
Received 14 February 2023; revised 11 July 2023 and 1 October 2023; accepted 13 October 2023.
Date of publication 17 October 2023; date of current version 25 October 2023.

The associate editor coordinating the review of this article and approving it for publication was S. Coleri.

Digital Object Identifier 10.1109/TMLCN.2023.3325299

Deep Reinforcement Learning for Multi-User
Massive MIMO With Channel Aging

ZHENYUAN FENG 1 (Member, IEEE), AND BRUNO CLERCKX1,2 (Fellow, IEEE)
1Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ London, U.K.

2Silicon Austria Labs (SAL), 8010 Graz, Austria

CORRESPONDING AUTHOR: Z. FENG (z.feng19@imperial.ac.uk)

ABSTRACT The design of beamforming for downlink multi-user massive multi-input multi-output
(MIMO) relies on accurate downlink channel state information (CSI) at the transmitter (CSIT). In fact,
it is difficult for the base station (BS) to obtain perfect CSIT due to user mobility, and latency/feedback
delay (between downlink data transmission and CSI acquisition). Hence, robust beamforming under imper-
fect CSIT is needed. In this paper, considering multiple antennas at all nodes (base station and user
terminals), we develop a multi-agent deep reinforcement learning (DRL) framework for massive MIMO
under imperfect CSIT, where the transmit and receive beamforming are jointly designed to maximize the
average information rate of all users. Leveraging this DRL-based framework, interference management
is explored and three DRL-based schemes, namely the distributed-learning-distributed-processing scheme,
partial-distributed-learning-distributed-processing, and central-learning-distributed-processing scheme, are
proposed and analyzed. This paper 1) highlights the fact that the DRL-based strategies outperform the
random action-chosen strategy and the delay-sensitive strategy named as sample-and-hold (SAH) approach,
and achieved over 90% of the information rate of two selected benchmarks with lower complexity: the
zero-forcing channel-inversion (ZF-CI) with perfect CSIT and the Greedy Beam Selection strategy, 2)
demonstrates the inherent robustness of the proposed designs in the presence of channel aging. 3) conducts
detailed convergence and scalability analysis on the proposed framework.

INDEX TERMS Deep learning, interferencemanagement, massiveMIMO, reinforcement learning, wireless
communication.

I. INTRODUCTION

DUE to the increasing demand for data and connectivity
in fifth-generation (5G) [1] and sixth-generation (6G)

[2], multi-antenna technologies have attracted great attention
in academia and industry. The research on multi-antenna
techniques has promoted the development of multi-input
multi-output (MIMO) technology. MIMO nowadays plays an
indispensable role in the physical layer, media access control
(MAC) layer, and network layer in wireless communications
and networking [3]. At the physical layer, multi-antenna
beamforming strategies have attracted great interest due to
their ability to achieve considerable antenna gains, multiplex-
ing gains, and diversity gains [4], [5], and gradually evolved
into a massive MIMO system, in which the number of anten-
nas at the BS reaches tens or even hundreds, attracting a larger
number of users. To enable a high throughput in the mas-
sive MIMO system, the base station (BS) relies on the huge

demand for global and instantaneous channel state informa-
tion (CSI) based on efficient channel estimation techniques
[6], [7]. Nevertheless, the ground/air/space platforms such as
high-speed trains/unmanned aerial vehicles (UAV)/satellites
have a common characteristic of 3Dmobility which leads to a
stringent time constraint on CSI acquisition and even causes
misalignment of narrow beams. Therefore, in future com-
munication systems, how to maintain good connectivity and
system capacity without perfect channel state information at
the transmitter (CSIT) (so-called imperfect CSIT) is regarded
as an important problem that yearns for prompt solutions.

The imperfect CSIT is usually caused by the drastic change
of the propagation environment due to user mobility [8]
and CSI feedback/acquisition delay between the base station
(BS) and users [9]. The CSI delay due to user mobility or
feedback or acquisition delay is the time gap between the
time point when the downlink training happens and the BS
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starts downlink data transmission with the estimated chan-
nel. Such delay can be in the level of milliseconds which
causes the estimated channels to be outdated when actually
downlink transmission happens. This delay becomes more
catastrophic at high user mobility since rapid channel vari-
ation inevitably causes performance degradation in massive
MIMO systems [10]. This phenomenon, which is known as
channel aging, describes the mismatch between estimated
and update-to-date channels. That is to say, it represents the
divergence arising between the channel estimation happening
in the BS/users and the actual channel through which the data
transmission occurs.

A. RELATED WORKS
To address the issue above, many papers have studiedmassive
MIMO systems with imperfect CSIT [8], [9], [10], [11], [12],
[13], [14], [15], [16] since CSIT is pivotal to the performance
of systems that account for a great number of antennas and
users. In [8], the impact of channel aging due to mobility is
partially overcome through finite impulse response Wiener
predictor without considering hardware phase noise, which is
further studied in [10]. To tackle the CSI feedback/acquisition
delay, one strategy is to use space-time interference align-
ment to optimize the degree of freedom (DoF) with delayed
CSIT [11], [12]. Another method investigates the channel
prediction based on the channel correlation [13] and past CSI
[14]. In addition, to maintain the multi-user connectivity and
mitigate the degrading effect of user mobility, low complex-
ity power allocation methods are derived in [15] for Space
DivisionMultiple Access (SDMA) which is outperformed by
Rate-Splitting Multiple Access (RSMA) in [16] in terms of
ergodic sum-rate.

On the one hand, the channel prediction approaches in
the papers cited above [8], [9], [10], [11], [12], [13], [14]
demonstrate good performance but experience extremely
high complexity in channel prediction algorithms due to the
increasing dimension of the antenna arrays. On the other
hand, power allocation strategies in [15] and [16] exhibit
lower complexity but sacrifice performance for tractability.
To maintain a better balance of performance and complexity,
an alternative strategy with lower complexity and looser CSI
requirement needs to be developed urgently.

Machine learning (ML) [17] has demonstrated great use-
fulness in wireless systems [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38]. To cope with complex problems in
a large-dimensional MIMO system, deep learning (DL) has
drawn research interest in not only beamforming design [20],
[21] by feeding CSI to the neural network but also chan-
nel prediction [22], [23], [24], [25], [26] by treating the
time-varying channel as a time series, thanks to the strong
representation capability of the deep neural network (DNN).
Nevertheless, under stringent time constraints in mobility
scenarios, the excellent generalization performance of DNN
can not be fully exploited due to an insufficient number
of data samples. In view of it, by elaborately treating the

time-varying channel problem as a Markov decision pro-
cess (MDP), deep reinforcement learning (DRL) has been
regarded as a useful technology to design wireless com-
munication systems by leveraging fast convergence of DL
frameworks as well as continuous improvement character-
istic in reinforcement learning (RL) algorithms [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39].
Systematically, a comprehensive tutorial in [39] reveals the
applications of DRL for 5G and beyond. DRL is used to
solve the power allocation problem in time-varying chan-
nels in [27] for single transmit antenna scenarios, and is
further studied in [28] for multi-antenna beamforming and in
[35] for multi-user conditions. In [30], [31], [32], and [37],
DRL is utilized to tackle the passive beamforming design
problem in reconfigurable intelligent surfaces (RIS)-aided
communications and help reduce the computations compared
to alternative frameworks. In terms of active beamforming
using DRL, several efforts have been made on designing low
complexity algorithms based on deepQ-network (DQN) [28],
[34], [35], [36] and partially observedMDP [38] frameworks.

B. MOTIVATION AND SPECIFIC CONTRIBUTIONS OF THE
PAPER
Existing works [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37] assume that perfect CSIT or instantaneous
channel gain via receiver feedback is known at the trans-
mitter. Unfortunately, such an assumption is impractical in
real-world systems with CSI feedback/acquisition delay and
user mobility [8], [9]. In addition, beamforming is not limited
to the transmitter and can also be used at the receiver to per-
form better interferencemanagement. To our best knowledge,
predicting the beamformers of both transmitter and receiver
with imperfect CSIT is never considered in DRL-based
papers. Instead, all the existing work focuses on high-level
multi-cell single-user (SU) single-input-single-output (SISO)
[27], [29] (no transmit and receive beamforming) and multi-
input-single-output (MISO) (only transmit beamforming)
[28], [31], [34], [38] scenarios without considering multiple
receive antenna cases, which motivates this work. In addition
to DRL-based strategies, a traditional procedure of beam-
forming is to use the frequency-division duplexing (FDD)
pilot-based channel estimation procedure and zero-forcing
channel inversion (ZF-CI) scheme [4]. Compared with DRL-
based approaches, a key disadvantage of this method is that
the system performance is heavily dependent on how fast the
channel is changing as well as the feedback delay.

Motivated by the above, we study the joint transmit
precoder and receive combiner design in massive MIMO
downlink transmission with channel aging. The contributions
of this paper are summarized as follows.

• We construct an efficient multi-agent DRL-based frame-
work for massive MIMO downlink transmission,1 in
light of which three DRL-based algorithms were derived

1The terminology massive MIMO in this paper implies multiple receive
antennas.
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based on stream-level, user-level, and system-level
agent modeling. This is the first paper showing that
the DRL-based framework can be used to address
very high-dimension optimization problems and demon-
strates 1) robustness on the degrading effect of channel
aging, 2) stringent interference management especially
the inter-stream interference andmulti-user interference.

• To address the challenge of high-dimensional antenna
beamforming problems, by utilizing the DRL-based
framework, three DRL-based schemes, namely
distributed-learning-distributed-processing DRL-based
scheme (DDRL), partial-distributed-learning-distributed-
processing DRL-based scheme (PDRL), and central-
learning-distributed-processing DRL-based scheme
(CDRL), are proposed, analyzed, and evaluated. For
DDRL, each stream is modeled as an agent. All the
agents save their experiences in a private experience
pool for later training. In contrast, in CDRL, the whole
system is modeled as a central agent. What’s more,
to bridge DDRL and CDRL, we demonstrate another
algorithm, i.e., PDRL which offers a more flexible
design by modeling each user as an agent to balance the
performance and complexity. Note that the DDRL and
CDRL are different from those in [27] and [28] since we
are tackling the problem with 1) receive beamforming
withmultiple receive antennas, 2) transmit beamforming
under imperfect CSIT, 3) multiple streams for each
user, and 4) a large number of transmit antennas at BS
comparedwith SISO in [27] and 4-antennaMISO in [28]
and [35], respectively.

• Leveraging the DRL-based framework mentioned
above, the precoders at BS and combiners at users
are jointly designed by gradually maximizing the aver-
age information rate through the observed reward.
In particular, the BS decides the transmit precoder
and receive combiner for each stream with imperfect
CSIT and perfect CSIR. The merits of this design are
shown through extensive simulations by benchmarking
our schemes against the conventional, sample-and-hold
(SAH) approach [26], zero-forcing channel-inversion
(ZF-CI) strategy [4], greedy beam selection and random
action-chosen scheme.

• We demonstrate the advantages of DRL-based strategies
over the benchmarks above. In particular, the proposed
algorithms show 1) fast convergence to efficient beam-
forming policy, 2) the robustness on tracing the channel
dynamic against channel uncertainty due to channel
aging, and 3) lower complexity compared with tradi-
tional beamforming strategy. All of these properties are
essential in practical wireless networks.

• By numerical results, we show that our proposed
DRL-based schemes outperform the SAH approach and
random action-chosen scheme. In particular, DDRL can
achieve nearly 90% of the performance of the state-of-
the-art ZF-CI method with perfect CSI (ZF-CI PCSI)
and 95% of the performance of the Greedy Beam Selec-

tion method but incurs more hardware complexity and
more uplink overhead in an FDD setup. By increas-
ing the resolution of the codebook and hyper-parameter
tuning on the reward function, the performance can be
further improved.

Organizations: The whole Section II is devoted to the
system model, channel model, and the formulated sum-rate
problem. In Section III, the basics of DRL are introduced, and
three practical multi-agent DRL-based approaches are pro-
posed. The simulation results are demonstrated in Section IV
and this paper is concluded in Section V.
Notations: Boldface lower- and upper-case letters H, and

h, denote matrices and vectors, respectively. E{·} repre-
sents statistical expectation. (·)−1, (·)T , (·)∗, and (·)H indicate
inversion, transpose, conjugate, conjugate-transpose, respec-
tively. R and I denote the real and imaginary parts of a
complex number, respectively. IM denotes anM×M identity
matrix. 0 denotes an all-zero matrix. ||a|| denotes the norm of
a vector a. |a| denotes the norm of a variable a.

II. SYSTEM MODEL
Consider the MIMO broadcast channel (BC) with one M -
antenna BS and K N -antenna users indexed by K =

{1, . . . ,K } [40]. The BS aims to deliver Ms streams in the
time instant of interest. For simplicity, A number of KNs
streams are transmitted simultaneously from the M antennas
of the BS. Each group of Ns streams indexed by Ns ∈ N =
{1, . . . ,Ns} is targeted at one of the K users. Note that we
consider a setting whereM ≥ KNs to ensure the spatial mul-
tiplexing gain. The transmit power P is uniformly allocated to
all KNs streams. We assume that the BS and all users operate
in the same time-frequency resource and are synchronized.
The transmitted signal, i.e., the precoded data vector, at time
slot t can be written as

x(t) =

√
P
KNs

K∑
k=1

Ns∑
n=1

pk,n(t)sk,n(t) (1)

where sk,n,∀k ∈ K,∀n ∈ N , is the encoded message
from message Wk,n with zero mean and E(|sk,n|2) = 1, and
precoder pk,n(t) ∈ CM×1 is subject to ∥pk,n(t)∥2 = 1. The
received signal at user k can be expressed as

yk (t) =

√
P
KNs

Hk (t)
∑Ns

n=1
pk,n(t)sk,n(t)

+

√
P
KNs

Hk (t)
∑K

j̸=k,j=1

∑Ns

i=1
pj,i(t)sj,i(t)

+ nk (t) (2)

where the noise vector nk ∈ CN×1 is assumed to follow a
complex normal distribution, i.e., nk ∈ CN (0, σ 2

n IN ). At the
user side, the combiner vector for each stream is denoted as
wk,n(t) ∈ CN×1, ∥wk,n(t)∥2 = 1,∀k ∈ K, n ∈ N . Then, the
achievable rate for user k and the average user rate at time
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slot t can be written as

Rk (t) =
Ns∑
n=1

Gk,n(t), R̄(t) =

∑K
k=1 Rk (t)
K

, (3)

where Gk,n is the achievable rate of stream n for user k .
To indicate the downlink information rate in each stream,
by adopting the Shannon capacity equation, Gk,n is given as

Gk,n(Wk (t),Pk (t))) = log(1+ γk,n(Wk (t),Pk (t))) (4)

where, for consistency with the notation in the following sec-
tions, γk,n(Wk (t),Pk (t)) denotes the Signal-to-Interference-
plus-Noise Ratio (SINR) of stream n for user k as

γk,n(Wk (t),Pk (t)) =
P
KNs
|wH

k,n(t)Hk (t)pk,n(t)|2

Ik,n(t)+ Ic,k (t)+ ∥wk,n(t)∥2σ 2
n (t)

(5)

where Wk (t) = [wk,1(t), . . . ,wk,Ns (t)] denotes the combin-
ing matrix and Pk (t) = [pk,1(t), . . . ,pk,Ns (t)] denotes the
precoding matrix. The inter-stream interference for stream n
of user k and the multi-user interference for stream n of user
k are shown as

Ik,n(t) =
Ns∑

i=1,i̸=n

P
KNs
|wH

k,n(t)Hk (t)pk,i(t)|2 (6)

and

Ic,k (t) =
∑

j∈K,j̸=k

Ns∑
i=1

P
KNs
|wH

k,n(t)Hk (t)pj,i(t)|2, (7)

respectively.

A. CHANNEL MODEL
We assume an extended Saleh-Valenzuela geometric model
[41]. The channel between BS and user k is modeled as a L-
path channel as is shown below

Hk (t) =

√
ηkMN
L
·

L∑
l=1

αk,l(t) · uk,l(t)vHk,l(t) (8)

where ηk denotes the large-scale fading coefficient and com-
plex gain αk,l(∀k ∈ K,∀l ∈ {1, 2, . . . ,L}) is assumed to
remain the same at each time slot and varies between adja-
cent time slots according to the first-order Gaussian-Markov
process

αk,l(t) = ραk,l(t − 1)+
√
1− ρ2ek,l(t) (9)

where ek,l(t) ∽ CN (0, 1) and ρ is the time correlation
coefficient obeying Jakes’ model [42].

ρ = Jo(2π fd1t cos θ ) (10)

where fd and 1t denote the Doppler frequency and the chan-
nel instantiation interval, respectively, and J0 denotes the first
kind 0th Bessel function. Since the users are assumed to move

forward to the BS or away, i.e., θ = 0 and maximum Doppler
frequency f max

d is achieved which is written as

ρ = Jo(2π f max
d 1t ). (11)

In the typical case of a uniform linear array (ULA) where the
antennas are deployed at both ends of the transmission, the
array steering vectors uk,l and vk,l corresponding to the angle
of arrival (AoA) φA,k,l and the angle of departure (AoD)
φD,k,l in the azimuth are written as

uk,l =
1
√
N
[1, ej2π

d
λ cosφA,k,l , . . . , ej2π

d
λ (N−1) cosφA,k,l ]T

(12)

and

vk,l =
1
√
M

[1, ej2π
d
λ cosφD,k,l , . . . , ej2π

d
λ (M−1) cosφD,k,l ]T ,

(13)

respectively, where λ is the wavelength of the signal and
d denotes the inter-antenna space, which is usually set as
d = λ/2, φA,k,l ∽ U(θA,k,l −

δA
2 , θA,k,l +

δA
2 ) and φD,k,l ∽

U(θD,k,l−
δD
2 , θD,k,l+

δD
2 ) with {θA,k,l , θD,k,l} referring to the

elevation angles and {δA, δD} denoting the angular spread for
arrival and departure, respectively [43].

B. PROBLEM FORMULATION
As described above, the system performance heavily relies on
precoding and combining vectors design. However, there is
an inevitable feedback delay between the time point when the
user estimates the channel and the BS starts transmitting data
with the estimated channel fed back by the users. As can be
seen in Section II-A, such delay becomes quite problematic in
highmobility scenarios since the channel changes fast and the
correlation coefficient ρ decreases dramatically. Therefore,
it is necessary to develop strategies that are robust to feedback
delay and user mobility, which, in this paper, is interpreted as
maximizing the sum-rate of K users based on the knowledge
of past channels. The problem can be formulated as follows

max
Wk (t),Pk (t)

K∑
k=1

Ns∑
n=1

Gk,n(Wk (t),Pk (t)) (14a)

s.t ∥pk,n(t)∥2 = 1,∀k, n (14b)

∥wk,n(t)∥2 = 1,∀k, n (14c)

F(Hk (t ′)),∀k until t ′ = t − 1 are available, (14d)

where F(Hk (t ′)) is a function of Hk (t ′) which is listed in
Section III. Problem (14) aims at optimizing the precoder and
combiner to maximize the sum-rate for served users subject
to constraints (14b)- (14d), which is a non-convex problem.
To solve this problem, three efficient DRL-based strategies
are proposed in Section and III.
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FIGURE 1. Markov decision process of Q-learning.

III. MULTI-AGENT DEEP REINFORCEMENT LEARNING
FOR MULTI-USER MIMO DOWNLINK TRANSMISSION
To build up the foundation for the proposed DRL-based
designs, an overview of DQN is illustrated first, followed by
the description of the state, action, reward function, and three
multi-agent DRL-based algorithms for the problem (14).

A. A BRIEF OVERVIEW OF DQN
In reinforcement learning (RL), an agent learns the optimal
action policy to maximize the reward through trial-and-error
interactions with the environment. RL is always formalized as
an approach for Makov Decision Process (MDP) problems,
which consists of S, A, R, P , and γ referring to a set of
states, a set of actions, a reward function, a state transition
function, and the discount factor. To be specific, at time t ,
an agent in state st ∈ S takes an action at ∈ A according
to policy π (at |st ), obtains a reward rt = R(at , st ) and next
state st+1 ∈ S with probabilityP(st , at , st+1) in return for the
action taken. Formally, each transition (so-called experience
of an agent in DQN) can be written as a tuple below

et = ⟨st , at , rt , st+1⟩. (15)

The optimal policy π∗(at |st ) is a mapping function between
state and action to maximize the future accumulate reward

Rt =
∞∑

τ=0

γ τR(st+τ+1, at+τ+1) (16)

where discount factor γ ∈ [0, 1] balances the significance
between immediate and future rewards. The optimal policy
can be achieved by using dynamic programming (DP) meth-
ods that require detailed knowledge of the environment, i.e.,
P(st , at , st+1), which is unavailable due to the variation of
propagation channels.

To tackle this issue, as illustrated in Fig. 1, model-
free Q-learning algorithms are demonstrated to continuously
improve the policy through interactions with the environ-
ment. To be specific, the state-action value (called Q-value)
is denoted as an expected reward of (s, a) by policy π

Qπ (st , at ) = Eπ (Rt |st = s, at = a) (17)

where the expectation is calculated over all the possible (s, a)
pairs given by policy π , which can be iteratively computed

from the Bellman equation

Qπ (st , at ) = R(rt+1|st = s, at = a)+ γ
∑

s′∈S

×

(
P(st+1 = s′, st = s, at = a)

×maxa′∈AQπ (s′, a′)
)

(18)

where P(st+1 = s′, st = s, at = a) denotes the transition
probability from state s to s′ after taking action a. The optimal
policy returns the maximum expected cumulative reward at
each s, i.e., π∗ = argmaxπ Qπ (s, a). Then the Q-value
function can be represented as

Qπ∗ (st , at ) = rt+1(st = s, at = a, π = π∗)

+ γ
∑

s′∈S
P(st+1 = s′, st = s, at = a)

×maxa′∈AQπ∗ (s′, a′). (19)

In classical Q-learning, a Q-value table q(s, a), named as
Q-table, is constructed to represent the Q-value function
Qπ (s, a). This table consists of a discrete set of |S| × |A|
which is randomly initialized. The agent then takes actions
according to an ϵ-greedy policy, receives reward r = R(s, a)
and transfers to the next state st+1 to complete the experience
et . The Q-table is updated as

q(st , at )←− (1− α)q(st , at )+ α(rt+1 + γ max
a′

q(st+1, a′))

(20)

where α ∈ [0, 1) is the learning rate. However, it is chal-
lenging to directly obtain the optimal Qπ∗ (st , at ) due to the
uncertain variation of the dynamic channel environment, i.e.,
an unlimited number of states. To address the problems with
such an enormous state space, deep Q-network (DQN) is
utilized here to approximate the Q-value function, which can
be expressed as q(st , at , θ) with θ denoting the weights of
DQN. The optimal policy π∗ can be represented by a group of
weights of the DQN. In addition, two techniques are exploited
to strengthen the stability of DRL: target network and experi-
ence replay. The target network q(st , at , θ̄) is another network
that is initialized with the same set of weights of trained
DQN. The target DQN is used to generate the target Q-value
which is exploited to formulate the loss function of trained
DQN. The weights of target DQN are updated periodically
for every fixed number of slots Ts by replicating the weights
of trained DQN to stabilize the training of trained DQN.
The experience replay is intrinsically a first-input-first-output
(FIFO) queue that stores Em historical experiences in each
training slot. During training, Eb experiences are sampled
from the experience pool O to train the trained DQN to
minimize the prediction error between the trained DQN and
the target DQN. The loss function is defined as

L(θ ) =
1

2Eb

∑
⟨s,a,r,s′⟩∈O

(r ′ − q(s, a; θ ))2 (21)
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FIGURE 2. The downlink training and uplink feedback of
proposed DRL framework. The detail structure of the
distributed-learning-distributed-processing framework is shown
in Fig. 4.

FIGURE 3. Timing of time slot t − 1.

where r ′ = r + γ maxa′ q(s′, a′; θ̄ ), the weights of DQN θ

is updated by adopting a proper optimizer (e.g. RMSprop,
Adam, and SGD). The specific gradient update is

∇θL(θ ) = Es,a,r,s′∈O
[
(r ′ − q(s, a; θ )∇θq(s, a; θ )

]
. (22)

B. THE DISTRIBUTED-LEARNING-DISTRIBUTED-
PROCESSING DRL-BASED ALGORITHM
In this section, we cast the problem (14) as a sequential
decision-making process and tailor three multi-agent DRL
algorithms to solve it. The DRL-based framework is elabo-
rated first, followed by the derived algorithms. To our best
knowledge, this is the first paper tackling the problem with
1) receive beamforming with multiple receive antennas, 2)
transmit beamforming under imperfect CSIT, 3) multiple
streams for each user, and 4) multiple users in a single cell
compared with SISO in [27] and MISO in [28] with per-
fect CSIT, respectively. In addition, the PDRL is also firstly
demonstrated in this paper to bridge DDRL and CDRL to
balance the performance and complexity.

1) DOWNLINK TRAINING AND UPLINK FEEDBACK
As is shown in Fig. 2 and Fig. 3, at time slot t − 1, the BS
sends downlink pilots to users, based on which the downlink
channels are perfectly estimated. User k can estimate the
designed state information in Section III-B.4 and feed it back
to the base station. With feedback from users, the BS can
predict the indexes of precoders and combiners for time slot
t and start downlink data transmission.

FIGURE 4. The framework of distributed-learning-
distributed-processing scheme.

2) THE PROPOSED DRL-BASED ALGORITHM
To bring this insight to fruition, each stream is modeled
as an agent, totally KNs agents in our scheme. To be intu-
itive, we adopt a distributed-learning-distributed-processing
framework as shown in Fig. 4 and demonstrated in Algorithm
1. At the initialization stage, all the KNs pairs of DQNs
are established at the BS. For instance, one pair of DQNs,
namely trained DQN q(sk,n, ak,n; θk,n) and target DQN
q(sk,n, ak,n; θ̄k,n) is possessed by agent (k, n). The input and
output of trained DQN q(sk,n, ak,n; θk,n) are the local state
sk,n and action ak,n. In terms of the distributed learning
procedure for agent (k, n), due to the feedback delay from
users, only outdated CSI information is used to formulate the
observations sk,n at the beginning of each time slot. Then, the
DRL agent adopts an ϵ-greedy to balance exploitation and
exploration by choosing actions, i.e, the precoder pk,n, and
combiner wk,n according to sk,n, in which the agent executes
an action with probability ϵ randomly, or executes the action
ak,n = maxa q(sk,n, a; θk,n) with probability 1 − ϵ. Regard-
ing the distributed learning process, the agent accumulates
and stores the experience ek,n = ⟨sk,n, ak,n, rk,n, s′k,n⟩ into
experience pool and the historical experiences can be utilized
to train the DQN with local state-action pairs together with
the corresponding reward. Each agent has a profound view
of the relationship between local state-action pairs and local
long-term reward which, in return, leads the whole system to
a distributed-learning-distributed-processing manner.

3) ACTIONS OF THE PROPOSED MULTI-AGENT DRL
APPROACH FOR MASSIVE MIMO SCENARIO
As described in Section II, we aim to optimize the precoder
pk,n and combiner wk,n,∀k, n. Then, the problem can be
addressed by building two codebooks, i.e. St,Sr, which con-
tain St and Sr beamforming vectors. In the decision-making
stage, each agent chooses one precoder from St and one
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combiner from Sr. The action space can be represented as

A = {(ct, cr), ct ∈ St, cr ∈ Sr} (23)

where ct and cr denote the codewords of two codebooks and
the cardinal number of action space A is St × Sr. The design
of codebooks comes from [44] which is also applied in [28],
[34], and [35], and introduced here as a quantization of beam
directions. To specify each element, we define matrix Ct ∈

CM×St as

Ct[p, q] =
exp

(
j 2πT ⌊

Mmod(q+ St
2 ,St)

St/T
⌋
)

√
M

(24)

where T is the number of available phase values and Cr ∈

CN×Sr can be obtained by substituting the M and St with
N and Sr accordingly. Each column of Ct and Cr corre-
sponds to a specified codeword and the whole matrix forms
a beamsteering-based beamformer codebook.

4) STATES OF THE PROPOSED DRL-BASED APPROACH
FOR MASSIVE MIMO SCENARIOS
Under the mobility scenario, the receiver feedback is delayed
at time slot t , and the state of agent (k, n) is constructed by
the representative feature of observations from the last two
successive time slots t − 1 and t − 2 without observations
from time slot t . That is to say, at the beginning of time
slot t − u, due to the delay of feedback, the BS is unable
to instantaneously obtain the power of the received signal,
i.e., |wH

k,n(t)Hk (t)pk,n(t)|2 and |wH
k,n(t)Hk (t − 1)pk,n(t)|2.

However, the historical feedback, i.e., |wH
k,n(t − 1)Hk (t −

1)pk,n(t − 1)|2 and |wH
k,n(t − 1)Hk (t − 2)pk,n(t − 1)|2 are

usually available to the BS. Based on this assumption, the
state sk,n(t) is designed as follows
• The ‘‘desired’’ information of the agent (k, n) which
consists of 5 parameters, i.e., the channel gain |wH

k,n(t −
1)Hk (t − 1)pk,n(t − 1)|2, the chosen index of precoder
Uk,n(t−1), the chosen index of combiner Vk,n(t−1), the
achievable rate of stream n for user k , i.e., Gk,n(Pk (t −
1),Wk (t − 1)), and the interference-plus-noise Ik,n(t −
1)+ Ic,k (t − 1)+ σ 2

k .
• Interference information of the agent (k, n) which is
represented by 8 parameters, i.e., {

∑Ns
i=1,i̸=n |w

H
k,n(t −

u)Hk (t−u)pk,i(t−u)|2,
∑Ns

i=1,i̸=n |w
H
k,n(t−1−u)Hk (t−

u)pk,i(t − 1 − u)|2,
∑

j̸=k
∑Ns

i=1 |w
H
k,n(t − u)Hk (t −

u)pj,i(t − u)|2,
∑

j̸=k
∑Ns

i=1 |w
H
k,n(t − 1 − u)Hk (t −

u)pj,i(t − 1 − u)|2|u ∈ {1, 2}}. It is worth noting here
that in such a system, the interference information plays
a key role in the maximization of its own information
rate (the rate of stream n of user k), which, thus, should
be included in state space.

• The information of agent (j, i), (j, i) ̸= (k, n),∀j, i con-
sists of 10(KN − 1) terms, i.e.,{Uj,i(t − u),Vj,i(t −
u),Gj,i(Mj(t − u), P

NK |w
H
j,i(t − u)Hj(t − u)pj,i(t −

u)|2, P
NK |w

H
j,i(t − u)Hj(t − u)pk,n(t − u)|2|u ∈ {1, 2}}.

The information of other agents plays an irreplaceable

role for agent k to minimize the interference it causes to
them, which, thus, should be included in state space.

To sum up, the cardinal number of state space is 10KNs + 3.
Note that the adopted design is not guaranteed to be the
optimal one but empirically achieves a good performance
as demonstrated with evaluation results in Section III. The
output size of the DQN is S = StSr which is equal to the
number of available actions.

5) THE REWARD OF THE PROPOSED DRL-BASED
APPROACH FOR THE MASSIVE MIMO SCENARIO
In this massive MIMO scenario, if agent (k, n) only tries
to maximize the achievable rate of the stream (k, n) with-
out taking the inter-stream and multi-user interference into
consideration, a large interference will be delivered to other
agents. Therefore, our proposed reward function rk,n consists
of penalty coefficient λ and penalty term Pk,n(Wk (t),Pk (t))
to quantify the adverse impact each agent causes to other
agents. The penalty term Pk,n(Wk (t),Pk (t)) is given as

Pk,n(Wk (t),Pk (t)) =
∑K

j=1,j̸=k

∑Ns

i=1

×

(
log2(1+

P
KNs
|wH

j,i(t)Hj(t)pj,i(t)|2

σ 2 + Îk,n1 (t)+ Îc1,k (t)
)

−Gj,i(Wk (t),Pk (t))
)
+

∑Ns

i=1,i̸=n

×

(
log2(1+

P
KNs
|wH

k,i(t)Hk (t)pk,i(t)|2

σ 2 + Îk,n2 (t)+ Îc2,k (t)
)

−Gk,i(Wk (t),Pk (t))
)

(25)

where Îk,n1 (t), Îk,n2 (t), Îc1,k (t) and Îc2,k (t) are given by

Îk,n1 (t) =
Ns∑

i=1,i̸=l

P
KNs
|wH

j,i(t)Hj(t)pk,i(t)|2, (26)

Îc1,k (t) =
∑

q∈K,q̸=k

∑Ns

i=1

P
KNs
|wH

j,i(t)Hj(t)pq,i(t)|2

−
P
KNs
|wH

j,i(t)Hj(t)pj,i(t)|2, (27)

Îk,n2 (t) =
Ns∑

h=1,h̸=i,n

P
KNs
|wH

k,i(t)Hk (t)pk,h(t)|2, (28)

and

Îc2,k (t) =
∑

q∈K,q̸=k

Ns∑
h=1

P
KNs
|wH

k,i(t)Hk (t)pq,h(t)|2, (29)

respectively. Note that Pk,n(Wk (t),Pk (t)) is always a positive
value due to the extraction of the interference from a speci-
fied stream. Then, the achievable rate for stream (k, n), i.e.,
Gk,n(Wk (t),Pk (t)), is added into rk,n to highlight the contri-
bution of agent (k, n) to the total information rate. Hence, rk,n
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at time slot t is given as

rk,n(t) = Gk,n(Wk (t),Pk (t))− λPk,n(Wk (t),Pk (t)) (30)

where penalty coefficient λ is used here as a weight parameter
to manipulate the amount of negative effect in the reward
function. In regard to the reward function, the rationale
behind such a design is to maximize the achievable rate
of improvement if the interference caused by stream (k, n)
is totally eliminated. This design not only maximizes the
achievable rate of stream (k, n), i.e., Gk,n but also minimizes
the negative effect it causes to other streams, i.e.,Pk,n. Similar
designs are comprehensively discussed in [27] and [28] which
also confirm that a well-formulated reward function should
act as a catalyst of the best decisions obtained by multiple
agents.

6) DISCUSSION ON THE OVERHEAD AND COMPLEXITY
OF THE PROPOSED FRAMEWORK
As is shown in Table 1, if the base station has to tell the users
what combiner to use, then it can consume additional over-
head on the downlink transmission. Fortunately, this overhead
is negligible since only the indexes of combiners are delivered
to users. Note that the precoders are also sent to terminals
for the calculation of state information listed in the table.
This reduces the computation burden on the base station for
processing this state information.

In terms of the computational complexity of precoders
and combiners in the demonstrated DRL-based approaches,
the designed structure of target/trained DQNs includes four
fully connected layers. Specifically, the input layer con-
sists of 10KNs + 3 neurons, followed by two hidden layers
with L1 and L2 neurons and a specified activation function.
The fourth layer serves as the output layer with S neurons.
We employ two hidden layers in our design, as a two-layer
feedforward neural network is sufficient to approximate any
nonlinear continuous function based on the universal approx-
imation theorem [46]. The computational complexity of fully
connected DNN can be written asO((10KNs+3)L1+L1L2+
L2S) for each agent. This is much smaller than that of ZF-CI
scheme due to the fact that ZF-CI involves matrix inversion
which limits the scalability to a large number of transmit and
receive antennas.
Remark 1: Note that different from [23] where the mobil-

ity estimation and channel prediction are needed, our work
does not predict the channels sequentially. In this paper,
we demonstrated a low complexity and efficient DRL-based
framework and as this is the first work proposing DRL-based
joint transmit and receiver beamforming for massive MIMO
downlink transmission, we would like to keep the benchmarks
as clear and simple as possible such that researchers can
understand the fundamental benefits of the proposed strate-
gies and carry on their studies in more practical scenarios
in the future. The comparison with mobility estimation and
channel prediction methods (such as VFK and MLP methods
in [23]) could be addressed in future research, but not the
scope of this paper.

Algorithm 1 DDRL Algorithm
1: Initialize: Establish a trained DQN and target DQN

with random weights θk,n and θ̄k,n, respectively, ∀k ∈
{1, 2, . . . ,K } ,∀n ∈ {1, 2, . . . ,Ns}, update the weights
of θ̄k,n with θk,n.

2: In the first Es time slots, agent (k, n) randomly selects an
action from action spaceA, and stores the corresponding
experience ⟨sk,n, ak,n, rk,n, s′k,n⟩ in its pool, ∀k, n.

3: for each time slot t do
4: for each agent (k, n) do
5: Obtain state sk,n from the observation of agent

(k, n).
6: Generate a random number ω.
7: If ω < ϵ then:
8: Randomly select an action in action space A.
9: Else
10: Choose the action ak,n according to the Q-

function q(sk,n.a; θk,n),∀k, n
11: End if .
12: Agent (k, n) executes the ak,n, immediately receives

the reward rk,n and steps into next state s′k,n,∀k, n.
13: Agent (k, n) puts experience ⟨sk,n, ak,n, rk,n, s′k,n⟩

into experience poolOk,n, randomly samples aminibatch
with size Eb. Then, the weights of trained DQN θk,n are
updated using back propagation approach. The weights
of target DQN θ̄k,n is updated every Ts steps.

14: end for
15: end for

C. THE LOW-COMPLEXITY
CENTRALIZED-LEARNING-DISTRIBUTED-PROCESSING
DRL-BASED ALGORITHM
In this section, we demonstrate an extra algorithm for the
problem (14) for three reasons. First, a lower computation
complexity is achieved in the centralized scheme by building
and training on an extra pair of DQNs instead of distributedly
training with KNs agents. Second, a lower storage space
is required with only a central experience pool during the
learning process. Third, by saving and sampling the expe-
riences from all distributed agents, the central agent can
learn the common features from the channels of all users
and intelligently guide the decision-making procedure of all
distributed agents. Things need to be noted that CDRL is
trained more efficiently using parameter sharing, which is
based on homogeneous agents. This allows the policy to be
trained with the experiences of all agents simultaneously.
However, it still allows different actions between agents due
to the fact that each agent receives different observations. This
algorithm focuses on the decentralized parameter-sharing
training scheme since we found it to be scalable if we con-
tinue to increase the number of users and streams.

It is worth noting that we don’t need to design a new state,
action, and reward function in CDRL since all the agents
upload their experiences to a central pool for training the
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TABLE 1. Comparison between strategies.

central DQN, and the central training DQN broadcasts its
weights to all agents for later distributed execution.

The whole process is shown in Algorithm 2. At the initial-
ization stage, only one pair of target and trained DQNs is built
for the central agent. For each distributed agent, one trained
DQN is established. In the first several time slots, each agent
randomly selects an action and saves the experiences into the
central experience pool. When the episode begins, the central
agent adopts an ϵ-greedy strategy to balance exploitation and
exploration so as to find the optimal policy. After learning
from the sample experiences, the central agent broadcasts
the updated weights of the central trained DQN to all other
distributed agents for decision-making purposes.

D. BRIDGING THE DDRL AND CDRL: PARTIAL-
DISTRIBUTED-LEARNING-DISTRIBUTED-PROCESSING
SCHEME
In contrast with DDRL and CDRL, the partial-distributed-
learning-distributed-processing DRL-based scheme (PDRL)
offers a more flexible solution to the problem (14) by model-
ing each user as an agent. In the extreme case of Ns = 1,K >

1, PDRL boils down to DDRL by simply treating each stream
as an agent. In the other extreme case of K = 1,Ns > 1,
PDRL boils down to CDRL by forcing one central agent to
do the training work. Compared with CDRL, PDRL demon-
strates better performance-complexity balance by learning
the representative features of the propagation environment for
a specified user which is demonstrated in Fig. 12. The whole
algorithm is illustrated in Algorithm 3.

IV. RESULT EVALUATION
This section demonstrates the performance of our proposed
multi-agent DRL-based algorithm to maximize the average
throughput of all the users. We first illustrate the simulation
setup, followed by the simulation results in different scenar-
ios.

A. SIMULATION SETUP
We consider a downlink transmission from one BS to mul-
tiple users. The BS serves K = 4 users in a single cell.
The maximum transmit power P is fixed to 20 dBm and
noise variance σ 2 at users is fixed to -114 dBm. The BS
is equipped with M = 32 transmit antennas and the users
are equipped with N = 4 receive antennas unless otherwise
stated. Without loss of generality, the uniform linear array
(ULA) is equipped in both transmitter and receiver sides
with half-wavelength inter-antenna spacing. The large-scale
channel fading is characterized by the log-distance path-loss
model expressed below

η = L(d0)+ 10ω log10
d
d0

. (31)

where d = 10m is the BS-user distance. According to Table 3
of [47], the value of L(d0) for d0 = 1 m is 68 dB and fading
coefficient ω is 1.7. In terms of the shadowing model, the
log-normal shadowing standard deviation βk is set to 1.8 dB.
The small-scale fading channel is generated according to
the channel model introduced in Section II. Regarding the
parameters of Jake’s model with user speed 3.55 km/h, the
maximum Doppler frequency f max

d and channel instantiation
interval Ti are set as 800 Hz and 1×10−3 s, respectively [47].
The corresponding correlation coefficient ρ is 0.6514≈ 0.65.

As is illustrated in Fig. 4, the whole framework can be
divided into 2 phases, the learning phase, and the process-
ing phase. Before the learning phase, we randomly generate
channels obeying Jake’s model, randomly choose actions,
observe the reward, and accumulate and store the correspond-
ing experiences into the experience pool with size 1000 for
the first 200 time slots, i.e., Em = 1000,Es = 200. In addi-
tion, the mini-batch size Eb is set as 32. Stepping into the
learning stage, for the DNN, the number of neurons in two
hidden layers, i.e, L1,L2, are both set as 256, followed by the
ReLu activation function. The initial learning rateα(0) is 5e−3

368 VOLUME 1, 2023



Feng, Clerckx: Deep Reinforcement Learning for Multi-User Massive MIMO With Channel Aging

Algorithm 2 CDRL Algorithm
1: Initialize: Establish a central trained DQN and central

target DQN with random weights θc and θ̄c for the
central agent, update the weights of θ̄c with θc. Estab-
lish a trained DQN with random weight θk,n, ∀k ∈
{1, 2, . . . ,K } ,∀n ∈ {1, 2, . . . ,Ns} for each distributed
agent.

2: In the first Es time slots, agent (k, n) randomly selects
an action from action spaceA, and stores the experience
⟨sk,n, ak,n, rk,n, s′k,n⟩,∀k, n in the experience pool of cen-
tral agent Oc.

3: for each time slot t do
4: for each agent (k, n) do
5: Obtain state sk,n from the observation of agent

(k, n).
6: Generate a random number ω.
7: If ω < ϵ then:
8: Randomly select an action in action space A.
9: Else
10: Choose the action ak,n according to the Q-

function q(sk,n.a; θk,n),∀k, n
11: End if .
12: Agent (k, n) executes the ak,n, immediately receives

the reward rk,n and steps into next state s′k,n,∀k, n.
13: Agent (k, n) puts experience ⟨sk,n, ak,n, rk,n, s′k,n⟩

into central experience pool Oc.
14: end for
15: Central agent randomly samples a minibatch with

size Eb. Then, the weights of central trained DQN θc
are updated using the back propagation approach. The
weights of target DQN ¯̄θc is updated every Ts steps.
Then, central agent broadcasts the weights θc to all the
distributed agents, i.e., θk,n = θc,∀k, n.

16: end for

and the decaying rate dc is 10−4 such that the learning rate
continues to decay with the number of time slots following
α(t) = α(t−1)∗ 1

1+dct
. In terms of optimization, the adaptive

moment estimation (Adam) is utilized to prevent the dimin-
ishing learning rate problem. Tominimize the prediction error
between trained DQN and target DQN, the weights of trained
DQN are substituted into target DQN every 120 time slots,
i.e., Ts = 120 with discount factor γ and penalty coefficient
λ set as 0.1 and 1, respectively. During the processing phase,
for ϵ-greedy strategy, we set the initial exploration coefficient
ϵ as 0.7 which decays exponentially to 0.001 to strike a bal-
ance between exploration and exploitation during the training
process. Note that the adopted parameters are not guaranteed
to be optimal ones, which experimentally performwell in this
setup. In the legend of simulation figures, DDRL and CDRL
come from Algorithm 1 and Algorithm 2, respectively. The
value of each point is a moving average over the previous
500 time slots unless otherwise stated.

FIGURE 5. Average information rate versus the number of time
slots with different codebook sizes (St ,Sr ).

To demonstrate the effectiveness of our DRL-based
approaches, four benchmark schemes are evaluated, which
are as follows:

• ZF-CI PCSI: Each agent executes the action from the
scheme in [40] with instantaneous and perfect CSI, i.e.,
Hk (t),∀k .

• SAH: This approach stores the most recent estimated
channel, i.e., Hk (t − 1),∀k and this approach always
sends the channel coefficients to the base station, which
will be used for calculating the precoders using ZF-
CI. This strategy essentially ignores the non-negligible
delay between the channel estimation and the time point
when the actual DL transmission happens [26]. When
ρ = 1, SAH is the same as ZF-CI PCSI. SAH only
captures delay but assumes perfect knowledge of CSI at
t − 1.

• Random: Each agent randomly chooses actions. The
performance serves as a lower bound in the simulation.

• Greedy Beam Selection (GBS): Each agent exhaustively
selects an action in a greedy manner, the actions with the
highest sum information rate are chosen as the solution
for each channel realization. The benchmark serves as
the upper bound for DRL-based strategies. Note that the
size of the beam selection set increases exponentially
with the size of the codebooks ((NK )StSr ). For instance,
when K = 4,N = 1, St = 32, Sr = 4, the total
number of action combination is 432 which is quite large
considering the hardware constraint. Thus, we consider
(8, 1) in this benchmark.

B. DDRL VS CDRL
Fig. 5 depicts the average achievable information rate versus
the number of time slots with different numbers of transmit
and receive beamformer codebook size (St, Sr). A first obser-
vation is that the performance gaps between two DRL-based
schemes and SAH are gradually increased with the number
of St and Sr and DDRL roughly observes a gain of 380% over
SAH when St = 32 and Sr = 4. The reason behind such
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FIGURE 6. Average achievable information rate versus the
number of time slots with different correlation coefficients.

a phenomenon is that, in DRL-based strategies, better inter-
ference management can be achieved by higher resolution in
the codebook which significantly reduces the quantization
error and effectively alleviates the interference from other
streams. A second observation is that DDRL can achieve
nearly 90% of the system capacity of the ZF-CI PCSI and
95% of the Beam Selection strategy, utilizing only a few
pieces of information in the designed features from itself and
other users. An interpretation is that the lack of instantaneous
CSI and imperfect codebook design degrade the system per-
formance and this 10% and 5%gap cannot be fully eliminated
A third observation is that DDRL (32, 8) only demonstrates
slightly better performance than DDRL (32, 4) and DDRL
(16, 4) which shows of robustness on codebook size. A fourth
observation is that the CDRL always demonstrates instability
before convergence. An explanation is that the huge differ-
ences between the dynamic environment of different users
make it extremely difficult to find the commonality among
them. Then, each agent could be misled by the experiences
of other agents, which, thus, results in fluctuations before
convergence and degradation in system performance. Con-
versely, in DDRL, each agent selects a specific precoder
and combiner for its intended stream which is relevant to its
propagation environment and is considerably different among
streams. This local adaptability greatly improves the perfor-
mance of DDRL. After comprehensive considerations among
computation complexity, system performance, and conver-
gence speed, (32, 4) is chosen as a codebook baseline in the
simulations of both DRL-based schemes. Compared with the
Greedy Beam Selection method, the DRL-based strategies
reveal extremely lower complexity on large action space
but achieve roughly 95% of Greedy Beam Selection perfor-
mance.2. Hence, CDRL is not suitable for practical systems
where a large codebook is not available while DDRL demon-
strates more robustness regarding codebook size but requires
much more amount of memory and computing resources
for training. We implemented the demonstrated algorithms
with TensorFlow in a general computer, i.e., i7-8700 CPU,

3.20 GHz. The running time for different algorithms is listed
in Table. 2.
Fig. 6 exhibits the average achievable information rate

versus the number of time slots with different values of cor-
relation coefficient ρ. The DDRL scheme with ρ = 0.65 and
ρ = 0.1 can exceed the benchmark SAH with approximately
380% and 500%, respectively. This result greatly embod-
ies the superiority of our DRL-based framework over the
traditional massive MIMO optimizing scheme in mobility
scenarios since a 20% performance degradation is caused by
the fast-changing channels in SAH. In addition, it can be
observed that DDRL with ρ = 0.1 demonstrates a slightly
lower performance than ρ = 0.65 which is also shown in
CDRL. An explanation is that the DDRL scheme is not sen-
sitive to the dynamic and fast-changing wireless environment
but CDRL needs more time steps to learn the representative
features of the rapid-changing environment in high mobility
scenarios, which results in a lower convergence. Note that
the DRL-based methods have certain adaptability to envi-
ronmental changes in user speed which can be interpreted
as robustness on max Doppler frequency. Even though the
correlation between adjacent channels is very small, the
DRL-based frameworks still benefit from the exploration-
exploitation strategy. Similar results are also observed in [34].
In Fig. 7, we assume that the users’ rescheduling hap-

pens at the 50000th, 100000th, and 150000th-time slots.
Instead of re-initializing the weights of all the DQNs in each
agent, all of them continue the training process based on
the designed information from newly scheduled users. First,
a much higher start point and a comparable convergence time
can be achieved in DDRL without witnessing a great perfor-
mance collapse compared with the ZF-CI PCSI scheme. This
can be interpreted by the fact that each agent tries to find the
common features between the first scheduled and reschedule
users which naturally makes a better decision based on these
features and exhibits the ability for maintaining connectivity
against user rescheduling in mobile networks. Second, with
more rescheduling happening, a higher information rate and
a faster convergence can be observed in CDRL. An interpre-
tation is that the common features learned from the previously
scheduled users boost the training in rescheduling. After
learning and ‘storing’ more andmore feature information into
the weights of DQN, the central agent demonstrates univer-
sality to the channel uncertainty of rescheduled users and the
neural network weights extracted from the previously trained
DQN is a good candidate for the weight initialization of the
current trained DQN in both schemes. However, if reschedul-
ing happened frequently, the proposed DRL-based schemes
can not converge to a set of good parameters if rescheduling
happens before 25000-time slots but a jump-start happens
when we implement a group of trained DQN to new users.

Fig. 8 investigates the average achievable information rate
versus the number of time slots with K = 4 and 6, respec-
tively. As opposed to the decrease of average user rate,
the total cell throughput improves which suggests that both
DRL-based approaches can benefit from multi-user diversity
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TABLE 2. Running time for each network topology.

TABLE 3. Total execution time for each channel realization with different (K,M,N,Ns) in DDRL(ϵ = 0).

FIGURE 7. Average information rate versus number of time slots
with users rescheduling at 5e4th, 1e5th and 15e4th time slot.

provided by time-varying channels across different users.
In addition, although an 11.7% performance degradation can
be observed in CDRL which is smaller than 19.8% in DDRL,
CDRL achieves a much smaller performance gain over SAH
in comparison to DDRL when K = 6. This suggests that
DDRL is more robust in multi-user scenarios than CDRL.

To sum up in a nutshell, on the one hand, CDRL and
DDRL are not equally suitable for massive MIMO systems
with channel aging, namely, CDRL is less computationally
complex but demonstrates instability and incurs performance
loss. In contrast, DDRL offers a promising gain over CDRL
by favoring an adaptive decision-making process and facili-
tating cooperation among all agents to mitigate interference
but incurs a higher hardware complexity. Also, DDRL is
more robust on rescheduling than CDRL considering the
convergence speed and stability. On the other hand, both
schemes demonstrate robustness on fading characteristics of
the environment and changes on interference conditions.

C. MULTI-ANTENNA AND MULTI-STREAM
Fig. 9 illustrates the DRL-based scheme with 6 different
numbers of transmit antennas M when N = 1,Ns = 1,K =
1. Without any penalty, i.e., inter-stream interference and
multi-user interference, a near-optimal result can be observed
by leveraging the proposed state, action, and reward design
in an interference-free scenario with a stable increase of
information rate, which thereby validates the effectiveness

FIGURE 8. Average information rate versus number of time slots
with different number of users K .

of the codebook design in Section III. The convergence time
is proportional to M which limits its scalability. Intuitively,
the reason for this effect on the convergence time is that
it takes a longer time to learn the representative feature of
high-dimension CSIT in sequential states. In contrast with
Fig. 9, a serious multi-user and inter-stream interference is
managed in Fig. 10 when N = 4,Ns = 2,K = 4. It can be
observed that the transmit diversity and array gain cannot be
fully achieved in the proposed DRL-based scheme if the rich
interference is not properly suppressed due to the constraint
of codebook precision and CSIT imperfections. Hence, the
drawback of using DRL-based methods is that inter-stream
interference can not be sufficiently alleviated if each agent
fails to choose an action that causes small interference to all
other agents during exploration and exploitation.

Fig. 11 characterizes the average achievable information
rate versus the number of time slots with different numbers
of streams for each user. First, DDRL has significantly higher
performance compared to the conventional SAH scheme in
different numbers of streams. Second, a 15.7% performance
degradation can be observed from the DRL-based scheme
between 1-stream and 2-stream scenarios which is smaller
than that in SAH (around 28% between black and blue dotted
lines). This reveals the privilege of the DDRL in inter-stream
interference management.

An overview of the average information rate versus
number of time slots with three DRL-based algorithms is
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FIGURE 9. Average information rate versus the number of time
slots with different number of transmit antennas M when N = 1,
Ns = 1, K = 1.

FIGURE 10. Average information rate versus number of time
slots with different number of transmit antennas M when N = 4,
Ns = 2, K = 4.

demonstrated in Fig. 12. Compared with DDRL and PDRL,
a performance collapse is observed in CDRL due to the
degrading effect of inter-stream interference. By flexibly
modeling each user as an agent, PDRL greatly mitigates the
inter-stream interference by learning the local observations
from the target user’s propagation channel.

D. REWARD, PENALTY ANALYSIS AND STATISTICAL TEST
To reveal the significance of the neural network size (L1,L2),
the learning rate α and the discount factor γ , Fig. 13 shows
the sum reward versus the number of time slots with differ-
ent (L1,L2), α and γ . The first observation is that a faster
convergence is observed with larger α, this is intuitive since
the gradient descent is sped up with a larger value of loss
function. The second observation is that, compared with (256,
256), a reward degradation appears with (32, 32), which sug-
gests that increasing the DNN size demonstrates a stronger
representation capability of input features and boosts the
performance of the DRL-based scheme. Due to the negligible
performance improvement in (512, 512), (256,256) is chosen

FIGURE 11. Average information rate versus the number of time
slots with different number of streams N.

FIGURE 12. Average information rate versus number of time
slots with different DRL-based schemes.

FIGURE 13. Sum reward versus the number of time slots with
different number of users K .

as a baseline to maintain a balance between user connectivity
and computational burden.

Fig. 14 offers an insight into the impact of different penalty
values λ. This penalty term intrinsically represents an adjust-
ment of reward function for each agent. Different from [27]
and [28], it is demonstrated in Fig. 14 that the system capacity
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FIGURE 14. Average information rate versus the number of time
slots with different penalty λ.

FIGURE 15. Cumulative distribution function (CDF) of the
average information rate over different DRL-based methods and
benchmarks.

FIGURE 16. Boxplot of the average information rate over different
DRL-based methods and benchmarks. The bottom and top of
each box are the 25th and 75th percentiles of the information
rate values, respectively. The whisker length is set to infinity to
ensure there are no outliers.

is gradually increased with the penalty value from 0.1 to 5.
An interpretation is that each agent causes high interference
to other agents while still trying to maximize its information
rate. Due to the uncertainty of the dynamic environment, the

lack of perfect CSI introduces unpredictable interference for
all the agents and an increase of penalty value can make
a remedy for this by choosing an action that minimizes
the interference to other agents instead of maximizing the
received power of itself. This result also indicates that the
decision-making process of all the agents is robust in unex-
pected high-interference scenarios.

The cumulative distribution function (CDF) over different
DRL-based methods and benchmarks have been plotted in
Fig. 15. It can be seen that the CDF curves confirm the
discussion of the superiority of DDRL over other schemes.
Also, the performance of DDRL is significantly limited by
the codebook resolution which is confirmed in Fig. 16 where
we show the boxplot of different methods.

V. CONCLUSION AND FUTURE RESEARCH
In this paper, we studied the beamforming optimization for
massive MIMO downlink transmission with channel aging.
An optimization framework in light of DRL was studied
and three DRL-based algorithms were derived based on
stream-level, user-level, and system-level agent modeling.
Specifically, the transmit precoder at BS and receive com-
biner at user terminals were jointly optimized to maximize
the average information rate. Furthermore, we analyzed the
performance loss of DRL-based approaches as compared to
the ideal case with continuous beamforming with different
numbers of codebook sizes, users, antennas, streams, and user
speeds. Interestingly, it was shown that even using a very
low-resolution codebook in DDRL is still able to achieve
95% and 90% as in the case with GBS and ZF-CI, respec-
tively. Simulation results showed that significant robustness
on user mobility can be achieved by using some received
power values of imperfect CSIT at the expense of more
uplink overhead. Also, the convergence speed and scalability
of the proposed algorithms are discussed. The convergence
speed is linearly increased with the number of transmit
antennas and performance degradation in the multiuser case
is non-negligible due to the severe co-channel interference.
In addition, CDRL consumes less computation complexity
but demonstrates instability and incurs performance loss.
In contrast, DDRL offers a promising gain over CDRL by
favoring an adaptive decision-making process and facilitating
cooperation among all agents to mitigate interference but
incurs a higher hardware complexity and non-stationarity.
Finally, the reward, penalty analysis, and statistical test con-
firm the fact that the performance of the proposed algorithms
is greatly limited by the resolution of codebooks. Several
important issues that are not addressed in our paper yet, some
of which are listed as follows to motivate future research.

• Multi-cell: This paper considered single-cell multiuser
conditions. However, when multi-cell is considered. The
transmit power of the BS needs to be optimized, due to
which the corresponding optimization problem is more
challenging to solve, and thus is worthy of further inves-
tigation.
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• Extremely Large-scale MIMO: To overcome the capac-
ity constraints of conventional MIMO, extremely
large-scale MIMO (XL-MIMO) are being proposed
which can provide a much stronger beamforming gain
to compensate for the severe path loss. As such, it is
worth comparing the proposed massive MIMO with the
XL-MIMO in future investigations.

• Beamforming Codebook Design: As is shown in this
paper, the performance is greatly limited by the res-
olution of the designed codebook. A better codebook
enables the system to handle larger and more complex
channel conditions without compromising on perfor-
mance.

APPENDIX
PDRL ALGORITHM

Algorithm 3 PDRL Algorithm
1: Initialize: Establish K pairs of trained/target DQNs with

random weights θk and θ̄k ,∀k ∈ {1, 2, 3, . . . ,K } as
user-specified agents, update the weights of θ̄k with
random θk . Build experience pool Ok ,∀k . Establish a
trained DQNwith weight θk,n, ∀k ∈ {1, 2, . . . ,K } ,∀n ∈
{1, 2, . . . ,N } for each distributed agent.

2: In the first Es time slots, agent (k, n) randomly selects
an action from action spaceA, and stores the experience
⟨sk,n, ak,n, rk,n, s′k,n⟩,∀k, n in the experience pool of cor-
responding user-specified agent Ok .

3: for each time slot t do
4: for each agent (k, n) do
5: Obtain state sk,n from the observation of agent

(k, n).
6: Generate a random number ω.
7: If ω < ϵ then:
8: Randomly select an action in action space A.
9: Else
10: Choose the action ak,n according to the Q-

function q(sk,n.a; θk,n),∀k, n
11: End if .
12: Agent (k, n) executes the ak,n, immediately receives

the reward rk,n and steps into next state s′k,n,∀k, n.
13: Agent (k, n) puts experience ⟨sk,n, ak,n, rk,n, s′k,n⟩

into central experience pool Ok .
14: end for
15: User-specified agent k randomly samples a minibatch

with size Eb. Then, the weights of its trained DQN θk are
updated using back propagation approach. The weights
of its target DQN θ̄k is updated every Ts steps. Then,
the user-specified agent broadcasts the weights θk to the
corresponding distributed agents, i.e., θk,n = θk ,∀n.

16: end for
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