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ABSTRACT With the upcoming 5G and beyond wireless communication system, cellular-connected
Unmanned Aerial Vehicles (UAVs) are emerging as a new pattern to give assistance for target searching,
emergency rescue, and network recovery. Such cellular-connected UAV systems highly rely on accurate
and secure navigation systems, e.g. the Globe Navigation System (GPS). However, civil GPS services are
unencrypted and vulnerable to spoofing attacks that can manipulate UAVs’ location and abort the UAVs’
mission. This paper leverage 3D radio map and machine learning methods to detect and mitigate GPS
spoofing attacks for cellular-connected UAVs. Precisely, the edge UAV flight controller uses ray tracing tools
deterministic channel models, and Kriging methods to construct a theoretical 3D radio map. Then the machine
learning methods, such as Multi-Layer Perceptrons (MLP), Convolutional Neural Networks (CNN), and
Recurrent Neural Networks (RNN), are employed to detect GPS spoofing by analyzing the UAV/base station
reported Received Signal Strength (RSS) values and the theoretical radio map RSS values. Once spoofing
is detected, the particle filter is applied to relocate the UAV and mitigate GPS deviation. The experiment
results indicate that the Universal Kriging (UK) with exponential covariance function has the lowest standard
errors for radio map construction. Moreover, the MLP achieves the highest spoofing detection accuracy with
different spoofing margins because of the statistic prepossessing relieving environmental impacts, while the
CNN has a comparable detection accuracy with less training time than MLP since CNN inputs are raw RSS
data. Furthermore, the particle filter-based GPS spoofing mitigation can relocate the UAV to the real position
within an error of 10 meters using 100 particles.

INDEX TERMS Unmanned aerial vehicles (UAV), GPS spoofing, radio map, Kriging, machine learning.

l. INTRODUCTION

ELLULAR-CONNECTED Unmanned Aerial Vehicles

(UAVs) are emerging as an integrated part of the upcom-
ing 5G and beyond mobile wireless networks due to their
mobility and flexibility [1]. As a flying platform, cellular-
connected UAVs can provide diverse civilian applications
efficiently and economically with the assistance of a safe
and secure navigation system, such as material transporta-
tion, building inspection, and emergency communication [2].
However, as with any new technology, security concerns must
be addressed to ensure that UAVs are not used for malicious

purposes [3], [4]. As a global satellite navigation system, the
Globe Navigation System (GPS), is mainly used by UAV's for
navigation but it is unencrypted and vulnerable to spoofing
attacks. In fact, the attacker can use the low-cost Software
Defined Radio (SDR) tools to generate fake GPS messages
and mislead the GPS receiver to compute the wrong position.
In addition, even with encryption protection, the attacker can
also collect the raw GPS signals and replayed these signals
with a time delay on a higher power, resulting in consistent
deviations in all pseudo-range calculations [5]. Indeed, GPS
spoofing attacks deviate UAVs from their planned trajectories
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and lead to undesirable events such as collisions among
UAVs. Besides, the spoofed GPS positions also increase the
risk of public safety for UAVs breaking the no-flying zone
restriction. Thus, it is necessary to bestow UAVs the ability
to verify their GPS locations and detect and mitigate GPS
spoofing attacks.

There are four kinds of GPS spoofing detection approaches
for cellular-connected UAVs, including GPS navigation
signal analysis (e.g., [6], [7], [8], [9]), GPS navigation mes-
sage encryption (e.g. [10], [11], [12], [13]), sensor fusion
re-localization (e.g. [14], [15], [16], [17], [18], [19]) and
mobile cellular network positioning (e.g. [20], [21], [22],
[23]). The GPS navigation signal analysis methods use GPS
signals features for spoofing detection, such as GPS satellites’
signals fingerprints, the Direction of Arrival (DOA), or the
Time of Arrival (TOA). Since the ionosphere interference
makes the orbit GPS signals different from fake ones, the
authors in [6] leveraged the pseudo-random noise sequence
of GPS satellite signals to detect GPS spoofing attacks.
Similarly, Milidu et al. in [7] used the DOA time-series
estimation to detect GPS spoofing and Harshad et al. in
[8] employed the extended Kalman filter to detect the fake
GPS signals TOA and recover the legitimate signals from
spoofed ones. Specifically, the authors in [9] utilized the sig-
nal phase to detect distance-decreasing GPS spoofing attacks.
Unlike GPS navigation signal analysis, GPS navigation mes-
sage encryption methods secure GPS navigation through the
message cryptographic signature [10]. In [11], the authors
used the elliptic curve digital signature algorithm to insert a
signature into the navigation message for secure GPS naviga-
tion. Furthermore, Wu et al. leveraged the Shangyong-Mima
cryptographic algorithm to counteract tamper attacks on nav-
igation messages for BeiDou II [12]. Moreover, Nicola et al.
evaluated the Timed Stream Loss Tolerant Authentication
(TSLTA) protocol in the Galileo navigation system in order
to against GPS spoofing attacks [13]. However, those GPS
navigation signal analysis and message encryption methods
can hardly be applied to the cellular-cellular UAVs econom-
ically, because they require either redesigned GPS receivers
or updated GPS navigation systems.

Sensor fusion is another way to help UAVs detect and mit-
igate GPS spoofing attacks. Generally, GPS spoofing attacks
result in unintended accelerations or extra mission distances
and deviate UAVs from planned trajectories, which kinds of
abnormal behaviors can be recorded by onboard sensors, such
as accelerometers, gyroscopes, magnetometers, and cameras.
In fact, the Inertial Navigation System (INS) can determine
the UAVs’ position using those sensors’ data and compare
it with the GPS position [14], [15], [16]. The GPS position
is spoofed if the distance between the INS position and the
GPS position is outside a preset margin. Similarly, the aerial
camera and machine learning methods endow a UAV with
the visual ability to recognize its surroundings and locate
itself, which can also be used for GPS spoofing detection
[17], [18], [19]. When environment coordinates are different
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from GPS positions, the GPS is spoofed. Although sensor
fusion re-localization methods offer advantages, the accuracy
of location can be reduced due to error accumulation in sensor
measurements. While IMU sensors are useful for measuring
acceleration and angular velocity, they have limitations such
as the issue of integration drift that causes measurement errors
to accumulate over time, resulting in inaccurate readings.
Additionally, IMU sensors can be sensitive to temperature
changes, and their limited range can lead to further inaccu-
racies and make them unsuitable for GPS spoofing detection.
The operation of aerial cameras is also limited by weather
conditions, and they cannot be used on cloudy or rainy
days. Moreover, external factors such as vibrations, magnetic
fields, and electromagnetic interference can affect camera
readings. Therefore, when using sensor fusion re-localization
methods, it is crucial to consider these limitations, ensure
appropriate calibration and usage, and select the most suitable
sensors and cameras for the application.

Mobile cellular network positioning is a new GPS spoofing
detection method for cellular-connected UAVs. According to
the 3rd Generation Partnership Project (3GPP), the upcoming
5G and beyond Long Term Evolution (LTE) system can pro-
vide identification and tracking service for cellular-connected
UAVs [24]. As a response, the authors in [20] proposed
the Adaptive Trustable Residence Area (ATRA) to verify
the authenticity of GPS positions using the UAV up-link
RSS data on the edge server. Notwithstanding the detection
performance of the ATRA method, it requires at least three
base stations at the same time. For that reason, Dang et al.
in [21] used deep ensemble learning on edge servers to detect
GPS spoofing with only a single base station. Simultaneously,
Meles et al. did measurements in [22] and [23] that proved the
3D Angle of Arrival (AOA) of cellular signals can assist UAV
self-localization and help UAV to detect and mitigate GPS
spoofing attacks. Although the above mobile cellular network
positioning methods demonstrate effectiveness in detecting
GPS spoofing, those methods cannot be implemented on
cellular-connected UAVs in the urban canyon because of the
dense and irregular buildings with complex electromagnetic
propagation environments.

To this end, we build a 3D radio map for an urban canyon
environment and then use machine learning methods and a
3D radio map to detect and mitigate GPS spoofing attacks for
cellular-connected UAVs. First, we construct a 3D radio map
with the help of the deterministic channel mode and Kriging
method. Then, machine learning methods, including MLP,
CNN, and RNN, are employed to analyze the radio map data
and UAV real-time RSS data. Explicitly, the radio map data
is used as ground truth to indicate abnormal behaviors of the
UAV caused by GPS spoofing attacks. Finally, the particle
filter is applied to mitigate GPS spoofing attacks after the
spoofing detection. The following are the major contributions
of this paper.

« We have designed a system for detecting and mitigating

GPS spoofing in cellular-connected UAVs operating in
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urban canyon environments. This system allows us to
monitor the UAV’s GPS location using the theoretical
RSS data and the real-time measured RSS data on an
edge server, thereby reducing energy consumption and
minimizing the additional load on the UAV.

o A 3D radio map is constructed to aid in the detection
and mitigation of GPS spoofing by providing theo-
retical RSS values. Specifically, through our research,
we discovered that the Universal Kriging (UK) method,
which employs an exponential covariance function,
can produce a highly detailed radio map with accu-
rate RSS values and minimal computation and storage
requirements.

o To detect GPS spoofing attacks, artificial neural net-
works such as MLP, CNN, and RNN, are implemented
on the edge server. These neural networks can analyze
the difference between the RSS values of the 3D radio
map and real-time measurements and identify any devi-
ations caused by a spoofing attack in the trajectory of
the UAV. Importantly, these neural networks can achieve
effective spoofing detection even with a single base
station.

« To mitigate GPS spoofing attacks, it is essential to deter-
mine the true position of a UAV before establishing a
recovery path. For this purpose, we designed a particle
filter using the Wasserstein distance between radio map
data and a set of RSS measurement data to determine the
accurate location of the UAV. The particle filter is highly
effective and can relocate the UAV within a minute with
an error margin of only 10 meters.

The remainder of this paper is organized as follows.
Section II reviews the related works about radio maps and
neural networks. Section III provides the system model
and problem formulation. Section IV gives details on
Kriging-based radio map construction. Section V presents the
processes of machine learning-based GPS spoofing detection
as well as the particle filter-based spoofing mitigation. The
simulation platform and results are shown in Section VI.
Conclusion and future work are presented in Section VII.

Il. RELATED WORKS

A. RADIO MAP

Radio maps are functions that provide both large-scale chan-
nel gain and small-scale channel fading information for a
region of interest, and have been widely used for network
planning, spectrum management, interference coordination,
and indoor localization [25]. In fact, radio maps have been
also used for UAV trajectory planning aiming to reduce
communication interference and increase communication
performance [26], [27], [28].

There are two kinds of radio map construction methods,
including data-driven methods and model-driven methods.
The former methods leverage the electromagnetic data of 3D
space and inverse distance weighted interpolation or Kriging
spatial interpolation to build a radio map directly [29]. The
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latter methods use the property of wireless channels’ spatial
correlation and radio propagation models (e.g., the exponen-
tial decay model for channel correlation and the log-normal
model for shadowing) to build a radio map as a function of
geographic locations [30], [31]. Data-driven methods show
better performance when electromagnetic data are evenly
distributed, while model-driven methods perform well with
extra radiation information [32]. However, the urban area is
crowded with a diversity of random radio interference that
declines the accuracy of data-driven radio maps. Neverthe-
less, the shapes of the urban buildings are irregular, which
makes the actual radio propagation complex and deteriorates
model-driven radio map estimation. To overcome the above
weakness, the combination of ray-tracing and interpolation
is feasible for dynamic 3D radio map construction with less
time consumption as well as high accuracy reservation [33].

B. NEURAL NETWORK

1) MLP

MLP is a deep learning neural network consisting of an input
layer, a set of hidden layers, and an output layer. The input
layer has a number of neurons the same as the size of features,
and hidden layers are located between the input and output
layer with an arbitrary number of neurons depending on the
neural network function [34]. Functionally, the hidden layer
neurons apply weights or nonlinear transformations to the
input features and propagate an output to the next layer. Math-
ematically, the hidden layer with n neurons is formulated as

Y= o +6) (1

j=1

where x; denotes the input of the 7™ neuron, wj is the weight
and 0 is the bias in 7™ neuron. () is the activation function
that performs the nonlinear transformation. y is the output to
the next layer. Although MLP shows good performance in
classification, it requires well-designed features and labeled
data for model training, updating and evaluation.

2) CNN

CNN is good at spatial pattern recognition, including image
classification and voice recognition [35]. A typical CNN
consists of four kinds of layers, which are the convolution
layer, pooling layer, flatten layer, and fully-connected layers.
The convolution layer is the first layer and the core layer of
CNN, and it focuses on extracting the deep features from the
raw input data using a convolutional kernel and a set of learn-
able parameters. Note that the convolution layer has a big
output because of convolutional operations. In this vein, the
pooling layer is used after convolution layers to down-sample
convolutional outputs and reduces neural network size for
controlling overfitting. Following the pooling layer, the flat-
tened layer is used to reshape the down-sample features into
a 1-D array that is the input of the fully-connected lay-
ers. Finally, fully-connected layers conduct classification and
recognition, which works the same as MLP. Since the use of
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FIGURE 1. The cellular-connected UAV network system.

convolution layers, CNN can directly process the raw data
according to its input formation.

3) RNN

RNN is famous for its feedback neural network architecture
that can extract temporal features from time-sequence data
and has been widely used for speech recognition and time
series prediction [36]. Compared with one input in MLP and
CNN neurons, RNN neurons have two inputs, one for current
input and the other for past inputs, which allows exhibiting
the temporal behaviors. However, the feedback neuron design
leads to the vanishing or explosion of the gradient during
neural network training because of the cycling of previous
inputs [37]. To solve this problem, two RNN variants, the
long-short-term memory (LSTM) model and the gated recur-
rent units (GRUs) model, have been designed based on a
gated mechanism [36]. The LSTM model uses three gates
including a forget gate to extract the temporal features from
time sequences, while the GRU model has two input gates
with activation functions for combining the current and recent
previous features. In comparison to LSTM, GRU has a simple
architecture that reduces the model training time as well as
keeps model performance.

lll. SYSTEM MODELING AND PROBLEM FORMULATION
A. SYSTEM MODEL

1) NETWORK MODEL

Fig. 1 illustrates the cellular-connected UAV network sys-
tem, which consists of one remote operator, a set of UAVs’
mission-related cloud services, the core and transport net-
works, the edge server, and mobile cellular networks [38].
The remote operator can interact with the UAV through the
cloud services, where the Operator Command and Control
Service (OCCS) provides interfaces for the UAV operator to
access the Supplementary Data Provider Service (SDPS) and
the Unmanned Aircraft System Traffic Management Services
(UTMS). Specifically, the SDPS offers meteorological data
and other information related to UAV flight planning and
the UTMS manages UAVs’ registrations, identifications, and
airspace restrictions [39]. Additionally, core and transport
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networks are in charge of data transmission between the
cloud service and the edge UAV flight Controllers (UFCs).
Furthermore, the UFCs are deployed on edge servers and
connected to a base station to execute UAV flight missions,
including controlling and monitoring the UAVs. In such a
cellular-connected UAV network system, the GPS serves as
the main navigation and positioning solution for the UAVs.
Therefore, the security of GPS is critical for the system, as all
of the UAV flight operations, such as controlling, monitoring,
and geofencing, are based on GPS positions.

2) CELLULAR-CONNECTED UAV MODEL

The cellular-connected UAV setup shown in Fig.1 includes
GPS satellites, an edge server, a base station (denoted by b),
and a UAV (denoted by u). The UAV is operated by the edge
UFC through the base station wirelessly. Typically, the edge
UFC receives waypoints from a remote controller and uses
a mission planner to determine the UAV’s trajectory, while
also considering the coverage information of the base station.
To ensure a successful mission, the UAV’s trajectory is opti-
mized to maintain a strong connection with the base station.
The location of the base station is denoted as (xp, Yp, 25),
and the planned position of the UAV is denoted as (x;, y;, ;)
for a particular position p;. If the UAV follows the planned
trajectory, it will be in the best connection positions with the
base station during the mission.

3) ATTACK MODEL

In the attack scenario shown in Fig.1, there exist a GPS
spoofer, a base station (b), and a victim UAV (u). The GPS
spoofer has the ability to transmit falsified GPS signals,
leading the UAV’s GPS receiver to compute incorrect posi-
tions, ultimately resulting in the UAV following a spoofed
trajectory instead of its planned trajectory. If there are no GPS
spoofing or GPS errors, then the UAV should proceed along
the planned trajectory and be located at p; at time j. If GPS
errors occur, then the UAV will report its position as p} attime
J» which s e distance units away from p;. However, when GPS
spoofing is present at time j, the UAV’s actual location will
be p;, deviating from p; by & distance units. In this context,
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we consider € < dE < §, where dE represents the maximum
GPS error.

4) CHANNEL MODEL

It should be noted that GPS spoofing attacks can cause
deviations that negatively impact the connection performance
between the UAV and the base station. In this way, the
performance of wireless connections is leveraged to detect
GPS spoofing attacks. This paper adopts a deterministic radio
propagation model to model the channel between the base
station and its connected UAV. The use of the deterministic
channel model allows for the sensing of physical effects in
urban canyon environments, resulting in more accuracy for
path loss values computation. Foundationally, the wireless
link of cellular-connected UAVs includes both line-of-sight
and non-line-of-sight paths. Specifically, Friis’ free space
radio propagation is used for modeling the line-of-sight
directed path, while Huygens’ secondary source is utilized for
modeling the non-line-of-sight diffraction path. According to
Friis’ equation, the directed path loss between the base station
and its connected UAV is modeled as:

_ Ard
b = 20l0g =410 )
)\bu

where d,;, is the distance between b and u, and Ap, is the
wavelength from base station. In addition, the knife-edge
diffraction model follows the International Telecommunica-
tion Union (ITU) recommendation [40].

Ly = 6.9 +20l0g(+/(vpy — 0.1)2 + 1 4+ vy, —0.1)  (3)

where the Fresnel diffraction parameter vy, can be written as

1 2
i = S | o ) @
Abu dl}u dlzu

In (4), z;, is the effective height of the building knife-edge
with infinite width between b and u at the distance dblu and
di.dl . dZ, > 7, andd]  dZ > Ap, seeing in Fig.2(a).
In addition to the directed path and diffracted path, the reflec-
tion also has impacts on the deterministic model. Let Z,bu
denote the reflection path loss between b and u, and I:bu is
formulated as
. 4rd,;,
Ly, = 20log . @)
op, Abu

As shown in Fig.2(b), dl/m is the total traveling distance from
b to u with a signal reflection at position p,, d;,, = dp,, +
dp,y respectively, and ap, is the reflection coefficient that
depends on the transmitters’ positions, the reflection medium
permittivity and the signal polar position [41]. The used path
loss from b to u is determined by

Ly, = min(l_,bu, ifbu, Lbu)a (6)

where Lp, is considered as the smallest path loss of the
directed, diffracted or reflected path. Regarding multi-path
fading caused by the scattering effect, small-scale fading is
considered in the urban canyon environment. In contrast to
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FIGURE 2. Diffraction and reflection.

stochastic models, which are typically described using sta-
tistical distributions (such as the Rayleigh and Rician fading
models), deterministic channel models utilize the reflection
coefficient and random noise to model small-scale fading.
Thus, at a given position, p;, the UAV RSS is

RSS(b, u, pj) = Ty — Lypj + Gp + Gy + Ry @)

where T, is the base station transmission power, and Ly is the
path loss value when the UAV locates at p;, and G, and G,
represent the base station antenna gain and the UAV antenna
gain separately, and N, serves as the noise caused by the
scattering effect in dBm. To address the impact of dynamic
environments on RSS values, one approach is to use statisti-
cal analysis techniques to minimize their influence. Another
effective method is to utilize neural network layers such as
convolutional layers to eliminate environmental effects from
RSS data, seen in Section V.

5) RADIO MAP MODEL

Let’s assume that the UAV locates at p; and plans to pj ;1 ata
given time period . When the UAV is located on the rooftop
of the building, the probability of having a line-of-sight con-
nection increases, making it easier to model the channel using
statistical models as stated by the 3GPP in [42]. However,
in the urban canyon environment, due to the scarcity of direct
connections, it is difficult to model the wireless channel using
statistical models. In this case, the radio map is used to model
the channel when the base station is under the rooftop and the
UAV is limited below rooftop heights. To construct the radio
map M., an amount of K positions are randomly picked
from the region S; that is centered at p. with a diameter d,
De locating at the middle position between p; and p;; 1, and
de = dj j11+dE, d; j11 indicating the distance from p; to pj11
respectively. Accordingly, the k™ position, py, is assigned
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with a corresponding RSS value t; using the deterministic
channel model in (7). Then, the radio map M is initiated as

My <~ {pr,w}, Vk, ke[l ,K]. (8)

Given a new location p;, p; € Sz, pi # pr,k € [1,K], M,
can estimate t; for p; using the interpolation method, seen in
Section IV.

B. PROBLEM FORMULATION

As shown in Fig.1, the GPS spoofer deceives the UAV
with false GPS positions that make the UAV deviate from
the planned trajectory. Along with GPS spoofing deviation,
the real distance between the UAV and the base station is
not the same as the reported GPS distance, which can be
determined by the difference between the theoretical path
loss and the real-time path loss. In fact, the radio map can
offer theoretical path losses and the base station can provide
real-time path losses. In addition, the edge UFC can use the
radio map and the historical path losses to indicate the UAV’s
true position.

1) GPS SPOOFING DETECTION PROBLEM

Let I:;m(t) present the real-time path loss at time ¢ and Ly, (?)
denote the corresponding theoretical path loss for the reported
position at time 7. Theoretically, the path loss is determined by
the radio propagation distance from the base station and UAV,
so that the absolute difference ALpy,, (ALp, = I:hu — Lbu‘),
can indicate the deviation between real position and reported
position. Hence, the GPS spoofing attack can be detected
through hypothesis testing, seen in (9).

Hy: AL T,
0 bu > 9)
Hy: ALp =T,

where Hy stands that the reported position is spoofed when
ALy, is over the preset threshold 7, while H| represents
the reported position without GPS spoofing. It is noteworthy
that the real path loss I:bu(t) is shifting with environment
changes, which results in the hypothesis testing in (9) may
not accurately indicate the deviation between the reported
position and the spoofed position. In addition, the threshold
T requires an appropriate setting. Otherwise, the hypothesis
testing may raise a higher false alarm because of a smaller T
or give a lot of missed detection due to a bigger threshold.

2) GPS SPOOFING MITIGATION PROBLEM

The goal of GPS spoofing mitigation is to help the UFC
identify the correct position of the UAV and redirect it to
the planned path, even after a spoofing attack. This involves
an analysis of both historical real path losses and theoretical
radio map path losses to relocate the UAV and generate a
recovery path based on the actual and intended position of the
UAV. Furthermore, motion sensors can be utilized to monitor
the UAYV, which can ensure the UAV returns to its intended
location [43].
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Let d; denote the UAV traveling distance from the initial
waypoint p; to the final waypoint pjy1, and ty.y represents
the UAV RSS measurements in this time period, ti.py =
{v;;i=1,..., M} correspondingly. So, the true position can
be found in the positions that are away from p; with dis-
tance d;. Let Py denote N positions in S; that have a
distance d; from p;, Py = {pp;n=1,...,N}, and 7},
stand for the theoretical RSS provided by M, for the
path from p; to p,, ©[,, = {Ef’;i: 1, ...,M} respec-
tively. Hence, the mitigation problem is to find p, that
has the highest similarity on the distribution of path loss
values.

min {s;;n=1,...,N}, (10)
S15enny SN

Subject to: 5, = D(rium, Tp), (10a)

0<n<N, (10b)

0<s,<1; (10c)

where s, is the similarity between vy, and t7.,. It is worth
mentioning that the number of N has a direct impact on the
mitigation performance, a bigger N with higher accuracy as
well as greater computation. Precisely determining the actual
position of the UAV is vital to mitigate GPS spoofing, as it
enables the UFC to create a recovery plan that takes into
account different constraints and guides the UAV back to its
intended trajectory. Commonly used methods for UAV path
planning include A* search, Dijkstra’s algorithm, Rapidly-
Exploring Random Trees (RRT), and Probabilistic Roadmaps
(PRM) [44]. Thus, the primary challenge in GPS mitigation
is pinpointing the true position, as it is a prerequisite for
planning a recovery path.

To address the issues with spoofing detection and mitiga-
tion, we propose a solution that involves constructing a 3D
radio map to aid in detecting and mitigating GPS spoofing.
The radio map provides theoretical RSS values that can be
compared to real-time RSS measurements using artificial
neural networks such as MLP, CNN, and RNN implemented
on the edge server. By analyzing the difference between the
RSS values of the 3D radio map and real-time measurements,
any deviations caused by a spoofing attack in the UAV’s
trajectory can be identified. Once spoofing is detected, the
particle filter estimates the true location of the UAV by cal-
culating the Wasserstein distance between the radio map data
and a set of RSS measurement data. This estimation helps to
mitigate the spoofing attack.

IV. KRIGING BASED RADIO MAP CONSTRUCTION

In this part, the Kriging spatial interpolation method is
applied to the ray-tracing samples in order to build a
radio map accurately and efficiently. With the help of
the Kriging method, the fine-grained 3D Radio Map
construction algorithm is designed for both UFC and
UAVs, which allows constantly detecting and mitigating
GPS spoofing attacks in the discontinuous communication
environment.
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A. KRIGING METHOD

Kriging is a famous interpolation method for geostatistic
measurements due to its productivity in terms of dealing with
spatial variations [45]. Compared with the other interpolation
methods, such as the inverse distance weighted interpolation
method and the spline interpolation method, Kriging does not
depends on deterministic mathematical formulas but focuses
on statistical models that can not only produce a surface but
also provide predictions to uncertain points [46]. There are
two kinds of Kriging methods, Ordinary Kriging (OK) and
Universal Kriging (UK). The OK is for data with constant
trends meanwhile the UK is for data with deterministic trends,
for example, the large-scale fading [47]. Both OK and UK
follow the same procedures, including data analyzing, vari-
ogram modeling, surface creating, and predicting [48].

The Kriging method is mathematically defined in (11).

K
R(p)) = Zwktk, (11)

k=1

where R(p;) denotes the predicted RSS for a given position
Di» pi € S¢,pi # pr,k € [1,K], and v; is the measured
RSS value at position py, wi representing an unknown weight
for v;, K standing for the number of known RSS values.
Using those known positions and RSS data, Kriging employs
variograms and covariance functions to estimate the known
data statistical dependence and then fit those data as an
empirical semivariogram model for making a prediction [45].
According to the data statistical dependence, the empirical
semivariogram model can be a circular, spherical, exponen-
tial, Gaussian, or linear function respectively [45]. Carefully,
each empirical semivariogram model is designed for different
tasks, which makes the prediction more accurate.

B. FINE-GRAINED 3D RADIO MAP CONSTRUCTION
Although the use of ray-tracing and Kriging methods can
build a 3D radio map accurately, it spends too much com-
putation and storage in the edge server for constructing the
whole region’s fine-grained 3D radio map. In addition, due to
the UAV movement and the urban environment changes, the
radio map needs to keep fresh with the UAV mission, which
requires a large number of updating processes on the edge
server. Considering the limited resources of the edge server,
the mission-based fine-grained 3D radio map is proposed that
focuses on a region for a segment of the planned trajectory,
seeing in Fig.3.

In Fig.3, the UAV u plans to move from p; to pj41 at the
given time period 7, and M is the fine-grained 3D radio map
for the region where includes the UAV moving space during
time period 7.

Algorithm.1 summarizes the fine-grained 3D radio map
construction methods, including the region selection, ray
tracing, and Kriging prediction. The region selection aims to
find the UAV movement space that depends not only on the
planned trajectory but also on the motion sensors (lines 2-5).
Specifically, the motion sensors supervise the UAV to follow
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FIGURE 3. The concept of fine-grained 3D radio map.

Algorithm 1 Fine-grained 3D radio map constructing.

Input:
p;: The planned waypoint, p; = (x;, ¥j, 7);
pj+1: The planned waypoint, pj+1 = (Xjt+1, Yjt+1, Zj+1)3
dE: The GPS error margin in meter;
v: The resolution of the fine-grained radio map in
meter;
7: The planned time period from p; to pj;1;
Output:
M : The fine-grained radio map;
1: Initial the fine-grained radio map, M, <« {};
/************* Region selection H#d sk sk kkokokokok /
2: Calculate the distance dj j1, dj j+1 = |pj, pj+1 |3D;

3: Compute the region center p., p. = (X¢, Ve, 2c), Where
— NtX+1 — Yty _ YtE+.
Xe = T’ c — 2 s LC — 2 )

4: Compute the region radius dc, dc = d; j+1 + dE;

5: GettheregionS;, S; = {(x,y,2;x € X,ye Y,z € Z},
where X = [x, —d;, xc+d:1, Y = [ye—d¢, ye+d ], Z =
[ze —de, ze +dc];

6: Sample K positions from S; randomly, Px =
pi;k=1,...,K}, where py € Sy, pr # prs 1 < k #
k' < K;
/************* Ray Tracing (RT) shestesk skt sk skeosk skeokoskoskosk /

7: Initial the ray tracing radio map, Mg <« {};

8: fork =1— K do

9: Get the RSS value for py, tx = RT (pr);

10: Mg < {pk, e}

11: end for
/************* Krlglng predict sheskeoske skoskosk skeskeoskoskosk skeok /

12: for x, € [x, —d., x. + d.,v] do
13: for y, € [y. — d¢, yc + d., v] do

14: for z, € [z, — d., zc +d.,v] do

15: Construct the position py, p, = (xy, Yy, Z);
16: Predict t,, v, = Kriging(Mk, p,);

17: Update M, M; < {p,, tv,};

18: end for

19: end for

20: end for

21: return M.

its planned trajectory but also infuse the accumulated error
because of its intrinsic imperfection [21], which can be fur-
ther discriminated by the radio map in the region. After the
region selection, ray tracing is applied to get the coarse radio
map for the region (lines 6-11). Particularly, all rays start
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at the base station position and end at the randomly chosen
positions from the region. In the end, Kriging uses the coarse
radio map to interpolate the RSS values for the selected region
until achieving the resolution requirement of the fine-grained
3D radio map (lines 12-20). Expressly, the resolution is
related to the spoofing detection system requirements, and the
higher resolution comes with better detection and mitigation
performance.

It is notable that ray tracing is a heavy program and is only
deployed on the edge server in order to interact with the real
dynamic environment. Compared with ray tracing, Kriging is
a light program that can also work on the UAV onboard com-
puter. The combination of ray tracing and Kriging provides an
affordable method for both the edge server and the UAV that
constructs a fine-grained 3D radio map with high resolution
and compatible computation on demand. In particular, the
UAV constructs the radio map with a lower resolution if and
only if it loses the connection to the base station because of
the spoofing attack.

V. GPS SPOOFING DETECTION AND MITIGATION

GPS spoofing attack happens continuously for manipulating
the UAV to deviate from its planned trajectory gradually
without raising any notice on the motion sensors. However,
the hypothesis testing in (9) can not indicate the true deviation
caused by the GPS spoofing attack, because the wireless
communication between the base station and UAV is dynamic
and disturbed by spectrum noise. In addition, the threshold
T in (9) has a significant impact on the detection results,
a smaller 7' with a higher false alarm while a bigger T rising
a lot of missed detection. To overcome those problems, this
section provides machine-learning methods for GPS spoofing
detection and mitigation, where different neural networks are
applied to detect GPS spoofing, including MLP, CNN, and
RNN, and then the particle filter is introduced to estimate the
true position after the spoofing detection.

A. GPS SPOOFING DETECTION

As shown in Fig.4, the edge server GPS spoofing detection
consists of five steps, including getting real RSS values,
getting theoretical RSS values from the fine-grained radio
map, computing RSS differences, data processing, and neu-
ral network training and predicting. As for the UAV, the
GPS spoofing detection has the same processes as the edge
server, but, instead of training neural networks, the UAV can
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download neural networks from the edge server directly. The
edge server GPS spoofing detection is processed as follows.

« Firstly, the real RSS values are reported by the UAV
in the telemetry data or the base station through
3GPP-defined services. Notably, the cellular connec-
tions between the UAV and base station are not impacted
by the spoofing attack because of different communica-
tion bandwidths and security standards, so the real RSS
values can indicate the spoofing attacks.

o Secondly, the theoretical RSS values are provided by
the fine-grained radio map constructed in Section.I'V.
It is worth mentioning that the fine-grained radio map
may not have the reported position RSS value but can
provide the theoretical RSS using the nearest position in
the high-resolution map.

o Thirdly, the differences between real RSS values and
theoretical RSS values can demonstrate the UAV tra-
jectory deviation caused by GPS spoofing attacks. Due
to the dynamic environment and spectrum interference,
the real RSS values include uncertain noises that are
biased from the theoretical radio map. Therefore, data
processing and neural network are employed on the
RSS differences for mitigating the noise effects on the
spoofing detection.

« Fourthly, data processing aims to process the data with
statistical analysis or reshaping operations. The statisti-
cal analysis can help to reduce the noise effects while
the reshaping operations can feed the data into a neural
network directly.

« Fifthly, the neural networks are responsible for spoofing
detection using prepossessed data. Generally, the neural
networks need to be trained before using for prediction.
In fact, the training data can be guaranteed without GPS
spoofing attacks by leveraging higher-level protection,
such as GPS signal analysis.

There are two kinds of neural networks used in our previ-
ous works for GPS spoofing detection, including MLP-based
and CNN-based GPS spoofing detection [21], [38]. In [21],
we proposed using path loss statistics features as inputs to an
MLP for detecting GPS spoofing. To remove environmental
variance from the path loss computation, statistical methods
were used. The MLP was then trained on these statistics to
find an appropriate threshold and improve detection accuracy.
In contrast, [38] employed a CNN to detect GPS spoof-
ing. The CNN used grouped data and convolution layers
to extract path loss differences caused by spoofing attacks,
and fully-connected layers were used to address threshold
issues. The convolution layers allowed for the extraction of
deep features directly from the raw data. However, statis-
tical processing can cause visible latency and may impede
GPS spoofing detection in a UAV environment. Additionally,
to reduce neural network size and avoid overfitting, dropout
was added to the CNN layers, which may decrease detection
accuracy.

In addition to MLP and CNN, RNN-based GPS spoof-
ing detection is an alternative solution. Rather than using
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statistics or convolution layers, RNN uses the bidirectional
layer to extract abnormal behavior features in the RSS dif-
ferences. Those features are further delivered to the fully
connected layers for spoofing detection. The spoofing detec-
tion performance of MLP, CNN, and RNN are shown in
Section.VI.

B. GPS SPOOFING MITIGATION

The particle filter is an efficient method for solving the esti-
mation problem in (10), which can help to find the UAV’s
true position after spoofing detection. Following the hands-on
tutorial in [49], the particle filter-based GPS spoofing mitiga-
tion is summarized in Algorithm.2.

In Algorithm.2, the particle filter estimates the UAVs’ posi-
tion requiring four steps, including initialization, sampling,
selection, and resampling. The first initialization step is to
randomly choose N particles on the circle that center at p;
with radius dj;. Specifically, the Mises distribution, or named
circular normal distribution, is used for picking an angle ¢
from the circle with a Probability Density Function (PDF)

exp(iy cos(p — y))
27 lo(kyp)

where p, is the mean of the locations and «, is the con-
centration of the locations and Iy(«) is the modified Bessel
function to scale the chosen angle [50]. In addition, u, =
0, k, = 0 represent the Mises distribution is uniform. Then,
the sampling step uses the chosen N angles and dj; to compute
particles’ coordinates. In particular, each position is assigned
with the possibility of being the final position, which depends
on the similarity between the real RSS values and the radio
map theoretical RSS values. Especially, the Wasserstein Dis-
tance (WD) is used to indicate the distance between the real
RSS values and the theoretical RSS values, and a smaller WD
is corresponding to a higher possibility that the estimated
position is more closed to the real position [21]. Following
sampling, the selection step picks up the smallest Z elements
from the similarity set and saves indexes for those elements
—_——

in a predefined index set. In line 18, ArgPartition performs
sorting and partition along the given set and returns all
indexes in the partition that contains the smallest Z elements.
Obviously, the true position is more likely at the position with
a smaller WD distance. After selection, the resampling uses
the selected positions to update wy, £, and go back to another
sampling round in order to make particle samples toward the
final position. As shown in Fig.5, the particle filter is more
concentrated on the true position after resampling. In the end,
the estimated position is the center of the resampling selected
positions.

Theorem 1: The time complexity of the particle filer-based
GPS spoofing mitigation algorithm is O(N?).

Proof: The time complexity of the particle filer-based
GPS spoofing mitigation algorithm depends on the number
of particles N and the number of RSS samples M, where the
time complexity is O(N) for particles and is O(M) for radio

J&x | gy k) = , (12)
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Algorithm 2 Particle filer-based GPS spoofing mitigation.

Input:
pj: The planned waypoint, pj = (X, i, Zj)s
pi: The reported waypoint, p; = (x;, ¥i, zi);
M : The fine-grained radio map;
ti.m: The real RSS values, vy = {v;;i=1,...,M};
N: The number of sampling particles;
Z: The number of selected particles;
Output:
ﬁ;ﬂr]: The estimated position;
/************* Initialization *************/
1: Calculate the distance dj;, d;j = ‘p,-,pj|3D;
2: Initial Mises distribution T(p(,u(p, Kg)s g = 0,kp = 0;
3 Random N samples for ¢ using 7,, ¢y =
{oppyn=1,...,N}
4: Initial the position set Py, Py < {};
Initial the similarity set Sy, Sy < {};
: forn e [1,N]do
Dn = ()Cj + d,'j COS ¢y, yj + dl:j sin ¢y, Zj)
Py < {Pn};

Initial the trajectory Py, Pim =
{pi;i=1,...,M}, where the positions are evenly
distributed between p; and p,, p1 = pj, Py = Du
particularly;

10: Initial the RSS predictions t}.,,, t1.,, < {};

11: forpl- € P do

12: tly < M}

13: end for

14: Compute the similarity s,,, 5, = WD(t1.p, T].3,)
15: Update the similarity set, Sy < {s,};

16: end for
/************* Selection *************/

W

R

17: Initial the indexes set with size Z 17, Iy < {};
18: Select Z indexes with the smallest elements from Sy and
— 5

save the records to Iz, I = ArgPartition(Sy, Z);

19: Choose Z elements from ¢1.y, ¢7 = ¢1:n5[12]
/************* Resamp]ing *************/

20: Update wy and kg, pty = Mean(@z), kp = Stand(¢z);

21: Go to line 3;

22: ﬁ;_l = Center(Py[l12));

23: return p7 ;.

map-based RSS predictions. Since position estimation needs
a lot of trials, the number of particles is more than that of
RSS values. Thus, the time complexity is round to O(N?) for
Algorithm.2. O

GPS spoofing detection is typically performed at the edge
server in a sequence way, and the frequency of detection
depends on the speed of the UAV and the quality of its wire-
less connection. First, the edge needs to construct a 3D radio
map in the UAV movement space, and then uses the neural
networks to keep monitoring the UAV GPS position as well
as detecting GPS spoofing. Once the spoofing is detected,
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FIGURE 5. Particle filter-based GPS spoofing mitigation.

the edge server runs the particle filter to estimate the true
position of the UAV and mitigate the spoofing with the aid of
a recovery path. Accordingly, when the UAV is traveling at a
higher speed or the wireless connection quality decreases, the
spoofing detection procedure is performed more frequently.
Once spoofing is detected, the GPS mitigation procedure
is conducted to correct the UAV’s trajectory. During GPS
spoofing mitigation, the system checks for spoofing with a
high frequency and continuously monitors the UAV until it
returns to its intended trajectory. The simulation results for
neural network-based GPS spoofing detection and particle
filter-based GPS spoofing mitigation are given in the next
section.

VI. SIMULATION AND RESULTS

In this section, we first build a 3D city map for cellular-
connected UAVs. Then, ray tracing and Kriging methods are
leveraged to construct the 3D radio map for this city. After
that, the proposed neural networks and particle filters are
performed on the 3D radio map for GPS spoofing detection
and mitigation.

A. SIMULATION SETTING
We develop a simulation platform for cellular-connected
UAVs in an urban canyon environment, where buildings are
constructed with Blender 3.3 and ray tracing tools are from
the radio gym in [51]. In addition, Python 3.8.10 is used
to set the environment and Tensorflow 2.9.0 is adopted to
evaluate the performance of the designed neural networks for
GPS spoofing detection and particle filter for GPS spoofing
mitigation.

Fig.6 shows a 3D city environment including a building
map and a radio map. In particular, Fig.6(a) is a building
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FIGURE 6. 3D city environment.

TABLE 1. Parameter settings of the simulation platform.

Methods | Parameter Definition Value(s)
£ Communication 2 5Ch
frequency
Ray
Tracing A Wave 0.12 m
bu length ’
Reflection
pr coefficient 331
Environment
Nbu nOise N(O,S)
Start
Dj waypoint (60,20,50)
Kriging End
dE GPS error 10 m
margin
v Radio map | m
resolution

map that has one base station and three constructions in a
3D 300 x 300 x 50 m? space, where the base station is
on the top of the middle building. Fig.6(b) is the city radio
map developed with the deterministic channel model and ray
tracing tools. Notably, this radio map is set as the ground truth
to test the Kriging methods that are used for constructing the
fine-grained 3D radio map.

Table.1 illustrate parameter settings for ray tracing and
Kriging. The communication frequency is set at 2.5 GHz
(wavelength round to 0.12 meters) in the simulation platform,
which is used by ray tracing in the radio propagation models.
In addition, the reflection coefficient is 5.31 standing for the
urban concrete reflection surface [52] and the environmental
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FIGURE 7. The performance of the UK with an exponential kernel.

noise follows the normal distribution A(0,5). The Kriging
method is applied to the UAV flying region for construct-
ing a fine-grain radio map. Particularly, the UAV locates at
p;(60, 20, 50) and plans to p;+1(80, 20, 75). The GPS error
dE is preset as {10, 20, 30, 40, 50} to simulate the GPS error
for different scenarios. The resolution of the fine-grained
radio map, v, is 1 meter, which can meet the requirement of
GPS spoofing detection and mitigation.

Neural networks are applied to analyze the fine-grained
map and the reported data for GPS spoofing detection. Specif-
ically, the MLP uses 10 neurons with the ReLU activation
function in the input layer for capturing statistical results,
while the CNN employs two conventional layers with the
ReLU activation function for extracting deep spoofing fea-
tures from the reshaped RSS data, whilst the RNN utilizes the
Bidirectional layer with LSTM unit on the raw RSS sequence
data directly. Individually, CNN has a MaxPool layer for
reducing the neural network seize and a flatten layer for
reshaping the deep conventional features, where the dropout
ratio is set as 0.1 for protecting the neural network from
overfitting. Typically, all neural networks have one output
layer with a sigmoid activation function for predicting the
possibility of GPS spoofing attacks and are trained with the
Adam optimizer with a learning rate of 0.001 for 200 epochs.
In addition, the training and evaluation data set come from
two trajectories, one planned and one spoofed, where those
two trajectories have the same length and start position but
different end positions.

The particle filter is leveraged to estimate the true GPS
position after the spoofing attack. In particular, the number of
sampling particles N is set as 200, and the number of selected
particles Z is initialed with 10 for GPS spoofing mitigation.
Additionally, the particle filter has been tested 10 times with
different positions for evaluating its accuracy in terms of GPS
mitigation.

B. PERFORMANCE METRICS

1) STANDARD ERROR

Standard error is used for evaluating the performance of the
Kriging method, which is expressed as:

1
L=
M|

> Mep) = Mep))®,  (13)
preM;
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where £ denotes the standard error, aI}d M (p;) represents
the Kriging RSS value at p, while M(p;) stands for the
reference ground true RSS at p;.

2) ACCURACY
Accuracy is utilized to perform the evaluation on neural
networks, which is defined as:

TP + TN
TP+ FP+FN + 1N’

where the true positive (TP) is the correct detection for the
spoofed position while the false positive (FP) stands for the
wrong detection of spoofing, the true negative (TN) repre-
sents the correct prediction for GPS position not spoofed, and,
on the contrary, the false negative (FN) presents the spoofed
position detected as no spoofing.

(14)

Accuracy =

C. PERFORMANCE RESULTS

We first investigate the Kriging performance in terms of
radio map construction. Then, GPS spoofing detection neural
networks are trained and tested with the real RSS data and
the theoretical radio map data. In the end, the particle filter is
evaluated to mitigate the GPS spoofing.

1) KRIGING BASED RADIO MAP CONSTRUCTION

We evaluate both OK and UK with five kinds of kernels for
radio map construction to find the best method and kernel
with the lowest stand error and the shortest time consumption.
The results are summarized in Table.2 and Fig.7.

Table.2 illustrates that the UK with exponential kernel has
the best performance for radio map construction. Compared
with the OK, the UK shows better performance on RSS
data interpolation because of the deterministic trends of radio
propagation. In addition, the exponential kernel has a smaller
standard error than the other kernels, due to the fact that the
radio large-scale fading follows the Log model. Furthermore,
the standard error is decreasing with increasing the number of
ray tracing, because the accuracy of the kriging interpolation
depends on the number of initialization samples and the more
samples with the more accurate prediction. Moreover, it is
notable that the train time is increasing with the initialization
samples. Although the linear kernel needs less time for fitting
the samples, it makes more errors in predictions. Thus, the
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TABLE 2. Kriging-based radio map construction.

Kriging method Kernel Standard error Train time (millisecond)
10% | 20% | 30% | 40% | 50% | 10% | 20% 30% 40% 50%
linear 180 | 160 | 139 | 121 100 | 497 3984 | 14425 | 38940 | 76388
power 160 | 147 | 140 | 120 97 1471 | 10378 | 33347 | 81252 | 148322
OK gaussian 156 | 318 | 375 | 174 | 191 857 6749 | 20592 | 61628 | 123360
spherical 97 78 55 44 39 1275 | 7689 | 26060 | 60334 | 111674
exponential | 105 58 46 44 28 816 6231 | 22392 | 49532 | 115916
linear 183 | 160 | 139 | 121 100 | 552 3918 | 15124 | 36094 | 72582
power 159 | 154 | 138 | 121 101 | 1443 | 10385 | 33964 | 75964 | 153501
UK gaussian 210 | 176 | 428 | 331 | 363 | 1035 | 7267 | 24215 | 66108 | 117023
spherical 94 76 56 50 36 1315 | 7913 | 27431 | 50692 | 117705
exponential | 89 58 56 35 28 835 6426 | 21816 | 55222 | 106336

UK with an exponential kernel is finally adopted for radio
map construction.

Fig.7 demonstrate the UK with an exponential kernel for
radio map construction, which includes sampling and Kriging
interpolating. Fig.7(a) show the sampling that generates the
positions in the 3D city environment randomly and then
uses ray tracing and the deterministic model to compute the
RSS values for those positions. In Fig.7(b), the UK with an
exponential kernel is trained on those samples and predicts
the RSS values for the unknown positions. It can be observed
from Fig.7(b) that the use of Kriging can achieve the same
results as ray tracing in Fig.6(b). Fig.7(c) depicts the fine-
grained 3D radio map using the UK with an exponential
kernel, where the radio map focuses on the UAV movement
region with a higher resolution. The fine-grained 3D radio
map can help to increase the GPS spoofing detection and
mitigation performance as well as decrease the ray tracing
and Kriging region.

2) NEURAL NETWORKS BASED GPS SPOOFING
DETECTION

Neural networks based GPS spoofing detection approaches
are evaluated with the train and test data set in terms of the
model accuracy and training time, as shown in Fig.8 and
Fig.9. Specifically, the GPS spoofing detection performance
is not only influenced by input data size or step size but
also by the system GPS spoofing margin, where the input
data size is the number of data points in statistic analysis for
MLP while the step size is the number of new data points
in the input sequence of CNN and RNN (e.g., the LSTM).
Additionally, the model training and updating time also has
impacts on GPS spoofing detection performance, since a
higher model training or updating latency may hinder the
GPS spoofing detection on time and increase the collision risk
amongst UAVs.

Fig.8 illustrates the accuracy of neural networks on GPS
spoofing detection. Fig.8(a) shows the input data size has
insignificant impacts on the MLP model because the statistic
processing can extract the spoofing features from the raw
data. In Fig.8(b) and Fig.8(c), the step size shows fewer
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impacts on the CNN but more on the LSTM. The reason is
that CNN uses convolutional layers to extract the deep fea-
tures while LSTM leverage the bidirectional layers to excerpt
the temporal features, the temporal features influenced by the
environment more than the deep features. In addition, MLP
accuracy is increasing but the CNN and LSTM accuracy is
decreasing when turning up the spoofing margin. In practice,
the statistics mitigate the environmental dynamics while the
convolutional layers and the bidirectional layers record the
environmental changes. In addition, LSTM has overfitting
with a bigger step size or spoofing margin, due to the fact that
LSTM needs more data for training but a bigger step reduces
the data points in train data.

Fig.9 summarizes the average training time spent by MLP,
CNN, and LSTM for 10 rounds. Expressly, the MLP training
time also includes statistical processing. Remarkably, it can
be observed from Fig.9 that CNN spends less time than MLP
and LSTM. In addition, the CNN training time can be further
reduced by using transfer learning [38]. Overall, CNN can
achieve comparable accuracy as well as model training time
for detecting GPS spoofing attacks on cellular-connected
UAVs.

3) PARTICLE FILTER BASED GPS SPOOFING
MITIGATION

We evaluate the particle filer-based GPS spoofing mitigation
method and its performance in Fig.10 and Fig.11.

Fig.10 depicts the GPS spoofing mitigation processes,
where the GPS spoofer deviates the UAV from its intended
path and the particle filter is utilized to estimate the UAV’s
true position. Specifically, the GPS signal is considered as
not spoofed when the UAV is at its starting position or the
distance between the actual position and the intended position
is within the spoofing margin. As evident from Fig.10, the
particle filter can effectively mitigate GPS spoofing and relo-
cate the UAV close to its actual position even with significant
GPS deviations. This is because the particle filter utilizes
both the theoretical and real Received Signal Strength (RSS)
values to estimate the UAV’s position. Rather than following
the planned positions, the mitigated positions are positioned
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FIGURE 8. The accuracy performance of MLP, CNN, and LSTM on spoofing detection. The input sequence size is 10 x 10 for the
CNN and 100 x 1 for the LSTM and the GPS error on MLP accuracy uses 100 x 1 data points for statistical analysis, distinctively.
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FIGURE 9. Average training time for 10 rounds with dE = 10.

around the UAV’s actual location. This is crucial as accurately
determining the UAV’s true position is crucial not only for
mitigating GPS spoofing but also for planning the recovery
path. Instead of following the planned positions, the mitigated
positions are positioned around the actual location of the
UAV. This is crucial as accurately determining the UAV’s true
position is essential not only for mitigating GPS spoofing but
also for planning the recovery path.

Fig.11 demonstrates the estimation error and the compu-
tation time of different particle filters. It can be observed
from Fig.11(a) that the estimation error decreases from above
10 meters to below 4 meters with increasing the number of
particles from 50 to 200. In addition, the estimation error
converges to around 3.75 meters after using 200 particles.
Indeed, the particle filter is based on a normal distribution that
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FIGURE 10. GPS spoofing mitigation with N = 100 and

induces inevitable errors when sampling positions. Moreover,
Fig.11(b) indicates the estimation time of particle filter has
an exponential relationship with particles because the time
complexity of the particle filer-based GPS spoofing is O(N?2).
Therefore, the particle filter is for mitigating the GPS spoof-
ing rather than replacing the GPS localization method due to
its limited accuracy and high latency.

In conclusion, the utilization of a trained CNN can enable
timely and ongoing detection of GPS spoofing, while the
particle filter can accurately locate the true position of the
UAV within one minute with an estimation error of 10 meters.
The integration of CNN and particle filter can deliver a
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high-performance GPS spoofing detection and mitigation
system. To guide the UAV to its planned path, a new recov-
ery path planning is necessary, which will be addressed in
our future work. While the particle filter offers numerous
benefits, it has a drawback that it relies on the UAV being con-
nected to the cellular network in order to obtain the radio map
data and real-time measurements. To address this limitation,
it is worth exploring alternative methods for UAV navigation
that do not rely on GPS. In this regard, we will elaborate more
on non-GPS navigation including the secure sensor fusion
method in our future work.

VIl. CONCLUSION AND FUTURE WORK

This paper investigates radio map and machine learning-based
GPS spoofing detection and mitigation methods for cellular-
connected UAVs. Firstly, the edge UFC or the UAV leverages
ray tracing tools, deterministic channel models and the Krig-
ing method to construct a 3D radio map. Then, machine
learning methods, such as MLP, CNN and RNN, are used to
detect the GPS spoofing by analyzing the real time RSS val-
ues reported by the base station or the UAV and the theoretical
RSS values provided by the 3D radio map. Once the spoofing
detection, the particle filter is applied to relocate the UAV and
find the true position. The experiment results indicate that the
Universal Kriging (UK) with an exponential kernel is the best
radio map construction method regarding standard errors.
Moreover, the MLP achieves the best spoofing detection
accuracy because of the use of statistic features while the
CNN needs less training time since the CNN inputs are raw
RSS data. Furthermore, the particle filter can recover the UAV
position to its real position within an error of 10 meters in one
minute.

Despite the radio map demonstrating effectiveness in GPS
spoofing detection and mitigation, the proposed solution is
only for cellular-connected UAVs in an urban canyon envi-
ronment. However, the cellular-connected UAV could be in
different environments with different connections. Because
radio map construction consumes a lot of computation and
storage resources, it is difficult to build a radio map in a
large region within an edge server. In the future, we will
elaborate more on radio map combinations across different
edge servers and build a digital twin platform that focuses on
both data-driven and model-driven radio maps for seamlessly
monitoring the UAV and UAV swarms. In the future, we will
provide detailed information on the recovery path planning
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process that leverages the mitigated true position and the
INS-based navigation to guide the UAV back to its intended
trajectory.
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