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ABSTRACT Traffic analysis plays an essential role in network management and security protection under
the premise of fully protecting user privacy. Unfortunately, encryption dramatically reduces the disclosure
of traffic information, making encrypted traffic analysis more challenging than plaintext traffic analysis,
especially in the environment of new encryption protocols (e.g., TLS-1.3, QUIC). The existing tensor-based
methods mainly focus on optimizing packet length sequence features and introducing the latest deep learning
model. However, the tensor-based features cannot sufficiently express the structured non-Euclidean Markov
properties inside the encrypted traffic. This paper proposes a novel traffic graphical expression model named
Weaved Flow Fragment (WFF) to transform a packet sequence into a graph, which better represents the
packet sequence’s inner relationship than the tensor. WFF also considers the co-evolution relationship and
the cross-direction change relationship in the bidirectional flow, breaking through the limitation that the
tensor-like length sequence only considers the adjacent Markov properties. Then, we use the latest graph
convolutional networks, gated graph neuron networks, and capsule graph neural networks to implement
classification based on WFF, respectively. Further, to give full play to the advantages of different graph
neural network classifiers to improve classification effect in large-scale data scenarios, we proposed the
ensemble graph neural network architecture with several ensemble mechanisms to reduce the possibility of
classification error caused by overfitting and model concerns. Experiments show that our classification effect
is much better than the state-of-the-art methods (achieved 99.25% F1-score) in an open-world environment,
and the model size is reduced by 99.1%.

INDEX TERMS Encrypted traffic classification, open-world environment, graph neural networks, ensemble
graph deep learning, weaved flow fragment.

I. INTRODUCTION

CURRENTLY, most network applications are Over-
The-Top (OTT) applications developed by various

companies. For the third party, mastering the end data or
server logs of such applications is impossible. However,
as an essential medium for data transmission, network traf-
fic can be legally and transparently accessed with privacy
protection. Therefore, traffic analysis has become important

in network management and security protection. Internet
Service Providers (ISPs) can achieve effective network man-
agement on backbone networks through traffic analysis,
which is representative of large-scale high-definition live
streaming and video traffic Quality of Experience (QoE)
guarantee. At the same time, many enterprises have complex
network structures, and some have servers all over the world.
Their Network Security Departments (NSDs) need to classify
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FIGURE 1. Encrypted network traffic classification overview.

network traffic to block it before or when a threat occurs or to
check the compliance of network traffic. However, according
to Google’s Transparency Report [1], for November 2022,
almost all traffic in Google apps and services is encrypted.
Furthermore, Chrome’s web traffic encryption ratio is also
as high as 97%. It is challenging to analyze the encrypted
traffic by traditional plaintext matching-based methods such
as Deep Packet Inspection (DPI), so encrypted traffic classi-
fication has become an important research field. An overview
of the meaning and process of encrypted traffic classification
is shown in Figure 1.

Initially, traditional machine learning methods were used
in encrypted traffic classification based on packet interval
and flow statistics features [2]. However, its accuracy is not
satisfactory. Subsequently, ensemble learning led by Random
Forest (RF) [3] is also used, continuing the use of statisti-
cal features. However, the classification accuracy of these
methods relies heavily on feature engineering, which requires
much prior expert knowledge. Moreover, the huge size of
the model and the potential possibility of easy overfitting
make it challenging to apply the ensemble learning method
to the open-world actual network environment. Deep learning
is widely used because of its strong feature expression ability
and end-to-end learning specialty [4]. However, some studies
[5] show that the features obtained by automatic feature
selection are not optimal in classification because the model
does not effectively mine many hidden high-dimensional
features. Therefore, some researchers tend to further use
feature engineering methods for feature optimization within
the framework of deep learning [6]. The sequential features,
especially the length sequence features, based on the packet
as the basic unit in encrypted traffic, are deeply explored.

Existing encryption traffic classification methods based on
the features of length sequence are mainly expressed in the
form of floating point number or integer tensor [7], or by
embedding [6] the length sequence is converted into a larger

scale 0 − 1 tensor to explore its expressiveness. However,
in the case of large-scale data, the effect of the method is
still not satisfactory, and there are some confusion problems
among similar categories. The main reason is that the packet
sequence or the higher protocol level Protocol Data Unit
(PDU) sequence [5] is a structured but non-European space
data sequence [8], and the relationship between each unit is
not a simple preorder or cross-direction relationship. Even
in the packet length sequence, the length values are rich in
variousMarkov properties. In order to deal with this problem,
the current research [9] began to use the form of a graph
to describe the complex relationships in the packet length
sequence and use the Graph Neural Network (GNN) for clas-
sification. However, the lack of in-depth study on the Markov
property of the packet length sequence in the existing research
makes the graphical expression method (the extraction of fea-
tures to form a graph) uninterpretable, and the classification
effect, to some extent, is not even as satisfying as that of some
tensor-based methods.

In order to solve the above problems, starting from the
transmission mode of encrypted traffic, we deeply study
the relationship between each packet and the feature of
the encrypted traffic sequence, especially the packet length
sequence, and summarize it into several representative
Markov relationship paradigms. On this basis, we propose
Weaved Flow Fragment (WFF), a novel flow graphical
expression model aiming at the graphic of length sequence
features. It consists of a set of interpretable graphical expres-
sion paths based on the Markov relationship paradigms of
encrypted traffic packet sequence, which forms a graph of
several packet length sequences in an encrypted flow. Then,
we analyze the advantages of basic graph neural network
models in expressing encrypted traffic sequence features.
Three heterogeneous GNN models, WFF-based Graph Con-
volutional Networks (WFF-GCN), WFF-based Gated GNN
(WFF-GGNN), and WFF-based Capsule Graph Neural Net-
works (WFF-CapsGNN), are designed to classify encrypted
traffic. Further, to exploit the advantages of different graph
neural network models, we propose an Ensemble GNN
(EGNN) architecture. In EGNN, we used two ensemble
mechanisms: voting and stacking. In addition, presidentmode
and Category Cross-Correlation Weighted Voting (C3WV)
mode are proposed. GNN participants in EGNN also used
the traditional hard and soft modes. EGNN effectively han-
dles themisclassification problem and realizes high-precision
encrypted traffic classification.

It is worth noting that using graph neural networks to clas-
sify encrypted traffic is essentially the same as using tensor
neural networks. Therefore, encrypted traffic classification
based on graph neural network is typical inductive learning
[10]. Because different traffic forms different graphs and we
form the graph by partial data (not using the whole flow, but
using the limited and fixed packet sequence), each graph is a
sample to be classified.

The main contributions of our work are summarized as
follows:
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• We studied encrypted traffic transmission mode and
interaction characteristics in-depth, and based on that,
Markov relationship paradigms of encrypted traffic
packet sequence are mined. Thus, we innovatively pro-
posed a graphical expression model, WFF, to transform
the packet sequence into a graph.

• We studied the advantages of different GNN-basedmod-
els in feature expression and combined them with the
characteristics of encrypted traffic. We proposed three
different WFF-based graph neural network models:
WFF-GCN, WFF-GGNN, and WFF-CapsGNN. They
have different feature expression advantages and data
affinity.

• We designed the EGNN architecture, the first attempt
to combine ensemble learning with heterogeneous
GNNs in encrypted traffic classification. In addition,
We applied the existing ensemble mechanism of voting
and stacking, and C3WV mode in voting is proposed,
which effectively reduces the probability of misclassi-
fication among similar classes. We also introduced a
variety of meta-models for stacking mode to explore
classification capability boundaries.

• We refined the dataset from the previous study by pro-
viding a new CERNET-2022-Service dataset and con-
ducting experiments in an open-world environment. The
new dataset is published on https://data.iptas.edu.cn
/web/tbps. The experimental results show that our
method can significantly improve the classification
effect, up to 99.25% F1-score, which outperforms
various state-of-the-art encrypted traffic classification
methods. At the same time, we also achieved 99.1%
model size reduction so that EGNN can be effectively
applied to the actual network environment.

The rest of the paper is arranged below. Section II describes
the current research status of encrypted traffic classifica-
tion, encrypted traffic feature engineering, and graph neural
networks. Section III introduces the transmission mode and
interaction characteristics of encrypted traffic and illustrates
the problems to be solved in this paper. On this basis, the
advantages of the three basic GNN models used in this
paper in the expression of encrypted traffic features are intro-
duced. Section IV starts with multiple Markov properties in
encrypted traffic packet length sequences and introduces this
paper’s core graphical expression model, WFF. Section V
focuses on EGNN in this paper and mainly shows the design
of the classification model of the graph neural networks
and the various ensemble schemas proposed in this paper.
Section VI provides an in-depth experiment and analysis of
the proposed method. Finally, we summarize the whole paper
and prospect the future research. All the acronyms used in this
paper are shown in Table 1.

II. RELATED WORK
The two core stages in the life cycle of encrypted traffic
classification are classifier optimization and feature selection.

TABLE 1. All the acronyms used in this paper.

Since basic features, especially statistical features, are easy to
obtain from traffic, research on encrypted traffic classifica-
tion begins with classifier optimization. Therefore, we first
summarize and analyze the development of classifiers in
encrypted traffic classification, then introduce the work
related to feature engineering in another stage, and finally pay
attention to the graph neural network and its application in
encrypted traffic classification.

A. CLASSIFIER EVOLVING IN ENCRYPTED TRAFFIC
CLASSIFICATION
In 2016, the ISCX VPN-nonVPN [2] dataset was published,
supporting much current research on encrypted traffic classi-
fication. In the earliest research, traditional machine learning
classifiers such as decision tree C4.5 and Support Vec-
tor Machine (SVM) [11] were used for classification. The
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traditional machine learning method is straightforward, but
the classification effect of the model is not good, and a lot of
statistical features need to be used, which brings difficulties
to the classification in the actual network.

Therefore, ensemble learning is further used in encrypted
traffic classification to improve machine learning methods’
classification capabilities. The representative classifiers are
the gradient boosting tree [12], and the Random Forest
(RF) [3]. However, ensemble learning methods still lack
experimental verification in an open-world environment and
have preconditions of feature engineering. At the same time,
a method that can effectively prevent the random forest from
classifying traffic was proposed [13]. It further proves the
inapplicability of ensemble learning methods and traditional
machine learning methods.

With the popularity of deep learning, some researchers
have started using deep learning methods for encrypted traf-
fic classification. The most significant advantage of deep
learning is that it does not rely on prior expert knowledge
of feature engineering. The end-to-end learning specialty of
deep learning (automatic feature selection) can directly input
the raw encrypted traffic into the neural network for training
and classification. As one of the most commonly used neural
networks, 1D-Convolutional Neural Networks (CNN) [4]was
first applied to encrypt traffic service classification. Ordinary
CNN will ignore its hierarchical structure given the sequen-
tial nature of encrypted traffic, so the Text-CNN [14] was
introduced. The attention-based Long Short Term Memory
(LSTM) model [15] was also proposed based on the LSTM
model and attention mechanism. In order to further mine
the Markov properties between packets, a Capsule Neural
Network (CapsNet) based on vector neurons [16] had also
been applied.

With the development of semi-supervised learning, Deep-
Full-Range [17] framework was proposed to classify
encrypted traffic using juxtaposed 1D-CNN, LSTM, and
Stacked AutoEncoder (SAE). Then, a Deep Packet method
[18] that integrates CNN and SAE models was proposed.
Then, STNN [19] integrating LSTM and 3D-CNN, and the
CENTIME [20] combining the advantages of ResNet and AE
are further proposed.

B. ENCRYPTED TRAFFIC CLASSIFICATION WITH
FEATURE ENGINEERING
Although the automatic feature selection of deep learning
saves the trouble of feature engineering to some extent,
the structural characteristics of the packet and the potential
Markov properties make the feature automatically obtained
by it not optimal, and this feature is not interpretable. It is the
reason for the rise of encrypted traffic feature engineering.

Many studies show that encrypted packets have the char-
acteristics of sequential state transition. The flow’s statistical
features vary with the input size (number and range of
packets). Even for the same flow, the statistical features
of different sub-sequences of packets may have different

distributions without a strong correlation. In addition, the
expression ability of surface-oriented statistical features is
limited, so it is difficult to describe the characteristics of
sequential state transition, and the classification effect is not
adequate.

Therefore, many studies start with sequence features. The
most representative ones are the time interval sequence and
length sequence. Among the time-related features, the repre-
sentative ones are FlowPic [21] based on the packet length
and standardized Inter Arrival Time (IAT) distribution in the
general domain and time-dependent features [22] under the
transform domain.

Moreover, in the length sequence feature, based on the deep
learning model, some researchers further focus on length
features strongly correlatedwith transmission data to improve
accuracy. The FS-Net [7], based on the multi-layer bidirec-
tional GRU model, is characterized by a full-flow packet
length sequence combined with representation learning. The
LS-CapsNet [5] composes Gate Recurrent Unit (GRU) for
feature extraction and CapsNet for classification. The TFSN
model [23] based on LSTM is characterized by the length of
bidirectional application data of TLS flow. Then, based on
LS-CapsNet, LSCDL [6], a composite deep learning model
architecture with Protocol Data Unit (PDU) length sequence
as input and N-gram length sequence as a feature was pro-
posed. It considers both emergent and persistent classification
requirements.

In multiple-feature cooperation, multimodal deep learning
was first introduced inmobile encrypted traffic scenarios, and
the MIMETIC framework [24] was proposed. After extract-
ing different input features using CNN and GRU, the dense
layer combines and classifies their outputs. To utilize both
the packet load sequence-structure features and statistical
features, ResPacket [25], a variant of ResNet, was proposed.
Then, based on the MIMETIC framework, MIMETIC-ALL
[26] is proposed. This method uses contextual counters and
multimodal deep learning to classify activity-level traffic in
mobile communication applications, which can take advan-
tage of context input as additional modals. However, although
complex features improve the classification accuracy, they
also increase the cost of training and feature calculation
and increase the complexity of the classification model
itself, making it difficult to apply such models to the actual
high-speed network environment.

Although the above methods express the Markov proper-
ties, the sequence input can only be limited to the Markov
properties of low-order continuous units (e.g., packets).
In particular, packet length is not a feature expressed in
Euclidean space. So, a graph would be a more appropriate
data structure.

C. GRAPH NEURAL NETWORKS IN ENCRYPTED
TRAFFIC CLASSIFICATION
GNNs shone in the computer vision field because of their
powerful graph structure expression ability. In addition to
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the most basic GNN, many new GNN architectures are also
produced, which respectively draw on the advantages of
various deep neural network structures in tensor space. For
example, there are GCN [27] using convolution operation on
a graph, spatial domain information transfer model GGNN
[28] based on GRU, Graph Attention neTworks (GAT) [29]
using attention mechanism, CapsGNN [30], which uses the
dynamic routing mechanism of CapsNet to better fuse node
features.

At present, there is some research introducing GNN into
traffic analysis. First, GCN andAE aremixedwith classifying
encrypted traffic [31]. It first uses kNN’s flow-based regu-
larized 900-byte primitive features for clustering to form the
graph input. After that, AE was used for feature extraction,
and GCN was used for classification.

Then, Ji and Meng [32] proposed an attempt to classify
traffic using GCN. However, in its graph composition, nodes
represent flows, and edges represent the relationship between
flows (whether two flows are connected to a public IP sta-
tion). Zhao et al. [33] propose a method using a Residual
GCN to discover anonymous services. They also construct
several continuous flows into flow sequences and then con-
vert them into graphs for classification. However, these two
attempts are not directly related to encrypted traffic.

Considering the particularity of the graph that can be
formed among packets, a basic GNN classification method
[8], which takes packets as nodes and spatio-temporal rela-
tions of packets as edges, was proposed. Then, a GNN model
named GraphDApp [9] based on MultiLayer Perceptron
(MLP) was presented, which abstracted the graph structure
for the upstream and downstream burst traffic and realized
the classification of decentralized applications. Furthermore,
based on the previous work, Huoh et al. [34] further intro-
duced multimodal learning to add the second data modality to
the relationship between statistical and timing features. At the
same time, an end-to-end GNN architecture is proposed using
‘‘encoder-decoder’’ architecture, which is superior to Graph-
DApp.

Although they all transform the sequence of packets in the
flow into graphs, they do not study the differentMarkov prop-
erties in the encrypted traffic, so there are specific problems
in constructing their graphs, which cannot effectively express
these features. Moreover, they only use the most basic GNN
and fail to fully play the unique advantages of all kinds of new
GNN models.

III. PRELIMINARIES
A. ENCRYPTED TRAFFIC TRANSMISSION MODE AND
INTERACTION CHARACTERISTICS
Protocol engineering is the cornerstone of network protocol
and network transmission. The transmission of encrypted
traffic also follows this feature because the encryption behav-
ior only adds a layer of encryption protocol based on network
transmission. For example, the difference between HTTPS
and HTTP is that the TLS encryption protocol is used on top

FIGURE 2. Piecewise decoupling of network protocol stack.

of the TCP layer to encrypt the entire HTTP layer. Therefore,
the essence of encrypted traffic transmission mode remains
in the layer-by-layer segmentation and communication of the
two sides of the interaction.

In our previouswork, we definedwhat a Protocol Unit (PU)
and a Protocol Data Unit (PDU) are. A PU is the smallest unit
in the current network protocol stack layer and is protocol-
specific. The PU contains the protocol header and data of
the current protocol, and the PDU is the data part of the PU
and the smallest independent unit for data transmission by the
current protocol.

Each protocol layer and protocol has its own unique PU
and PDU. Therefore, when the upper-layer PU is nested into
the lower-layer protocol, it follows the segmentation mode of
the lower-layer protocol to transmit effectively. This process
is called piecewise decoupling and is shown in Figure 2.

Each packet in a flow [6] is in sequential order, determined
by the timestamp at which the packet arrives. Therefore,
a flow is a typical time series. In a bidirectional flow, the
interaction characteristic of encrypted traffic is essentially
derived from the data exchange between the two parties.
With the help of piecewise decoupling, the ping-pong data
exchange evolved into a packet sequence, which is also the
origin of the Markov nature of the packet sequence, as shown
in Figure 3.
The Markov properties mining in the following paper is

also conducted based on the above.

B. PROBLEM DEFINITION
Encrypted traffic classification is a typical supervised learn-
ing problem. Without considering the unknown class clas-
sification, encrypted traffic classification can be regarded
as a process of classifying encrypted traffic to a specific
service or application under the condition of determining the
number and label of categories. This paper takes the packet
length sequence as the original input. Assuming there are
N samples to be classified and C different categories, then
the i-th sample (assuming the sequence size is m) xi =

[l(i)1 , l(i)2 , · · · , l(i)m ], where l(i)j refers to the length of the j-th
packet in the sequence. Taking the service classification as
an example, if the real category of xi is Si, the goal of the
encrypted traffic service classification is to build a model
φ(xi) to get a predicted label Ŝi which is expected to be the
real label Si.
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FIGURE 3. Encrypted traffic interaction characteristics and
generation of packet sequence.

It is worth noting that since our input is bidirectional,
the packet length also needs to reflect the direction. Packets
are transmitted in different directions and represent differ-
ent application data. As a description of the packet data
size, the length value can only reflect the data transmission.
Furthermore, the direction can reflect the interaction in the
data transmission process. Therefore, when the packet length
sequence is used as a feature, the direction is also considered.
There are two typical approaches. The first is to separate
the packet length value with the direction and then input
them into the neural network respectively. The second is to
use the signed length value to include the direction directly.
The advantage of separate input is that it can be combined
with multimodal learning, using different neural networks for
feature extraction, and in most cases, neural networks are
suitable to proceed with positive attention. However, it will
consumemore memory space, and it is not easy to distinguish
between the homogeneity and heterogeneity of packet length
sequences. Signed length can deal with this problem well.
Therefore, we use a signed length sequence as input, and
the input can be better for constructing the graph. We set
the upstream flow as positive and the downstream flow as
negative. That is:

l(i)j =

{
| l(i)j |, direction = uplink

−1∗ | l(i)j |, direction = downlink
(1)

Our optimization goal is to maximize the effect of classifica-
tion with a minor possible m.

In the actual network environment, at least one flow must
be generated for each access to an application or service.
In general, multiple flows are generated. Again, it is worth

noting that the classification of encrypted traffic studied in
this paper is for a flow.

A network access of network services/applications will
generate many flows. Flows of different services/applications
have different network ports and target IP addresses and do
not conflict with each other, which is coordinated by the
local operating system and the server. Therefore, a flow is
classified as a certain application or service without consid-
ering the relationship between multiple flows. There is also
no need to consider the relation between packets of differ-
ent services/applications, as these are divided into different
flows.

If multiple flows are generated in a single access of an
application or service, the encrypted traffic classification in
this paper requires the classification of each flow to obtain
results. Even if this may cause efficiency reduction or con-
fusing results, this method can ensure accurate classification
results when obtaining any flow.

In the encrypted traffic classification using graph neural
network, the input sample xi is not directly entered into the
classifier but first needs to be converted into a graph G =

< V ,E >, where V refers to all the nodes of the graph,
in this paper is the input packet and its features, namely
V = < i, xi > |i < m. E refers to the edge of the graph.
An edge indicates the relationship between nodes, that is, the
relationship between packets. The relationship between pack-
ets is derived from the Markov paradigm within the packet
sequence features, which is analyzed in Section IV-A. It is
worth noting that edges have weights, but in this paper, we do
not consider the weights of edges, only their directionality,
which is introduced in Section IV-A. E is usually represented
by the adjacency matrix of nodes, and can be expressed by
the formula 2.

E = (x, y)|(x, y) ∈ V 2, x ̸= y, x is connected to y (2)

In this graph, due to the diversity of packet length
sequences, the relationship between node values and edges
will change, and the change will become more obvious with
the passage of time. This phenomenon is a common problem
in encrypted traffic classification: concept drift. Therefore,
the graph is also dynamic, but its dynamics are reflected in
node values in the short range and edges in the long range,
which is different from the dynamic graph in the traditional
sense. The features of the graph change, but the graph has a
fixed size (m).

Therefore, in general, the graph-based encrypted traffic
classification to be solved in this paper is a typical hetero-
geneous inductive GNN supervised learning problem, which
uses node and edge features to classify the entire graph into
different services or applications.

C. SPECIALTIES OF REPRESENTATIVE GRAPH
NEURON NETWORKS
1) GRAPH CONVOLUTIONAL NETWORKS
GCN [27] is a neural network that takes graph structure as
input and performs convolution operations on a graph.
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The function of convolution is to extract the features of
the input data, which is oriented to the regional features of
the input data. Convolution is done using the convolution
kernel by scanning the input tomultiply and sum the receptive
field features and superposition the bias. In encrypted traffic
classification, the function of convolution is equivalent to
feature extraction of the region composed of some features in
the input, that is, focus on the domain of convolution kernel
and carry out feature combination calculation.

Studies have shown that convolution is more suitable for
processing regularly structured data, such as pictures, in com-
puter vision. At the same time, it performs poorly in serialized
data [15]. The main reason is that when serialized data is
piled up into tensors (generally matrix in encrypted traffic
classification), data adjacency relations that do not actually
exist are added, leading to the extraction of non-existent
advantage features by convolution. (Take 100 packets as an
example. If the features of each packet are converted into a
10 * 10 matrix, a meaningless association is added between
the features of the first packet and the 11th packet.)

Fortunately, we construct the packet length sequence into
a graph in this paper. Nodes represent the signed length
sequence features of packets, while edges represent the cor-
relation between packets. In the whole part of the graph,
a subgraph represents the relationship between several adja-
cent packets, and such a local Markov relationship exists in
each subgraph. Graph convolution can effectively traverse
each subgraph in the graph with the size of the kernel to
extract its local dominant features. Therefore, we choose to
use GCN as one of the base models of encrypted traffic
classification.

2) GATED GRAPH NEURAL NETWORKS
GGNN [28] is a message transfer model introducing the GRU
model, a variant of Recurrent Neural Network (RNN), into
the graph space domain.

In the context of tensor input, the advantage of RNN, espe-
cially the LSTM and GRU models, is that it can effectively
learn the input features of each time step. Since a conventional
neural network can only handle one input at a time, it is
inconsistent with the current situation that the previous input
is related to the following input in the sequence data. There-
fore, RNN class methods can effectively understand Markov
relationships in sequences. In encrypted traffic classification,
especially in the classification scenario with packet sequence
as the input, the RNN class method can effectively extract the
relationship between each packet feature to dig more in-depth
features.

The graphical packet sequence is no longer the direction
of Markov conduction from the front to the back but is
represented as adjacent. As a graphical representation of the
GRU model, GGNN still lies in iteration and output. For
GGNN, if the packet sequence is graphed, the short-range
Markov between the length features of adjacent packet nodes
on the graph and the long-rangeMarkov within the connected
component are considered.

GGNN can also depict long and short term relationships,
which is reflected in the propagation of relations between
adjacent nodes and more distant connected nodes on the
graph. GGNN can better learn different relationship influ-
ences centered on the communicator or the communicated
because it separates the out-degree matrix from the in-degree
matrix. After the packet length sequence of encrypted traf-
fic is converted into a graph, there is a certain correlation
between the length values. Since the carrier of the packet
sequence (flow) is chronological data from the beginning to
the end, the directed graph can better describe the relationship
between each packet.

GGNN’s advantages in digraphs make it more suitable for
graphing packet length sequences. GGNN can better describe
such properties because encrypted traffic transmission modes
and interaction characteristics bring short-range and long-
range Markov properties to packet length sequences [34].
So we choose to use GGNN as one of the base models.

3) CAPSULE GRAPH NEURAL NETWORKS
CapsGNN [30] refers to the GNN of CapsNet.

The most important element in CapsNet is the capsule,
which in the CV field is a carrier containing multiple neu-
rons. Each neuron represents various attributes of a specific
entity in the image, attributes contain many different types of
instantiation parameters, and values are instances of a certain
category. In NLP, similar to encrypted traffic classification in
sequence input, capsules correspond to word vectors. It uses
a vector to replace the scalar in node embedding because the
representation of the scalar node is not enough to effectively
retain the complete attribute of a node or the whole graph.
In encrypted traffic classification based on packet length
sequence, a capsule is a packet length sequence feature vector
generated after a series of processing of the packet length
sequence.

The advantage of CapsNet is that capsule, as a vector, can
more richly express extracted features. It is because for the
same feature, multiple nodes may be required for recognition
by scalar neurons, but the CapsNet only needs one vector.
It can better identify the equivariance between labeled sam-
ples of the same class than the base model CNN, which only
learns the invariance, improving the robustness of the neural
network.

In addition, CapsNet uses a dynamic routing mechanism to
update some parameters according to the capsule’s character-
istics to replace the gradient descent partially. Its essence is
that the output capsule through the dynamic routing algorithm
is some clustering result of the input capsule. It can get
the significance of some features, mine the more significant
Markov feature subset among the packet length sequence fea-
tures, and rely on the reconstruction loss function to exclude
some features that have little impact on the classification.

The most significant advantage of CapsGNN, like Cap-
sNet, is that it can use equivariance to learn the directivity of
features in the sample (it is worth noting that the directivity
refers to the position relationship between features). Unlike
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images, for encrypted traffic packet length sequence features,
directivity refers to the specific sequence relationship of
packet length values. However, the process is not without sac-
rifice, and the normalization of weights can lead to a decline
in learning at invariance [16]. In the graphic packet length
sequence, CapsGNN can better describe the direction of the
edge, which is more explicit than that in the original packet
length sequence, and has certain interpretability. Therefore,
we also chose CapsGNN as one of the base models, comple-
menting GCN.

IV. PACKET SEQUENCE MARKOV PROPERTIES AND
WEAVED FLOW FRAGMENT
WFF is a new model that converts bidirectional flow into a
graph based on Markov properties inside the flow. Before
introducing the model, we describe the Markov properties
found in the study of actual network traffic.

A. MARKOV RELATIONSHIP PARADIGMS OF
ENCRYPTED TRAFFIC PACKET SEQUENCE
Markov relationship paradigms of encrypted traffic packet
sequence are based on encrypted traffic transmission mode
and interaction characteristics. Since the flow is bidirectional,
the packet sequence is also bidirectional. Although there may
be a sequence of packets in only one direction, its abstract
nature is also a bidirectional sequence with no packets in
the other direction. Therefore, the same and the opposite
directions should be considered when mining the relationship
between the packets.

1) PACKET RELEVANCE IN ONE DIRECTION
In Markov properties in the same direction, due to piecewise
decoupling, data larger than MTU will be divided into mul-
tiple packets that belong to the same data block. We call this
Adjacent Relevance in one Direction (AR-D). In addition,
if one side of the communication sends data multiple times
in a row and the other side does not respond, even packets
of different data blocks may constitute continuous packets,
which is also a kind of AR-D.

AR-D refers to the Markov property between each contin-
uous packet in the same direction in a bidirectional flow. The
status of the latter packet is related to the previous one, which
conforms to the first-order Markov chain relationship. AD-R
can be expressed by the following Formula 3.

∀pi ∈ flow, 1 ≤ i ≤ Nflow,

direction (pi) = direction(pi+1)

relevence(pi, pi+1) = 1 (3)

where pi refers to the i-th packet, Nflow refers to the number
of packets in the flow.

In the actual network environment, a whole huge data file
or multiple files of the sender will be transmitted multiple
times to complete the delivery of the receiver(e.g., online
video and web browsing). In addition, in some scenarios, the
sender needs to continuously send data to the receiver (such

as VoIP and live network broadcasting). In these scenarios,
one party sends data continuously while the other party also
sends data, so the packets in the same direction are separated.

In addition, after a certain amount of data has been trans-
mitted in one direction, the other side may also return an
acknowledgment to inform the sender that it has successfully
received the data. The best example is the TCP protocol.
In TCP transmission, after the sender transmits data, the
receiver sends an acknowledgment (ACK) packet that the
currently transmitted data is accepted successfully.

This is the core reason for the correlation between the two
directions of the subflows in a bidirectional flow, and it is
also why packets in the two directions appear alternately. As a
result, continuous packets in the same direction are separated.
Although the two separated subsequences may not necessar-
ily belong to the same block, the last packet of the previous
subsequence is related to the first packet of the following
subsequence due to the persistence of data fragmentation and
behavior logic.

We call this Markov relationship paradigm Relevance with
a Span in one Direction (RS-D). RS-D refers to the Markov
properties between the discontinuous nearest packet clus-
ters in the same direction in a bidirectional flow. It can be
expressed by the following Formula 4.

∀pi ∈ flow, 1 ≤ i ≤ Nflow,

direction (pi) = − direction (pi+1)

j = argmin
(
direction (pi) = direction

(
pj

)
, j > i

)
relevence

(
pi, pj

)
= 1 (4)

2) PACKET RELEVANCE IN OPPOSITE DIRECTIONS
When the interaction causes the RS-D, it also associates
the packets of opposite directions. This association is man-
ifested in two adjacent subsequences in opposite directions.
Whether data packets or acknowledgment packets, adjacent
heterogeneous packets are related without considering packet
disorder due to the continuity of interaction. The acknowl-
edgment packet is related to the previous data because the
acknowledgment packet is defined as the acknowledgment.
For data with opposite directions, there are two cases. The
first is that in the request-response mode, the data is requested
by the other party through the previous subsequence of
the packet, and the two heterogeneous packet subsequences
are related. The second type of data is actively pushed in
the subscription-publishing or peer-to-peer network model,
which is relevant at the behavioral level, such as the data
generated by the behavior of the two participants in an online
game.

Hence, this kind of packet correlation is named Adjacent
Relevance in Opposite Directions (AR-OD). AR-OD refers
to the Markov property between adjacent continuous packet
subsequences of opposite directions in a bidirectional flow.
In particular, in two adjacent packet subsequences of opposite
directions, the status of the first packet in the latter subse-
quence is related to the last packet in the former subsequence.
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AR-OD can be expressed by the following Formula 5.

∀pi ∈ flow,1 ≤ i ≤ Nflow,

direction (pi) = − direction(pi+1)

relevence(pi, pi+1) = 1 (5)

B. GRAPHICAL PACKET SEQUENCE
Based on the three different Markov relationship paradigms,
we propose WFF, a graphical expression model suitable for
both online and offline encrypted traffic classification. It is
worth noting that there are noticeable differences between
online classification scenarios and offline classification sce-
narios. The most obvious gap lies in data integrity. In online
scenarios, packets continue to arrive, and the size of the
target flow to be classified is unknown. Therefore, an input
threshold (number of packets) is required. Offline scenarios
have even more freedom, with all the complete data that can
be extracted and analyzed at will. However, in terms of real-
time requirements, offline classification cannot be guaranteed
because it needs to persist the entire flowfirst. However, when
the flow is completed, the behavior behind the stream may
also end.

Therefore, the bottleneck of offline classified deployment
is collectors and storage. In online classification deployment,
traffic at the current collection point is directly transferred
to the classification device for analysis through an optical
splitter or port mapping. In rare cases, serial deployment is
used. To satisfy both online and offline scenarios, we need
first to limit the size of the input, that is, the number of nodes
in the graph, and fix it.

To satisfy the input of GNN further (transforming the
input into a graph), we proposed the Link Type (LT) as the
detailed graphical expression paths to express all the rele-
vance, respectively. Noteworthily, each packet appears as a
node during graph construction, and each node v has a feature
of packet length value.

We proposed four different LTs, corresponding to the three
different Markov relationship paradigms mentioned above
and a need for graphic integrity.

LT1 stands for AR-D. LT2 stands for RS-D. For graph
construction, they sequentially connect all packets in the
same direction. LT1 and LT2 are equivalent to an expression
of unidirectional flow in each direction of bidirectional flow.
However, it is worth noting that the expression differs from
that of ordinary flow. The main reason is that LT2 connects
the packets that should be connected in the middle of the
flow but are separated by different packets, ensuring that their
Markov properties can be extracted.

LT3 represents the AR-OD. Due to the sequential relation-
ship between packets in the flow, if two adjacency packets
are in opposite directions, they need to be connected. If the
direction of the next packet and the current packet is opposite,
the two nodes are connected with an edge to show that the
next opposite packet is related to the current adjacent packet,
as LT3 stands for. It is worth noting that in the actual network,
if the two communication parties transmit data to each other,

and the data is irrelevant, it will be realized through two
flows, which are determined by the network transmission
mechanism. Therefore, LT3 can fully express the AR-OD.

Although LT3 appears to be a time-consuming function
for connecting the cross-packet node because it appears to
merge the traffic from two directions, However, practically
implementing does not implement these concerns because
traffic is first collected at a collection point, two-way traffic
is collected at the same time in the network adapter, and
the flow forming is the first thing in traffic collection. The
flow forming can be completed in O(n) time complexity,
which is not very time-consuming. Moreover, we only need
a fixed number of packets in a flow to form our packet length
sequence to build WFF. Therefore, we can judge each flow in
real time and only retain its length sequence features. When
the size of the length sequence reaches the predetermined
threshold, the following operation can be carried out. The
weaving process can even be implemented during a flow
forming if the device supports it.

For LT3, there is another case that needs to be discussed
in the real Internet: asymmetric traffic. In a narrow sense,
asymmetric traffic refers to two-way traffic not routed in the
same transmission path but transmitted in two different paths.
As a result, only one-way traffic can be collected at a certain
collection point in the path, resulting in inaccurate WFF
generation. Studies show that asymmetric traffic accounts
for a large proportion of the Internet, and the main reason
lies in ISPs’ efficient traffic management. In a broad sense,
asymmetric traffic contains a special case in which, within
the threshold value of the packet length sequence selected
by us, one of the two communicating parties continuously
sends data to the other without receiving any feedback packet
(which may appear in UDP), resulting in only packets in one
direction. WFF degrades to a unidirectional packet length
sequence. We call this phenomenon oppressive transmission.

In order to solve asymmetric traffic, we need to collect
traffic as close as possible to both communication parties or
at the unique boundary that has been determined, which is a
problem to be considered in engineering implementation. For
oppressive transmission, the sequence itself is a special case
of a mathematical graph, so it will not affect the method, and
the experiment also shows that when oppressive transmission
appears, it can still achieve effective classification.

Since the input sequence is finite, the LT4 represents the
integrity of the graph structure, i.e., the self-consistency of
the sequence. If the first or last packets in opposite directions
are not connected, they will be connected to form a integrated
connected component.

Figure 4 shows the weaving process of the construction
of the graphic packet sequence, which is combined by four
different LTs.

In actual network environments, in addition to oppressive
transmission, there may also be unseen packets, a phe-
nomenon commonly seen over UDP packet loss. When
packets are missing, the structure of the graph changes. The
biggest change that may happen to the graph structure is
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FIGURE 4. Weaving process to construct a graphic packet
sequence.

the loss of a single packet in the opposite direction, which
degrades RS-D and AR-OD to AR-D. However, the total size
of a flow is generally much larger than the size required
by the input. Therefore, the loss of some packets (nodes)
will only affect a small part of the features of the graph but
will not change the number of nodes in the graph, so it will
not affect the classification process. If the model has strong
robustness or the samples take this phenomenon into account,
the classification accuracy can still be guaranteed, which is
also a factor considered when constructing the classifier.

It is worth noting that WFF can be either directed graph
mode or undirected graph mode. Different GNNmodels have
different expressive abilities for directed or undirected graphs
due to the gap between neurons or layers. We have conducted
an in-depth experiment on whether a model should use the
WFF of a directed or undirected graph. For both directed
and undirected graphs, we set upstream traffic’s packet length
value as positive and downstream traffic as negative.

V. ENSEMBLE GRAPH NEURAL NETWORKS
After we construct the flow into WFF, we need to build
the GNN model for classification. Since GCN, GGNN, and
CapsGNN all have their own advantages in the classification
of encrypted traffic theoretically, we first design three corre-
sponding WFF-oriented classifiers based on these three basic
models. Then we propose various ensemble mechanisms of
GNNs according to the ensemble mechanisms of traditional
ensemble learning and the characteristics of GNNs. The goal
of EGNN is to balance the effect and efficiency of classifi-
cation in resource-constrained multi-category scenarios and
avoid misclassification among similar categories.

A. STRUCTURAL DESIGN OF THREE DIFFERENT GRAPH
NEURAL NETWORKS
We proposed three models, WFF-GCN, WFF-GGNN, and
WFF-CapsGNN, respectively, using the advantages of their
base models. These models can classify encrypted traffic
individually or as participants in EGNN.

FIGURE 5. Network structure of WFF-GCN.

1) WFF-GCN
In WFF-GCN, the core calculation is to extract the features
on the graph directly through graph convolution. Therefore,
in the structure of traditional GCN,we use the two-layer itera-
tive ‘‘convolution-activation’’ to mine the significant features
between adjacent nodes in WFF. We use Scaled Exponential
Linear Units (SELU) as the activation function to solve the
problem of eliminating negative. Because in a bidirectional
flow, the downstream packet length value is negative. If tra-
ditional activation functions such as ReLU are used, the
negative feature will be lost. The specific network structure
of WFF-GCN is shown in Figure 5.

2) WFF-GGNN
In WFF-GGNN, since GGNN is a model in which the input
and output edges transmit messages respectively, we first
need to convert the edge set of WFF into an adjacency matrix
of in-degree and out-degree and then connect the edges after
linear transformation of alignment. If the directed graphWFF
is taken as the input, the in-degree and out-degree matrices
are symmetric matrices. The two matrices corresponding to
the undirected graph WFF are the same. The core of GGNN
is the propagator that iterates continuously over the input,
containing the reset and update gates, just like the GRU
model. The update gate controls the extent to which state
information from the previous state is carried into the current
state, while the reset gate controls how much of the previ-
ous state is written into the candidate set. Both gates are
transformed by a linear layer (i.e., a fully connected layer),
and the sigmoid function is used as the activation function.
On this basis, we used the transform component to transform
the candidate state data obtained by the reset gate, which
connected to the current state (using the linear layer and Tanh
activation function) and propagated the information based on
the weight of the update gate. The specific network structure
of WFF-GGNN is shown in Figure 6.

3) WFF-CapsGNN
Since the CapsGNN model uses a capsule to solve the prob-
lem that the global characteristic of the graph will be lost,
we divideWFF-CapsGNN into five phases based on the basic
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FIGURE 6. Network structure of WFF-GGNN.

FIGURE 7. Network structure of WFF-CapsGNN.

CapsGNN. The first is the hidden feature representation,
in which graph convolution is used to extract features. Then,
the primary capsule layer generates the input capsule, and
the graph attention layer is applied for key feature mining.
Afterward, the graph capsule layer uses a dynamic routing
algorithm to obtain the classification capsules through the
secondary capsule layer. Finally, the secondary capsule in
the classification layer employs a dynamic routing algorithm
again to obtain the output capsule. In addition, to ensure the
consistency of model output, we add a large product factor
and the Softmax function to make it applicable to classifica-
tion problems.

Due to the transmission pattern of encrypted traffic, some
packets may be out of order in the actual process, which may
be caused by network fluctuations or the randomness of the
transmission order of non-synchronous resources. Therefore,
we also redesigned the model’s loss function and gave up
the reconstructed loss function of the CapsGNN model to
avoid the problem of decreasing the classification accuracy
of similar samples caused by the packet disorder. The specific
network structure of WFF-CapsGNN is shown in Figure 7.
The three classificationmodels all adopt the cross-entropy

loss as the loss function.

B. ENSEMBLE MECHANISM OF GRAPH
NEURAL NETWORKS
In encrypted traffic classification, encrypted traffic in dif-
ferent categories may have relatively similar features due to

network services’ similarity and network applications’ homo-
geneity.

The four most common ensemble methods in traditional
ensemble learning are boosting, bagging, stacking, and voting
[35]. The first two are dataset-oriented, while the last two are
model-oriented.

Boosting methods can repeatedly improve the attention
of the misclassified samples in the previous training pro-
cess and train the next base classifier based on the adjusted
sample distribution. However, boosting methods are used
for repeated training of weak classifiers. GNN, as a strong
classifier, has a better basic classification effect and a rel-
atively long training time. Boosting methods would lead to
higher training costs for the GNN model in repeated training
than traditional machine learning classifiers, but the effect
would not necessarily be improved sufficiently. Furthermore,
boosting methods work on a single model (isomorphism
algorithm). Using the misclassification results of one GNN
to train the other GNNs would not necessarily get a boost
since the other GNNs would not necessarily misclassify these
samples. Boosting would only be meaningful if the samples
were misclassified by all the GNN participants.

As a method of aggregating multiple models and aggregat-
ing the results together for classification, bagging is trained
based on a random sampling of datasets (the most typical
model is RF). The bagging methods can use different features
in addition to sample extraction. However, in general, the
same model will be applied to obtain the feature mining of
datasets from different angles by one model. It is not easy
to apply to the collaborative training between heterogeneous
GNNs.

Stacking is an ensemble learning mechanism based on a
meta-model. For EGNN, different GNNs are used as first-
layer classifiers, and their classification results are used as the
input of the second-layer meta-model to obtain the final pre-
diction results. Stacking can be effectively used in EGNN, but
the selection and training of the meta-model would require
additional costs.

Voting is the most straightforward but practical ensemble
mechanism. It directly combines the classification results of
multiple models, and the result with the most votes will be
selected as the final result. Voting consists of two modes,
namely, hard voting and soft voting.

Therefore, we selected the stacking and voting modes,
respectively, to construct the ensemble graph neural network.

1) STACKING MODE EGNN
In stacking, we also use the hard and soft modes of voting.
That is, the output of a layer of classifiers is the result of
a category or the output vector of the last layer Softmax
function, which contains the confidence of each category.

Therefore, we adopted a relatively simplemachine learning
model for the meta-model because the output of each GNN
in the first layer is just a value result or a Softmax vector,
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and there is no need to use a complex model to increase the
performance overhead of the overall model.

It is important to note that because stacking is a two-layer
model, the output of classifiers at one layer is not necessarily
the output of the results at themore intermediate layers, as this
will affect the structure of each GNN itself.

2) VOTING MODE EGNN
In voting, if it is a simple hard mode, the results of the
three GNNs are put to the vote directly. However, since
encrypted traffic classification is a multi-classification task,
three GNNs can give completely different results. In this case,
we choose the random or president mode to make the final
decision. The president mode refers to the prior selection of
a classifier as the president. When there is a conflict between
the results, the result of the president is taken as the final
result.

In soft mode, we can weigh the results of the classi-
fication or the results of the Softmax vector. In the case
of weighted voting of classification results, it needs to be
based on historical data. Therefore, we proposed the Category
Cross-Correlation Weighted Voting (C3WV) mechanism.
In C3WV, by mining the categories that are prone to mutual
confusion in the training process, the correlation number µ

is set for the results of similar categories to correct the cat-
egories with ambiguity in the final voting through weighted
calculation.

Assuming a total of n different categories andm classifiers,
C3WV can be describe as:

CMatrix(k) =

E
(k)
1→1 · · · E (k)

1→n
...

. . .
...

E (k)
n→1 · · · E (k)

n→n

 ,

∀1 ≤ i, j ≤ n, 0 ≤ E (k)
i→j ≤ 1,

n∑
g=1

E (k)
i→g = 1

(6)

µ
(k)
i = CMatrix(k)

T
(i)

= [E (k)
1→i,E

(k)
2→i, · · · ,E (k)

i→i, · · · ,E (k)
n→i] (7)

ỹ = index(max(
m∑
k=1

µ
(k)
ỹ(k)

)) (8)

where E refers to a certain evaluation criterion, E (k)
i→j refers to

an evaluation criterion unit that classifies all samples of the
i-th category into the j-th category under the k-th classifier.
If E is the accuracy rate, then E (k)

i→j represents the proportion
of class i samples classified into class j in the k classifier to
the total number of class i samples, which generally adopts
the classification accuracy rate of this category. CMatrix(k)

refers to the prior confusion matrix of the k-th classifier, ỹ(k)

is the classification prediction result of the k-th classifier, ỹ is
the classification prediction result of C3WV.

As for the confidence of the Softmax vector, we directly
weighted its average to get the voting result.

VI. EXPERIMENTAL EVALUATION
A. DATASET
To prove the effectiveness of the method, we select two
datasets. One is the ISCX VPN-nonVPN dataset [2]. It is an
encrypted traffic dataset used by most research institutes with
much reliability. However, it contains some seriously expired
encrypted traffic or unencrypted traffic. We reserved four
classes for subsequent classification based on the previous
encrypted traffic detection method SED-CapsNet [36].

At the same time, we used a dataset we had collected
and used in the previous research. It is a fresh dataset in
2021 collected from the CERNET environment [6], including
TLS-1.3, QUIC, and DTLS. In this study, we supplemented
and improved this dataset and named it CERNET-2022-
Service. Since the classification unit of this paper is flow,
and the minimum input unit is a packet, we do not consider
the highest visible protocol [6] above the transport layer and
divide the dataset into two parts: TCP and UDP (that is,
the traffic with TCP at the transport layer and UDP at the
transport layer are respectively classified).

It is worth noting that our research faces an open-world
environment, so the training set for training each GNN partic-
ipant is completely separated from the test set. In addition, the
part for testing EGNN is further sourced from the GNN test
set (further division) to fully depict the situation that the new
traffic in the actual network environment is different from the
old traffic for training.

The statistical results of the two datasets are shown in table
2. It is worth noting that in the follow-up experiment, in order
to reflect the fairness of the experiment and the uncertainty
in the open-world scenario, we did not directly select the
complete dataset for the experiment but randomly selected the
same total number of samples and divided them into training
sets and test sets according to 8:2 for the experiment.

The new dataset CERNET-2022-Service is published on
https://data.iptas.edu.cn/web/tbps.

B. EXPERIMENT SETTINGS & COMPARED METHODS
We conduct our experiment in a high-performance work-
station with an AMD 5950x CPU, 64-GB memory, and a
RTX 3090 GPU, within a running environment of CUDA
version 11.1, Pytorch version 1.8.1, and Python version 3.8.8.

To test the effectiveness of the method, precision rate (Pr),
recall rate (Rc), and F1-score (F1), which are most commonly
used, are selected as evaluation criteria.

Several state-of-the-art methods mentioned in Section II
are chosen to compare our method:

• CNN [4] is a basic deep learning model using automatic
feature selection.

• Deep Packet [18], a classic model for traffic classifica-
tion, combines CNN and SAE.

• FS-Net [7] is one of the state-of-the-art models for
encrypted application traffic classification.

• LS-LSTM [6] is currently one of our best methods for
encrypted service traffic classification.
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TABLE 2. Statistics of filtered ISCX VPN-nonVPN dataset and CERNET-2022-Service.

As we use the stacking mode in EGNN, the classifiers used
in the stacking mode also need to be verified experimentally.
Because the inputs and outputs of the stacking second-level
meta-model are relatively simple, we use traditional machine
learning methods and ensemble learning methods to conduct
experiments. There are five methods:

• C4.5, a representative decision tree model with decent
interpretability.

• SVM, a high-dimensional classification model based on
kernel functions.

• kNN, a classical classification model based on feature
distance.

• XGBoost, an excellent ensemble learning model based
on gradient boosting.

• RF, a powerful ensemble learning model based on tree
bagging.

C. CLASSIFICATION EFFECT AND PERFORMANCE
Our experiment is divided into three parts. The first part is
the experiment on the open dataset, comparing the classifica-
tion effect of the GNN classifiers with other classifiers and
further experimenting on the effect of EGNN. We then con-
ducted further experiments on the CERNET-2022-Service
dataset. Finally, we consider the possible bottlenecks in
system deployment under the actual network environment
and evaluate each model’s performance requirements and
resource consumption.

1) EFFECTIVENESS EVALUATION ON ISCX DATASET
First, we conducted a basic model classification experiment
on the open dataset ISCX VPN-nonVPN. The classification
result is shown in table 3. It is worth noting that the overall
precision rate, recall rate, and F1-score of the classifier are
obtained from the macro average of each category’s results.
Therefore, the F1-score may be lower than the F1-score
calculated directly using the overall precision rate and the
overall recall rate (resulting in the F1-score being lower than
the precision and recall simultaneously).

Because different methods used for comparison have spe-
cific differences in input, to ensure respect for the methods
being compared, we did not modify the original input and
can only ensure the consistency of input size within a limited
range. Therefore, we also clarified the input size of the four

FIGURE 8. Heat map figure of GCN on ISCX VPN-nonVPN
dataset.

compared methods and the three GNN methods we proposed
in the table.

It can be found from the results that although the
data required by CNN and Deep Packet is minimal, only
1500 bytes of an MTU, the classification precision rate and
recall rate are too low to be used in the actual network
environment. FS-Net has a good effect. However, its input
size is too large (on average, each flow carrying data has
about 1000 packets), and it is not easy to apply to the online
classification scenario. From the perspective of effect alone,
the best two models are the LS-LSTMmodel proposed in our
previous work and the WFF-GGNN model presented in this
paper, both of which are superior in precision rate and recall
rate, respectively. However, from the perspective of input
size, LS-LSTM uses PDUs instead of packets. As a result,
the required number of packets is much larger than that of
WFF-GGNNunder the condition of the same length sequence
size. At the same time, WFF-GCN and WFF-CapsGNN
also have acceptable performance. Therefore, in general,
WFF-GGNN outperforms all state-of-the-art methods in this
dataset.

Although the overall classification effect of WFF-GCN
and WFF-CapsGNN is not as good as that of WFF-GGNN,
both models have unique feature extraction and description
capabilities. In order to describe such capabilities, the perfor-
mance of the three models on the ISCX dataset is described
in detail in the form of a heat map, as shown in Figure 8, 9,
and 10.

From the heat map figure of the confusion matrix, we can
see that WFF-GCN performs well in the classification of
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TABLE 3. Experimental results for the effect criteria on the ISCX VPN-nonVPN dataset.

FIGURE 9. Heat map figure of GGNN on ISCX VPN-nonVPN
dataset.

FIGURE 10. Heat map figure of CapsGNN on ISCX VPN-nonVPN
dataset.

email and file transfer but poorly in the classification of
streaming because WFF-GCN has the advantage of leverag-
ing local dependencies in WFF. Email and file transfer are
smaller samples in the ISCX dataset, so their length values
and interactions are more varied locally than others. WFF-
GCN effectively extracts these features. In streaming, the
packet length sequence values are similar (due to MTU), and
many continuous transmissions are in the same direction.
Convolution will cover the minor interactions to a certain
extent, resulting in poor classification effects of this category.
WFF-GGNN is excellent for email and streaming and suitable
for every category else. The result reflects the superiority of
WFF. GGNNmakes good use of various features in the graph.
While WFF-CapsGNN performs very well in the chat, email,
and file transfer categories (chat, in particular, is the best of

TABLE 4. Experimental results for the effect criteria on the ISCX
VPN-nonVPN dataset.

the three models), it does not perform as well in streaming.
This result is similar to GCN, which has better short-range
Markov utilization. Moreover, vector neurons of CapsGNN
can better describe the directivity of continuous interaction
in chat, which improves the classification effect. Therefore,
the three GNN participants in EGNN have their unique value,
and there is no waste of classification ability.

Then, we further compared the modes of voting and stack-
ing in EGNN. First, we took the average classification effect
of the three GNNs as the baseline to conduct a controlled
experiment on the four modes of voting. With precision rate,
recall rate, and F1-score as evaluation criteria, the experimen-
tal results are shown in Table 4. It is worth noting that the
president we selected in president mode is the WFF-GGNN
model, according to the result of Table 3.

As seen from the table, after voting is used, compared with
the baseline model without EGNN, the overall classification
effect is improved to a certain extent, except for the hard
mode. We use the stacked bar diagram to show the improve-
ment of the four models under the three evaluation criteria,
as shown in Figure 11.
The figure shows that both president mode and C3WV

mode have significantly improved the effect, while soft mode
has the most pronounced effect. The main reason is that the
primitive used for voting is more complex, which is about
the classification confidence of all categories obtained by the
current classifier. This kind of data’s information entropy is
much higher than the classification result (generally speak-
ing, it is only an integer). Except for soft mode, our C3WV
results are the best because it effectively uses the historical
data distribution to predict and correct the misclassification.
However, the hard mode not only does not improve but
reduces the classification effect to a certain extent compared
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FIGURE 11. EGNN improvement of classification effect in voting
modes on ISCX VPN-nonVPN.

FIGURE 12. EGNN comparison of classification F1-score and
prediction time consuming in voting modes on ISCX
VPN-nonVPN.

with the baseline result. The main reason is that when the
results conflict, a result will be uniformly randomized. If only
one classifier classifies correctly, the probability of obtaining
the correct result will be significantly reduced. However, the
president mode effectively inhibits the classification error
when the three results of classifiers are completely different.

However, the classification improvement brought by the
four EGNN voting modes is not a free lunch. Therefore,
we further experiment with the prediction time of four vot-
ing modes. In order to reflect the classification performance
under the backbone network, we use the form of replay
samples (as the ISCX dataset does not have enough samples)
to test the prediction time of 1,000,000 flows. The overlap bar
diagram of the prediction time combined with the F1-score is
shown in Figure 12.

As can be seen from the results, hard mode does not
improve the classification efficiency and affects the predic-
tion time efficiency, so it should be deprecated. While soft
mode improves the classification accuracy, it also signif-
icantly increases the prediction time. President mode and
C3WV mode have better classification accuracy and ade-
quate prediction time. Compared with the president mode,
the C3WV mode has better classification performance under
similar prediction time, and the president mode needs to
select a president in advance. This process may be difficult

TABLE 5. Experimental results for the effect criteria on the ISCX
VPN-nonVPN dataset of EGNN stacking hard mode.

on the premise of an insufficient understanding of the EGNN
participants. Therefore, if the voting mode is used, whether
soft or C3WV, is used needs to be balanced between classifi-
cation accuracy and prediction time. According to the results,
if the average number of packets per flow is 300 (in fact, the
number of packets diverted is far more than this number), the
throughput under voting modes can reach 1.226Gbps.

Further, we experimented with two modes and five
meta-models in the stacking mode. In stacking, because the
hyper-parameters of each meta-model also need to be deter-
mined, we use the RandomizedSearchCV function in the
sklearn library to determine the optimal hyper-parameters.
At the same time, the results shown in the experiment are also
the results under the optimal hyper-parameters.

The first is the classification results in stacking hard mode.
We also took the mean value of the classification results of
three GNNs as the baseline to compare the classification
effects of five different meta-models. The results are shown
in Table 5.

The results show that the stacking hard mode signifi-
cantly improves the classification effect, regardless of the
base classifier used. The main reason for the stacking mode
is that the meta-model of the stacking mode learns and
corrects the misclassification of three EGNN participants
again. When three participants have unique advantages, the
stacking mode can better excavate the relationship between
this feature perspective advantage and the real classification
result from the feedback of GNN results of the first layer.
Even though the GNN currently gives the wrong classifica-
tion. In addition, the results show that the performance of
the decision tree is the best under the ISCX dataset, while
the performance of RF is reciprocal among several meta-
models. This phenomenon has been thoroughly analyzed in
the discussion.

Then we experimented with the classifications in stacking
soft mode. The experimental results are shown in Table 6.

It can be seen from the results that stacking soft signif-
icantly improves the classification effect, and overall, the
improvement of classification results is better than stack-
ing hard. Similar to the advantage of voting soft for voting
hard, the inputs to the meta-model of stacking soft are more
complex and provide more information gain so that the
meta-model can learn more features to correct the misclas-
sification. In the ISCX dataset, RF has the best stacking
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TABLE 6. Experimental results for the effect criteria on the ISCX
VPN-nonVPN dataset of EGNN stacking soft mode.

FIGURE 13. EGNN stacking modes classification F1-score
among five different meta-models on ISCX VPN-nonVPN.

performance, and the decision tree has the worst stacking
performance, and this is contrary to stacking hard. This phe-
nomenon is also analyzed in depth subsequently.

In order to carefully evaluate the advantages of stacking
hard and stacking soft, we first compared the improvement
of the classification effects between stacking hard and stack-
ing soft using the F1-score as the evaluation criterion. The
bar diagram for comparison between the two is shown in
Figure 13.

Then, using time consumption as the evaluation criteria,
we compared the time consumed by stacking hard or soft
modes on training and prediction. It is worth noting that since
both rely on three GNN participants to conduct classification
first, the time consumed includes the sample classification
time of three participants. As stated in Section VI-A, the
datasets used for stacking meta-model training and testing are
further divided on top of the test sets of the first layer GNN
classifier so that the input unit of stacking training is 3200 and
the unit of the test is 800. The training time in stacking is
shown in Figure 14.

The results show that the two ensemble learning meta-
models (RF and XGBoost) require much more training than
the three traditional machine learning meta-models. On the
whole, the training time cost in soft mode is higher than in
hardmode, which is also expected. However, the training time
of SVM in soft mode is shorter than in hard mode. It may
be because the boundary values in soft mode are all floating
point numbers, and the calculation of hinge loss will be faster

FIGURE 14. EGNN stacking modes training time cost among five
different meta-models on ISCX VPN-nonVPN.

FIGURE 15. EGNN stacking modes prediction time cost among
five different meta-models on ISCX VPN-nonVPN.

than the integer values with boundary mixed in hard mode (it
is easier to find the hyperplane among the categories).

The prediction times of 10 models of two modes with
3,200,000 samples in stacking are shown in Figure 15.
It can be seen from the results that the prediction time of

themodels in hardmode and soft mode is uneven. Overall, the
soft mode has a higher prediction time due to the complexity
of the meta-model inputs. However, due to the gap between
input features, the time required for soft mode prediction is
shorter under the C4.5 and kNN models. It may be because
the tree depth in C4.5 is smaller than in hard mode, and
the mean value in kNN is calculated faster. Also converted
by the results, the average throughput of stacking modes is
1.047Gbps.

Further, we crosswise the classification effect and pre-
diction time in voting and stacking modes. We choose the
most effective C3WV and soft modes in voting mode as the
representatives, and in stacking mode, we choose C4.5 with
the best effect in hard mode and RFwith the best performance
in soft mode as the comparison objects. Comparisons were
made from precision, recall, EGNN model size (including
3 GNN participants), training time cost, and prediction time
cost. A radar chart displays the comparison results, as shown
in Figure 16.
It is worth noting that, in order to make each dimension of

the radar map represent the larger, the better, the overall size
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FIGURE 16. EGNN voting modes vs stacking modes in
comprehensive assessments on ISCX VPN-nonVPN.

of the model is represented as the proportion of the remain-
ing storage space under the 1MB storage unit to represent
the module or agent in the actual intelligent switch device.
In addition, the negative value is used directly as the training
and prediction time benchmark.

It can be seen from the results that both voting mode
and stacking mode have advantages and disadvantages. The
classification effect of the stackingmode is better than voting.
However, the more complex training process significantly
increased training time cost, and colossal model memory
occupation needs to be considered in the actual network
environment. Therefore, it is difficult to conclude which
mode of voting or stacking is better. As for the performance
comparison, we conduct more in-depth experiments later in
this paper.

2) EFFECTIVENESS EVALUATION ON
CERNET-2022-SERVICE DATASET
We further carried out experiments in TCP and UDP sce-
narios of CERNET-2022-Service to prove its classification
effectiveness in high-reliability networks and low-latency
networks, respectively. The classification results in two
scenarios are shown in Table 7. Note that the CERNET-2022-
Service dataset, due to its complexity and strict segmenta-
tion of our experiment, can effectively represent the latest
open-world actual network environment.

It can be seen from the results that the three WFF-GNN
methods proposed by us all have satisfactory performance in
the open-world environment, while the performance of other
state-of-the-art models is significantly decreased compared
with the ISCX dataset because they are not suitable for
representing the features in the more complex open-world
environment. WFF-GGNN has an excellent classification
effect in both TCP and UDP data due to its advantage of
Markov expression ability within the sequence, reflecting the

superiority of WFF. Under TCP data, WFF-GCN is better
than WFF-CapsGNN, while under UDP, WFF-CapsGNN is
better. It also reflects the unique advantages of different
WFF-GNN models under different data.

In order to further reflect the classification effect in each
specific category, we use the Sankey figure to show the
detailed classification of TCP and UDP data in this dataset,
respectively. Figure 17 and Figure 18 are shown below.

It can be seen from the results that WFF-GGNN performs
well in both TCP and UDP, with balanced classification
distribution and few classification errors. In TCP, WFF-
GCN and WFF-CapsGNN confuse and classify streaming
and file upload obviously, while in UDP, P2P is misclas-
sified seriously. The main reason is that in the CERNET
dataset, streaming and file upload are both behaviors of
continuous transmission of large amounts of data. There-
fore, the local Markov properties are not as significant
as the long-range Markov properties. At the same time,
P2P, as a common means of downloading, can be under-
stood as the reverse of file upload, namely download.
WFF-GCN and WFF-CapsGNN have a certain deficiency
in the expression ability of such large sequences because
they pay more attention to the characteristics of local
propagation.

Furthermore, under the CERNET-2022-Service dataset,
we took the average classification capability of three GNN
participants in TCP and UDP as the baseline and compared
the voting and stacking in EGNN. The results are shown in
Table 8.
The results show that EGNN performs better in an

open-world environment than an older dataset like ISCX
because EGNN is better suited to handling classification
between categories with similar features in an open-world
environment (with strong misclassification correction capa-
bility). In voting, the soft mode performs better in TCP, while
the C3WV works better in UDP. In the stacking hard mode,
XGBoost and RF models perform best in TCP and UDP,
respectively. In stacking soft mode, RF outperforms other
meta-models. This phenomenon shows that the ensemble
learning meta-model has more advantages in classification
ability in an open-world environment than the traditional
machine learning meta-model.

Then, we selected the same five dimensions as in the
ISCX experiment to make a horizontal comparison of voting
soft, voting C3WV, stacking hard, and stacking soft in the
CERNET dataset. The results are shown in Figure 19.
In terms of the exact results, in TCP, if precision is to be

pursued, the stacking mode should be used, whereas if speed
is to be pursued, voting, especially C3WV mode, should be
used. Under UDP, the stacking hard mode with RF has the
most moderate performance, and other modes need to be
selected according to the actual situation.

It is important to note that in TCP mode because the opti-
mal meta-model RF of stacking soft is too large, it exceeds
our 1MB limit. We manually set it to 0. Otherwise, the radar
chart will be deformed.
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TABLE 7. Experimental results of single models for the effect criteria on the CERNET-2022-Service dataset (Include both TCP and UDP).

FIGURE 17. Sankey figure of each WFF-GNN model in TCP classification task on CERNET-2022-Service:(a) WFF-GCN,
(b) WFF-GGNN, (c) WFF-CapsGNN.

FIGURE 18. Sankey figure of each WFF-GNN model in UDP classification task on CERNET-2022-Service:(a) WFF-GCN,
(b) WFF-GGNN, (c) WFF-CapsGNN.

In summary, EGNN in the open-world CERNET-2022-
Service dataset has a considerable improvement compared
to the existing state-of-the-art approach. Among them, the
classification effect under TCP is improved, as shown in
Figure 20.

3) OPEN-WORLD DEPLOYMENT-ORIENTED
PERFORMANCE EVALUATION
In an open-world actual network environment, the model’s
accuracy, precision, and recall are only part of model
usability. If we want to deploy the model in an actual net-
work environment, the training cost of the model is also
needed to be taken into account, as well as the predicted
time/throughput, memory footprint.

First, we conducted experiments from the perspective
of training time. The experiments here were mainly con-
ducted around the EGNN stacking mode because it required
additional training of the meta-model. In an open-world envi-
ronment, if stackingmode is used as the ensemblemechanism
for EGNN, we cannot predict what meta-models are better
in the current data interval, so it is necessary to consider
training all meta-models and obtain an optimal current model.
Therefore, a control experiment was conducted for the overall
stacking mode training time, as shown in Figure 21.
As can be seen from the results, the training time in

stacking hard mode is shorter, but the training time in both
modes increases with the amount of data. Furthermore, much
time is spent on the optimal hyper-parameter grid search.
Therefore, this needs to be considered when deployed in an
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TABLE 8. Experimental results of EGNN modes for the effect criteria on the CERNET-2022-Service dataset (Include both TCP and
UDP).

FIGURE 19. EGNN voting modes vs stacking modes in comprehensive assessments on
CERNET-2022-Service.

FIGURE 20. EGNN classification effect improvement on
open-world CERNET-2022-Service dataset (TCP task).

open-world actual network environment, and voting mode is
more applicable than stacking mode.

Next, we compared the memory usage of the models. First,
we simultaneously compared threeWFF-GNN and four state-
of-the-art models in two datasets (three classification tasks).
The results are shown in Table 9. It is worth noting that to
reflect the minor differences between model sizes, we use
bytes as units.

As can be seen from the results, even the largest (and with
the best effect) WFF-GGNNmodel in theWFF-GNNmodels
has a memory space occupation of only 126kB, much smaller
than the state-of-the-art method. Although LS-LSTM has a
good effect, especially in the ISCX dataset, its extremely
large memory consumption makes it difficult to be applied
in most classification scenarios. In addition, we can find that
different classification tasks (the difference in the number of
output categories) have little impact on themodel’s size, espe-
cially the model with a large size. This situation further shows
the superiority of the WFF graphical expression method and
the GNN classifiers.
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FIGURE 21. EGNN stacking mode entire training cost on
open-world CERNET-2022-Service dataset.

TABLE 9. EGNN participants model size evaluation on two
datasets in three classification tasks.

Furthermore, according to previous experiments, if the
voting mode is adopted, the increase in the size of the overall
model is tiny, generally within 5 to 6 bytes, which can be
ignored compared with the size of GNN itself. However,
because there is an additional meta-model in the stacking
mode, its size cannot be ignored. Therefore, we further com-
pared the model sizes of five models in two stacking modes in
EGNNunder three classification tasks, as shown in Figure 22.

As can be seen from the figure, kNN not only has an
unsatisfactory classification effect but also has a large model
size, so it is not applicable. RF and XGBoost, two ensemble
learning meta-models, have good classification effects simul-
taneously but have tens or even hundreds of times of model
size expansion compared with C4.5 and SVM. Therefore,
if stacking mode is used, the impact of the meta-model size
needs to be considered, especially in the context of tasks with
numerous categories.

D. ANALYSIS
In general, the effect of single in the CERNET-2022-Service
dataset is slightly lower than that in ISCX. It mainly lies

FIGURE 22. EGNN stacking mode meta-model size (with bytes)
on two datasets in three classification tasks.

in the fact that this dataset contains new protocols (TLS-
1.3, QUIC, DTLS) and applications, so the classification
is more complicated. However, EGNN showed better clas-
sification accuracy in this dataset, indicating that EGNN
has better applicability in the open-world environment and
can better correct the misclassification caused by the sim-
ilarity of features and the lack of effective learning of
features.

For a single GNN, GCN has the fastest training speed
of each epoch. Due to the complexity of the CapsGNN
model and the lack of parallelization (graph convolution
needs to be calculated concurrently), the training speed
is slow, and the training procedure occupies plenty of
memory resources. However, the convergence speed of
CapsGNN is fast, and only about ten epochs are needed
on average to achieve satisfactory results. GGNN has a
good classification effect and fast convergence speed, but
its operation is complex and requires many computing
resources.

Although each of the three models has its own advantages
and disadvantages, there is no perfect GNN model. How-
ever, EGNN effectively plays the advantages of the three
models in various dimensions. No matter which dataset and
classification task, EGNN greatly improves the classification
effect, making it possible to classify encrypted traffic highly
precisely in an open-world environment.

Next, we will analyze and discuss several specific details
of the experiment.

1) WHY DO C4.5 AND RF SHOW OPPOSITE RESULTS IN
STACKING HARD AND STACKING SOFT IN THE ISCX
DATASET?
Based on a careful analysis of the generated meta-models,
we find that the C4.5 decision tree in the stacking hard is
good because its maximum depth is 54, while the maximum
depth of trees in the RF is only 15. The meta-model input for
hard mode is a class of integers, so getting RF to build mul-
tiple trees from different feature perspectives is difficult. The
input in soft mode is the confidence floating point number,
which effectively allows RF to build the tree from different
angles.
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2) EGNN USES THREE GNN MODELS AT THE SAME
TIME. HOW TO ENSURE ITS TRAINING AND
DEPLOYMENT EFFICIENCY IN THE ACTUAL
NETWORK ENVIRONMENT?
EGNN is a good combination of the advantages of the three.
It can train CapsGNN and GGNN, respectively, by using
the CPU and GPU of the device simultaneously, effectively
utilizing computing resources and significantly increasing
efficiency. The experimental results show that the classifica-
tion effect of EGNN is better than single GNN and various
state-of-the-art baseline methods with only a tiny prediction
time increasing.

In addition, different models can be deployed on different
devices for parallel computation. In the experiment, we are
serial so that the time consumption will be higher. There is
only one data transfer problem to solve.

3) WHY ONLY USE 1MB AS A BASELINE
FOR MODEL SIZE?
In the actual network environment of the open-world,
encrypted traffic classification is usually obtained by bypass
splitting or port mapping in the high-volume traffic sce-
nario. In some cases, strict serial traffic classification is
adopted to achieve real-time security protection. In either
case, the service capability of the current network needs to
bemaintained, whichmeans that system resources, especially
memory resources, will be very precious (temporary storage
of service data or cache of traffic information to be classified).
Therefore, a large model size may affect regular services
or traffic cache. In addition, the small model size enables
the model to be effectively deployed on the portable chip or
FPGA board further to realize the combination of hardware
and software in classification and improve the classification
efficiency.

4) WHY WASN’T GAT ADOPTED AS THE BASE MODEL
FOR GNN?
Although GAT is a graph neural network based on the atten-
tion mechanism, in essence, the attention mechanism is not a
particular neural networkmessage transmission path. It is just
a method to find feature advantages among existing features.
Therefore, although we did not use GAT as the base model,
we introduced the attention mechanism in all three WFF-
GNN models, which was mainly realized by combining the
linear layer with the activation function. It is also reflected in
the three WFF-GNN network structure diagrams.

5) VOTING SOFT MODE USES THE MEAN VALUE OF
THE SOFTMAX CONFIDENCE VECTOR AS THE VOTING
PREFERENCE. CAN THE EFFECT BE IMPROVED IF THE
MAXIMUM VALUE OF THE SOFTMAX VECTOR OF EACH
CLASSIFIER IS USED FOR VOTING?
The answer is yes, but there are no specific advantages to this
approach. If the highest value of the softmax confidence vec-
tor obtained by the different participants is taken as the result

of the classification, then this is a way of falling between hard
and soft. We name it semi-soft. We compare voting semi-soft
with voting soft. The experimental results show that voting
semi-soft can also correct misclassification. However, the
effect was not as good as voting soft (the F1-score was 0.35%
lower under the ISCX dataset), and the prediction time was
7.14% higher. Then this method is inferior to voting soft both
in terms of classification effect and prediction speed. So we
did not take voting semi-soft as an ensemble way to compare.

VII. CONCLUSION
In this paper, we deeply mine the Markov relationship
paradigms in encrypted traffic and propose a novel flow
graphical expression model named WFF. Compared with the
existing graph construction methods, WFF can express the
relevance relation of packets in encrypted traffic more com-
pletely and effectively. Furthermore, we proposed the WFF-
GCN, WFF-GGNN, and WFF-CapsGNN models based on
three GNN base models. They have their own unique fea-
ture expression advantage and data affinity. On top of this,
we designed the EGNN architecture, which for the first time
used GCN, GGNN, and CapsGNN to encrypted traffic clas-
sification, and it was also the first attempt that combined
ensemble learning with GNNs. We apply the voting mode
and stacking mode to EGNN, respectively, and present the
president mode and C3WV mode based on the hard and soft
modes of voting mode. In the stackingmode, multiple models
are used in the hard and soft modes. We conducted detailed
and sufficient experiments on the classification of individual
GNN, the classification efficiency of EGNN, and the differ-
ences between various models within EGNN. The evaluation
dimensions involved precision rate, recall rate, training time,
prediction time, model size, and other dimensions. Experi-
mental results show that the effect of our single WFF-GNN
methods is better than multiple state-of-the-art methods. Fur-
thermore, our EGNN model has outstanding classification
effect improvement and is significantly superior to the exist-
ing state-of-the-art method in other dimensions, realizing the
high-precision and high-efficiency encryption traffic classifi-
cation in the open-world environment.

In future work, we will further explore the efficient oper-
ation of EGNN (involving further compression of features
and multi-flow classification) and collaborative classification
(including its federated deployment mode) and study more
EGNN participants to expand its capabilities for more classi-
fication tasks.
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