II, the
proposed method obtains the highest mAP of 81.5% on the
VOC2007 test set.

D. Ablation Study

To assess the effectiveness of the proposed methods, we
conduct extensive ablation experiments. As shown in Tables
III and IV, where M1, M2, and M3 represent the GFE
module, IMFI structure, and MSA module, respectively. From
the data comparison between the first two rows in Table III
and Table IV, the GFE module enhances the global position
of different targets in the entire feature map by overlaying
between the pixels in the horizontal and vertical directions,
which effectively improves the object detection rate in com-
plex environments. The GFE module improves the AP50 of the
baseline model from 32.6% to 35.1% on the original test set
containing only clear images, and the AP50 improves by 2.2%
on the mixed test set containing foggy images. Then, when
we insert the proposed IMFI module into the feature pyramid
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TABLE I
COMPARISON WITH STATE-OF-THE-ARTS ON MIXED TEST SET

Methods Params GFLOPs AP AP50 AP75 APS APM APL FPSba1

YOLOv5s 7.2M 16.5G 16.7 31.6 15.2 1.5 10.0 30.4 71
YOLOX 5.1M 7.6G 17.1 32.6 15.6 0.6 8.2 32.4 72
YOLOv6 4.7M 11.4G 16.9 31.2 16.0 0.6 9.6 32.4 76

YOLOv7-Tiny 6.2M 13.7G 18.9 35.8 17.0 1.3 10.4 33.8 76
FasterNet 6.1M 13.3G 16.0 30.2 14.7 1.2 9.1 29.3 74

QARepNext 10.06M 25.3G 17.5 33.7 14.8 1.0 9.9 31.9 67
YOLOv5m 20.89M 48.3G 22.3 39.7 21.5 1.2 12.5 39.3 53
YOLOv7 37.23M 105.2G 24.3 43.9 22.3 2.8 15.3 39.6 50

Swin Transformer 33.72M 88.1G 23.4 42.6 22.0 1.1 14.0 41.2 31
Ours-v7 6.3M 14.1G 20.9 40.4 18.3 2.1 12.0 36.0 77
Ours-v5 6.8M 14.8G 19.8 37.2 18.3 1.3 10.5 35.7 73

TABLE II
COMPARATIVE DETECTION RESULTS ON VOC2007 TEST

SET

Methods Backbone Train mAP(%)
Faster RCNN [6] VGGNet VOC07+12 73.2
Faster RCNN [6] ResNet-101 VOC07+12 76.4

R-FCN [28] ResNet-101 VOC07+12 80.5
FCOS [29] ResNet-50 VOC07+12 77.8
ATSS [30] ResNet-50 VOC07+12 78.2

FAENet [31] VGGNet VOC07+12 80.1
RetinaNet [32] VGGNet VOC07+12 80.1

SSD300 [7] VGGNet VOC07+12 77.2
YOLOv3 [10] DarkNet-53 VOC07+12 79.4

YOLOv5 DarkNet-53 VOC07+12 80.1
Ours DarkNet-53 VOC07+12 81.5

network, the larger and multi-scale receptive field interactions
generated by feature grouping and convolutional superposition
result in a huge improvement in the model’s detection of
large-scale targets. As indicated by the results in the third
row of Table IV, the module improves by 3.0, 4.6, and 3.1
percentage points in AP , AP50, and AP75, respectively. The
MSA module aggregates contextual information corresponding
to different scales of targets using null convolutional branches
with different expansion rates, allowing for better assignment
of more appropriate feature representations based on the scale
of the detected targets. We integrated this module separately
into the detection process before the final decision-making
phase to improve the model’s ability to detect multiple targets
and enhance its robustness. Subsequently, we incorporated the
proposed method jointly into the model, and the proposed
method was significantly improved in terms of detection
accuracy and recall compared to the baseline model. The AP ,
AP50, and AP75 reached a maxi-mum of 19.8%, 37.2%, and
18.3% respectively. The AR (maxdet=1, 10, 100) improved
by 1.4%, 2.6%, and 2.1% respectively.

For qualitative assessment, detection results from the base-
line and proposed methods are displayed in Fig. 4 to illustrate
and compare their effects. The detected images are obtained
from the Cityscapes dataset. To make the contrast more visible,
we set the confidence threshold to 0.45, which filters out

TABLE III
ABLATION RESULTS FOR THE PROPOSED METHODS ON

THE ORIGINAL TEST TET OF CITYSCAPES

Methods Params AP AP50 AP75 APS APM APL

Baseline 7.2M 17.2 32.6 15.4 2.2 11.3 30.5
M1 5.8M 18.7 35.1 17.6 1.4 11.5 33.8
M2 7.3M 20.4 37.9 19.4 1.4 12.6 36.4
M3 7.7M 20.3 37.5 18.9 1.7 12.3 35.9

M1+M2 6.1M 20.0 38.2 17.4 1.5 12.4 35.5
M1+M2+M3 6.8M 20.8 39.3 19.3 1.9 11.7 36.3

TABLE IV
ABLATION RESULTS FOR THE PROPOSED METHODS ON

THE MIXED TEST SET OF CITYSCAPES

Methods Params AP AP50 AP75 AR1 AR10 AR100

Baseline 7.2M 16.7 31.6 15.2 14.5 26.4 31.7
M1 5.8M 18.0 33.8 16.5 15.3 27.4 32.3
M2 7.3M 19.7 36.2 18.3 15.9 28.3 32.3
M3 7.7M 19.5 35.8 18.2 15.9 28.6 32.5

M1+M2 6.1M 19.3 36.6 17.0 16.4 28.0 32.3
M1+M2+M3 6.8M 19.8 37.2 18.3 15.9 29.0 33.8

some of the lower-quality detection boxes. It can be seen
from the results in Fig. 4 that the results in the first line that
YOLOv5 does not detect the pedestrian object in the right
corner. By carefully comparing the third and fourth columns
of the figure, we can see that the proposed method outperforms
the baseline model in both detection accuracy and false alarm
rate. In summary, the proposed model effectively improves the
performance of object detection in complex traffic scenarios.

E. Discussion

As we know, road traffic object detection is crucial for
autonomous driving perception, where real-time and accurate
detection is equally important. Even delays of 1 second or
milliseconds can cause accidents. By considering the trade-
off between speed and accuracy, we propose a lightweight
detection model that improves multi-object detection precision
while maintaining computational efficiency. Meanwhile, a
smaller model size also helps reduce system development costs
for autonomous systems. The experimental results demonstrate
that our lightweight algorithm effectively improves the detec-
tion performance for objects in complex traffic scenarios while
maintaining a relatively high FPS.
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Fig. 4. Detection results of YOLOv5 and the proposed model.

Fig. 5. Detection results of real foggy traffic image, the first and
second rows are the results of the baseline YOLOv5 and the
proposed model in this paper, respectively.

In addition, fog is one of the common adverse weather con-
ditions encountered in autonomous driving scenarios, which
can easily cause blurred target features and reduce detection
accuracy. In order to ensure the robustness of the detection
model for foggy detection environments, we leverage depth
information to synthesize transmittance-based fog images. As
shown in Fig. 4, we test our model on a mixed dataset
containing clear and foggy images. Our model was able to
detect more blurred and distant targets compared to the base-
line model. Furthermore, we conduct real-world testing of the
model using images captured from actual foggy traffic scenes.
As shown in Fig. 5, our model is effective at reducing false
detections when operating in foggy conditions. However, as
fog density varies naturally in density, synthetic single-density
fog cannot fully represent complex real scenarios, risking
generalization. To better simulate diverse fogs, future work
will introduce multi-density variations and robustness training.
When deployed, other adverse conditions like rain and snow

may cause even more severe interference. In summary, a
lighter model design with lower computational costs is more
conducive to subsequent real-world system deployment. The
inclusion of synthesized fog images has enabled the model
to better adapt to real object environments. The lightweight
algorithm proposed in this paper achieves a better balance
between detection accuracy and speed compared to other
methods, bringing us one step closer to reliable perception
systems for autonomous vehicles operating in diverse weather
conditions.

IV. CONCLUSION

In this work, we propose a lightweight real-time detection
algorithm for complex traffic scenarios. A novel global feature
extraction (GFE) structure is proposed to capture dependencies
between long-range pixels and enhance the model’s ability for
feature recognition and localization of objects. Then, intra-
layer multi-scale feature interaction (IMFI) is designed to cre-
ate multi-level feature transfer between layers and increase the
flow of information. Besides, we use the multi-branch scale-
aware aggregation (MSA) module to improve the adaptability
of the network to different scales of targets by aggregating dif-
ferent sizes of receptive field information. Experiments show
that the proposed method leads to substantial improvements in
both average precision and average recall. Compared to other
excellent lightweight algorithms, the model proposed in this
paper achieves the best speed-accuracy trade-off, striking a
perfect balance between rapid processing and accurate results.
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