Abstract:
Ship detection from remote sensing images plays an important role in military and civilian fields. However, since the small size of ship targets and the interference of c...Show MoreMetadata
Abstract:
Ship detection from remote sensing images plays an important role in military and civilian fields. However, since the small size of ship targets and the interference of cloud cover, this task still suffers from great missed detection and false-alarm. To tackle these problems, a Saliency Adjusted YOLO (SA-YOLO) for optical satellite image ship detection is developed. First, due to the fact that the ship in low resolution imagery can be regarded as a salient object, we designed a saliency guided dense sampling layer (SDSL) to improve the spatial sampling of small ship targets. Secondly, the saliency region-aware convolution (SAConv) strategy is designed to improve the representation capability of salient regions and increase the attention of network to these regions. We validated the proposed method using more than 2000 remote sensing images from GF-1 satellite. The experimental results demonstrated that the proposed method obtained a better detection performance than the state-of-the-art methods.
Date of Conference: 17-22 July 2022
Date Added to IEEE Xplore: 28 September 2022
ISBN Information: