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ABSTRACT This study demonstrates the feasibility of point cloud-based proactive link quality prediction
for millimeter-wave (mmWave) communications. Previous studies have proposed machine learning-based
methods to predict received signal strength for future time periods using time series of depth images to
mitigate the line-of-sight (LOS) path blockage by pedestrians in mmWave communication. However, these
image-based methods have limited applicability due to privacy concerns as camera images may contain
sensitive information. This study proposes a point cloud-based method for mmWave link quality prediction
and demonstrates its feasibility through experiments. Point clouds represent three-dimensional (3D) spaces
as a set of points and are sparser and less likely to contain sensitive information than camera images.
Additionally, point clouds provide 3D position and motion information, which is necessary for understanding
the radio propagation environment involving pedestrians. This study designs the mmWave link quality
prediction method and conducts realistic indoor experiments, where the link quality fluctuates significantly
due to human blockage, using commercially available IEEE 802.11ad-based 60GHz wireless LAN devices
and Kinect v2 RGB-D camera and Velodyne VLP-16 light detection and ranging (LiDAR) for point cloud
acquisition. The experimental results showed that our proposed method can predict future large attenuation
of mmWave received signal strength and throughput induced by the LOS path blockage by pedestrians with
comparable or superior accuracy to image-based prediction methods. Hence, our point cloud-based method
can serve as a viable alternative to image-based methods.

INDEX TERMS LiDAR, link quality prediction, machine learning, millimeter-wave communication, point
cloud.

I. INTRODUCTION

W ITH the rapid expansion of wireless communica-
tion applications, the microwave frequency band is

strained and the utilization of higher frequency bands, such
as millimeter-wave (mmWave) is underway. mmWave com-
munication is crucial for extremely high transmission rate
in the fifth-generation (5G) mobile communication system
and wireless local area network (WLAN) standard IEEE
802.11ad/ay because mmWave communication can provide
wide bandwidth [1], [2], [3], [4]. This high transmission
rate enables applications that require significant amounts of

traffic, such as virtual and augmented realities (VR/AR),
environment sensing, and ultra-high-definition (UHD) video
streaming. Thus, mmWave communications greatly increase
the possibilities of wireless communications and are expected
to have a variety of applications.

Despite its wide bandwidth, mmWave communication
has technical challenges, such as sensitivity to line-of-sight
(LOS) path blockage, radio directivity, significant path loss,
and narrow beamwidth, owing to its short wavelengths. The
link quality significantly deteriorates when the mmWave
LOS path is blocked by a human body or vehicle [5].
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mmWave communications are expected to be used for indoor
and dense urban environments, such as VR/AR applications
in private residences, environment sensing and equipment
control in factories, and UHD video streaming at event
venues. Such indoor or dense urban environments are com-
mon in residential or industrial spaces, and the mmWave
LOS path blocked by human bodies or robots occurs fre-
quently. When mmWave is used under these conditions,
communication disconnections occur frequently and the aver-
age throughput significantly decreases compared with LOS
communication. Therefore, it is effective to predict the future
wireless communication environment and adaptively control
communications in order to fully utilize the high transmission
rate of mmWave communications.

Traditional methods such as empirical and stochastic anal-
ysis to provide stochastic prediction models [5], [6] and time
series forecasting [7], [8] have been investigated for mmWave
communications. However, accurately predicting future link
quality in mmWave communication, where the link quality
changes sharply due to human blockage, has been challeng-
ing. This is because human blockage occurs non-periodically,
and there are no apparent signs of deterioration in link quality
until the negative effects appear.

To address this challenge, computer vision-aided
(CV-aided) mmWave communications have been proposed
and are gaining a lot of attention [9], [10], [11]. The use
of camera image and computer vision (CV) techniques,
including machine learning (ML) in mmWave communi-
cations, enables accurate prediction of link quality such as
received signal strength and throughput. ML algorithms can
learn to accurately map the relationship between the camera
images and link quality by analyzing camera images of the
mmWave propagation environment, including the geome-
try and dynamics of obstacles. Compared with traditional
methods, which often rely on empirical channel models or
time-series forecasting, the combination of camera images
and ML provides a more deterministic and accurate approach
to predicting future link quality. Proactive communication
controls such as transmission power control, base station
handover, beamforming, frequency switching, and intelligent
reflecting surface (IRS) control [12] can be performed to
mitigate mmWave LOS blockage effects based on the accu-
rate and deterministic link prediction. Our previous work
demonstrated that a deep learning-based method can predict
mmWave received signal strength 500ms ahead from depth
camera images [10].
However, images may contain confidential information,

particularly in private residences, offices, and factories. This
property limits the application scenarios of the existing
CV-aided mmWave communication systems that leverage
cameras. Therefore, alternative sources of information on the
mmWave communications environment are required.

This study proposes a link quality prediction method using
point clouds as an alternative to images. A point cloud rep-
resents three-dimensional (3D) space as a set of points and

can be obtained by light detection and ranging (LiDAR),
or depth cameras. LiDAR estimates the distance to objects
by measuring the time difference between the emission of
light and the arrival of the reflected light [13]. Compared
with images, point clouds are sparse and less likely to contain
private information [14], [15]. Owing to privacy concerns,
LiDAR is increasingly being installed in place of cameras for
sensing. Point clouds have many applications such as robot
operations [16], autonomous driving [17], [18], and digital
twin [19], [20]. Wireless communications are expected to
increase in value by integrating with these fields. Further,
point clouds acquired from LiDAR are superior to images
in terms of 3D position accuracy and lighting robustness.
Cameras may not be able to observe objects at distant loca-
tions or accurately measure distances. Point clouds obtained
from LiDAR have more detailed coordinate information of
3D space than images because the surface of an object can be
accurately obtained as 3D information [21]. Cameras are sus-
ceptible to sun glare, such as direct light and backlight [22],
and using them in the dark is difficult. Our LiDAR point
cloud-based system can operate the link quality prediction
system without the influence of sunlight or lighting. There-
fore, point clouds can be used as an alternative feature to
images in predicting link quality.

The main objective of this paper is to showcase the possi-
bility of predicting mmWave link quality using point clouds,
for which we propose a prediction method based on ML.
As there is currently no established method for link quality
prediction using point clouds, similar to image-based meth-
ods, we rely on ML which has proven to perform well in
various point cloud and computer vision tasks. Previous stud-
ies [11], [23] showed that the link state, i.e., LOS or non-LOS
(NLOS), can be predicted from the point cloud. However, the
quantitative prediction of the future received signal strength
or throughput (e.g. 500ms or 1000ms ahead), which enables
fine-grade link control but is a more challenging task than
classifying LOS or NLOS, was out of scope. Furthermore,
the conventional image-based prediction method utilizing
deep learning [10] cannot be applied to point cloud-based
prediction owing to the large data domain gap between point
clouds and images. Therefore, we construct a preprocessing
method of point clouds suitable for the link quality prediction,
which transforms point clouds into a different representation
of 3D space, voxel grids. We then selected regression ML
algorithms for link quality prediction that can be applied to
voxel grids.

This study demonstrates the feasibility of the point
cloud-based link quality prediction by conducting experi-
ments in an environment closer to practical environments
compared with existing study [10]. Commercially available
IEEE 802.11ad-compliant devices were used for the access
point (AP) and the station (STA) during experiments. Two
numerical indicators with slightly different characteristics,
received signal strength indicator (RSSI) and throughput,
were used to evaluate link quality. Additionally, two types of
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point clouds with different properties acquired with different
devices, LiDAR and depth cameras, were utilized.

The contributions of this paper are summarized as follows:
• We have demonstrated the feasibility of proactive
mmWave link quality prediction using point clouds.
The experiments were conducted in indoor environ-
ments, where the link quality fluctuates significantly
due to human blockage, using commercially available
IEEE 802.11ad-based 60GHz wireless LAN devices
and Kinect v2 RGB-D camera and Velodyne VLP-16
LiDAR for point cloud acquisition. The experimental
results show that our point cloud-based method can
model the relationship between spatial variation and
mmWave RSSI or throughput variations through ML
algorithms and predict future RSSI or throughput up to
1000ms in advance, without dependence on point cloud
acquisition devices.

• We have formulated mmWave link quality prediction
from point clouds as a regression task, and developed
a novel method for performing such predictions. Our
method involves a series of preprocessing steps, includ-
ing removing excess areas and outliers, downsampling,
and converting point clouds into voxel grids with cor-
responding labels. This allows us to quantitatively and
deterministically predict link quality through supervised
learning. We examined three supervised learning mod-
els, a neural network (NN) with 3D convolution layers,
a NN with 3D convolutional long short-term mem-
ory (LSTM) layers, and gradient boosting decision tree
(GBDT), to learn the mapping from voxel grids to link
quality.

• We compared the proposed point cloud-based link qual-
ity prediction method, a time series link quality-based
method, and a previous depth image-based method [10]
through experiments. Our point cloud-based method can
predict RSSI with an error of less than 3.99 dB and
throughput with an error of 0.313Gbit/s up to 1000ms
ahead, which can be compared to or outperforms the
image-based method. In contrast, the time series-based
method cannot make accurate predictions.

This paper expands upon our conference paper [24].
We have conducted new experiments using LiDAR and pro-
vided amore in-depth evaluation of both the proposedmethod
and the image-basedmethod. Additionally, we have enhanced
the explanation of the proposed method and included com-
prehensive discussions on related works and future research
directions.

The remainder of this paper is organized as follows.
Section II describes related works on mmWave link quality
prediction and point clouds application for wireless commu-
nication. Section III describes the system model, problem
formulation, preprocessing method, and prediction methods
of our point cloud-based mmWave link quality prediction.
In Sections IV and V, our proposed method is evalu-
ated through experiments using depth camera point clouds
and received signal strength datasets, and LiDAR point

clouds and throughput datasets, respectively. Section VI dis-
cusses remaining challenges and future research directions.
Section VII concludes this paper.

II. RELATED WORKS
This section summarizes existing research on mmWave link
quality prediction and applications of point clouds for wire-
less communication. As mentioned in Section I, the link
quality prediction task is critical in the proactive control of
mmWave communications. Therefore, various methods have
been proposed, including those specialized for indoor and
outdoor environments, as well as methods applying computer
vision techniques using images and point clouds. Table 1
shows the related works on link quality prediction and appli-
cations of the point cloud. Our work is orthogonal to these
studies and increases the potential for mmWave communi-
cation. Table 2 provides a more detailed summary of link
quality prediction studies [10], [11], [23], [25], [26], [27],
which are more closely related to our proposedmethod. In the
following, we discuss the differences between these studies
and ours.

Our previous study [10] used camera images as the key
enabler of proactivemmWave link quality prediction. Camera
images capture vision information about the environment
and thus contain information necessary to predict mmWave
communication LOS path blockage. ThemmWave communi-
cation environment was captured by a depth camera, and ML
was used to predict future received signal strength indicator
(RSSI) using time series data of depth images. Three ML
algorithms were used: two NNmodels, including convolution
layers and convolutional LSTM layers [32], and random for-
est [33]. Experiments were conducted indoors in a scenario
in which a 60GHz band mmWave communication LOS path
was blocked by pedestrians. Experimental evaluation results
show that large attenuations of the RSSI 500ms ahead can
be predicted. This result suggests that ML models can learn
the relationship between the movement information of obsta-
cles to the LOS path in the time series of camera images
and future link quality. However, as mentioned in Section I,
camera images may contain private information, such as
human faces, text from documents, or computer screens. As a
result, the image-based RSSI prediction system [10] may
be difficult to implement in locations with strict privacy-
related constraints, such as private homes, company offices,
and hospitals. To address this issue, non-image-based link
quality prediction methods can be employed. Our proposed
solution utilizes point clouds, which are sparser than images
and significantly reduce the likelihood of identifying personal
or sensitive information.

Wu et al. [11] proposed a mmWave blockage prediction
method using ML and point cloud. In this work, point clouds,
which observe a mmWave communication area, are con-
verted into heatmap images by calculating the distance to
the reflection point for each horizontal angle and arranging
them in the time direction. From these heatmaps, a binary
link state, either LOS or NLOS, is predicted. An experiment
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TABLE 1. Summary of related works on link quality prediction and applications of point cloud.

was conducted in a scenario in which the mmWave com-
munication LOS path is blocked by vehicles in an outdoor
environment. The NN model includes convolution, which
learns the relationship between the heatmap image and the
binary label. Based on the evaluation results, the system pre-
dicts blockages that occur within 100ms with 95% accuracy
and blockages that occur within 1000ms with more than 80%
accuracy.

Marasinghe et al. [23] proposed a mmWave communi-
cation LOS path blockage prediction method by detecting
human position and motion from point clouds and predicting
future positions. An NN model, including LSTM layers [34]
was used to predict the future human bounding box, and a
ray tracing algorithm was used to predict a binary link state,
either LOS or NLOS. This method was evaluated through
computer simulations in a scenario in which the mmWave
or terahertz (THz) communication LOS path was blocked by
humans in an indoor environment. The system could predict
future blockages with an accuracy of 87% while maintaining
78% precision and 79% recall 300ms ahead.

Klautau et al. [25] proposed a point cloud-based LOS
blockage prediction method for mmWave beam selection.
In this method, LiDAR point clouds observed in a wire-
less communication environment were converted into 3D
histograms, and LOS probability was inferred using a convo-
lutional NN. This method has been evaluated to discriminate
LOS with a 90% accuracy through simulations in a vehicle-
to-infrastructure (V2I) scenario.

Zhang et al. [26] demonstrated a platform for beam
tracking and blockage prediction, using stereo cameras and
LiDAR for mmWave communications and frequency switch-
ing from mmWave to sub-6GHz just before a blockage
occurs. In particular, objects blocking the mmWave LOS path
were detected based on RGB images, and the blockage was
predicted using a NN with recurrent layers from the time
series of bounding boxes. The transmitter (Tx) and receiver
(Rx) were simultaneously detected from the LiDAR point
cloud and used for beam tracking. These methods [11], [23],
[25], [26] focus on predicting the binary link state, either
LOS or NLOS, whereas our proposed method is capable of
quantitatively predicting link quality in environments where
the link quality dynamically changes due to human blockage.

Asano et al. [27] proposed a transmission timing control
method with link quality prediction for mmWave vehicular

to infrastructure (V2I) communications. In this method, the
link quality is predicted using simulations from the positions
of the vehicles obtained by mmWave radars and the given
location of roadside units. The transmission timing control
method can improve the average throughput in mmWave
V2I communications. This study primarily discusses tim-
ing control methods and vehicle position prediction, without
sufficiently addressing link quality prediction. Furthermore,
it mainly focuses on V2I communications, which is a sig-
nificantly different environment from the indoor communi-
cations we are targeting.

We also summarize some studies not included in Table 2
but mentioned in Table 1. Egi and Otero [28] proposed
an ML-based path loss estimation method for the 1.8GHz
band in outdoor environments. This method leverages satel-
lite images and point clouds to estimate path loss attenua-
tion caused by static obstacles such as trees and buildings.
Järveläinen et al. [29] proposed a LOS probability predic-
tion method for outdoor communications with accurate point
clouds of the outdoor environment. Järveläinen et al. [30]
also proposed a point cloud-based ray-tracing simulation
method to estimate the indoor propagation of mmWave
channels. Stéphan et al. [31] proposed utilizing accurate
geographical data such as point clouds acquired by LiDAR
to increase the reliability of mmWave link simulations in
outdoor environments.

As summarized above, several existing studies have inves-
tigated link quality prediction and the use of point clouds
for wireless communications. However, these studies do not
focus on the quantitative and deterministic prediction of
the future link quality of mmWave communications, which
dynamically changes due to human blockage, from point
clouds instead of camera images.

III. POINT CLOUD-BASED LINK QUALITY PREDICTION
A. SYSTEM MODEL
Fig. 1 illustrates the system model of the point cloud sensor-
aided mmWave communication system, which aims to proac-
tively control wireless links based on the proposed link
quality prediction using point clouds. This system consists
of APs and STAs for mmWave communication, a point cloud
sensor, such as LiDAR or depth camera or radar, to observe
the environment and obtain point clouds, a preprocessing
unit, a prediction unit, and a network controller. On the STA,
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TABLE 2. Comparison of link quality prediction methods for reliable mmWave communications.

applications requiring large amounts of data are in use, and
the AP and STA generate large amounts of traffic through
mmWave communications. The point cloud sensor acquires
and transmits point clouds to the preprocessing unit. The
preprocessing unit reduces data volume and noise of point
clouds, and converts data format. The details of the prepro-
cessing unit are described in Section III-D. The prediction
unit infers future and current link quality values, such as
RSSI or throughput, using ML. The details of the prediction
unit are described in Section III-E. The AP measures and
reports the link quality value to the network controller. The
network controller instructs APs to take appropriate com-
munication control actions, such as handover, beamforming,
frequency switching, and IRS control based on the predicted
and current link quality before the link quality deteriorates
significantly due to LOS blockage. The above-mentioned
proactive communication control enables reliable mmWave
communications. The system model is consistent with the
system that replaced the camera with the point cloud sensor
in our previous study [10].
We assume an indoor scenario such as residences, offices,

and public facilities. Pedestrians in the mmWave radio
propagation space move aperiodically, and the mobility is
observed as point clouds obtained by the point cloud sensor.
In mmWave communications, link quality (i.e., RSSI and
throughput) is significantly degraded when the LOS path is
blocked by pedestrians. This study assumes a simple case in
which the AP and STA do not move, and the LOS between
the AP and STA is within the field of view (FOV) of the
point cloud sensor. Therefore, the point cloud is expected
to contain the essential visual information of mmWave radio
propagation in mmWave communications.

The objective of this paper is to demonstrate the feasibil-
ity of mmWave link quality prediction using point clouds.

FIGURE 1. System model of point cloud sensor-aided mmWave
communication system, which aims to proactively control
wireless links by predicting link quality using point clouds.

FIGURE 2. Simplified system model that focuses on link quality
prediction. Predicting the link quality between a single AP and
STA in situations where the link quality dynamically changes
due to human blockage.

Therefore, we assume a simplified systemmodel that focuses
only on link quality prediction hereinafter, as shown in Fig. 2.
We aim to predict link quality between one AP and one STA
based on point clouds in situations where the link quality
dynamically changes due to human blockage.
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B. FORMULATION OF POINT CLOUD-BASED LINK
QUALITY PREDICTION
This study aims to quantitatively and deterministically predict
future link quality (i.e., RSSI or throughput) from time series
data of point clouds representing radio propagation spaces of
mmWave communications. This problem can be formulated
as a regression that maps from the time series data of a point
cloud to future link quality values. Let n be the number of
points included in a point cloud and pi = (xi, yi, zi) be the
coordinates of the i-th point, the point cloud P is as follows:

P =
n−1⋃
i=0

{(xi, yi, zi)} . (1)

Note that the points in the point cloud are in no particular
order. Let Pt be the point cloud at timestep t , the time series
data Dt,s of the point cloud for the previous s timesteps at
some timestep t is as follows:

Dt,s = (Pt−s+1,Pt−s+2, · · · ,Pt) . (2)

Let qt ∈ R be the link quality value at a particular timestep
t , qt+k represents k timesteps ahead link quality value from a
particular timestep t . The regression task can be formulated
as the problem of determining the parameterized mapping
function fW , which maps from a time series of point clouds
Dt,s to the link quality k timesteps ahead, qt+k . In other
words, the problem is to find a function satisfying

qt+k = fW (Dt,s). (3)

The mapping function fW is obtained by solving a mini-
mization problem that seeks to minimize a loss function l,
which measures the magnitude of the error between the true
value qt+k and the predicted value fW (Dt,s), with respect to
the parameterW . The problem can be expressed as follows:

minimize
W

∑
t∈T

l
(
qt+k , fW (Dt,s)

)
. (4)

Here, T represents the set of timesteps t included in a
training set Strain (i.e., the timesteps where both qt+k and
Dt,s are available). In this paper, we used L2 losses such as
mean-squared error (MSE) and RMSE as the loss function.
In predicting mmWave link quality, it is important to predict
significant variations caused by human blockages, rather than
minor fluctuations during LOS communication. The prop-
erty of L2 loss, which emphasizes larger errors compared
to L1 loss, is expected to mitigate the large errors that arise
when predicting high link quality during blockages or low
link quality during LOS communication.

C. PREDICTION METHOD DESIGN POLICY
We use a supervised learning framework to solve the afore-
mentioned regression task. Generally, supervised learning
requires a large number of labeled datasets to obtain an
accurate mapping. In the proposed system, labeling can be
automatic, using the observed link quality, and constructing a

large labeled dataset is easy, unlike tasks that require manual
labeling, such as object detection and segmentation.

The proposed system consists of two main processes: the
training process and the prediction process,
as illustrated in Fig. 3. In the training process,
a supervised learning model is trained using a labeled dataset
to learn the correspondence between the input data (i.e., point
cloud) and labels (i.e., RSSI and throughput) by solving the
aforementioned minimization problem (4). The training
process is initiated when the training dataset is avail-
able, which involves the transmission of signals by the STA
through the mmWave link, obtaining the measured link qual-
ity from the AP, and capturing the point cloud from the
sensor. The details of the labeled dataset creation method are
presented in Section III-D. Once the model is trained, the
prediction process can be carried out anytime, given
the availability of time series of point clouds, which predicts
RSSI and throughput from the point cloud data. Notably, the
model can be updated whenever data is accumulated, even
after its deployment. However, for the sake of simplicity,
we did not consider retraining the model in this paper and
left it as future work.

FIGURE 3. Training process and prediction process.
Point cloud and RSSI/throughput are used for data and labels.

Varieties of supervised learning algorithms exist, and we
selected the appropriate algorithm for link quality predic-
tion. A simple approach is to apply deep learning models
specialized in point clouds, such as PointNet [35], [36] and
VoteNet [37], which can directly input point clouds. These
point cloud-based models can directly map from point clouds
to the target values. However, based on our preliminary exper-
iments, thesemodels could not predict link quality. Therefore,
this study adopted a method that is a 3D extension of the
method used in the previous study [10]. Specifically, point
clouds are converted into voxel grid data format that can
be handled by convolution layers and convolutional LSTM
layers.

The proposed method consists of preprocessing that con-
verts point clouds to voxel grid format and an ML model to
learn a mapping from the time series voxel grid to the future
link quality value such as RSSI and throughput. Section III-D
and Section III-E describe the preprocessing method and ML
model, respectively.

D. PREPROCESSING METHODS FOR POINT CLOUDS
The preprocessing unit applies downsampling and denoising
to the raw point clouds acquired by LiDAR or depth cameras,
which tend to be large in size and contain noise. Additionally,
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the preprocessing unit converts the point cloud data into voxel
grid format to enable the application of the convolution-based
algorithm. The proposed preprocessingmethod comprises six
phases, including cuboid cropping, random downsampling,
statistical outlier removal, voxelization, time series concate-
nation, and labeling.

The first three processes are used to reduce the data vol-
ume and noise. Cropping removes redundant regions of the
point cloud. Point clouds obtained from LiDAR sometimes
cause inaccurate point observations due to the effects of
reflective objects such as windows and mirrors. Limiting the
region based on prior geographic knowledge can remove such
obvious noise and points in regions that are irrelevant to
sensing. We employed the cuboid cropping method to cut out
a rectangular region from a 3D point cloud. Specifically, for
each i-th point pi = (xi, yi, zi) in a point cloud, the point
is removed when the (xi, yi, zi) coordinates are outside the
rectangle region [xmin, ymin, zmin]× [xmax, ymax, zmax].
Random downsampling reduces the number of points by

randomly selecting a subset of points from the original point
cloud according to a reduction rate rd. Specifically, it arranges
the points in random order and only retains the points whose
indices are up to the product of the original number of points
and the reduction rate rd. However, there is a tradeoff between
reducing the number of points to reduce computational com-
plexity and preserving spatial features. A low reduction rate
may reduce computational complexity but remove important
spatial features. In this study, we considered the reduction
rate rd as a hyperparameter and experimentally determined its
optimal value in Section IV and Section V. However, we did
not explore other methods for finding the optimal reduction
rate as it was beyond the scope of this study.

Outlier removal removes noise points resulting from the
measurements. Outlier removal enables an accurate under-
standing of the 3D space. Statistical outlier removal is a
method of removing points that are far from their neighbors
by comparing the average distance between all points. Sta-
tistical outlier removal is employed in this method because it
can remove outliers independent of the scale of the region in
which points exist. Two hyperparameters exist for statistical
outlier removal: the number of nearest neighbor points no and
the standard deviation ratio ro. First, the meanµ and standard
deviation σ of the distances between all points are calculated.
Subsequently, for each i-th point pi, the average distance di to
no-nearest neighbor points is calculated. Finally, ifµ+roσ <

di, the point pi is removed. These two hyperparameters no and
ro were experimentally determined in this study.

Voxelization divides the space where point clouds exist
by voxels, which are 3D extensions of pixels, and arranges
them into a voxel grid, which is the regular grid in 3D
space. A voxel grid can be represented as a 3D array on
the computer, and the voxel grid can be input to the ML
model proposed in Section III-E. The detailed voxelization
method is described in Appendix A. The shape of the voxel
grid is calculated using the voxel size sv and observation
environment. To convert a point cloud into a voxel grid

while preserving spatial characteristics, the voxel size sv must
be appropriately determined while considering the observa-
tion space. In this study, the voxel size sv is treated as a
hyperparameter and was experimentally determined owing to
the capability of localizing pedestrians in the experimental
environment. Open3D [38] and Point Cloud Library [39] are
used for cuboid cropping, random downsampling, statistical
outlier removal, and voxelization.

Subsequently, the voxel grids are concatenated in the time
direction to generate time series data. As formulated in
Section III-C, the previous s timestep data is concatenated.
Specifically, a time series data Dt,s is generated by concate-
nating 3D arrays representing voxel grid data generated in
the previous preprocessing steps. After the concatenation, the
time series data Dt,s becomes a 4-dimensional array with the
shape of (s, h,w, d). The parameter s represents the number
of past frames concatenated for the time series input, and h,
w, and d represent the height, width, and depth of the voxel
grid, respectively.

Finally, we describe the generation of labeled datasets
for the training process introduced in Section III-C.
We used temporal difference labeling proposed in [10] for
data annotation. Specifically, for all timesteps t , we map the
voxel grid time series data Dt,s to the k timesteps ahead link
quality value qt+k ; thus, a labeled sample is generated as
pair like (Dt,s, qt+k ). The use of labeled datasets enables the
training of an ML model that predicts k timesteps ahead of
future link quality value in Section III-E.
Table 3 shows an example of preprocessing results for the

actual experimental data. In this paper, two types of point
clouds are used for the experimental evaluation: depth camera
point cloud and LiDAR point cloud. Both point clouds are
observations of two people blocking LOS paths of mmWave
communication in an indoor environment. Depth camera
point clouds tend to have a lot of noise in the raw data. LiDAR
point clouds tend to have noise points at locations that are far
outliers. These noises disappeared by applying cuboid crop-
ping, random downsampling, and statistical outlier removal.
After voxelization, both point clouds were converted into
voxel grids while preserving the shape of the human bodies.

E. MACHINE LEARNING METHODS
The voxel grid generated during the preprocessing process
serves as the input for the ML model that maps the voxel
grid to link quality values. The voxel grids contain the spatial
information of objects, and by using a time series voxel
grid, temporal information can also be obtained. The spatio-
temporal information, including the location and motion of
objects, is crucial for accurate link quality prediction. Many
ML models have already been proposed for the computer
vision task of extracting spatio-temporal features from voxel
grids. We examined three ML models: a NN with 3D convo-
lution layers (Conv3D), a NN with 3D convolutional LSTM
layers (ConvLSTM3D), and GBDT. Although ML algo-
rithms that outperform the algorithms used in this study may
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TABLE 3. Examples of preprocessed point clouds and their
bounding boxes.

exist, a comprehensive investigation of the ML algorithms
and hyperparameter tunings is beyond the scope of this study,
because this study aims to design a mechanism to predict the
mmWave link quality value and to demonstrate its feasibility.

Fig. 4 depicts the NN architectures used in this study,
named Conv3D and ConvLSTM3D, which are 3D extensions
of our previously proposed models for image-based predic-
tion [10], named CNN and CNN+ConvLSTM, respectively.
Conv3D and ConvLSTM3D can input 3D data (i.e., voxel
grids) and are both designed to extract spatio-temporal fea-
tures but in different ways.

The Conv3D model consists of the following layers: 3D
convolution, rectified linear unit (ReLU), 3D max pool-
ing, flattening, dropout [40], and fully connected layer.
We designed Conv3D model layer architectures based on the
dense voxel grid-based method proposed for object recog-
nition and robot control [41]. The input tensor shape of
Conv3D is (h,w, d, s), where h, w, and d are the height,
width, and depth of the voxel grid, respectively, and s is
the number of past frames concatenated for the time series
input. First, 3D convolution is applied to the voxel grid to
extract spatio-temporal features. Although 3D convolution
is usually used to extract only spatial features from one
voxel grid [41], our Conv3D model architecture extracts
spatio-temporal features by inputting time series into the
voxel channels. ReLU and max pooling are layers used as
a set with the convolution layer. After three convolution
iterations, the four-dimensional tensor is flattened to one
dimension. After flattening, a dropout layer is inserted to
prevent overfitting and improve robustness.

The ConvLSTM3D model consists of the following lay-
ers: 3D convolutional LSTM [32], tanh, 3D max pooing,
flattening, dropout, and fully connected layer. Hence, the

FIGURE 4. Parameters h, w, and d are the height, width, and
depth of the voxel grid, respectively, and s is the number of past
frames concatenated for the time series input. Conv3D and
ConvLSTM3D differ in that the input shape is (h,w,d, s) and
(s,h,w,d,1), the first layer is 3D convolution and 3D
convolutional LSTM, the activation function is ReLU and tanh,
respectively.

differences between the ConvLSTM3D and Conv3D models
are that the input tensor shape is changed from (h,w, d, s)
to (s, h,w, d, 1), the 3D convolution layers are replaced by
3D convolutional LSTM layers, and their activation function
is switched from ReLU to tanh. The ConvLSTM3D input
tensor shape can be adapted by simply reshaping of Conv3D
input tensor. The convolutional LSTM layer combines the
advantages of convolutional and recurrent layers, i.e., it can
extract spatio-temporal features simultaneously. Therefore,
the 3D convolutional LSTM layer can be used to process 3D
data with temporal dependencies, such as time-series voxel
grids and video of 3D medical images. In particular, the use
of LSTM tends to extract long-term features, but the 3D
convolutional LSTM is computationally more expensive than
the use of 3D convolutional layer and may require a large
amount of training data to achieve high performance [32].

GBDT is an ensemble learning algorithm that has achieved
remarkable results in various ML tasks [42]. Similar to the
existing work [10] that used random forests [33], we flatten
the time series voxel grids into one-dimensional arrays and
input them into the GBDT model since GBDT does not
support multidimensional tensor inputs.

IV. EXPERIMENTAL EVALUATION USING DEPTH
CAMERA POINT CLOUD AND MILLIMETER-WAVE
RECEIVED SIGNAL STRENGTH DATASET
A. DATASETS
We evaluated our point cloud-based link quality prediction
method using a depth camera point cloud dataset labeled with
RSSI values of IEEE 802.11ad mmWave communications.
The depth camera point cloud dataset was generated from the
depth image dataset originally created in [10] by converting
depth images to point clouds using the method detailed in
Appendix B. Depth camera point clouds represent spatial
information in a specific direction, similar point clouds also
can be obtained from solid-state LiDAR [43]. We com-
pared the prediction result of our proposed point cloud-based
method with that of the depth image-based method [10].
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The original dataset (i.e., depth image dataset before con-
verting to point cloud) consists of a time series of pairs of
mmWaveRSSI and depth images acquired by a depth camera,
with the time series measured at 30 frames per second (fps).
The experimental environment for obtaining this dataset is
shown on Fig. 5. The experimental environment included an
AP, a response STA (R-STA) for communicating with the AP,
a measurement STA (M-STA) for RSSI measurement, and a
depth camera at position A or B. A commercially available
IEEE 802.11ad-compliant product was used as the AP. The
M-STA measures the RSSI of IEEE 802.11ad frames sent
from the AP to the R-STA without being affected by the
beamforming operation, which varies among IEEE 802.11ad
products [44]. We used Microsoft Kinect v2 as the depth
camera, which uses infrared radiation and does not interfere
with mmWave communications. Details of the experimental
equipment are summarized in Table 4.

The experiment was conducted in a roomwhere two pedes-
trians intermittently blocked the mmWave communication
LOS path between the R-STA and the M-STA. At the start
of the experiment, the pedestrians stopped at the end of the
moving path in Fig. 5. The pedestrian traversed from one
extremity of the movement path to the other at a steady
pace, thereby obstructing the mmWave LOS path in the pro-
cess. The walking speed was arbitrarily determined by the
pedestrian at the onset of the movement, ensuring that they
reached the opposing end of the path within a time span of
3 to 6 s. The procedure for determining the walking speed is
executed each time the pedestrian arrives at the opposite end.
Upon reaching their respective opposite ends, the pedestrians
initiated a pause, with a duration extending from 1 to 3 s.
This time frame also accounted for the period necessary
to turn around. The pedestrians each repeated this cycle of
walking and stopping. As a result, we created a dataset of
non-periodic LOS blockage caused by pedestrians walking at
various speeds. The average interval between blockages per
pedestrian was approximately 6 s, resulting in an average of
once every 4 s LOS blockage because two people sometimes
block the LOS simultaneously. When LOS blockage occurs,
the RSSI is attenuated by approximately 15 dB, which is on
the same level as the average value of the IEEE 802.11ad
channel model, 13.4 dB [45].
The dataset acquired in the situation where the camera

position is A or B, respectively, is referred to as dataset A or
B, respectively. Sample depth images of the two viewpoints in
this dataset are shown on the left side of Fig. 5.Measurements
were taken for approximately 10min for camera positions A
and B, and approximately 18,000 samples were measured.

Depth camera point clouds were generated by applying
the process detailed in Appendix B. Specifically, from depth
images with the shape of (512, 424) where each pixel rep-
resents depth values from 0 to 255, normalized point clouds
existing in the region [0, 256)3 were generated. In this paper,
depth camera point clouds are the aforementioned normalized
point clouds. Generated depth camera point clouds contain

information only in a specific direction because the depth
camera observes a specific direction.

FIGURE 5. Experimental environment for obtaining original
dataset (i.e., depth image dataset before converting to point
cloud). The AP and the response STA (R-STA) communicate
using mmWave, and RSSI is measured by the measurement
STA (M-STA). The two left images are samples of depth images
acquired by cameras A and B, respectively.

TABLE 4. Experimental equipment on the depth camera point
cloud and received signal strength dataset.

B. PREPROCESSING AND MACHINE LEARNING SETUPS
The preprocessing described in Section III-D is applied to
the depth camera point cloud to generate the dataset cor-
responding to the time series voxel grids and RSSI values.
We experimentally determined the values of hyperparam-
eters for preprocessing; the values are shown in Table 5.
In particular, cuboid cropping removes the space in the large
z-coordinate range and paddings the blank space so that the
space size returns to [0, 256)3 to remove the noise points in
the foreground. The number of points in the depth camera
point cloud is fixed at 217,088, and subsequent preprocess-
ing would be time-consuming if the number of points is
not reduced. Even if the link quality could be predicted
1000ms ahead, if the inference results are not available until
earlier than 1000ms, the future prediction will be meaning-
less. The reduction rate for random downsampling, rd, was
experimentally determined to be 0.0921. This leaves approx-
imately 20,000 points, thereby preventing the preprocessing
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latency from becoming excessively large. The values of no
and ro were set to 20 and 2, respectively, with reference to
Open3D [38] default values due to their balanced compu-
tation latency and noise reduction. The value of sv was set
to 8 to be close to (40, 40), the input shape for the image-
based method [10], to obtain voxel grids with a shape of
(32, 32, 32). In this configuration, the average latency for the
preprocessing in our experiments using AMD EPYC 7542
CPU was 91ms, which is sufficiently short for predicting
500ms ahead and 1000ms ahead. Examples of preprocessing
of a depth image point cloud are shown on the left column of
Table 3.

These datasets were acquired at 30 fps, and the model was
input with a tensor that concatenated the voxel grids for
16 frames, corresponding to the last 500ms as well as our
previous study [10]. The model predicts current and future
values according to the systemmodel shown in Section III-A.
ML models predict RSSI 0ms and 500ms ahead, as well as
our previous study [10]. In addition, ML models also predict
1000ms ahead. Since delays on the order of 100ms occur
when streaming UHD videos or VR content from a cloud
server via the internet, communication control instructions
can be given with time to spare by predicting 500ms or
1000ms ahead, also taking into account the time of link
quality inference and communication control. As described
in Section III-D, temporal difference labeling [10] was used
to create the time sequential dataset.

TABLE 5. Preprocessing hyperparameters for the depth camera
point cloud and received signal strength dataset.

Three point cloud-based ML models, two NNs, Conv3D
and ConvLSTM3D, and GBDT as proposed in Section III-E,
were used to predict RSSI. We used Keras [46] in Ten-
sorFlow [47] as NN implementation. The number of train-
able parameters of Conv3D and ConvLSTM3D models
for mmWave RSSI prediction were 253,121 and 148,353,
respectively. Table 6 presents the hyperparameters used in
the ML models. We adopted the MSE as the loss function
for regression, as we did in our previous study [10]. We used
default learning rate values in Keras [46] and LightGBM [42].

For NN training, we used mean-squared-error (MSE) for
the loss function and utilized ReduceLROnPlateau, which is
a learning rate scheduler that reduces the learning rate by
a factor of four if the validation loss did not improve for
two epochs. In our experiments using the NVIDIA Quadro
RTX 6000 GPU, the average computational latencies for
Conv3D, ConvLSTM3D, and GBDT were 49ms, 81ms, and
23ms, respectively. In addition to these three point cloud-
based models, two non-point cloud-based methods were pre-
pared for comparative evaluation: an RSSI time series-based
method and a depth image-based method. The RSSI time
series-based method uses only the time series of the previous
RSSI as features and predicts RSSI values using the GBDT
algorithm. The depth image-basedmethod is the same as [10],
and depth images before conversion to point clouds are used
as the input feature. These two methods are the same as point
cloud-based methods in that they use the latest 500ms data to
predict RSSI.

TABLE 6. Hyperparameters for ML model training.

We evaluated our method using datasets A and B. These
two datasets both consist of time series data of approximately
10min. We used the first 60% for training the ML model,
the next 20% for validation during model training, and the
last 20% for holdout validation used for evaluation. Cross-
validation was not used to prevent data leakage of time series
data and unbalanced or small training data volume.

C. EXPERIMENTAL RESULTS
We first conducted a qualitative evaluation of the link quality
prediction method by plotting the measured and predicted
RSSI values, as shown in Fig. 6. The RSSI values were pre-
dicted from time series voxel grids using Conv3D and GBDT,
presented in Section III-E. The left and right columns are the
results for datasets A and B, that is, camera positions A and B,
respectively. The first row is 0ms ahead, i.e., the current pre-
diction, while the second and third rows are future predictions
500ms and 1000ms ahead, respectively. The measured RSSI
values are significantly attenuated when pedestrians block
the LOS of mmWave communications. Correspondingly, the
predicted RSSI values also attenuate significantly, suggesting
that the model can predict blockage. For camera positions A
and B, the measured and predicted values appear to match in
both cases. Comparing the two models, Conv3D and GBDT,
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TABLE 7. RMSE values of RSSI prediction.

Conv3D provided a better match better, albeit slightly. Based
on comparisons of predictions 0, 500, and 1000ms ahead,
the discrepancy between the prediction and the actual mea-
surement is greater when the prediction is further ahead in
time. In particular, this tendency can be observed for large
attenuations, such as LOS blockage, and may occur owing to
the difficulty in predicting the time further ahead.

Next, we quantitatively evaluated link quality prediction
errors. The RMSE was used to evaluate the prediction accu-
racy, considering the accuracy of the prediction during LOS
blockage, because the RMSE reflects the effects of outliers.
The RMSE values in RSSI prediction using five methods are
listed in Table 7. The RSSI-based and depth image-based
methods are for comparison with point cloud-based meth-
ods as described in Section IV-B. In the proposed point
cloud-based method, three models, namely Conv3D, Con-
vLSTM3D, and GBDT, were compared. Each model inputs
16 frames, corresponding to the last 500ms, as input feature
and predicts the RSSI values. For Conv3D and ConvL-
STM3D, Table 7 shows the average RMSE from four trials
using different initial weights, taking into account the initial
weight dependence of NN models. Conversely, since the
difference in performance due to different random seeds was
negligible in the methods using GBDT, only the result from
one trial is shown.

In Table 7, the RSSI time series-based method exhibits sig-
nificantly larger error values compared to the other methods,
and this is likely due to the unpredictability of LOS path
blockage. These results suggest that accurately predicting
LOS blockage is a challenging task that cannot be achieved
solely by considering the previous link quality values. The
point cloud-based method could predict 0ms and 500ms
ahead with approximately 2.3 dB and 3.2 dB, respectively,
with almost the same errors, compared with those of existing
depth image-based methods. Furthermore, for the prediction
of 1000ms ahead, Conv3D had an error of approximately

10% smaller than the depth image-based method and Con-
vLSTM3D and the GBDT model of the point cloud-based
method. This might be because the convolution layer in
the Conv3D enables accurate spatio-temporal understanding.
Accordingly, we conclude that the point cloud-based method
can predict LOS path blockage as well as or better than the
depth image-based method.

The empirical distribution function of absolute errors is
depicted in Fig. 7, where it can be observed that the 80th
percentile absolute error value is less than 5 dB for all the
predictions at 0, 500, and 1000ms ahead, indicating that the
errors are concentrated within 5 dB or less. Additionally,
for all predictions at 0, 500, and 1000ms ahead, the 95th
percentile absolute error value was less than 12 dB, indicating
that there were only a few errors above 12 dB.

During LOS communication in this experiment, the
received power remains around −25 dBm with little varia-
tion. In contrast, the received power significantly attenuated
during LOS blockage caused by pedestrians. When the atten-
uation exceeds 8 dB from the median received power during
LOS communication, −25.05 dBm, it is considered as a
blockage. The percentage of blockage time is 13.0% and
11.9% for datasets A and B, respectively. However, as shown
in Fig. 7, the percentage of errors greater than 8 dB is very
small, below 5% for the 500ms prediction and below 10%
for the 1000ms prediction. This suggests that most of the
blockages could be predicted and the model is unlikely to
fail to predict complete blockage. Furthermore, as shown in
Fig. 6, the errors include cases where the starting time of
attenuation due to blockage was correctly predicted but the
amount of attenuation was incorrect, as well as cases where
the amount of attenuation was correct, but there was a time
shift in the start/end of attenuation due to blockage. There-
fore, we conclude that our point cloud-based link quality
prediction method can predict RSSI attenuation due to LOS
blockage.

V. EXPERIMENTAL EVALUATION USING LIDAR POINT
CLOUD AND MILLIMETER-WAVE THROUGHPUT
DATASET
A. EXPERIMENT FOR OBTAINING DATASET
We newly conducted a mmWave communication experi-
ment to obtain a LiDAR point cloud dataset labeled with
throughput values of mmWave communication to evaluate
our proposedmethod. In this experiment, we usedmechanical
rotation LiDAR, which scans spatial information in all hori-
zontal directions. Hence, 360° point clouds can be obtained
from mechanical rotation LiDAR, unlike depth camera point
clouds which only contain spatial information for a specific
horizontal angle. Specifically, we used Velodyne VLP-16
LiDAR, a widely used mechanical rotation LiDAR product,
that can acquire information on vertical angles from −15°
to +15°. Velodyne VLP-16 LiDAR uses near-infrared light
with a wavelength of 905 nm [49]; thus, LiDAR does not
interfere with mmWave communications.
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FIGURE 6. Predicted and measured RSSI values.

FIGURE 7. The empirical distribution function of absolute errors
for RSSI prediction. Two horizontal dotted lines represent
0.8 and 0.95.

The transmission control protocol (TCP) throughput of
IEEE 802.11ad mmWave communications was used for the
link quality indicator. TCP throughput values are influenced
by many factors, such as beamforming, the transmission rate
of the AP, and congestion control of the TCP. During the
experiment, beamforming, rate control, and congestion con-
trol were frequently activated due to LOS blockage, resulting
in increased dynamics in the throughput values.

Figs. 8 and 9 depict the indoor experimental setup and a
photograph of the environment, respectively. Table 8 provides
a comprehensive list of the equipment installed in the envi-
ronment and their respective settings. Both AP and STA used
commercially available products. Furthermore, a smartphone
was used for the STA to make the experimental environment
more practical. mmWave communications between the AP
and STA used 60GHz IEEE 802.11ad WLAN. We used
iperf [50] to generate uplink TCP traffic, i.e., from the STA to
the AP. Throughput was calculated using Wireshark [51] as
the sum of the length of packets obtained by packet capture
by tcpdump [52] in the last 100ms.

Two pedestrians intermittently blocked the mmWave LOS
path between the AP and the STA. Their moving paths
are visually represented in Figs. 8 and 9. The pedestrian
movement patterns were consistent with those detailed in
Section IV-A. Their walking speed was adequate for travers-
ing the designated path within a range of 3 to 6 s, while the
duration for pausing at the end of the path ranged from 1 to 3 s.
As a result, two pedestrians blocked the mmWave LOS path
approximately once in 4 s on average.

The experimental environment was observed using a
LiDAR device installed at the center of the room. LiDAR
continuously provided point clouds of the experimental envi-
ronment in a 3D Cartesian coordinate system with the origin
located at the position of the LiDAR device. An example of
the obtained LiDAR point cloud data is shown in the figure on
the right column of Table 3. The average number of points in

VOLUME 1, 2023 269



TABLE 8. Experimental equipment and settings on the LiDAR
point cloud and throughput dataset.

one LiDAR point cloud was approximately 28,000. In addi-
tion to LiDAR, a camera was set up next to the AP to compare
with point clouds. The point clouds, images, and throughput
values were measured at a rate of 10 fps for 30min, resulting
in a dataset with 18,000 samples.

FIGURE 8. Experimental environment for obtaining LiDAR point
cloud and mmWave TCP throughput dataset.

B. PREPROCESSING AND MACHINE LEARNING SETUP
Our proposed point cloud-based link quality prediction
method was evaluated using LiDAR point clouds and
throughput values obtained in the aforementioned experi-
ment. As with Section IV-B, the preprocessing described
in Section III-D was applied to the LiDAR point cloud to
generate a voxel grid time series data and throughput cor-
responding dataset. We determined values of preprocessing
hyperparameters, shown in Table 9. First, points outside
the cuboid region with vertices (-5,-5,-5) and (5,5,5), which
are obviously noise points outside the room, were removed
because the size of the indoor environment used in this exper-
iment was 5.8m × 3.5m. In the experimental environment,
the average number of LiDAR point cloud points was 28,826,
which allowed subsequent processing to be computedwithout
losing the meaning of future predictions. Therefore, random
downsampling was not performed and rd was set to 1. As with
Section IV-B, the values of no and ro were set to 20 and 2,

FIGURE 9. Experimental setup to obtain mmWave throughput
and LiDAR point cloud. The commercially available IEEE
802.11ad-based 60GHz communication devices and Velodyne
VLP-16 LiDAR were used.

respectively, with reference to Open3D [38] default values.
In the voxelization, sv was set to 0.2m in order to divide
as roughly as possible while preserving the human shape.
The difference from Section IV-B is that cuboid cropping is
performed without padding the blank space after cropping,
resulting in a narrower space. This is to prevent the large use-
less calculations of the following process caused by padding
the blank space.

We used three point cloud-based ML models, two NNs,
Conv3D and ConvLSTM3D, and GBDT as proposed in
Section III-E to predict throughput. The number of train-
able parameters of Conv3D and ConvLSTM3D models for
mmWave throughput prediction were 232,257 and 141,441,
respectively. The dataset consisted of 18,000 samples of
30min at 10 fps. The first 60% was used to train the ML
model, the next 20% was used for validation during model
training, and the last 20% was used for holdout validation
to evaluate our link quality prediction method. The dataset
was obtained at 10 fps, and features were input to the model
for the six previous frames, corresponding to the last 500ms
as well as our previous study [10]. As with Section IV-B,
ML models predict 0ms ahead, 500ms ahead, and 1000ms
ahead. We used temporal difference labeling [10] to cre-
ate the dataset for training the ML model. We compared
the performance of point cloud-based methods with the
image-based method and the throughput-based method that
replaces RSSI with throughput in the RSSI-based method
used in Section IV.

C. EXPERIMENTAL RESULTS
Fig. 10 displays examples of measured and predicted
throughput using the point cloud-based methods with
Conv3D and GBDT models. The throughput value of
mmWave during LOS communication was approximately
1.6Gbit/s. When the LOS path was blocked by a pedes-
trian, the throughput value attenuated to 0Gbit/s. When the
measured values were significantly attenuated, the predicted
values were significantly attenuated simultaneously. Two
consecutive throughput values degradations occurred around
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TABLE 9. Preprocessing hyperparameters for LiDAR point cloud
and throughput dataset.

13 s were also able to be predicted. The point cloud-based
methods demonstrated the capability to accurately predict
the occurrence of mmWave LOS blockage caused by the
two pedestrians. However, the proposed method was not
always able to accurately predict the throughput at the end
of the blockage, as shown around 7 s. This is because,
unlike RSSI, the throughput value is determined by a com-
plex interplay of factors, such as beamforming, the trans-
mission rate of the AP, and congestion control of TCP,
making it challenging to predict when the throughput value
fully recovers only from the spatial information of point
clouds.

Comparing the predictions at 0, 500, and 1000ms ahead,
the predicted values do not often deteriorate to 0Gbit/s in
the predictions at more future timesteps ahead. This could be
attributed to the difficulty in predicting future blockages, and
the uncertainty of the model in predicting their occurrence.
Thus, the model outputs a prediction with the expected value
of RMSE to be as small as possible in anticipation of the case
where no blockage occurs. Similarly, the slightly lower pre-
dicted throughput during LOS communication could be due
to the degradation in throughput after the blockage, caused
by beamforming, transmission rate control, and congestion
control, as observed in the interval between 25 s and 28 s in
Fig. 10. Looking at the predicted results during blockage,
the Conv3D model appears to be more in agreement with
the actual values compared to the GBDT model. This is
thought to be due to the use of 3D convolution in the Conv3D
model, which is more suitable for capturing spatio-temporal
features.

Table 10 presents the RMSE values for the through-
put prediction, where we compare the performance of the
proposed point cloud-based methods using three different
ML models with the throughput-based and depth image-
based methods. Predictions of the throughput-based method
have larger error values than those of other methods, which
indicate that blockage could not be predicted. Predicting

FIGURE 10. Predicted and measured throughput values.

throughput values accurately in a dynamically changing
mmWave communication environment using only the time
series of throughput is a challenging task, similar to RSSI pre-
diction. The point cloud-based methods employing Conv3D,
ConvLSTM3D, and GBDT outperform the throughput-based
method and achieve performance that is comparable or even
superior to the depth image-based method, particularly when
predicting blockages further ahead in time. This is likely due
to the fact that the point cloud data acquired from LiDAR can
provide information from a wider field of view, which allows
for more accurate predictions of future conditions.

The empirical distribution function of absolute prediction
errors is presented in Fig. 11. Fig. 11 indicates that the 80th
percentile absolute errors ranged from 0.3 to 0.4Gbit/s for
predictions at 0, 500, and 1000ms ahead. These errors were
primarily due to fluctuations in throughput during LOS com-
munication, which were approximately 0.3Gbit/s. In con-
trast, the percentage of errors exceeding 1Gbit/s was less than
1%. During LOS communication, the throughput value was
around 1.6Gbit/s, while during LOS blockage, the through-
put often dropped to 0Gbit/s. Consequently, the attenuation
due to blockagewas 1.6Gbit/s, and if a blockagewas not fully
predicted, an absolute error of 1.6Gbit/s occurred. However,
although the periods when throughput dropped by 1Gbit/s
or more accounted for 11.2% of the total, the proportion
of prediction errors exceeding 1Gbit/s remained below 1%,
which is relatively small in comparison. Thus, we conclude
that our point cloud-based method can effectively predict
throughput values for both blockage and LOS communication
scenarios.

VOLUME 1, 2023 271



TABLE 10. RMSE values of throughput prediction.

FIGURE 11. The empirical distribution function of absolute errors
for throughput prediction. Two horizontal dotted lines represent
0.8 and 0.95.

VI. DISCUSSION
In this section, we will discuss the remaining challenges and
future research directions for point-cloud-based link quality
prediction. Specifically, in Section VI-A, we will delve into
the ML algorithms in detail, while other challenges will be
discussed in Section VI-B.

A. MACHINE LEARNING ALGORITHMS
This study aims to demonstrate the feasibility of mmWave
link quality prediction from point clouds. As such, we have
adopted a simple approach that involves converting point
clouds into voxel grid data and applying well-established
algorithms such as NN with 3D convolution layers and 3D
convolutional LSTM layers, and GBDT. One of the advan-
tages of this method is that it uses voxel grids as the data for-
mat, which can be easily extended and applied to image-based
ML algorithms while retaining the 3D structure. However,
other approaches can also be considered. These approaches
can be categorized into three distinct categories based on the
format of input features: point clouds, 3D data representations
other than point clouds, and hand-made features.

As mentioned in Section III-C, the most straightforward
approach is to use NN models designed for the point cloud,
such as PointNet [35], [36] and VoteNet [37], which can
directly input point clouds and extract features from the
points. Our preliminary experiments leveraged the existing
models (i.e., PointNet and VoteNet) for learning the direct
mapping from point clouds to RSSI. However, they failed
to predict the large attenuation of link quality induced by
LOS blockage. This is because the models’ target task and
required characteristics differ from ours. Generally, these
existing models are, used for 3D object detection or seg-
mentation, in which the translation invariant convolution in
PointNet properly functions to detect objects regardless of
their positions. However, the positions of objects are crucial
in link quality prediction since mmWave communications are
significantly affected by the mobility of obstacles and the
positions of reflectors. Designing a NN architecture that is
suitable for directly predicting link quality from point clouds
can be a new challenge in the field of vision-wireless ML and
has the potential to improve prediction accuracy. One possi-
ble approach is to incorporate attention mechanisms, which
have achieved success in natural language processing and
computer vision fields, into point clouds or voxel grids [53],
[54], [55]. Attention mechanisms can extract information on
the spatial locations of objects that affect link quality and
dynamically determine the locations and objects of interest.
Thus, attention mechanisms can potentially improve predic-
tion accuracy by focusing on the relevant areas and objects.

Various data formats, such as meshes, octrees [39], and
implicit function representations using NNmodels [56], [57],
can be used to represent 3D spaces besides point clouds.
However, the conversion between these formats may result
in the loss of shape information. For instance, projecting the
point cloud onto a 2D image [58], [59], transforming the point
cloud into a pseudo-image [60], [61], or converting the point
cloud into sparse voxel grids [62] are possible. Although
most of these transformations have been proposed for robot
control and autonomous driving, they are also relevant to
the link quality prediction task, which involves recognizing
and tracking objects in 3D space. By taking advantage of
these data format conversions and exploring new ML models
specifically designed for point cloud-based link quality pre-
diction, we may be able to achieve higher prediction accuracy
while reducing the necessary training data volume.

One alternative approach to improving link quality pre-
diction is to enhance the feature engineering method in the
preprocessing unit. Instead of relying solely on end-to-end
ML inference with point clouds as inputs and link quality
predictions as outputs, we can extract effective information
from the point clouds using rule-based feature engineering
techniques. This information can then be used as inputs to
ML models for link quality prediction. For instance, some
previous studies [11], [23], [26] have extracted or converted
point clouds to bounding boxes and heatmaps. Hand-crafted
feature engineering can enhance the interpretability of the
predictions and decrease the input dimensions, which, in turn,
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reduces the model complexity. However, as demonstrated in
recent computer vision and NLP tasks, these feature engi-
neering methods often fall short in prediction accuracy and
generalization compared to state-of-the-art end-to-end ML.
Therefore, developing feature extraction methods that can
efficiently reduce the dimensionality of data while achieving
high explainability, prediction accuracy, and generalization is
a new research challenge.

Adapting to data drift caused by environmental changes
or channel mobility also remains a challenge for link qual-
ity prediction. In ML, accuracy decreases when there is a
domain discrepancy between the data used for training and
the test data. Although the generalization capability of ML
can absorb short-term and minor fluctuations caused by the
randomness of the wireless channel, changes in the wireless
channel and point clouds caused by variations in the positions
of communication devices and point cloud sensors, as well
as the configuration of surrounding furniture, can lead to
data drift and decreased prediction accuracy. Our previous
work [24] has demonstrated accuracy degradation in the pre-
diction system when the test set was obtained several days
after the training set, even though the experimental setup
was not significantly changed. To mitigate this issue, our
prior research has shown that fine-tuning the model with a
small amount of newly acquired data in the current envi-
ronment can be effective [24]. However, there is a need to
investigate more efficient fine-tuning techniques, particularly
in terms of optimizing the types and amounts of data used,
the frequency of fine-tuning implementation, and exploring
methods to prevent forgetting previously learned information
due to excessive fine-tuning.

B. ADVANCED RESEARCH TOPICS
We here discuss more advanced research challenges, namely
predicting the more detailed information on mmWave
communication channels and the potential applications of
mmWave communication signals to visual sensing tasks.

We believe that point clouds have the potential to enable
higher-dimensional measures of wireless link quality pre-
diction, specifically channel state information (CSI), beyond
RSSI or throughput. In mmWave communications with 5G
or IEEE 802.11ay, multi-input multi-output (MIMO) technol-
ogy is used to achieve high speed and capacity through spatial
multiplexing, as well as high-quality communication through
diversity effects. As a result, accurate CSI estimation has
become increasingly crucial in mmWave communications.
Recently, a study demonstrated that CSI can be predicted
from depth images in the 2.4GHz band [63], suggesting that
point clouds, which provide a 3D representation of space,
may also enable CSI prediction in the 60GHz band.

Another interesting direction for future research is to
explore the inverse transformation of this study, namely, esti-
mating spatial information from mmWave communication
signals. It has already been demonstrated in the 5GHz band
that images captured by a camera installed in the same room
can be estimated based onWi-Fi channel information, such as

Algorithm 1 Voxelization
Require: Number of points in point cloud N

Require: Point cloud P =
N−1⋃
n=0

{
pn

}
Require: Voxel size sv > 0
Ensure: 3D array representing the voxel grid V
1: (x0, y0, z0)← p0
2: (xmin, ymin, zmin)← (x0, y0, z0)
3: (xmax, ymax, zmax)← (x0, y0, z0)
4: for n in 1 to N − 1 do
5: (xn, yn, zn)← pn
6: xmin← min(xmin, xn)
7: ymin← min(ymin, yn)
8: zmin← min(zmin, zn)
9: xmax← max(xmax, xn)
10: ymax← max(ymax, yn)
11: zmax← max(zmax, zn)
12: end for

13: h←
⌈
xmax − xmin

sv

⌉
14: w←

⌈
ymax − ymin

sv

⌉
15: d ←

⌈
zmax − zmin

sv

⌉
16: V ← bool[h][w][d]
17: for ix in 0 to h− 1 do
18: for iy in 0 to w− 1 do
19: for iz in 0 to d − 1 do
20: V [ix][iy][iz]← 0
21: end for
22: end for
23: end for
24: for n in 0 to N − 1 do
25: (xn, yn, zn)← pn

26: ix ←
⌊
xn − xmin

sv

⌋
27: iy←

⌊
yn − ymin

sv

⌋
28: iz←

⌊
zn − zmin

sv

⌋
29: V [ix][iy][iz]← 1
30: end for
31: return V
▷ ⌊x⌋ represents the greatest integer less than or equal to x.
▷ ⌈x⌉ represents the least integer greater than or equal to x.

CSI [64] or RSSI [65], in indoor environments. Furthermore,
it has been shown that image generation of LOS communi-
cation paths can be achieved using 60GHz band RSSI time
series [9]. Similar to prior studies that generate images repre-
senting indoor conditions, it is anticipated that point clouds of
indoor spaces can be derived from mmWave communication
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Algorithm 2 Conversion from depth image to normalized
point cloud
Require: Depth imageM
Require: Width of the depth image U > 0
Require: Height of the depth image V > 0
Require: Maximum value of depth D > 0
Ensure: Point cloud P
1: P ← ∅

2: cu←
U − 1

2

3: cv←
V − 1
2

4: for u in 0 to U − 1 do
5: for v in 0 to V − 1 do
6: d ← M[u][v]

7: x ←
u− cu
U − 1

d +
D
2

8: y←
v− cv
V − 1

d +
D
2

9: z← d
10: p← (x, y, z)
11: P ← P ∪ {p}
12: end for
13: end for
14: return P

channel information. In particular, there is ample opportunity
to investigate effective features and model architectures for
indoor point cloud generation.

VII. CONCLUSION
In this paper, we demonstrated the potential of point clouds
as an alternative to camera images for proactive link quality
prediction in mmWave communications. We devised a pre-
diction framework for the point cloud-based link quality pre-
diction, which incorporates preprocessing methods for point
clouds, including cropping, downsampling, outlier removal,
voxelization, time series concatenation, and labeling.We then
examined three ML models–Conv3D, ConvLSTM3D, and
GBDT–that can extract spatio-temporal features from time
series voxel grids. Our point cloud-based link quality predic-
tion method was experimentally evaluated using off-the-shelf
IEEE 802.11ad mmWave communication devices and point
cloud sensors (i.e., LiDAR and depth camera) in a scenario
where mmWave LOS paths were intermittently blocked by
pedestrians. The experimental results revealed that our point
cloud-based method can quantitatively and deterministically
predict substantial attenuation of both mmWave RSSI and
throughput up to 1000ms ahead.

APPENDIX A.
VOXELIZATION ALGORITHM
The detail of the voxelization algorithm is shown in
Algorithm 1. First, the min bounds vector (xmin, ymin, zmin)

and max bounds vector (xmax, ymax, zmax) of all points in
the point cloud are calculated. Second, the voxel grid shape
(h,w, d) is calculated and the 3D array V representing the
voxel grid is initialized with 0. Finally, for each n-th point pn,
the index (ix , iy, iz) of the corresponding voxel in the voxel
grid is calculated and the voxel value is updated to 1.

APPENDIX B.
CONVERSION FROM DEPTH IMAGE TO NORMALIZED
POINT CLOUD
The conversion procedure from a depth image to a normalized
point cloud is shown in Algorithm 2. In this paper, this
normalized point cloud is also referred to as a depth camera
point cloud. Let M be a two-dimensional array representing
a depth image. Let U and V be the width and height of the
depth image, respectively, and let [0,D) be the range of depth
value d . In the depth image used in this study, (U ,V ,D) =
(512, 424, 256). A point p is assigned in the 3D Cartesian
coordinate to each pixel in the depth image. This process
fits all UV points into the [0,D)3 cubic region. All depth
camera point clouds have 217,088 points in this study. The
aforementioned method is applied to all the depth images to
generate depth camera point clouds. This method can convert
from depth images to point clouds without dependence of the
camera’s intrinsic parameters.
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