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DyFusion: Cross-Attention 3D Object Detection
with Dynamic Fusion

Jiangfeng Bi , Haiyue Wei , Guoxin Zhang , Kuihe Yang , and Ziying Song

Abstract—In the realm of autonomous driving, LiDAR and
camera sensors play an indispensable role, furnishing pivotal
observational data for the critical task of precise 3D object
detection. Existing fusion algorithms effectively utilize the
complementary data from both sensors. However, these methods
typically concatenate the raw point cloud data and pixel-level
image features, unfortunately, a process that introduces errors
and results in the loss of critical information embedded in each
modality. To mitigate the problem of lost feature information,
this paper proposes a Cross-Attention Dynamic Fusion (CADF)
strategy that dynamically fuses the two heterogeneous data
sources. In addition, we acknowledge the issue of insufficient
data augmentation for these two diverse modalities. To combat
this, we propose a Synchronous Data Augmentation (SDA)
strategy designed to enhance training efficiency. We have tested
our method using the KITTI and nuScenes datasets, and the
results have been promising. Remarkably, our top-performing
model attained an 82.52% mAP on the KITTI test benchmark,
outperforming other state-of-the-art methods.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8434

Index Terms—Cross-Attention Dynamic Fusion, Synchronous
Data Augmentation, 3D object detection

I. INTRODUCTION

Against the backdrop of thriving autonomous driving ad-
vances, 3D object detection has arisen as an imperative

task to equip unmanned vehicles with precise environmental
cognition [1]. Pioneers in 3D object detection have carried out
significant research, demonstrating excellent performance on
public datasets such as KITTI [2] and nuScenes [3]. As an
exemplar pioneering work, Qi et al. [4] devised PointNet, an
innovative deep neural architecture that directly learns global
features from point cloud data. Zhou et al. [5] proposed
VoxelNet with a Voxel Feature Encoder, which transforms
raw point clouds into voxel-wise features containing spatial
and physical information. These pioneering methods have laid
a strong foundation and provided inspiration for subsequent
research in the realm of 3D object detection.

Within the realm of autonomous driving, LiDAR and cam-
era serve as key sensors, providing rich data for 3D object
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Fig. 1. Quantitative Analysis of Camera, LiDAR, Fusion and Pro-
posed Methods.

TABLE I
COMPARISON OF ADVANTAGES AND DISADVANTAGES OF

CAMERA AND LIDAR

Sensor Advantages Disadvantages

Camera High resolution, color in-
formation.

Sensitive to lighting and
weather, difficult to handle
reflective surfaces.

LiDAR Distance information, no
need for lighting.

Lower resolution, diffi-
culty in recognizing color
and texture.

detection [1]. These two sensors have highly complementary
output data, with their respective advantages and disadvantages
summarized in Table I. Fusion-based algorithms tested on
the KITTI dataset demonstrate better detection performance
compared to using only camera or LiDAR alone, as shown
in Fig. 1. Consequently, fusion-based technology has attracted
significant research interest. Frustum PointNets [6], an end-
to-end 3D object detection method devised by Chen et al.,
integrates 2D object detection outputs with point cloud data.
Building on the foundation of MV3D [7], Ku et al. [8]
introduced AVOD, a fusion-based approach utilizing both
image and point cloud features to achieve more accurate 3D
object detection.

Point cloud data contains the coordinate information of
3D spatial points in a scene, providing high precision and
reliability. Image data provides high-resolution information
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Fig. 2. The overall design of the DyFusion approach. It consists of two core components: the CADF (Section II-A) and the SDA (Section II-B).
The CADF utilizes cross-attention to fuse point cloud and image features. The SDA employs a simultaneous enhancement strategy to improve
model robustness.

such as object color, texture, and shape with visual richness.
Although pure camera-based detection can capture image
information, the lack of depth cues hinders accurate 3D
localization, degrading accuracy. Moreover, pure point cloud
methods struggle with sparsity and disorder, risking missed
distant or occluded targets and thus detection errors. By fusing
these two heterogeneous data sources, the accuracy of object
detection can be significantly improved [1]. Previous research
has primarily used element-wise addition or concatenation for
fusion, but these strong fusion approaches risk information loss
of semantic cues from images and depth patterns from point
clouds, potentially impairing model performance. Therefore,
effectively integrating these two heterogeneous data types into
a highly accurate and coherent representation remains hard to
solve.

To tackle this issue, we propose the cross-attention dynamic
fusion (CADF) strategy, which utilizes the cross-attention
mechanism to dynamically combine cross-modal features. The
model is calibrated by dynamic weighting, reducing the infor-
mation loss and decreasing error. In addition, we introduce the
synchronized data augmentation (SDA) strategy for heteroge-
neous data to enhance the robustness of the model and the
problem of insufficient data augmentation for heterogeneous
modalities. Through the synchronous enhancement of both
point cloud features and image data, our model is able to learn
more universal informational representations, thus elevating
its generalization capabilities by acquiring more transferable
embeddings.

Our contributions are summarized into the following three
aspects:

• We devise a Cross-Attention Dynamic Fusion strategy
that effectively integrates point cloud and image informa-
tion to improve object detection performance.

• We introduce a Synchronous Data Augmentation strat-
egy for heterogeneous data that enhances the accuracy
and robustness of the model’s feature extraction.

• Our proposed approaches exhibit compelling performance
in rigorous empirical evaluations on the authoritative
KITTI and nuScenes benchmarks, which verifies their
efficacy and validity in real-world autonomous driving

scenarios.

The structure of this paper is arranged as follows: Section II
describes our proposed method in detail. Section III introduces
the experimental setup, evaluation metrics, and results in
detail. Section IV concludes the paper and outlooks future
work.

II. METHOD

This section details our proposed DyFusion model. As
shown in Fig. 2, DyFusion fuses point clouds and RGB images
via cross-attention to enhance 3D object detection.

A. Cross-Attention Dynamic Fusion

Traditional multimodal methods in computer vision often
rely on simple fusion strategies like arithmetic operations and
concatenation to integrate image and point cloud features.
However, these strategies have two potential issues that can
reduce fusion effectiveness. First, ascribed to the dispersed
nature of point cloud inputs, directly fusing dense image fea-
tures onto point clouds can result in lost semantic information
from the image. Second, this approach may introduce data
redundancy, hindering important information aggregation and
introducing noise.

In order to tackle these challenges, we propose a novel
Cross-Attention Dynamic Fusion (CADF) strategy for dy-
namically fusing heterogeneous data sources. The CADF
framework diagram is shown in Fig. 3. Unlike traditional
approaches, CADF dynamically fuses features with dynamic
weighting to allow each point cloud to capture better and
fuse image features, thus more effectively utilizing the global
semantic information in the image. In the succeeding sections,
we elaborate on the proposed CADF methodology by delin-
eating its architectural schematics.

1) Image Feature Extraction: To extract global feature
representations from raw image inputs, the proposed CADF
incorporates a ResNet-50 architecture as the backbone module
for 2D feature learning. ResNet-50, which is widely adopted
in computer vision tasks such as Multi-Foggy Images [9]
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Fig. 3. The framework of CADF. First, the BEV and image features
are transformed linearly into Q and K matrices, respectively. These
are multiplied to obtain an attention matrix A, which is then normal-
ized. The resulting matrix is used to weigh and fuse the BEV and
image features. The fused features are obtained by concatenating the
resulting matrix with the original image features.

and ConvGRU-CNN [10]. In our approach, ResNet-50 ex-
tracts global feature maps from raw images, generating high-
dimensional feature representations hx ∈ Rd on a per-image
basis. Where d represents the dimension of the feature vector,
which can be expressed as:

hx = fθx(x) (1)

Where fθx represents the ResNet-50 network, where θx de-
notes the parameters of the network.

2) Voxel Feature Encoding: The CADF strategy uses Voxel
Feature Encoding (VFE) [5] to process point cloud data. The
point cloud data P = pi

N
i=1 ∈ RN×3 is processed through the

VFE layer to obtain the feature map vj ∈ Rd for each voxel,
where d denotes the dimension of the feature vector and j
denotes the index of the voxel. It can be expressed as:

vj = fθp(Pj) (2)

Where fθp represents the VFE layer, where θp denotes the
parameters of the VFE layer, and Pj represents the point cloud
data in the j-th voxel.

3) BEV Feature Extraction: Subsequently, the voxel feature
representations are projected onto the BEV (Bird’s Eye View)
plane through orthogonal mapping, acquiring the positional
coordinates and associated feature vectors of the point cloud
data in the BEV perspective. The feature vectors of all voxels
are aggregated according to certain rules to obtain a voxel
feature vector V ∈ RH×W×d, where H and W denote the
height and width of the BEV plane. It can be expressed as:

Vi,j,k = g(vl,m,n) (3)

where i, j denotes the position coordinates in the BEV plane,
k denotes the dimensionality of the feature vector, l,m, n
denotes the index of the voxel, and g denotes the aggregation

function, which can be pooling, averaging, or maximization
functions.

4) Feature Dynamic Fusion: We use the Cross-Attention
mechanism to fuse BEV features with image features to
achieve feature fusion. Cross-attention mechanisms can inter-
act and integrate information from different feature spaces to
produce a more expressive feature representation. The CADF
module allows each point cloud to blend the image char-
acteristics more optimally, better utilize the global semantic
information of the image, and better handle the input features
of the two heterogeneous modalities.

First, the BEV and image features are separately trans-
formed by linear operations to obtain two new feature maps,
Q ∈ RH×W×d and K ∈ RH×W×d, where d represents the
dimensionality of the feature vectors. This can be expressed
as follows:

Q = WqV, K = Wkhx (4)

Where V denotes the BEV feature matrix, hx denotes the
image feature vector, and Wq and Wk are the linear transfor-
mation matrices that can be learned.

Next, the dot product operation of Q and K yields an
attention matrix A ∈ RH×W×H×W , which can be expressed
as

Ai,j,k,l =
1√
d
Qi,j,: ·KT

k,l,: (5)

where i, j and k, l denote the position coordinates in the
attention matrix, : denotes all the feature vectors, and

√
d is

used to scale the dot product results so as to avoid the problem
of exploding or vanishing gradients.

Then, the attention matrix A is subjected to softmax
operation to obtain a normalized attention matrix P ∈
RH×W×H×W , which can be expressed as

Pi,j,k,l =
exp(Ai,j,k,l)∑

m,n exp(Ai,j,m,n)
(6)

Next, the BEV feature matrix V is weighted and fused using
P to obtain a fused feature matrix F ∈ RH×W×d, which is
formulated as

Fi,j,: =
∑
k,l

Pi,j,k,lVk,l,: (7)

Finally, the fused feature matrix F and the image feature
vector hx are concated together to obtain a fused feature vector
hf ∈ R2d, which can be expressed as

hf = [Fi,j,:, hx] (8)

Notably, the attention matrix A in the cross-attention mod-
ule quantifies feature similarity between the BEV represen-
tations and image embeddings, determining the weight as-
signment of features at different locations during fusion. To
achieve this, softmax operations map the values in A to the
range [0,1] for weighted fusion. The resulting fusion output
hf contains both BEV and image features, thus providing
an enhanced representation of the spatial relationship and
semantic information of point clouds and images.
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(a) Raw Image (b) Augmented Image

(c) Raw Point (d) Augmented Point

Fig. 4. An illustration of Synchronous Data Augmentation.

B. Synchronous Data Augmentation

Pioneers have done substantial work on data augmentation
to enhance the diversity and quantity of data in 3D object
detection. However, most augmentation strategies are applied
only to point cloud data, which increases sample size and
avoids efficiency reduction caused by point cloud sparsity.
Nevertheless, augmenting only point clouds ignores consis-
tency and correspondence with image data, potentially leading
to model overfitting.

To address this risk and improve model generalization, we
propose a Synchronous Data Augmentation (SDA) strategy,
visualized in Fig. 4. These samples were randomly selected
from the KITTI dataset [2]. We perform synchronous aug-
mentation on corresponding image data while augmenting
point clouds, maintaining correspondence between modalities.
This SDA strategy avoids inconsistency issues during training,
thereby improving model accuracy and robustness. Addition-
ally, SDA can simultaneously apply various transformations to
point cloud and image data, increasing dataset diversity. This
enables the model to better adapt to different scenarios and
environments.

1) Point Cloud Data Enhancement: To eliminate noise and
increase dataset diversity, we applied various data augmen-
tation techniques to point clouds, drawing inspiration from
VoxelNet [5] and SECOND [11]. We perform random rotation,
scaling, translation, clipping, and subsampling, explained as
follows. Point clouds underwent rotations randomly sampled
from [-π/4, π/4]. We augmented data via random scaling
in [0.95, 1.05] and translation in [-0.1, 0.1]. For random
cropping, parameters were randomly chosen from [-0.1, 0.1].
Subsampling reduced each point cloud to 512 points. These
augmentations significantly increased point cloud diversity,
improving model robustness and generalization.

Randomly selecting and concatenating subsets of objects
from the training dataset into each frame increases the num-
ber and diversity of objects, improving training speed and
efficiency. Point cloud sparsity means frames may contain
few objects, preventing networks from fully learning object
features. Introducing more objects can thus improve model
accuracy and robustness. Additionally, more objects enhance
adaptability to varied scenes, improving generalization. There-
fore, this augmentation method effectively enhances model
performance.

2) Image Data Enhancement: We devise an innovative
method to enhance the awareness of image data. We fuse
depth data extracted from 3D object label annotations with
the Mixup approach to achieve this goal. Specifically, we first
align the raw image with the augmented point cloud, then
execute partial cropping. The corresponding transparency is
then applied to each cropped region according to its depth
information, thus representing depth information in the image.

To generate the enhanced image, we first sort the target
objects in order of their depth and crop the same area from
the original image for each object. We then blend each
cropped region with the corresponding target image using the
blending ratio in the Mixup method. This ensures that the
enhanced image maintains continuity with the original image.
Additionally, we attenuate the transparency of each object’s
region in the enhanced image according to its depth order.
This guarantees consistency between the enhanced image and
the original image.

By incorporating depth information into the image data via
our proposed method, our model can learn from both the point
cloud and augmented image representations, thereby enhanc-
ing performance and robustness. In summary, our method is
an effective data augmentation technique that enhances the
depth-awareness of image data.

III. EXPERIMENTS

A. Dataset and Metrics

1) KITTI Dataset: The KITTI [2] dataset pioneers as a
benchmark tailored for autonomous driving scenarios. Cap-
tured using cameras and LiDARs mounted on a driving
vehicle, it portrays complex urban and highway environments.
Pixel-level annotations further enrich the dataset, providing
ground truths for salient vision tasks including object de-
tection, depth completion and semantic segmentation. The
imagery comprises high-resolution stereo pairs, while LiDAR
sweeps depict detailed 3D spaces. Owing to its comprehensive
coverage of driving perception challenges, KITTI continues to
catalyze innovations in autonomous vehicle research.

2) nuScenes Dataset: Released by Motional LLC, the
nuScenes [3] dataset pioneers as a large-scale benchmark
tailored for autonomous driving. Captured in Boston and
Singapore by a fleet of AVs, it comprises 1.5 million images
and multi-sensor data from cameras, LiDARs and radars. The
360-degree sensor suite provides comprehensive coverage of
driving scenes. Key attributes include 1600×900 images at
12Hz, dense 3D point clouds and radars detecting beyond
200 meters. nuScenes also incorporates meticulous semantic
annotations like 3D boxes and tracking labels.

3) Metrics: The mAP (mean Average Precision) calculates
the average detection accuracy for each class as :

mAP =
1

C
×

∑
c∈C

(APc) (9)

where C represents the total number of categories. The NDS
(nuScenes detection score) is weighted sum of mAP and er-
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TABLE II
QUANTITATIVE ANALYSIS OF DYFUSION ON KITTI TEST
SET FOR CAR CATEGORY BASED ON 40 RECALL POINTS
AP. “MOD.” REPRESENTS MODERATE. “-” MEANS NOT

MENTIONED. “C” REPRESENTS CAMERA. “L”
REPRESENTS LIDAR. “L&R” REPRESENTS LIDAR AND

CAMERA FUSION

Method Modality
AP3D (%) APBEV(%)

Easy Mod. Hard Easy Mod. Hard

MonoDIS [18] C 10.37 7.94 6.40 17.34 13.19 11.12
M3D-RPN [19] C 14.76 9.71 7.42 - - -
VoxelNet [5] L 77.47 65.11 57.73 89.35 79.26 77.39
SECOND [11] L 84.65 73.66 68.71 88.07 79.37 77.50
MVAF-Net [15] L&R 87.87 78.71 75.48 91.95 87.73 85.00
3D-CVF [16] L&R 89.20 80.05 73.11 93.52 89.56 82.45
CLOCs [17] L&R 88.94 80.67 77.15 93.05 89.80 86.57
Fast-CLOCs [20] L&R 89.11 80.34 76.98 93.02 89.49 86.39
Baseline [12] L 90.90 81.62 77.06 - - -
DyFusion (Ours) L&R 90.96 82.52 77.91 93.02 89.20 86.57

rors, leading to a more comprehensive description of detection
performance, as:

NDS =
1

10

[
5 mAP +

∑
mTP∈TP

(1−min(1,mTP))

]
(10)

where mTP(mean True Positive) denotes the average distance
threshold for each category.

B. Implementation Details

In the experiment, we chose advanced methods Voxel R-
CNN [12] and CenterPoint [13] for the point cloud branch and
validated our module on the KITTI and nuScenes datasets. For
the image branch, considering the trade-off between speed and
accuracy, we adopt ResNet-50 [14] to extract image features
following previous works [15]–[17]. In the experiment, the
voxel size was configured as (0.1m, 0.1m, 0.1m) along the
x, y, and z axes. Our DyFusion training framework uses a
mixed optimizer for end-to-end optimization. The detailed
configuration of the experiment is as follows: the experiment
is trained on 8 RTX 3090 GPUs; a total of 80 epochs are
trained; the batch size is set to be 8; and the experiment is
conducted using Python 3.8, PyTorch 1.10 and CUDA 11.3.
The network was trained for approximately nine hours. We
used OpenPCDet as the codebase, and if no parameter settings
were specified, the default settings were applied.

C. Results on KITTI Dataset

To examine the proposed architecture, experiments were
conducted on the KITTI dataset [2] and reported the average
accuracy (AP40). Our proposed DyFusion achieves significant
results. Specifically, DyFusion improves the accuracy by 0.9,
1.79, and 1.86 in three different classes compared to baseline
Voxel R-CNN [12]. We also compared some advanced 3D
object detection methods, and Table II presents the results
of our method and other latest techniques evaluated on the

TABLE III
QUANTITATIVE ANALYSIS OF DYFUSION ON KITTI
VALIDATION SET FOR CAR CATEGORY BASED ON 40

RECALL POINTS AP

Method
AP3D (%) APBEV (%)

Easy Mod. Hard Easy Mod. Hard

VoxelNet [5] 81.97 65.46 62.85 - - -
F-PointNets [21] 83.76 70.92 63.65 - - -
SECOND [11] 87.43 76.48 69.10 - - -
Point-GNN [22] 87.89 78.34 77.38 89.82 88.31 87.16
PointRCNN [23] 88.88 78.63 77.38 - - -
F-ConvNet [24] 89.02 78.80 77.09 90.23 88.79 86.84
MAFF-Net [25] 88.88 79.37 74.68 93.23 89.31 86.61
EPNet [26] 92.28 82.59 80.14 95.51 91.47 91.16
Baseline [12] 92.39 84.55 82.03 95.68 90.77 88.46
DyFusion(Ours) 93.29 86.34 83.89 96.57 92.08 90.24

KITTI test data. We also performed validation experiments,
and Table III shows our quantitative results on the KITTI
validation set.

D. Results on nuScenes Dataset

In order to assess the efficacy and viability of our approach,
we conducted supplementary experiments on the nuScenes
[3] dataset. The results in Table IV show that DyFusion
achieved 62.8 mAP and 68.5 NDS on the nuScenes dataset,
which is a significant improvement of 4.8 mAP and 3.0 NDS
compared to the baseline CenterPoint [13]. DyFusion also
outperformed many advanced methods in terms of detection
accuracy. We also provide detailed results for each object class
and performance on the test leaderboard in Table IV.

E. Ablation Studies

To demonstrate the improvement of detection accuracy
by the CADF strategy and SDA strategy in DyFusion, we
tested both strategies on the baseline. We benchmarked the
approaches on the KITTI val data and exhibited the AP results
in Table V. After adding our CADF strategy to the model,
the Car AP3D increased from 84.55 to 85.98, indicating
that the dynamic fusion strategy for images and point clouds
plays a crucial role in our network framework. Furthermore,
the SDA strategy that we introduced further improved the
training accuracy of the model by 0.36 mAP. The improvement
in model accuracy demonstrates that our method can better
utilize the depth information from point clouds and semantic
information from images for 3D object detection. Additionally,
synchronized data augmentation enhances the robustness of the
model and optimizes the entire network structure.

F. Results and Discussion

In this section, we experimentally validate the proposed
DyFusion model, which is trained and evaluated using KITTI
and nuScenes datasets. The experimental results show that the
DyFusion model significantly improves the accuracy in 3D
object detection tasks. However, we should also note that the
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TABLE IV
COMPARISONS WITH PREVIOUS METHODS ON NUSCENES TEST SET

Method mAP NDS Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.

SECOND [11] 31.6 46.8 - - - - - - - - - -

PointPainting [27] 46.4 58.1 77.9 35.8 15.8 36.2 37.3 60.2 41.5 24.1 73.3 62.4

HotSpotNet [28] 59.3 66.0 83.1 50.9 56.4 53.3 23.0 81.3 63.5 36.6 73.0 71.6

CenterPoint [13] 58.0 65.5 84.6 51.0 60.2 53.2 17.5 83.4 53.7 28.7 76.7 70.9

DyFusion(Ours) 62.8 68.5 86.0 58.8 21.8 72.0 39.5 66.0 68.9 51.9 86.3 76.9

TABLE V
PERFORMANCE OF PROPOSED METHOD WITH DIFFERENT

STRATEGIES ON KITTI VAL SET

CADF SDA
AP3D (%) APBEV (%))

Easy Mod. Hard Easy Mod. Hard

92.39 84.55 82.03 95.68 90.77 88.46

✓ 93.12 85.98 83.52 96.13 91.89 89.97

✓ 92.85 85.22 82.87 90.04 91.26 88.74

✓ ✓ 93.29 86.34 83.89 96.57 92.08 90.24

experiments have some limitations. First, the complexity of the
model and the computational resources limit the experimental
scale and depth, which still puts us at a disadvantage compared
to some state-of-the-art models (e.g., TransFusion [29], BEV-
Fusion [30], and UVTR [31], etc.). Secondly, the prediction
speed is slow due to the large computational volume and many
parameters. Based on the experimental results and limitations,
we propose the following recommendations to guide future
research. First, expand the size and diversity of the training
dataset to improve the generalization ability and robustness of
the network. Second, further optimize the network architecture
and hyperparameter settings to find lightweight neural network
architectures, such as Densely Feature selection Convolutional
neural Network – Hyper Parameter tuning [32].

IV. CONCLUSION

In this paper, we proposed DyFusion, a novel image-point
cloud fusion method. Our method introduces CADF, an in-
novative approach that leverages cross-attention to effectively
integrate image and point cloud features. This integration
not only mitigates errors but also addresses the challenge of
feature loss. We also designed the SDA strategy to address
the problem of insufficient data augmentation, which helps
introduce more variations into the training data thereby en-
hancing the robustness and generalization capability of the
model. Extensive experiments on KITTI [2] and nuScenes
[3] demonstrate DyFusion’s effectiveness and superiority over
other advanced 3D detection methods. We hope our proposed
fusion method provides a new perspective to advance 3D
object detection. In future work, we can further explore
multimodal network lightweighting for faster detection and
real-time applications in autonomous driving. This requires
us to investigate more efficient feature extraction and fusion
mechanisms, as well as exploring techniques such as model

pruning and quantization to reduce model parameters and
computation.
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