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ABSTRACT Power control and scheduling are among the most well-known resource allocation challenges
in wireless networks, and are often solved as optimization problems with constraints. However, solving these
optimization challenges by using optimal algorithms often incurs a significant time complexity, which creates
considerable discrepancies between the theoretical results and real-time processing required. In this study,
we propose a novel machine learning-based perspective to address this issue. We propose a scheduling
and power control deep neural network SPCDNet method and its modification SPCDNetR. SPCDNet
solves the scheduling problem for point-to-point transmission requests while SPCDNetR solves the more
complex problem, where the input transmission list is composed of ordered routes which should be satisfied.
Both SPCDNet and SPCDNetR are trained in a supervised manner and show near-optimal performance
on the test set. Our results demonstrate that SPCDNet and SPCDNetR can serve as a computationally
inexpensive solution (regarding time complexity), compared with state-of-the-art schemes, while showing
to be near-optimal approximation solutions to the time scheduling and power control challenges. Moreover,
we found that both SPCDNet and SPCDNetR reach efficient solutions for large problem instances, even
though they were trained on small problems.

INDEX TERMS Ad-hoc networks, 5G, TDMA, machine learning, radio resource management, multi-hop
communication.

I. INTRODUCTION

ADDRESSING resource allocation problems in multi-
slot and multi-hop wireless communication systems

under different transmitter requirements is one of the most
challenging and fundamental tasks in wireless networking.
Owing to the broadcast nature of the wireless medium, the
transmission power of a transmitter not only ‘‘delivers’’
messages to the receiver, but also inadvertently creates inter-
ference for other receivers. Hence, the transmission power
needs to be controlled carefully to manage the interference
and enhance the overall performance of the system. The
problem of transmission power control allocation (in various
variations) is NP-hard [12] and has been extensively studied
in recent years [13], [14], [17], [20], [41], [42].
In this study, we consider the problem of power allocation

and transmission resource scheduling for clusters within the
framework of Mobile Ad Hoc Networks (a.k.a. MANET).
We assume that one of the cluster members acts as a clus-
ter head and manages the allocation of resources of the

entire cluster in a given time frame. Our goal, in solving the
aforementioned challenges, is to maximize the throughput
in a multi-time, multi-hop wireless system, given the list of
transmission requests. We consider two types of link schedul-
ing problems, namely, the per-link scheduling problem and
the per-route scheduling problem. In the per-link scheduling
problem, a list of transmission requests is provided, where
each request represents a direct point-to-point transmission.
On the other hand, in the per-route scheduling problem,
the input transmission request list consists of transmission
route orderings. Clearly, the per-link scheduling problem is
a particular case of the per-route scheduling problem, and
both are NP-hard problems [12]. State-of-the-art solutions
often involve either exhaustive searches to find the optimal
scheduling, or alternatively, heuristic methods to find sub-
optimal solutions. However, running time issues hinder the
practicality of the optimal search methods, while the heuristic
methodsmay result in inefficient scheduling solutions that are
far from the optimal allocation schedules.
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We address these problems from a different perspective.
We leverage the recent advances in deep learning (DL) to
propose a new deep neural network (DNN) architecture to
achieve better performance with a shorter running time.
In particular, the proposed approach establishes a connection
between the throughput maximization problem in multi-slot
and multi-hop systems under fairness constraints while min-
imizing a loss function when training a DNN, and relies on
efficient network training and the ensembling of the mech-
anism to achieve near-optimal power control. Our results
demonstrate the attractiveness of the DL method to rapidly
solve optimization problems in communication networks
while reaching near-optimal solutions.

The contributions of this study can be summarized as
follows:

1) We present two variations of the scheduling and power
control problem for device-to-device (D2D) wireless
networks: the ‘‘throughput maximization under QoS
constraints’’ (TM-QoSC) problem and the ‘‘throughput
maximization under routing constraints’’ (TM-RC).
TM-QoSC was presented in our conference paper [6],
and deals with the problem of scheduling and power
control given a set of requests. TM-RC is a new
problem we tackle in the current study, where the
given transmission requests contain the required path
to traverse each request. The solution should meet the
routing constraints as well.

2) We propose a transmission power control strategy for
device-to-device (D2D) communication using a DNN
for the two variants of the problem. The first DNN [6]
solves the TM-QoSC problem, while the second DNN
solves the TM-RC problem.

3) We compare by simulation the results of our proposed
solutions with well-known solutions. The simulation
results confirm that both proposed DNNs achieve
a very good approximation solution to the power
allocation and scheduling problems, with a shorter
computation time than those of other well-known solu-
tions.

4) We demonstrate the ability of the proposed solutions to
scale up to different sizes of problems, and, in partic-
ular, the ability of machine learning models to reach
efficient solutions for large problem instances, even
though they were trained on small-sized problems (this
later issue of scaling to larger problems than the ones it
was trained on is usually considered as challenging).

The remainder of this paper is organized as follows.
Section II presents recent related studies, and Section III
describes the theoretical model used for the power allocation
challenge. Section IV provides the details of the SPCDNet
and SPCDNetR DNNs, and the comparison schemes. The
details of the simulation process, as well as the simulation
results, are described in Section V, while the conclusions
and suggestions for future research directions are provided
in Section VI.

II. RELATED WORK
In this study, we propose the use of DNNs for transmission
power control and scheduling decisions in cellular commu-
nication systems, given the transmission requests. Power
control challenges in wireless networks have been widely
discussed in recent years [13], [14], [17], [20], [41], [42].
Both centralized and decentralized methods have been pro-
posed for uplink and downlink transmissions, and various
machine learning based solutions have been proposed for
several variations of this challenge [9], [11], [26], [28], [30],
[40].

Several recent studies on communication resource man-
agement suggest using DL to reach optimal or near-optimal
solutions to control decisions made in communication net-
works. Usually, a multi-layer neural network is trained, where
the network inputs are the network state (in a given repre-
sentation), and the output, which should be trained, is the
resource allocation decision. The DNN can be trained either
using a supervised training scheme, given a training set that
includes resource allocation solutions, calculated from any
optimization method for each input example, or using an
unsupervised scheme, by calculating the value of the neural
network output and optimizing this value by changing the
neural network weights. In the remainder of this section,
we provide relevant studies that use DL methods for power
control and scheduling problems. Then, we survey relevant
DL based solutions that handle the joint routing and schedul-
ing problem in wireless communication methods.

A. DEEP LEARNING METHODS FOR POWER CONTROL
In general, the common variations of resource allocation
problems in communication networks are known to be
NP-hard [26]. Thus, over the years, various sub-optimal algo-
rithms have been proposed to deal with resource allocation
challenges [11], [28], [30], [31], [40]. Some recent studies
have suggested using DL models to derive efficient solutions
for scheduling and control decisions in MANET. In this
section, we discuss several studies on resource management
and highlight the uniqueness of our approach with respect to
state-of-the-art studies.

Sun et al. [31] proposed the use of a DL scheme for
real-time resource management in interference-limited wire-
less networks. Their theoretical results indicate that it is
possible to train a well-defined optimization algorithm using
finite DNNs. To validate their claims, they constructed aDNN
for power control problems and trained it to approximate the
behavior of the heuristic WMMSE algorithm [30]. Note that
Sun et al. considered only a single time period to maximize
the weighted system throughput, whereas our study focused
on power control over time (TDMA).

Cui et al. [9] proposed a DL approach to schedule inter-
fering links in a dense wireless network with full frequency
reuse. They proposed a neural network architecture that takes
the geographic spatial convolutions of interfering neighbor-
ing nodes. They proposed two methodologies for neural
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network training: a supervised learning process, in which the
network is trained using a sub-optimal algorithm based on
the fractional programming approach, and an unsupervised
training process, in which the transmission sum rate is max-
imized. Similarly, Ahmed et al. [1] developed a supervised
learning DL-based resource allocation model with the goal of
maximizing the total network throughput. Training data were
obtained by solving a non-convex optimization problem using
a genetic algorithm. Zappone et al. [43] demonstrated how
DL can enable online power allocation to maximize energy
efficiency in wireless interference networks. Their problem
model consisted of multiple base stations serving multiple
users, and a DNNwas used to determine the power allocation
vector for users to maximize the global energy efficiency of
the network. In their study, the DNNwas trained using a poly-
nomial sub-optimal algorithm based on fractional program-
ming and sequential optimization. Qian et al. [29] exploited
the DNN algorithm to solve the power allocation problem
in distributed antenna systems. They trained the DNN based
on the traditional iterative algorithm. Alghorani et al. [2] pro-
posed a machine learning-based power allocation scheme
using Monte Carlo simulations to improve the link reliability
in inter-vehicular communications (IVC). In contrast to the
above studies, our proposed training process was performed
based on the optimal power allocation, calculated by an linear
programming-based optimal solver.

Liang et al. [24] used unsupervised DL to solve the non
convex optimization problem of maximizing the sum rate of a
fading multi-user interference channel. They proposed a net-
work ensemble with multiple deep networks that were trained
independently. Matthiesen et al. [27] developed a DL system
for energy-efficient power control in wireless networks. They
used an optimal reduced-complexity branch-and-bound pro-
cedure to find the globally optimal power policy, and then
used the solution set as a training set for a DNN. Similar
to Matthiesen et al., in our study, we train the DNN by the
optimal power control policy, where in our study, the optimal
solution was reached by an optimal solver, based on linear
programming.

A transmission power control framework based on a con-
volutional neural network (CNN) was proposed in [21] to
maximize either spectral efficiency (SE) or energy efficiency
(EE). The full channel gain information was normalized and
taken as the input of the CNN, while the output was the power
allocation vector. They also proposed a form of deep power
control (DPC) that can be performed in a distributed manner
with local channel state information, allowing the signaling
overhead to be greatly reduced.

Danilchenko et al. [18] presented the problem of min-
imizing the transmission in MANET based on multi-hop
time-slotted time-division multiple access (TDMA) under
routing delay minimization with heterogeneous traffic flows.
They considered the challenge of minimizing the overall
weighted end-to-end packet delay when the weights are deter-
mined according to the priorities of the requests. A delay
minimization network that uses DL was introduced, and

simulations demonstrated that the DNN outperformed other
state-of-art methods.

Other studies have suggested using reinforcement learning
(RL) and deep reinforcement learning (DRL) for resource
allocation problems. Ghadimi et al. [15] proposed an RL
framework for power control and rate adaptation in the down-
link of a radio access network, providing an efficient solution
that approaches optimality based on the limited information
available in practical systems.

Amiri et al. [4] suggested applying cooperative Q-learning
for the power allocation of the dense network, to maximize
the capacity of the network while providing quality of service
(QoS) and fairness to users. Van Chien et al. [34] used DL to
handle the summed spectral efficiency optimization problem
in multi-cell massive MIMO systems with varying numbers
of active users. Zhang et al. [39] proposed a DRL frame-
work for channel and power allocation in a communication
system in which UAVs were used as base stations. In their
framework, aUAVbase station can allocate both channels and
transmission power for the uplink transmission of Internet of
Things (IoT) nodes.

Li et al. [22] considered a cognitive radio system that
consisted of a primary user and a secondary user. The primary
user is assumed to update its transmitted power based on a
predefined power-control policy. The secondary user does not
have any knowledge about the primary user’s transmission
power, or its power control strategy, and a set of sensor nodes
are spatially deployed to collect the received signal strength
information at different locations in thewireless environment.
Furthermore, the authors developed a DRL-based method
wherein the secondary users can intelligently adjust their
transmission power such that after a few rounds of interaction
with the primary user, both users can transmit their own data
successfully with the required QoS.

Luo et al. [25] solved the downlink max-min power control
problem in cell-free massive MIMO systems, using deep
deterministic policy gradient algorithm with DNN. They
applied this method both for the max-sum and max-product
power control problems, achieving better performance than
the conventional deep learning algorithm.

In summary, recent studies have used DL to train opti-
mal resource allocation algorithms to efficiently solve the
challenges discussed above in online situations. Based on
these previous studies, we propose a novel method of using
DL to solve the power allocation and request scheduling
problems. The uniqueness of our study lies in the fact that
our training set is constructed based on optimal solutions
for power control and scheduling problems. Therefore, the
solutions derived by our DNN have an efficiency close to that
of an optimal solution.

B. JOINT ROUTING AND TDMA LINK SCHEDULING
In the following section, we describe some studies related
to the joint optimization challenge of both routing and
power control in wireless networks. Initially, we will discuss
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heuristic solutions, followed by an exploration of machine
learning-based approaches.

Li et al. [23] considered the issue of joint routing and
link scheduling in software-defined full-duplex wireless
networks, where an exclusive software-defined networking
(SDN) controller node was involved. They formulated the
optimization problem and presented a minimum-cost routing
algorithm to solve it.

Wang et al. [37] focused on the problem of max-
throughput (or max-fairness) routing and interference-aware
link scheduling for a wireless network. They assumed
that different terminals could have different transmis-
sion ranges and interference ranges. They formalized the
interference-aware joint routing and TDMA link scheduling
problem as a linear programming challenge and developed
centralized and distributed approximating algorithms, where
both achieve flow routing throughput (or fairness) that is at
least a constant fraction of the optimum.

Sun et al. [33] proposed an adaptive scheduling and routing
scheme to guarantee dynamic end-to-end delay requirements
while minimizing the energy consumption in wireless sensor
networks (WSNs). In the case where the end-to-end delay
requirement of a region changes, they proposed an adaptive
adjustment algorithm to locally adjust the wake-up schedule
or routing table with the minimum energy cost while satisfy-
ing the new delay requirement.

Augusto et al. [5] proposed an algorithm called REUSE,
which combines routing and link scheduling and aims to
increase the throughput capacity in wireless mesh networks.
The proposed mechanism uses a routing metric that favors
spatial reuse and a scheduling algorithm that increases the
number of simultaneous activated links. However, results
obtained by REUSE are still far from the optimal results
obtained through linear programming.

Some recent studies have suggested applying DRL to
efficiently handle joint routing and scheduling problems.
Wang et al. [35], [36] introduced and evaluated a cross-layer
protocol that jointly optimizes the power control, rate adap-
tation and routing strategy in MANETs. The protocol uses
a Q-learning method with a diffusion-approximation-based
delay estimation model to monitor the environment, and a
coordinationmechanismwas used to achieve a stable learning
process.

Cui et al. [10] used an RL approach for simultaneous rout-
ing and spectrum access in MANET based on the geographic
locations of the nodes. A single agent, trained according to the
physical layer, makes routing and spectrum access decisions
as it moves along the frontier nodes of each flow. The agent
is trained according to the physical-layer characteristics of
the environment using a reward function based on the Monte
Carlo estimation of the future bottleneck SINR.

Recent research has employed Graph Neural Networks
(GNNs) as an innovative solution to overcome challenges
in wireless networks. Zhao et al. [44] addressed the issue
of link scheduling in these networks. They conceptualized
the problem as a maximum weight independent set issue,

and put efficient approximations for the problem, based
on a GNN and guided tree search. The training of this
network was carried out using a customized reinforcement
learning approach. Their numerical experiments demon-
strated the superior performance of their proposed method
in both single and multi-channel scheduling. Moreover, the
method’s applicability was tested across different graph
types and weight distributions, showing promising results.
Wang et al. [38] formulated a general constrained resource
allocation problem, and developed a GNN method to solve
the general problem. In their study, the constrained optimiza-
tion problem was converted to a Lagrangian function with
dual variables, where the dual optimization problem involves
maximizing and minimizing the Lagrangian function with,
and the optimal filter tensor of the dual problem is found
as the saddle point of the Lagrangian function with the dual
variables.

Following previous studies, we suggest using DL to solve
the power allocation and request scheduling problems. The
uniqueness of our study lies in the fact that our training set
consists of the optimal solutions for the power control and
scheduling problem, found by using a linear programming-
based solver; as a result, the solutions reached by the deep
neural network have an efficiency close to the efficiency of
the optimal solution.

III. SYSTEM MODEL
In this section, we begin by presenting the first chal-
lenge, namely, the management of a multi-hop time-slotted
TDMA mobile ad-hoc cluster with scheduling requirements.
We assume that each cluster has a unique ‘‘leader’’ referred
to as the cluster head (CH), which is the node respon-
sible for allocating the communication resources within
its cluster. The CH receives all the requirements from
its cluster members as well as the location of the clus-
ter members. Then, using this information, it assigns the
resources within its cluster. We formulate the problems as
an optimization graph problem, where each cluster mem-
ber is a vertex, and each possible connection is considered
an edge.

Consider a scenario with set N of nodes and set E of edges
in the cluster. Set K represents the pairs of transmitters and
receivers in the cluster (i.e., active links in the cluster), where
1 ≤ |K| ≤ 2|E|. We use (ni, nj) to denote the link between
transmitters ni and nj, and pij to denote the transmission
power on link (ni, nj). Moreover, htij represents the channel
response between receiver nj and transmitter ni. Additionally,
σ 2 denotes the background noise power (thermal noise).
The indicator variable x tij for link (ni, nj) in time slot t is
equal to one if node ni is scheduled (by the cluster head) to
transmit within this time period; otherwise, it is 0. In this
work, we assumed a single channel with a bandwidth of w
Hz. Because there is only one channel, we must assume full
frequency reuse. In addition, the size of the TDMA frame is
L slots.
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The rate rij in link (ni, nj) at a specific time slot t is defined
by the Shannon-Hartley theorem, presented in Equation 1.

r tij = w log

(
1 +

|hij|2ptijx
t
ij∑

kj∈E\ij |hkj|
2pkjx tkj + σ 2

)
, (1)

We consider ptij = {p : 0 ≤ p ≤ Pmax}, ∀(ni, nj) ∈ K,
where Pmax is the maximum power that transmitters can use.
Note that ptij ≥ 0. Thus, a user may choose not to transmit at
all in time slot t .

Then, in the second variation of the time scheduling and
power control problem, we consider the fact that messages are
transmitted by routes. Let 2 denote the set of all the routes.
Route ϑ i

∈ 2 defines a path ϑ i
= {n1s , . . . , n

k
d } of size k −

1 hops, where each pair (nja, n
j+1
b ) represents one transmission

link in the route ϑ i.
It is important to note that each transmission link in

the route should be assigned in a specific order to pre-
serve the route integrity. The set K2 is the union of
all transmitter-receiver pairs in 2, and Kϑi defines all
transmitter-receiver pairs in ϑi.

A. THROUGHPUT MAXIMIZATION UNDER QoS
CONSTRAINTS (TM-QoSC)
In the first variation of this problem, we assume that a list
of requests is provided and the goal is to maximize the
total throughput while ensuring that the receiver rate of each
link meets a minimum rate requirement. This minimum rate
acts as the quality-of-service requirement of the optimization
problem. The inputs of this problem include the position of
each device, the requirements of each transmitter, and the size
of the frame measured in slots.

Each link rate rij should follow the QoS constraint and
maintain the minimum required rate Rij of the receiver on the
link (ni, nj), i.e., rij ≥ Rij, ∀(ni, nj) ∈ K. More specifically,
the scheduling problem is formulated as:

max
L∑
t=1

∑
(ni,nj)∈K

w log

(
1+

|htij|
2ptijx

t
ij∑

kj∈K\(ni,nj) |h
t
kj|

2ptkjx
t
kj + σ 2

)
(2)

s.t. x tij = {0, 1} , ∀(ni, nj) ∈ E
N∑
j=1

x tij ≤ 1, ∀(ni, nj) ∈ E

L∑
t=1

r tij ≥ Rij

0 ≤ ptij ≤ Pmax (3)

In other words, the goal is to optimally choose x tij and p
t
ij

across time slots 0 ≤ t < L. The aim is to maximize the total
transmission throughput, defined as the sum of all transmis-
sion rates. Each transmission rate, rij, is defined according to
the Shannon-Hartley theorem, as defined in Equation 1.

B. THROUGHPUT MAXIMIZATION UNDER ROUTING
CONSTRAINTS (TM-RC)
The more complex variation of the scheduling problem has
two objectives. First, it aims to maximize the throughput
while ensuring all receivers meet the minimum rate require-
ment. Second, it maintains the order of transmission in the
flow according to the given pre-calculated routes.

Let us denote the operation that returns the time slot when
node nla, in position l from route ϑ j transmits a message
to node nl+1

c as fs(ϑ j, nla). Throughput maximization under
routing constraints can be formally expressed as

max
L∑
t=1

∑
(ni,nj)∈K2

w log

(
1+

|htij|
2ptijx

t
ij∑

kj∈K2\(ni,nj) |h
t
kj|

2ptkjx
t
kj + σ 2

)
s.t. x tij = {0, 1} , ∀(ni, nj) ∈ E

N∑
j=1

x tij ≤ 1, ∀(ni, nj) ∈ E

L∑
t=1

r tij ≥ Rij

0 ≤ ptij ≤ Pmax

∀ϑ j
∈ 2, ∀1≤ l< |ϑ j

| − 1; fs(ϑj, nl+1
a ) < fs(ϑj, n

l+1
b )

∀ϑ j
∈ 2, ∀1 ≤ l < |ϑ j

| − 1; x
fs(ϑj,il )
(nl ,nl+1)∈ϑ j

= 1

∀ϑ j
∈ 2, ∀1 ≤ l < |ϑ j

| − 1; p
fs(ϑj,il )
(nl ,nl+1)∈ϑ j

> 0 (4)

In fact, Equation 4 extends Equation 2, while including
an additional constraint related to the transmission schedule
within a route. This constraint ensures that each link in route
ϑj is allocated before the subsequent link.

IV. THE DNN STRUCTURE
After having formally defined the two problem variants
namely throughput maximization under QoS constraints
(TM-QoSC) and throughput maximization under routing con-
straints (TM-RC), we present, in the following, the DNNs
developed to address these variants. First, we describe
SPCDNet, a DNN tailored to solve the TM-QoSC variant.
This includes details on the DNN design and a supervised
learning-based training mechanism. Subsequently, we intro-
duce SPCDNetR, a DNN crafted for the TM-RC variant.
In the domain of DL, our main aim is to identify

near-optimal solutions for a broad spectrum of scenarios.
A fundamental characteristic in machine learning is that
solutions optimized through training data should demonstrate
effective generalization when applied to unseen data. For
this purpose, we utilize the gradient descent algorithm to
minimize the loss function, which serves as an indicator of the
divergence between the optimal solution and the prediction
generated by the neural network.

Nevertheless, achieving flawless generalization to unseen
data is not always possible, often due to issues like overfit-
ting. To tackle this issue, our research implements strategic
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FIGURE 1. Filter matrix calculation.

measures designed to alleviate overfitting and enhance the
capacity of generalization of our model. While theoretical
results do offer worst-case guarantees for the convergence
of the gradient descent based methods [3], [7], [16], it is
important to acknowledge that practical outcomes can be
influenced by a variety of factors, including the choice of
optimization algorithm, the initial parameter setup, and the
architecture of the model. In our research, we took great care
to prevent our model from overfitting the training data and to
ensure its strong generalization to new data.

A. SPCDNet NETWORK STRUCTURE
In this section, we outline the structure of the DNN designed
to address the problem of throughput maximization under
QoS constraints. Our proposed solution employs a fully con-
nected neural network featuring two input layers, five fully
connected hidden layers (HL = 5), and a single output layer.
The network’s first input includes the distance matrix (Dis)

and the matrix of transmission requests (Req), concatenated
together. It is important to note that Req is a matrix represen-
tation of the set K.
The second input is a binary matrix of dimensionL×|N |

2,
where each column represents all possible (valid) assign-
ments in a specific time slot. We denote this matrix as Fil.
This matrix acts as a binary filter: a nonzero entry indicates
that the corresponding node is a transmitter, as depicted in
Fig 1. This design ensures that the DNN does not allocate
power to nodes that are not transmitters. To construct Fil,
we first flatten the Req matrix into a 1 × |N |

2 vector, then
concatenate L instances of this vector to produce a L× |N |

2

matrix.
Fig. 1 depicts an example of the calculation of Fil. The left

side of Fig. 1 shows a matrix Req of a cluster with 3 nodes,
and the right side shows the filtered matrix.

The first hidden layer reshapes the input matrix into a
one-dimensional vector of length 2(L − 3)|N |

2. The second
hidden layer then takes this vector and reshapes it again, this
time into a one-dimensional vector of length 2(L − 2)|N |

2.
The next two hidden layers continue this reshaping process
until the output is a one-dimensional vector of length 2L|N |

2.
The final hidden layer reshapes this vector back into a matrix
of dimensions 2|N |

2
× L. Each column of the output matrix

represents a time slot, with each value within the column
signifying the power allocation for a specific link.

The output of the network represents the power allocation
for each transmitter in each time slot. We used the sigmoid
function as the activation function for the hidden layers.
Specifically, we employed the standard sigmoid function:

Sig(x) =
1

1 + exp(−x)
(5)

Moreover, to enforce the power constraint in Equation
3, we implemented a specialized activation function from
Equation 6.

y(x) = min(ReLU (x),Pmax). (6)

A detailed explanation of the SPCDNet architecture is pre-
sented in Fig. 2. The output layer, sized 2|N |

2
×L, determines

the transmission power of each link ij for each time slot
0 ≤ t < L. The computation for this layer differs from that
of the previous layers, as described in Equation 3.’’

B. SPCDNetR NETWORK STRUCTURE
In this section, we describe the proposed SPCDNetR, which is
a DNN designed to solve the throughput maximization under
routing constraints (TM-RC). We provide the architecture
details of the DNN, while the supervised training mechanism
for both SPCDNet and SPCDNetR is presented in detail in
Section IV.
Note that TM-RC is an extension of TM-QoSC, with the

additional requirement of following the scheduling ordering
constraints due to the given request routes. As a result, the
network structure of SPCDNetR is very similar to the net-
work structure of SPCDNet. The only difference between
SPCDNet and SPCDNetR is in the first input layer, while all
remaining layers are the same. In SPCDNetR The first input
of the network includes the distancematrix concatenated with
the matrix of requirements, and |2| matrices, to represent the
transmission requests routes, where eachmatrix j includes the
order of route ϑ j. A detailed explanation of the SPCDNetR

architecture is presented in Fig. 3.

V. EXPERIMENTAL SETUP AND SIMULATION RESULTS
To evaluate the performance of the deep neural network,
we conducted a set of experiments with simulated transmis-
sion graphs and requirements. In this section, we describe the
experimental setup and the simulation results. In particular,
we give the reference schemes used for comparison with the
DNNs’ performance. Then, we describe the data generation
process, the division to train and test sets, training details, and
the test process. Finally, we provide our numerical results.

A. REFERENCE SCHEMES
In order to conduct numerical simulations to verify the
effectiveness of the proposed SPCDNet and SPCDNetR,
we compared them with state-of-the-art power control meth-
ods. Thus, we implemented the following schemes to handle
the power control problem:
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FIGURE 2. DNN architecture for SPCDNet.

1) WEIGHTED MMSE (WMMSE) [30]
We use the well-known WMMSE algorithm as a benchmark.
The originalWMMSEwas designed for problemswhere vari-
ables are beamformer vectors with complex entries. In this
paper we adopt the simplified version of the algorithm from
[32] where this algorithm proves to work in real domain.

2) ROUND-ROBIN POWER CONTROL (RR)
The RR algorithm proposed in [8] is implemented for com-
parison. The basic idea of RR is to randomly initialize the
power of each transmitter and update the power of one trans-
mitter while keeping others fixed. The algorithm stops when
the following condition is satisfied

|
R(P(t)) − R(P(t−1))

R(P(t−1))
| ≤ 10−4 (7)

where R(P(t)) and R(P(t−1)) denote the throughput in the
current and last iterations, respectively.

3) EQUAL POWER SCHEME
In the equal power allocation policy, we allocate a power of
p = Pmax/|K| for all transmitters.

4) RANDOM POWER SCHEME
In the random power allocation policy, we allocate a power
of p ∼ U [1,Pmax] for all transmitters.

B. DATA GENERATION
To train SPCDNet and SPCDNetR to be able to find efficient
solutions for instances of problems TM-QoSC and TM-RC
respectively, we generated training and test data, where each
data item consists of a problem instance and an optimal
solution. The data were generated as follows. We created two
versions of the DNN, as explained above in Sections IV-A
and IV-B, respectively. The DNNs were trained using optimal
solutions that were calculated by the optimal solver based
on linear programming optimization methods. The optimal
solver was implemented in the Wolfram Language, where we
implement the optimal solver for each problem TM-QoSC and
TM-RC defined in Section III.
First, we explain the process of creating one instance of

data for TM-QoSC. We randomly distributed the devices on
a square area, where the area was 500m × 500 m. Next,
uniformly and randomly, we chose the number of devices
|N | ∼ U [4, 10]. Then, in a uniform and random manner,
we chose the positions of each device in the square area. In the
same manner, we chose the setK of transmission requests for
each instance of TM-QoSC.
Recall from Section IV-A that the output of the solver is a

matrix of dimension L×|N |
2, where each column represents

the time slot, and each value represents the power alloca-
tion for a specific link. We denote this matrix as Mo. Then,
we repeated the above process multiple times to generate
the dataset. The size of the entire dataset was approximately
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FIGURE 3. DNN architecture for SPCDNetR.

500000 instances.We randomly split the dataset into two sets:
the training set and the test set, where the size of each set was
80% and 20% of the entire dataset, respectively. We use Ttrain
and Ttest to denote the training and test sets, respectively.
Therefore, the optimal solver solves Equation 2 for a specific
device location and set K of requests.
Next, we explain the process of creating one instance of the

data for TM-RC. Similar to TM-QoSC we located |N | users
in the same way, where we set |N | = 15. From these users,
we randomly chose |K | pairs of sources and destinations for
the routes. Then, for each pair, we chose nodes within the root
between the source and destination, using Dijkstra’s shortest
path algorithm. Then, the set 2 is the set of all generated
routes, and K2 is the set of all transmitter-receiver pairs that
appear in any route ϑ ∈ 2.

In the last step, we used the optimal solver to solve
the problem in this specific scenario. The solver receives,
as input, the set N of users, the set 2 of the routes among the
sources and destinations, and the positions of each device.
As previously mentioned, the output of the solver is also
a matrix Mo, which represents whether, for each time slot
0 ≤ t < L and each pair of transmitter ni and receiver nj,
the link (ni, nj) is active in time slot t . Therefore, the optimal
solvers can solve Equation 4 for a specific node’s location and
route requests. For this instance of the problem, we created
approximately 200000 instances and divide them randomly
into two sets: the training set and test set in a ratio of 80%
and 20%, respectively.

C. TRAINING PROCESS
We used the entire training dataset Ttrain, which includes
80% of the optimally solved instances, to train the neural
network weights to be able to calculate, for each instance in
the training set, the power control and scheduling solution,
which is as close as possible to the solved optimal solution.
For the loss function, we used themean squared error between
Mo and the network’s output. We used an Adam optimizer
[19] as the step rule for optimization. In addition, we studied
the impact of batch size and the learning rate of SPCDNet
evaluated on the validation set and the total training time.

In the experiment described in Fig. 4, we tested different
batch sizes and analyzed their influence on the MSE of the
test set, for varying number of epochs, with a learning rate of
0.001. Based on the results shown in Fig. 4, we used a batch
size of 128 in the remainder of our experiments.

In our next experiment, as presented in Fig.5, we gradually
decreased the learning rate when the validation error did
not decrease. In the case of SPCDNetR we used the same
hyper-parameters as for SPCDNet and the same optimizer.

1) TESTING PROCESS
In the testing stage, we utilized dataset Ttest , passed each
instance through the trained SPCDNet (or SPCDNetR), and
collected the result in a matrix. Then, we computed the result-
ing throughput between the optimal solution and the solution
based on the power allocation generated by SPCDNet (or
SPCDNetR).
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FIGURE 4. Batch size selection for SPCDNet.

FIGURE 5. Learning rate selection for SPCDNet.

D. NUMERICAL RESULTS FOR SPCDNet
To verify the effectiveness of the proposed methods and
compare them with the optimal solutions and other schemes,
we conducted numerical simulations for various environment
parameters while checking several machine learning meta-
parameters. The DNN implementation , and training and
testing phases were implemented in Wolfram 12.0 environ-
ment. The training phase was performed on an Nvidia GPU
GeForce GTX 1080Ti, and the test phase was performed on
a desktop computer with an Intel CPU Core i7-8700K @
3.70 GHz. The detailed simulations allowed us to study the
approximation ratio of the proposed SPCDNet, expressed as
the ratio of the proposed throughput to the optimal through-
put. Specifically, we examined the the approximation ratio
obtained by SPCDNet for different numbers of nodes and
different numbers of active links.

Fig. 6 presents the average approximation ratio of the
proposed algorithm versus the optimal solution for the case
where the number of nodes |N | is uniformly distributed |N | =

FIGURE 6. Performance ratio of SPCDNet on test data.

FIGURE 7. Performance ratio with varying numbers of links.

U ∼ [4, 10]. This figure shows that SPCDNet achieves
near-optimal solutions when the size of the instances in the
test set is the same as in the training set.

In Fig. 7 we demonstrate the performance of the proposed
method as a function of the size of set K, when the size of
the set N is uniformly distributed |N | = U ∼ [4, 10] as well.
We can see that SPCDNet performed very well with varying
numbers of active links. In Fig. 8 we present the runtime of
SPCDNet versus the runtime of the optimal solution. SPCD-
Net’s runtime is mainly constant and is indeed several orders
of magnitude less than the optimum baseline for networks
with a different number of nodes and active links. We would
like to emphasize that the runtime presented in the figure
corresponds specifically to the test phase, where the DNN
model is evaluated after being trained on the provided data.
During the training phase, it is crucial to consider the time
taken by the optimal solver to solve each instance. This
factor plays an essential role in ensuring that the DNN cap-
tures relevant features necessary for efficient approximation.
By incorporating the runtime of the optimal solver during
training, we enable the DNN to learn from the optimal solu-
tions and improve its ability to approximate them accurately.
Since it is important to provide a fair comparison between the
DNN approach and the optimal solution, we took into account
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FIGURE 8. Time complexity of SPCDNet v.s. optimal solution.

FIGURE 9. Performance of SPCDNet v.s. comparison schemes.

the time-consuming nature of the data generation phase. Our
experiments reveal that the calculation of each instance takes
between 10 − 800 seconds. These observations highlight the
significant impact of data generation on the overall computa-
tional complexity and emphasize the fact that this should be
considered when comparing different approaches.

In Fig. 9, we illustrate the performance of SPCDNet in
comparison with other schemes as a function of the size of
set K, where the size of K varies from 2 to 44. It is important
to note that the SPCDNet performance demonstrated here is
based on test data that have properties similar to the training
data. Consequently, the problems encountered in the test data
were of the same size as those in the training data set. From
the results, we observe that SPCDNet performed exception-
ally well when facing a varying number of active links.

In Fig. 10, we demonstrate the performance of the SPCD-
Net versus all comparison schemes as a function of the size
of set K, where the size of K varies from 44 to 186. It is
important to note that the size of the wireless network in
Fig. 10 is larger than the one encountered during the training
phase. As a result, the DNN algorithm generates solutions

FIGURE 10. Performance when the number of active links is
higher than the SPCDNet trained on it.

for network configurations which it has not been previously
encountered, especially for those with a larger number of
users These results highlight the generalization capabilities of
our approach, demonstrating its potential to handle real-world
scenarios effectively. Evaluating performance on unseen net-
work instances allows for a more comprehensive assessment
of our algorithm’s practical applicability.

Recall that the performance of SPCDNet is demonstrated
on a test dataset, which includes problems of avarious sizes,
including those larger than the ones used for training SPCD-
Net.

In particular, the test data is obtained from graphs with a
larger number of nodes and links compared to the training
dataset.

We can see that SPCDNet performed very well with vary-
ing numbers of active links. Furthermore, we observe the
superiority of SPCDNet over the comparison schemes (pre-
sented in Section V-A) used for handling the power control
problem.

In Fig. 13, we present the performance of the SPCDNet
scheme in comparison to other methods as a function of the
set size N . Here, users are distributed according to a Trun-
cated Normal Distribution process with a mean of 0.5 and a
standard deviation of 0.2. As can be seen, SPCDNetR out-
performs the comparison schemes, even when the size of the
test graph is larger and users are distributed by a different
distribution.

E. NUMERICAL RESULTS FOR SPCDNetR

In this section, we describe our results when considering
SPCDNetR for problems involving power control and time
schedule, where routing constraints are given in addition to
the transmission costs. In Fig. 12, we present the performance
of the SPCDNetR compared to other schemes as a function of
the number of active links.

Specifically, we evaluate the performance of SPCDNetR

on a test dataset consisting of graphs with the same number
of nodes as the training dataset but with varying numbers
of active links. We can observe that SPCDNetR performs
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FIGURE 11. Performance of SPCDNetR, when the size of the test
graph is same as a train graph.

FIGURE 12. Performance of SPCDNetRwhen the size of the test
graph size varies and may be larger than that of the train graph.

exceptionally well with varying numbers of active links in
the graphs across different scenarios.
In Fig. 11, we present the performance comparison of

SPCDNetR with other schemes as a function of the number
of nodes. The figure shows the performance of SPCDNetR

on the test dataset, where the graphs have a greater number
of transmission nodes and more active links compared to the
training dataset. As observed, SPCDNetR exhibits impressive
performance across varying numbers of nodes. The results
demonstrate that even for test data with sizes not included
in the training, SPCDNetR is still able to outperform other
schemes and reach near-optimal solutions.

In summary, our experimental results demonstrate that
both SPCDNet and SPCDNetR networks, upon completing
the training session, are capable of generating near-optimal
power control and scheduling solutions. These DNNs effi-

FIGURE 13. Performance of SPCDNetRwhen the size of the test
graph size varies and may be larger than that of the train graph,
and ground user distributed by Poisson distribution.

ciently handle instances of different sizes, requiring minimal
computation time during the testing phase.

Our results emphasize the potential of employing DL
based method for real-time optimization challenges in com-
munication networks. This approach can be particularly
valuable for complex optimization problems, where alter-
native sub-optimal solutions can deviate significantly from
the optimum, and finding exact optimal solutions may be
impractical due to the inherent difficulty of solving these
complex problems.

VI. CONCLUSION AND FUTURE WORK
In this study, we considered power allocation and request
scheduling in MANET clusters. In particular, we consider
the throughput maximization under quality-of-service con-
straints, in which an ad-hoc cluster of mobile nodes exists,
and the cluster head is given a set of transmission requests,
given as a transmitter-receiver pairs, that should be allocated
respective time slots. The method controls the transmitters’
power to maximize the total transmission throughput while
satisfying the minimum rate requirement of all receivers.
Inspired by recent advances in artificial intelligence, we pro-
posed using deep learning to address the scheduling and
power control problem for interference management.

For the first variation of the problem, where a list of
requests is provided, we developed SPCDNet a fully con-
nected multi-layer neural network. This network accepts the
distance matrix and requirements as input, and then outputs
the transmit power of all transmitters at each time slot. We
employed a supervised learning strategy for training SPCD-
Net using optimal solutions as the training dataset.
Next, we considered a second variation of the scheduling

and power control problem: throughput maximization under
routing constraints. The objective now was to maximize the
throughput while satisfying the minimum rate requirement of
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all receivers, and maintaining the order of transmission in the
flow according to the given pre-calculated routes. For this
second variation, we developed SPCDNetR a DNN with a
structure similar to SPCDNet but with a modification in the
first network layer.

We found through simulations that both SPCDNet and
SPCDNetR performed exceptionally well with varying num-
bers of active links across different graphs. We also observed
that when presented with test data items of sizes not included
in their training, both DNNs were still capable of outperform-
ing other schemes aimed at solving these problem variations.

Our results are encouraging in many respects. The remark-
able low time complexity of the DNN and the highly
efficient solutions reached by it are impressive. Furthermore,
we trained our model on a small instance of the problem
and tested it on a larger instance, still achieving excellent
results. Thus, the key outcome of our research is that a DNN
can serve as a computationally inexpensive component of
resource-intensive optimization algorithms in real-time tasks
with a very good approximation of these problems, evenwhen
trained on small instances of the problem.

There are many interesting challenges that should be
addressed in the future. We intend to consider different
properties of requests, such as different request sizes and pri-
orities, combining power control with the routing procedure,
and handling situations in which interference may be caused
by units that are not part of the cluster. In addition, We are
also interested in the joint routing and scheduling problem,
wherein a multi-layer neural approach should be taken to
simultaneously handle both challenges, which depend on
each other. A key further step is to create a framework where
a trained model can be applied to another related task. Here,
transfer learning can be a valuable tool. Lastly, we plan to
explore the effect of a clustering structure on the efficiency
of resource allocation solutions.
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