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ABSTRACT For a wide range of smart agriculture use cases, the prospects of utilizing the Internet of Things
(IoT) are immense. Many IoT devices can be deployed for precision farming, soil management, automated
irritation, information gathering, or performing some local processing to provide various services. Due to the
computational capacity limitation of IoT devices and their limited power, UAV-aided mobile-edge computing
(MEC) is proposed to provide IoT nodes with additional resources by hosting their computation functions
and making smart agriculture use cases more operational. On the other hand, from the implementation
viewpoint, Network Function Virtualization (NFV) is an emerging approach recently proposed for flexible
management of such computation functions in UAVs and MEC-server. However, efficient orchestration of
the virtualized functions is a challenge. In this paper, we consider a decentralized UAV-aided MEC system in
which the NFV-enabled processing nodes manage the computational tasks. To be more specific, we consider
the smart agriculture use cases that need live streaming/analysis, such as surveillance or environmental
monitoring. In such a network, we propose a method for orchestrating the NFVs efficiently, while the network
energy consumption throughout the network is minimized. This problem becomes even more crucial when
considering a strict condition on the instantaneous AoI values. Therefore, the problem is first formulated
as a Decentralized Constrained Multi-agent Markov Decision Process (Dec-CMMDP). As the formulated
problem is NEXP, in the next step, we exploit some structural features of the considered network and
introduce the concept of symmetry to simplify the problem. Then, inspired by Augmented Lagrangian dual
optimization, a novel decentralized, federated learning-based solution is proposed to solve the problem.
Simulation results show the effectiveness of the proposed approach in minimizing the total network energy
consumption, minimizing the averageAoI, and satisfying the strict condition ofAoI < 100msec for supporting
real-time applications in our network parameter settings.

INDEX TERMS Internet of Things, network function virtualization, age of information, UAV-aided mobile
edge computing (UAV-aided MEC), constraint MDP, federated reinforcement learning.

I. INTRODUCTION

AGRICULTURE, as the main source of food that faces
ever-increasing global demand, requires a major step

forward in quality and productivity. The introduction of
the Internet of Things (IoT) and its applications in smart
agriculture provide this industry with effective tools to sup-
port farmers not only for better productivity but for greater
profitability [1]. IoT provides connections among numerous

devices that, in harmony with each other, are deployed to
provide a specified service. The use cases cover a wide range
of services such as crop field monitoring, pest control, smart
autonomous irrigation, and soil management [1], [2]. The
applicability of IoT is not limited to agricultural land itself
but on a much wider scale includes the supply chain as
well [3], [4]. Therefore, a huge amount of data provided by
IoT nodes expanded throughout the agriculture and supply
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chain needs to be processed and analyzed to support real-time
and non-real-time decision making processes [1], [5]. That
is while volatile weather conditions besides the vastness of
agricultural fields will increase the risk and maintenance
costs [2]. Therefore, such a huge data computation and
analysis demand will put a strain on resource-limited IoT
devices. To improve the capability of resource-constrained
IoT devices and network coverage, UAV-aided MEC [6], [7]
is proposed. The flexibility, and mobility in changing weather
situations, as well as being easy to deploy and having reason-
able maintenance costs make UAVs an effective solution to
provide IoT devices with the required resources. This goal is
realized by enabling the IoT nodes to offload their processing
task to hovering UAVs which is equipped with the required
storage, processing, and communication resources [2].

Therefore, IoT in conjunction with UAVs, has attracted
much attention and is widely utilized in smart agriculture
and smart farming [1], [2], [8], [9]. For instance, in envi-
ronment monitoring applications or precision farming [10],
the IoT devices are distributed throughout the intended area
and collect real-time data from their surroundings. Next,
the collected data is forwarded to the UAVs. Finally, the
pre-processed data is forwarded to the local server for fur-
ther processing and information extraction to support timely
farming-related decisions and actions. The purpose of pre-
cision farming is to improve the accuracy of operations and
maximize the overall performancewhile reducing cost by tak-
ing the field’s variables such as weather conditions, and infor-
mation on moisture level and soil water requirements (for
example for smart autonomous irrigation) into account [1],
[5], [8]. This extends smart agriculture scope to guarantee a
secure and sustainable food supply chain provided by context
and situational awareness through processing the real-time
events where rapid protective and/or recovery actions are
needed [11]. Such applications are computationally intensive,
delay-sensitive [1], [2], [8], [10], [12], and freshness of infor-
mation is an important aspect that needs to be considered.
With emphasizing information freshness, AoI is recently

proposed as a metric to quantify the timeliness and freshness
of the collected data [13], [14]. This metric is widely used
in the context of IoT networks [15], [16] to evaluate the
freshness of the data at the destination node. AoI is the
time elapsed from the generation of the last-received update
packet [14]. AoI increases linearly over time until the next
fresh packet has arrived, and this is the main difference
between the AoI and the other traditional metrics that quan-
tify the timeliness of a designed system.

Before diving into another important aspect of smart farm-
ing realization, in the following, we will provide two use
cases of real-world realization of smart agriculture. The
first use-case is the work presented in [17] which exploits
cloud and edge computing in conjunction with NFV tech-
nology to develop a system covering excessive requirements
of smart precision farming. A platform of three layers is
developed. The first layer is a local cyber-physical system

that mainly gathers data by interaction with crop devices
in a real-time manner. The second layer is an edge com-
puting plane composed of VNFs where task offloading is
accomplished. And finally, the third layer is a cloud plat-
form to collect and record data. This 3-tier platform is
able to cope with the requirements of soilless agriculture
in full recirculation greenhouses [17]. The second case is
the Flourish research project [18], an adaptable robotic solu-
tion that combines the capabilities of a small UAV network
with another small network of autonomous unmanned mul-
tipurpose ground vehicles. Flourish is aimed at monitoring
crop density, crop nitrogen level, and weed pressure to pre-
cisely classify weeds by developing multi-spectral perception
algorithms. In the next step, the developed navigation and
mapping system is able to locate weeds and perform selec-
tive spraying. All the above multi-function processes are
performed without human intervention [18]. Therefore, in a
UAV-aided smart agriculture scheme (which is the case of
interest in this paper), the UAVs are exposed to a huge amount
of data to process in a timely manner. In other words, we are
facedwith a dynamic computing environment where different
processing/computing functions need to be implemented on
the UAVs and the MEC local server in a scalable, flexible,
easy-to-launch, and cost-effective manner [11], [17], [18].
From this point of view, virtualization of the network element
functions (NFs), called NFV, is a key technology for reliably
implementing and intelligently managing the NFs [19]. The
NFV virtualizes the NFs and abstracts them from the physi-
cal hardware, which enables rapid service function chaining
(SFC), and service provisioning in UAV-aided MEC applica-
tions [20]. Considering the data-intensive and computational-
based application of smart agriculture, multiple computing
functions in the form of virtual network functions (VNF)
should be deployed sequentially and orderly to provide the
processed data for the final decision-making at the localMEC
server. One of the most important problems that should be
optimally and efficiently solved is the placement of VNFs,
managing the resources among different VNFs, and deter-
mining how to route the packets of information among VNF
components over the available NFV infrastructure. VNF
Orchestrator (VNFO) performs this operation [21]. As the
network traffic and VNF’s load change over time, the place-
ment needs to be dynamically adjusted to the new conditions
as well [22]. Utilizing NFV enhances the agility in deploying
and managing network components and improves the robust-
ness and scalability of networks significantly [20], [22].

In this paper, we will focus on the smart agriculture use
cases that require live streaming and analysis, where there is
a strict condition on the AoI values. Surveillance and environ-
mental monitoring, in general, are two examples of such use
cases. Subsequently, the VNFO should decide on the place-
ment and scheduling of the chain of VNFs to minimize total
network energy consumption while resulting AoI values must
be less than a predefined threshold. Therefore, to mathemati-
cally model such a constrained decision-making problem, the
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extended version of the Markov Decision Problem (MDP),
i.e., constrained MDP (CMDP) [23], is utilized. More specif-
ically, we consider a distributed multi-agent CMDP (Dec-
CMMDP) where each UAV is responsible for placement and
scheduling its corresponding VNFs belonging to its support
services. Nevertheless, unless for a particular case that the
agents are transition and reward-independent, the optimal
policy for this problem is NEXP-complete with no standard
solution in polynomial time [24]. Recently, machine learning
algorithms and artificial intelligence (AI) based solutions
appear viable ways to solve such complex problems in poly-
nomial time [25], [26], [27]. Since its inception in 2017 [28],
Federated Learning (FL) has reshaped many emerging intel-
ligent IoT systems toward advanced FL architecture. The
distributed nature of FL, where some clients cooperatively
train a global ML model without directly sharing the local
data, makes FL an attractive alternative to traditional cen-
tralized ML schemes. Particularly, FL enhances the privacy
and scalability of IoT applications and networks by pushing
intelligent ML functions to the network edge [27].
In the context of delay-sensitive smart agriculture appli-

cations, we address the problem of robust and flexible man-
agement of virtualized computing functions by distributing
them into processing nodes: UAVs and the local MEC server.
The purpose is to perform this function chaining in such a
way that the total energy consumption of the UAVs and IoT
nodes is minimized. At the same time, a strict condition on
the instantaneous values of AoI is satisfied. We formulate the
problem above as a distributed multi-agent CMDPmodel and
propose a novel energy-efficient FL-based solution to solve
it. The main contributions of our paper are summarized as
follows:

• To the best of our knowledge, this is the first time that
the problem of constrained dynamic orchestration of
NFV-enabled SFCs in a UAV-aided MEC network is
considered under instantaneous strict conditions.

• We formulate this joint optimization problem as a Dec-
CMMDP, where a strict condition on the instantaneous
value of AoI must be satisfied.

• We developed an extended version of the Augmented
Lagrangian dual optimization method in conjunction
with Federated Learning to obtain the optimal policy for
the formulated Dec-CMMDP problem.

• As the formulated problem is NEXP-complete,
we adopted the inherent symmetry in the structure of the
problem and proposed a novel Iterative Federated-based
algorithm in which a set of distributed parties learns in
parallel and aggregates their own experience through a
coordinator.

The rest of the paper is organized as follows. Section II
introduces the related works. Section III describes the system
model. Section IV presents the problem definition and formu-
lation. Section V explains how the problem can be modeled
as a Dec-CMMDP. The proposed Iterative federated-based
solution and the analytical results that support our proposed

algorithm are presented in Section VI. The effectiveness and
performance of the proposed scheme are demonstrated in
Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORKS
To enable different operations, such as environmental mon-
itoring and automation, numerous IoT devices are used in
IoT-based smart agriculture [1], [12], [15], [29]. For a com-
prehensive review of emerging technologies for IoT-based
smart agriculture, refer to [1]. For a UAV-aided farmmonitor-
ing IoT scheme, Nguyen et al. [12] considered the problem
of processing deadline-critical tasks which are fed by IoT
devices deployed on the field. Assuming that a Multi-access
MEC infrastructure is available, the energy-efficient moni-
toring problem is modeled as a multi-objective maximization
problem, and a Q-Learning-based solution is proposed which
aims to process the tasks before their deadline. The same
authors in [29] have extended the proposed scheme in [12]
to a multi-actor-based risk-sensitive RL approach.

In the context of UAV-aided IoT networks and to quantify
the freshness of information, AoI has been widely used in
some recent works [15], [16]. In [15], Han et al. considered
a UAV-aided IoT system in which the performance of data
gathering is analyzed in terms of packet loss rate and data
quantity using a Markov chain. To define the freshness of
data packets, they analyzed the AoI of devices as a first-
come-first-served (FCFS)model andM/M/1 queuing. In [16],
the authors considered a UAV-aided wireless powered IoT
system, where a UAV takes off from a data center, flies toward
sensor nodes to transfer energy, collects their information,
and then returns to the data center. To minimize the average
AoI of the data gathered from all ground sensors in such a
system, an optimization problem is defined. Then, a subopti-
mal method is proposed to decompose the problem into two
subproblems. The solution to the first subproblem is the input
for the second subproblem. Zhu et al. in [30] investigated the
age-sensitive MEC systems which benefit from UAVs. They
proposed a multi-agent RL scheme for intelligent control of
UAV’s trajectory planning, data scheduling, and bandwidth
allocation. The problem is modeled as an average Age-of-
Information (AoI) minimization. Then, an actor-critic-based
multi-agent RL framework is proposed, where edge devices
and a center controller cooperatively learn the interactive
strategies through their observations. To enhance system per-
formance in terms of convergence, an FL mode is introduced
into multi-agent collaboration.

Considering NFV-enabled UAV-aided MEC IoT networks,
each IoT service can be expressed as a service function
chain (SFC) defined as several strictly ordered VNFs. The
VNFs can be geographically placed into the localMEC server
close to IoT terminals or UAVs. However, optimally and
efficiently placing VNFs and routing service paths through
the VNF instances are challenging problems. This problem is
also known as SFC dynamic orchestration (SFC-DOP) [20].
In [20], Liu et al. presented a DRL-based framework for
dynamic SFC orchestration in IoT networks. Pei et al. in [22]
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TABLE 1. Summary of related works.

have dealt with the SFC embedding and dynamic VNF
placement in a geo-distributed cloud system. The problem is
formulated as a Binary Integer Programming (BIP) to embed
the SFC requests at the lowest possible cost.

A summary of related works along with the main top-
ics they have mainly focused on is provided in Table 1.
All problems mentioned above are modeled as conventional
MDP, as this work did not consider the case that there is a
strict condition on the AoI values. Liu et al. in [31] discuss
this issue that, in practice, RL techniques often cannot be
directly applied to physical systems, especially in cases where
there are some constraints to satisfy, e.g., limit resource con-
sumption. This paper has surveyed the existing approaches
addressing CMDP using RL. Two main types of constraints,
i.e., cumulative and instantaneous are considered, and their
pros and cons are discussed. Among all approaches dealing
with CMDP, there are two popular methods of Lagrangian
relaxation based algorithms [31], [32], [33] and Lyapunov
function based safe policy determination algorithms [34],
[35], [36]. None of the above studies consider CMDPs with
instantaneous constraints. Li et al. in [33] dealt with this
problem as a reward-maximizing policy determination while
satisfying certain constraints at each time step. They first
treated the conditions in which the strong duality of CMDP
is in place and then, inspired by the Augmented Lagrangian
Method [32], have proposed a policy-gradient-based RL
algorithm for instantaneously-constrained RL problems.

We summarized the main references in the literature
review in Table 1. As evident from this table, there are
a few works that consider AoI in smart agriculture net-
works, however, none of these studies consider CMDPs
with instantaneous constraint. In addition, none of them
consider the problem of SFC in such networks while bene-
fiting from NFV technology. Therefore, the techniques that
are proposed in these works are not able to be deployed

as a solution for the proposed smart agriculture framework
formulated in this paper. Our paper focuses on SFC in
NFV-enabled MEC where the problem is formulated as a
Dec-CMMDP. As opposed to other SFC studies we consider
an instantaneously-constrained Dec-CMMDP, where a strict
condition on the instantaneous value of AoI must be satisfied.
At the next step in section VI, inspired by [33], we will
propose our novel solution which is an extended version
of the Augmented Lagrangian dual optimization method in
conjunction with Federated Learning.

III. SYSTEM MODEL
The notations used in this section and the rest of the paper
are as follows. Matrices and sets are denoted by Bold upper-
case characters, and vectors are denoted by bold lower-case
characters. Z+ and Z+

0 denote positive integers and positive
integers plus zero, respectively. |A| is the cardinality of a set
A. E[X ] indicates expected value of X . 1A(a) is indicator
function, 1A(a) = 1 if the element a belongs to A, and
1A(a) = 0 if the element a does not belong to A. X+

=

Max{x, 0},∀x ∈ R.
In the context of smart agriculture, a real-time IoT network

provides different types of real-time services to the network
operator. These services can cover various applications, from
environmental monitoring to automation. To be more spe-
cific, as it is depicted in Fig. 1, there is a setN ofN IoT nodes
that collect delay-sensitive real-time information; Then send
them to a local server through an Aerial Network in the form
of packets. The Aerial Network consists of U UAVs denoted
by the set U . Each IoT node is connected to a UAV in its
range. There is a local server located near the network and is
equipped with a MEC server1 indexed byM .

1Unless it creates ambiguity, throughout the paper, the terms MEC and
local server will be used interchangeably.
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FIGURE 1. System model.

FIGURE 2. Illustration of timing model.

The IoT network provides a set S = {Sk}Kk=1 of |S| = K
different services, each of which consists of a set Fk

=

{Fkf }
Fk
f=1 of F

k different processing functions should be per-
formed on the packets of that service by following a logical
order. Hence, it is assumed that the MEC server M and each
UAV u, as processing nodes, can run F =

∑
k∈S F

k different
VNF types on their physical computing machine. The total
available resources at the physical machine (processing node)
p ∈ U ∪M is indicated by Cp (in Hz) and Bp (in Byte), where
Cp andBp denote the computing andmemory capacity at node
p, respectively.

Each IoT node only supports one of theK different services
provided by the network. If skn ∈ {0, 1} denotes the service
type k ∈ S in IoT node n ∈ N is active, skn = 1, or not,
skn = 0, then we have

∑
k∈S s

k
n = 1,∀n ∈ N . However, there

is a strict condition on the AoI of the service provided by each
group of IoT devices. We will get back to this point later.

We consider a discrete-time system with two hierarchical
timing levels as illustrated in Fig. 2. According to the first
and smaller one, the time is divided into equal time slots
indexed by t = 1, 2, . . . , each with duration T . All communi-
cations in uplink and downlink directions are according to this
time schedule. On top of that, we have the VNF-scheduling
time slots t̃ with duration T̃ that is a single round of VNF
placement and scheduling updates. T̃ is multiples of T , T̃ =

O × T ,O ∈ Z+. At the beginning of each time slot t̃ , the
VNFO updates the VNF placements. Each UAV u combines
all the data packets of the IoT nodes with the same service
type, say k , and forwards the combined packet-flow ϒk

u (t)

throughout the aerial network toward the local server. The set

Fk
=

{
V fk

}Fk
f=1 of F

k different VNFs (processing functions)
must be performed on data packets of the IoT nodes with
service type k .

At the beginning of each VNF-scheduling time slot t̃ ,
for each service packet-flow ϒk

u (t), the set of processing
functions 1k

u(t̃) ⊆ Fk which will be performed by the
UAV u is determined. The remaining processing functions
for that service, 1̄k

u(t̃) = Fk
\ 1k

u(t̃), will be performed
by the MEC server. 1k

u(t̃) = ∅ means all the VNFs of that
service will be performed at the MEC server. During the
VNF-scheduling T̃ , the network follows a fixed placement
rule determined by the VNFO until the next placement at the
next VNF-scheduling time slot. It is assumed that the VNF
orchestrator (VNFO) located in the local server decides the
placement of the processing functions (VNF chains) of each
service packet flow. Although the VNFO module is located
on the local server, the orchestration process is performed by
coordinating the UAVs as distributed agents. We will explain
this process in the following sections in detail.

Let vfkp (t̃) ∈ Z+

0 denote the number of VNF instances
from V fk that is selected to be run on processing node p at
VNF-scheduling time slot t̃:

vfkp (t̃) =

{
11k

p(t̃)
(f ) if p ∈ U,∑

u∈U 11̄k
u(t̃)

(f ) if p = M .
(1)

The set of all assigned VNFs to the processing node p ∈

U ∪M is indicated byP to−do
p

(
t̃
)

= {|vfkp (t̃)| instances of V fk}.
There are two communication links among the network

nodes: the wireless links between IoT nodes and an aerial
network consisting of UAVs and the wireless links between
the UAVs and the local terrestrial server. Let lnu(t) denote the
channel loss between IoT node n ∈ N and UAV u ∈ U , then
the achievable bit rate of node n in uplink direction will be
Rnu(t) = wn log2(1 +

pnu
lnu(t)σ 2

),∀n ∈ N , u ∈ U , where wn
and σ 2 denote the channel bandwidth of IoT device n and
the noise variance, respectively, and pnu is the transmission
power level. The channel between IoT nodes and UAVs and
between UAVs and the local server can be modeled as an air-
to-ground channel model [37]. According to this model, the
path loss, lnu can be calculated as [30],

lnu(t) =

(4π f
c

)2
d2(t)ηe, (2)

where f , c, and d are frequency of operation, speed of light,
and distance between the transmitter and receiver, respec-
tively; and ηe is the average of excessive path loss in two cases
of existing on Line-of-Sight (LoS) path, ηLoSe , and non-LoS
case, ηnLoSe ,

ηe = pLoS × ηLoSe + (1 − pLoS ) × ηnLoSe (3)

where pLoS is the probability of existing on the LoS path and
can be closely approximated as [30],

pLoS =
1

1 + a exp−b(ψ − a)
(4)
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where, a and b are environment-related parameters.
Similarly, in the downlink direction, the achievable bit rate

of the link between UAV u ∈ U and the MEC server M
will be RuM (t) = wuM log2(1 +

puM
luM (t)σ 2

),∀u ∈ U , where
wuM denotes the channel bandwidth, σ 2 is the noise variance,
puM is the transmission power level, and luM (t) denotes the
channel Loss at time t . In the following sections, we will
focus on the VNFO’s functionality, and resource allocation
of the radio access part is beyond the scope of this paper;
hence, without loss of generality, we assume a fixed power
and bandwidth allocated to all the participating nodes.

IV. PROBLEM FORMULATION
As explained in the previous section, at the beginning of
each VNF-Scheduling time slot t́ , the VNFO decides on the
placement of VNF chains.

Definition 1 (Placement Index): For the chain of VNFs
corresponding to service packet-flow ϒk

u (t),∀k ∈ S, u ∈ U ,
placement index δku ∈

[
0, |Fk

|
]
is defined as the point where

the chain is broken into two parts. The first part will be placed
in UAV u and the second part in MEC server M. δku = 0 (or
δku = |Fk

|) means all VNFs are performed in the MEC server
M (or UAV u).

Definition 1 implies that the packets travel a loop-free
route. Each packet belonging to ϒk

u (t) needs a specific com-
putational capacity cfk in terms of CPU cycles. Assuming that
all the processing capacity of processing node p in a single
time slot with duration T̃ is CpT̃ , the following condition at
each VNF-scheduling time slot t̃ should be satisfied:∑
k∈S

∑
f ∈Fk

1P to−do
p (t̃)(V

fk )|vfkp (t̃)|c
fk

≤ CpT̃ , ∀p ∈ U ∪M .

(5)

The above condition ensures that the computing capacity of
the selected processing node is enough to serve the assigned
VNFs. The same condition also needs to be fulfilled regarding
the storage capacity requirement bfk (in Bytes):∑
k∈S

∑
f ∈Fk

1P to−do
p (t̃)(V

fk )|vfkp (t̃)|b
fk

≤ Bp, ∀p ∈ U ∪M .

(6)

where Bp is the total amount of available storage capacity of
the processing node p.

A. AGE OF INFORMATION
The AoI metric is adopted to quantify the freshness of the
received packet at the destination. As mentioned, AoI is
defined as the time elapsed from the generation of the last
received packet from that service. This subsection will show
how to formulate and quantify this metric regarding the net-
work parameters.

For each service packet-flow ϒk
u (t), let τ

k
u (t) denote the

expectation of IoT access network delay with respect to trans-

mission rate Rnu(t),

τ ku (t) = ERnu(t)[τ
k
nu(t)],

τ knu(t) = Dnu/C +3k
nu/Rnu(t) (7)

where Dnu is distance between IoT node n ∈ N and UAV
u ∈ U and 3k is the packet length of service type k ∈ S.

If tku represents the time elapsed from the beginning of the
time slot t in which a packet from service packet-flow ϒk

u (t)
has arrived, the AoI of service packet-flows at the UAV nodes
can be calculated as,

2k
u(t) =

{
τ ku + T − tku , if αku (t) = 1,
2k
u(t − 1) + T , if αku (t) = 0,

∀k ∈ S, u ∈ U .

(8)

where binary variable αku (t) ∈ {0, 1} indicates whether any
new packet of service flow k at TS t is received, αku (t) = 1,
or not, αku (t) = 0. As mentioned above, tku represents the time
elapsed from the beginning of the time slot t in which a packet
from packet-flow ϒk

u (t) has arrived, so referring to the first
equation of (8), T − tku is the time passed from receiving that
last packet of packet-flow ϒk

u (t) in the case that in time slot
t a new packet from this packet-flow is received; As a result,
τ ku + T − tku would the time elapsed since the generation of
the last received packet from packet-flowϒk

u (t) at time slot t ,
i.e., the AoI of this packet-flow at time slot t . By definition,
for every time slot t in which the UAV does not receive a
new packet from a service packet flow, the AoI of that service
packet flow increases by T which leads to the second equation
of (8). On each packet of service packet-flow ϒk

u (t), the set
Fk of VNFs (processing functions) should be performed, the
subset 1k

u(t̃) in UAV and the remaining VNFs 1̄k
u(t̃) at the

MEC server. The processing time of every packet of this flow
will be,

8k
u(t) =

(⌈∑
V∈1k

u(t̃)
θVu

T

⌉
T+τ kuM (t)+

⌈∑
V∈1̄k

u(t̃)
θVM

T

⌉
T
)
,

τ kuM (t) = DuM/C +3k (δku )/RuM (t),

∀k ∈ S, u ∈ U . (9)

where θVu and θVM is the run time of VNF V when it is
performed on UAV u and the MEC server M , respectively;
3k (δku ) is the packet length of service type k after performing
the δku th VNF of the chain, and, τ kuM (t) is total transmission
delay betweenUAV u and theMEC serverM for transmission
of a single packet consists of propagation delay and transmis-
sion delay.

Let binary variable βku (t̃) ∈ {0, 1} indicate whether the
VNF scheduling for service packet-flow ϒk

u (t) in a single
round of VNF scheduling t̃ was successful, then, the AoI at
the Local server will be,

5k
u(t) =

{
2k
u(t) +8k

u(t), if βku (t̃) = 1,
5k
u(t − 1) + T̃ , if βku (t̃) = 0,

∀k ∈ S, u ∈ U .

(10)
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For every unsuccessful VNF scheduling, the AoI of that
service packet flow increases by T̃ .
To support our time-sensitive application, we need to guar-

antee that the AoI for each service packet flow is less than a
predefined threshold all the time. This point is reflected in the
following remark.

Remark 1: For each service packet-flow ϒk
u (t), we have

this strict condition that the age of information 5k
u(t) in

relation (10) be less than a predefined threshold ξ ,

5k
u(t) < ξ, ∀k ∈ S, u ∈ U . (11)

B. ENERGY CONSUMPTION
In this subsection, the total energy consumption for process-
ing and delivering a single packet of each service packet flow
to the local server is formulated. For the uplink direction, the
energy consumption can be calculated as

EUL (t) =

∑
n∈N

∑
k∈S

∑
u∈U

sknpnuτ
k
nu(t),

τ knu(t) = 3k (0)/Rnu(t), (12)

where τ knu(t) denotes the transmission time between IoT node
n, with service type k , and UAV u at TS t , and 3k (0) is
the packet length of service type k before performing any
processing functions. Similarly, for the energy consumption
in the downlink direction, we have,

EDL (t) =

∑
u∈U

∑
k∈S

puMτ kuM (t),

τ kuM (t) = 3k (δku )/RuM (t), (13)

where τ kuM (t) denotes the transmission time of packets belong
to service type k from UAV u to the MEC server M , and,
3k (δku ) is the packet length of service type k after performing
the δku th VNF of the chain.
Finally, ifψVu andψVM denote the power that UAV u and the

MEC server M which hosts the VNF V consumes to run this
VNF on each packet of this service packet-flow, respectively,
then, the total energy required for performing the VNFs on
a single packet of each service type can be calculated as
follows:

EV =

∑
u∈U

∑
k∈S

( ∑
V∈1k

u(t̃)

ψVu θ
V
u +

∑
V∈1̄k

u(t̃)

ψVMθ
V
M

)
. (14)

Th exact value of ψVu and ψVM parameters depend on the
hosting processing power including CPU power, efficiency,
and so on. Here, for the sake of brevity, in the math for-
mulation we have considered these affecting parameters in
a single parameter. In the deployment phase, they should be
determined and taken into account depending on the exact
specifications of the hosting machine.
Using (13)-(14), the total energy consumption of the net-

work to process a single packet of all service types for all
UAVs will be,

E total (t) = EUL (t)+ EDL (t)+ EV (t) . (15)

IoT nodes’ are energy-limited and UAVs also are battery
operated; hence, their available energy to compute and com-
municate is limited. It is important to note that, in certain
circumstances, the VNFO may place some of the VNFs to
be processed locally by IoT nodes. Thus, the total long-term
cumulative value of their energy consumption should be min-
imized as well. On the other hand, as declared in Remark 1,
there is a strict condition (constraint) on the AoI value of the
service packet-flows. Therefore, the following constrained
optimization problem should be solved.

Problem 1 (Constrained Energy-Efficient VNFO): Consi-
dering the service packet-flow requirements, UAVs/MEC-
server available resources, and the condition of the access
network, an energy-efficient VNFO solution is needed that
guarantees the required instantaneous AoI value at the local
server:

Minimize
δku ,∀u∈U ,k∈S

∞∑
t=0

E total(t),

s.t. 5k
u(t) < ξ, ∀k ∈ S, u ∈ U ,

(5) − (6). (16)
It is worth mentioning that αku (t) in (8) and βku (t̃) in (10) are
the results of the policy δku which is the expected output of
a solution for solving Problem 1. These two variables αku (t)
and βku (t̃) are defined to formulate the AoI mathematically
but they are not independent variables actually. δku will be
the policy of VNF placement that will be deployed by NFVO
and will determine the actual value of αku (t) and β

k
u (t̃) in the

deployment phase.
In each VNFO-level time slot T̃ , the orchestrator sequen-

tially decides on the chain of NFVs of each service flow
of UAVs. Markov Decision Process (MDP) is a powerful
framework for mathematically formulating and studying this
type of problem for a class of sequential decision-making
problems. Depending on the environment state, theMDP out-
put will be the best action (or at least the best upon the history
of the observations and actions) which maximizes a spe-
cific utility function [38]. However, according to Remark 1,
we have a strict condition on the AoI at the local server that
should be guaranteed. To incorporate this condition, in the
next section, we reformulate Problem 1 under the framework
of the constrained Markov decision process (CMDP). CMDP
is an extension of the standard MDP where the purpose
is optimizing an objective while explicitly satisfying some
constraints in terms of auxiliary costs [23].

V. DEC-CMMDP FORMULATION
A CMDP is modeled as a tuple ⟨S, s0,A,T , r, c, c0⟩,
where S is the state space, s0 ∈ S is the initial
state, and ∀(ś, s) ∈ S, a ∈ A, A(s, a) is action space,
T (ś|s, a),∀(ś, s) ∈ S, a ∈ A is the transition probability func-
tion, r(s, a) is the immediate reward function, c(s, a) is the
immediate cost and c0 is an upper bound on the expected
cumulative cost. In a CMDP, the agent based on the cur-
rent state s uses a policy π to perform an action a(s) that
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determines the next state ś according to the transition proba-
bility of T (ś|s, a). The best policy π among feasible policies
is the one that maximizes the expected discounted cumula-
tive reward E{

∑
∞

t̃=0 γ
t̃r(s, a)|π} while keeps the discounted

cumulative costE{
∑

∞

t̃=0 γ
t̃c(s, a)|π} less than the predefined

threshold c0, in a sequence of decision-making instances t̃ =

0, 1, 2, . . ., where, γ is the discounting factor.
Indeed, in our scheme, the VNFO is the decision maker.

Although a centralized VNFO may be optimal, it requires
a large volume of communication transactions to share the
local informationwith the centralizedVNFO tomake it aware
of the exact current state of the network. Another drawback
of a fully centralized VNFO is that it will not be scalable
and would be a single point of failure from the process-
ing and communication viewpoint. Therefore, in this paper,
we consider the constrained multi-agent MDP (CMMDP)
scheme [39] in which multiple agents or decision-makers
exist. In the literature, this scheme is also referred to as a
stochastic game [40]. In the CMMDP case, VNFO is imple-
mented as a multi-agent VNFO, where there is coordination
among the agents (or actors) that are the UAVs in our system
model. In the proposed multi-agent VNFO, a CMMDP is
formally defined as a tuple with the following definition.

Definition 2 (CMMDP Model): A CMMDPGwith a setU
of U agents is defined as a tuple G = ⟨U, S,A,T ,R,C, c0⟩,
where

• S is the finite set of entire environment states,
• A =

∏
u∈U Au is the joint action space, where Au is the

set of actions available to agent u,
• T is the transition function T :

⋃
s∈S (s× A(s))× S →

[0, 1], where T (ś|s, a(s)) is defined as the transition
probability from state s to ś by doing joint action a(s),

• R :
⋃

s∈S (s× A(s)) → R is reward functions, where
R(s, a(s)) is defined as the total reward received by all
agents when the joint action a(s) is executed at the entire
environment state s,

• C :
⋃

s∈S (s× A(s)) → R is cost functions, where
C(s, a(s)) is defined as the total cost incurred by all
agents when the joint action a(s) is executed at the entire
environment state s,

• co is a predefined upper-bound on the expected cumula-
tive cost: E{

∑
∞

t=0 γ
tC(s, a(s))|π} < co.

By definition, in a CMMDP, the agents based on entire net-
work state s and joint policy π perform independent actions
aπ
u ∈ Au. The joint action aπ (s)

=
∏

u∈U a
π (s)
u determines

the next entire environment state ś according to the transition
probability T (ś|s, aπ (s)). The total reward R(s, aπ (s)) and total
cost C(s, aπ (s)) received by all agents is also based on the
current entire-state s and joint action aπ (s) performed by all
U agents.

In a large-scale CMMDP, the requirement that all agents
can observe everything is too restrictive [41]. As an
alternative, the case where the state space is factored
into per-agent sets, S =

∏
u∈U Su is introduced. In

factored-state CMMDP, which is called a decentralized
CMMDP (Dec-CMMDP) [39], each agent u ∈ U condi-
tions its own policy πu only on locally observed state su ∈

Su, receive reward ru(s, a(s)) and incur cost cu(s, a(s)) with
required upper-bound of cou. It is worth noting that in a Dec-
CMMDP, the reward ru and cost cu each agent experiences
depend on the entire network state s and joint action a(s).
Whereas the local factored state su is the basis for choosing
the action by the agent.

As declared in Problem1, the purpose of our problem is to
find the best policy for VNF placement by determining the
best Placement Indices δku for all service packet-flows at each
state by the UAVs as distributed agents.

Let define the extended state seu,t̃ = (s−u,t̃ , a−u,t̃ , su,t̃ ),
∀u ∈ U as a combination of factored state of UAV itself, su,t̃ ,
joint factored state of the other UAVs, s−u,t̃ , and joint action
of the other UAVs, a−u,t̃ . In the following, where it does not
cause ambiguity, we ignore the time index t̃ . According to
Bellman expectation equation [42], the action-value function
Qπ
u,t̃

(
seu, au

)
,∀u ∈ U is defined as the expected return starting

from state seu taking action au according to policy πu, while
the other agents are taken the joint action a−u according to
joint policy π−u,

Qπ
u,t̃

(
seu, au

)
= E

{
ru

(
seu, au

)
+ γuQπ

u,t̃

(
śeu, áu

)}
, (17)

where the action-value function decomposed into immediate
reward ru

(
seu, au

)
plus discounted action-value of the succes-

sor state śeu, while the agent u will execute action áu; and γ is
discount factor. With some mathematical manipulation, (17)
can be written as,

Qπ
u,t̃

(
seu, au

)
= ru

(
seu, au

)
+ γu

∑
śeu

T
(
śeu|s

e
u, au

)
V π
u,t̃

(
śeu

)
,

V π
u,t̃

(
śeu

)
=

∑
áu

πu
(
áu|śeu

)
Qπ
u,t̃

(
śeu, áu

)
(18)

where, V π
u,t̃

(
seu

)
,∀u ∈ U is the value function at the extended

state seu and is defined as the expected discounted cumulative
reward starting from state seu following the joint policy π .
For an enough large value of t̃ (t̃ → ∞), the goal is to
find the optimal policy π∗

u among available policies πu which
leads to the optimal Q-value (action-value) function while the
constraint in (16) is satisfied,

∗

Qπ
u,t̃

(
seu, au

)
= argmax

πu
Qπ
u,t̃

(
seu, au

)
,

s.t. E{

∞∑
t̃=0

γ t̃ucu
(
seu, au

)
|πu} < cou. (19)

Using (17) and (18), and some math operations (19) can be
written as,

∗

Qπ
u,t̃

(
seu, au

)
= ru

(
seu, au

)
+ γu

∑
śeu

T
(
śeu|s

e
u, au

)
max
áu

∗

Qπ
u,t̃

(
śeu, áu

)
,
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s.t. E{

∞∑
t̃=0

γ t̃ucu
(
seu, au

)
|πu} < cou. (20)

Determining an optimal policy for a Dec-CMMDP is NEXP-
complete [24] with no straightforward solution. A few efforts,
[43], [44], [45], have been made in the literature to capture
and exploit some structural specifications of the understudied
system (application) to find or at least simplify the problem of
finding optimal policy (20). One of those that are proposed for
solving partially observable stochastic games (POSG) is [44],
where a class of POSGs is characterized by symmetry across
players (agents) in terms of cost and state dynamics. Inspired
by this work, we claim the following lemma which helps to
develop our proposed algorithm to solve Problem 1.

Lemma 1: Problem (16) is a symmetric Dec-CMMDP.
With being a symmetric CMMDP, the problem of finding the
best policy can be reduced to finding π∗

u , the best response to∏
ú̸=u πú, while πú = πu, ∀ú ̸= u.
In section VII we will prove this lemma.

Lemma 1 implies
{
π∗
u
}U
u=1 = π∗. Although this result is

promising, as we will utilize this result in developing our
proposed method in Section VI, from the implementation
viewpoint finding the best policy in a distributed form is
still challenging. On the other hand, the recursive form of
(20) provides the possibility of exploiting iterative solutions
like dynamic programming algorithm; however, for ourmulti-
agent CMDP case, they are inefficient [39] and require the
full information of the model which makes it impractical.
Therefore, we formulate the problem of finding optimal pol-
icy (20) for Problem 1 as a model-free RL problem.
Considering the limited available resources of processing

nodes in (5)-(6), the objective of Problem 1 is minimizing the
total energy consumption E total defined in (15), therefore the
reward function ru

(
seu,t , au,t

)
defines as,

ru,t̃
(
seu, au

)
= δV × ζu(t̃) − δE × E totalu (t̃), ∀t̃, u ∈ U,

(21)

where, ζu(t̃) ∈ [0,K ] is the number of packet-flows for which
the VNF scheduling result has satisfied (5)-(6) conditions; δV

and δE are the normalization coefficients for VNF scheduling
result and energy consumption terms, respectively.

On the other hand, the policy should guarantee the required
instantaneous AoI value at the local server; hence, from (16)
the constraint cu,t̃

(
seu, au

)
defines as,

cu,t̃
(
seu, au

)
= Max

k∈S

{
5k
u(t̃)

}
− ξ, ∀t̃, u ∈ U , (22)

According to the above discussion, Problem 1 can be refor-
mulated as an RL problem as follows.

Problem 2 (Cumulatively Constrained RL Problem): Con-
sider a Dec-CMMDP problem with U agents, unknown
transition function, reward function

{
ru,t̃

(
seu, au

)}U
u=1 defined

in (21) and cost function
{
cu,t̃

(
seu, au

)}U
u=1 defined in (22),

the objective is to find the optimal policies
{
π∗
u
}U
u=1 for the

following infinite horizon constraint optimization problem:

Maximize
πu

E
{ ∞∑
t̃=0

γ t̃ru,t̃
(
seu, au

)∣∣∣∣πu}, ∀t̃, u ∈ U,

s.t. E
{ ∞∑
t̃=0

γ t̃cu,t̃
(
seu, au

)∣∣∣πu} < 0. (23)

However, there is a point in fully modeling our problem as a
Dec-CMMDP. The AoI constrained in (16) is instantaneous
and requires that the instantaneous value of the AoI (repre-
sented by constraint function in (22)) at all time instances
satisfies this constraint. We will return to this point in the
next section, where we introduce our proposed framework for
solving Problem 2.

VI. ITERATIVE CONSTRAINED FEDERATED-DQN
FRAMEWORK
In this section, we introduce our proposed Iterative Con-
strained Federated DQN (IC-FDQN) algorithm as depicted
in Fig. 3.

A. AUGMENTED LAGRANGIAN BASED SURROGATE
OBJECTIVE FUNCTION
Even though Dec-CMMDP, and its model-free form declared
in Problem 2, are an appropriate choice for modeling Prob-
lem 1, a cumulatively-constrained MDP does not guarantee
the associated instantaneous constraint. Using CMMDP ter-
minology, according to (22), we require to have

E
{
cu,t̃

(
seu, au

)∣∣πu}
= E

{
Max
k∈S

{
5k
u(t̃)

}
− ξ

∣∣πu} < 0, ∀t̃, u ∈ U . (24)

whereas the constraint in the CMMDP model defined in
Definition 2 is cumulative. Hence, there is a gap here.
We base our proposedmethod on classical Lagrangian dual

optimization. Even though it is shown that for infinite-horizon
RL problems with cumulative constraints, under certain
regularity conditions, there is no duality gap despite their
non-convex nature [46], the same statement is no longer true
for the MDPs with instantaneous constraints [33]. Therefore,
we will adapt a newly-proposed extended version of the
Augmented Lagrangian (AugLag) method [33] to develop
a scheme for obtaining the optimal policy for Problem 2
while satisfying the instantaneous constraint of (24) in a
decentralized manner.

Li et al. [33] consider condition under which strong duality
holds for Problem 2 with instantaneous constraint, and then
design a new rewarding mechanism for a new unconstrained
surrogate objective function. It is proven analytically and
demonstrated empirically [33] that this method results in a
high-quality policy with smaller constraint violations than
the primal-dual method. We will return to this subject in
Section VII where we discuss the convergence of the pro-
posed algorithm. According to this method, for Problem 2
subject to instantaneous constraint (24) the surrogate reward
function r̃u,t̃

(
seu, au

)
for unconstrained surrogate MMDP
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FIGURE 3. IC-FDQN Algorithm steps and parties.

problem would be,

r̃u,t̃
(
seu, au

)
= ru,t̃

(
seu, au

)
+ λX+

(
cu,t̃

(
seu, au

))
−
ρ

2
X+

(
cu,t̃

(
seu, au

))2
.

(25)

From (25), the reward function ru,t̃
(
seu, au

)
is augmented

with two additional terms: The first one λX+

(
cu,t̃

(
seu, au

))
is inspired by traditional Lagrangian dual optimization,
where λ is the Lagrangian multiplier. The second term
ρ
2X

+

(
cu,t̃

(
seu, au

))2
is inspired by quadratic penalty function

with penalty parameter ρ2 [32].

Problem 3 (Surrogate Unconstrained RL Problem): Con-
sider a Dec-MMDP problem with U agents, unknown tran-
sition function and reward function

{
r̃u,t̃

(
seu, au

)}U
u=1, the

objective is to find the optimal policies
{
π∗
u
}U
u=1 for the fol-

lowing infinite horizon unconstrained optimization problem:

Maximize
πu

E
{ ∞∑
t̃=0

γ t̃
[
ru,t̃

(
seu, au

)
+ r̃u,t̃

(
seu, au

)]∣∣∣∣πu},
r̃u,t̃

(
seu, au

)
= λX+

(
cu,t̃

(
seu, au

))
−
ρ

2
X+

(
cu,t̃

(
seu, au

))2
,

ru,t̃
(
seu, au

)
= δV × ζu(t̃) − δE × E totalu (t̃),

cu,t̃
(
seu, au

)
= Max

k∈S

{
5k
u(t̃)

}
− ξ. (26)

The non-negative function X+ in (25) is crucial; otherwise,
it is not generally true that an optimal policy for (26) is
also optimal for (23) while satisfying instantaneous con-
straint (24) [33]. In the following subsection, we propose our
Federated-based iterative learning algorithm for solving (26).

B. PROPOSED IC-FDQN METHOD
In Problem 3, besides optimal policies,

{
π∗
u
}U
u=1, λ and ρ

are also two design parameters that should be optimally
determined. For a fixed value of (λ, ρ), Problem 3 would
be a multi-agent MDP. Hence, the optimal solution can be
determined through two nested iterative loops, where the
inner-loop determines the optimal policies

{
π∗
u,i

}U
u=1 for a

fixed value of
(
λ(i), ρ(i)

)
, then, the outer-loop over

(
λ(i), ρ(i)

)
aims to determine the optimal values of λ and ρ from an
initialized point of λ(0) and ρ(0), respectively, [33],

λ(i+1)
= λ(i) − l

(
E

[ ∞∑
t̃=0

γ t̃X+

(
cu,t̃

(
seu, au

))∣∣∣∣πu,i])
, (27)

ρ(i+1)
= cρρ(i). (28)
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where, l ∈ [1,∞) and cρ ∈ R+ are the increasing rate
of the quadratic penalty coefficient and dual ascent stepsize,
respectively.

According to Lemma 1, the optimal policy among the
agents is the same, an excellent promotion to adapt Deep FL
in our proposed scheme. Among decentralized methods, the
multi-agent solution needs a large volume of communication
overhead between the agents to share their local observations.
It does not fully utilize the potential of Lemma 1well. FL does
not have the communication overhead of the centralized
techniques and also does not necessitate the agents to share
all of the data and local observations to converge. Although
this specification is for providing privacy, in our problem,
it provides us with the gain of energy efficiency that arises
because the agents (UAVs) do not need to share all of their
observations.

As illustrated in Fig. 3, to estimate Q-value functions (17),
deep reinforcement learning (DRL) is deployed, where deep
neural networks (DNNs) are used as the function approx-
imators to predict the Q-values. The Q-function estimated
by the neural network (NN) in each agent u is represented
by

{
Qπ
u,t̃

(
seu,t̃ , au,t̃ ; θu,t̃

)}U
u=1, where the parameter θu,t̃ rep-

resents the weights of the NN. The updated value of θu,t̃ is
used to train the NN and approximate the actual values of
Qπ
u,t̃ [47], [48]. Let’s define the loss function L

(
θu,t̃

)
as the

expectation value of the mean squared error of the estimated
Q-value Qπ

u,t̃

(
seu,t̃ , au,t̃ ; θu,t̃

)
from the target value yu,t̃ [47],

L
(
θu,t̃

)
= E

[(
yu,t̃ − Qπ

u,t̃

(
seu,t̃ , au,t̃ ; θu,t̃

) )2]
, (29)

where, yu,t̃ = ru,t̃ + γ × argmax
au,t̃+1

Qπ
u,t̃+1

(
seu,t̃+1, au,t̃+1; θu,t̃

)
and au,t̃+1 indicates the agent’s action generated by the DNN
at t̃ + 1, given the state seu,t̃+1.
At each iteration, the deep Q-function approximator is

trained to learn the best estimate of the Q-function by min-
imizing the loss function L

(
θu,t̃

)
. To improve the stability of

the algorithm and cope with sample correlation, as depicted
in Fig. 3, two novel techniques, namely Fixed Target Net-
work [49], and Experience Replay Buffer [50] are deployed,
respectively. Utilizing these two techniques, the loss function
L
(
θu,t̃

)
can be written as

L
(
θu,t̃

)
=ED

[(
ru,t̃+γ × argmax

au,t̃+1

Qπ
u,t̃+1

(
seu,t̃+1, au,t̃+1; θ́u,t̃

)
− Qπ

u,t̃

(
seu,t̃ , au,t̃ ; θu,t̃

))2]
, (30)

where θ́u,t̃ denotes the target network parameters, and
the expectation ED is taken over the randomly selected
mini-batches of samples from the replay buffer D. As it
is illustrated in Fig. 3, we have two main entities, the set
U = {1, . . . ,U} of UAVs that are our distributed agents or,
in FL terminology, the clients, and the coordinator that in our
model is a local server (MEC-server). FL allows the UAVs
(clients) to train a shared global model parameterized by θg

that is an exact copy of the clients’ local model
{
θu

}u=U
u=1 using

their own local observations
{
Du

}u=U
u=1 , while the original

data have remained at UAVs. After local training, clients
share their local model updates with the coordinator. The
coordinator then aggregates the received updates to build
the global model θg. As a result, relying on the distributed
data training at the clients, the local server can enhance
the training performance without significant communica-
tion overhead as it just needs an update of the local model
parameters, not the clients’ local data. The federated learning
procedure of our proposed method includes the following key
steps.

1) DISTRIBUTED LOCAL TRAINING
Primarily, the local server initializes the global model, θg,0,
and transmits it to the clients. Upon receiving θg,0, during
VNF-scheduling time slots t̃ the clients interact with environ-
ment and train their local model

{
θu,t̃

}u=U
u=1 using their own

local observations
{
Du,t̃

}u=U
u=1 by minimizing a loss function{

Lu
(
θu,t̃

)}u=U
u=1 ,

θ∗

u,t̃ = argmin
πu

Lu
(
θu,t̃

)
, ∀u ∈ U (31)

Then, the clients upload their local update on
{
θu,t̃

}u=U
u=1 to

the coordinator for aggregation.

2) MODEL AGGREGATION
After collecting the clients’ local model updates,

{
θu,t̃

}u=U
u=1 ,

the next step is aggregating them into a new version of the
global model, θg,t̃+1, which is performed by coordinator
through averaging among the agent’s contributions,

θg,t̃+1 =

U∑
u=1

ωuθu,t̃ . (32)

whereωu represents the relative contribution of each agent on
the global model.

According to Lemma 1 and symmetry among theUAVs, the
best choice for ωu is ωu =

1
U . After deriving a new update

θg,t̃+1, the coordinator broadcasts it to all clients. Upon
receiving the update from the coordinator, the clients upgrade
their local model accordingly. Finally, for the locally-running
DQN model at the clients, the local state space Su, the
action space Au, and the reward function Ru are defined as
follows:

• State: We define the client’s state-space as a vec-

tor including 1) Computational,
{
cfk

}Fk ,K
f=1,k=1, and

storage,
{
bfk

}Fk ,K
f=1,k=1, capacity requirement of packet

flows belong to different services, 2) available CPU{
Cp(t)|t = t̃

}U∪M
p=1 and storage

{
Bp(t)|t = t̃

}U∪M
p=1

of the processing nodes (UAVs and the MEC server),
3) Transmission rate in uplink

{
Rnu(t)|t = t̃

}N
n=1, and

4) Transmission rate in downlink RuM (t)|t = t̃ at
VNF-scheduling time t̃ . Therefore, the state space Su
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will be,

Su

=

{{
cfk

}
f ,k ,

{
bfk

}
f ,k ,

{
Cp

}
p,

{
Bp

}
p,

{
Rnu

}
n,RuM

}
.

(33)

• Action: The action space is possible choices of the
placement index

{
δku ∈

[
0, |Fk

|
] }K

k=1 for all packet-

flows
{
ϒk
u
}K
k=1:

Au =
{
δku

}
k . (34)

• Reward: According to (26), the reward function at
VNF-scheduling time t̃ is given by:

r̃u,t̃ = λX+(cu,t̃ ) −
ρ

2
X+(cu,t̃ )

2. (35)

where ru,t̃ = δVζu(t̃) − δEE totalu (t̃), and
cu,t̃ = Max

k∈S

{
5k
u(t̃)

}
− ξ .

VII. CONVERGENCE AND COMPUTATION
COMPLEXITY ANALYSIS
The Convergence and computational complexity of the pro-
posed algorithm are discussed here. The convergence analysis
consists of two main parts, i.e., the convergence of the
outer-loop to determine the optimal values (λ∗, ρ∗), and
the inner-loop to determine the optimal policy {π∗

u,i}
U
u=1 for

fixed intermediate values of (λ(i), ρ(i)). The outer-loop is the
extended version of the augmented Lagrangian method and
its convergence is discussed in [32] and [33]. Therefore, in the
following, we will present the convergence of the inner-loop
and then we will determine the computational complexity of
the whole algorithm.

A. INNER-LOOP CONVERGENCE
We prove the inner-loop convergence in two steps as follows.
In step one, we justify our method in subsection VI-B on how
to aggregate the local models reported by the UAVs as local
agents, which is averaging. Then, we discuss the convergence
of the aggregation method itself. For step one, first, we need
to prove the Lemma 1 introduced in Section V and repeated
below for ease of reference.

Lemma 1: Problem (16) is a symmetric Dec-CMMDP.With
being a symmetric CMMDP, the problem of finding the best
policy can be reduced to finding π∗

u , the best response to∏
ú̸=u πú, while πú = πu, ∀ú ̸= u.

Proof: Inspired by [44], let’s define a symmetric
Dec-CMMDP model as follows.
Definition 3 (Symmetric Dec-CMMDP): A Dec-CMMDP

is called symmetric if the following conditions hold:
(i) ∀u, ú ∈ U , Au = Aú, cou = coú and γu = γú.
(ii) ∀ u ∈ U , a ∈ A, and an arbitrary permutation func-

tion σ (.) over all single actions {au}u=Uu=1 chosen by the
agents:

(a) ru(seu, σ (a)) = rσ (u)(seu, a),
(b) cu(seu, σ (a)) = cσ (u)(seu, a),
(c) T (·|seu, σ (a)) = T (·|seu, a).

Condition (ii) ofDefinition 3means the agents have the same
statistical and decision model and are independent of each
other. In our VNF-enabled SFC problem, as it is depicted in
Fig. 1, each distributed agent u ∈ U , has K packet flows
{ϒk

u (t)}
K
k=1 belonging to different services each of which

requires running a different VNF chain on its packets. The
statistical model of each service type packet flow is the same
for the agents. They independently decide how to break each
VNF chain between the local server and itself while they
follow the same objective function declared in Problem 1.
Therefore, it can be inferred that the agents conceptually
have the same decision-process model. Accordingly, without
loss of generality, we can assume that the discount factor
and the predefined upper-bound on the expected cumulative
cost of the agents are the same: {γu}u∈U = γ , {cou}u∈U =

co. As a result, it can be inferred that Problem 1 has the
conditions ofDefinition 3, so it is a symmetric Dec-CMMDP.
For such a class of symmetric multi-agent MDP, [44] demon-
strated that for any u, ú ∈ U , if πu = πú, then, πu is
ϵ-best-response to π−u if and only if πú is ϵ-best-response to
π−ú, where ϵ-best-response (for an arbitrary ϵ ≥ 0) defines
as a policy that achieves (reach) a reward (cost) within ϵ
of the maximum (minimum) value. With being a symmetric
CMMDP, the problem of finding the best policy can be
reduced to finding π∗

u , the best response to
∏

ú̸=u πú, while
πú = πu, ∀ú ̸= u. This proves Lemma 1.

Lemma 1 implies
{
π∗
u
}U
u=1 = π∗ which means despite

what the optimal policy is, all the agents are the same. This
justifies our model aggregation described in subsection VI-B,
i.e. averaging over locally computed models by the agents.
This method is perhaps the most popular method of
doing aggregation on local models in the literature, called
FedAvg [28], and its convergence has been extensively dis-
cussed in several papers [51], [52], [53]. Hence, in the
following step two, we only discuss whether our problem
and the proposed solution satisfy the required conditions for
convergence.

To have FedAvg convergence guaranteed, basically, two
particular conditions are assumed [51], [52], [53]: 1) data
among the agents are i.i.d. and, 2) all the agents are partici-
pating in global model training. Although the latter condition
in our case is true, however, the UAV’s observations are
not independent. This case is also dealt with in some recent
works. In particular, Wan et al. [54], have analyzed the con-
vergence rate of FL training in a more general setting with
non-i.i.d. local observations, where they considered the joint
impact of communication and training limitations while the
condition of the agents to be i.i.d is released.

B. COMPLEXITY ANALYSIS
In this section, the computational complexity of the proposed
algorithm in Fig. 3 is calculated. We consider the complexity
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of the proposed algorithm in two phases, i.e. Model Train-
ing and Action Selection when the trained model will be
deployed.

For each iteration of the outer-loop, we have the training
of the local models by the agents (UAVs), and then, the
aggregation of the local model by the MEC server to achieve
the global model. The complexity of local model training by
the agents is given by the summation of the complexity of
action selection and the complexity of the back-propagation
algorithm for each sample of the replay buffer multiplied
by the mini-batch size. For the last multiplication by mini-
batch size, note that in each iteration of the training process,
the local agent randomly takes a mini-batch of the samples
recorded by the agent in its local replay buffer.

For a fully connected NN with a fixed number of hidden
layers and neurons in each hidden layer, the complexity of
action selection is proportional to the summation of input and
output size of the exploited NN [55], [56]. The input size of
the NN equals the state space size which from (33) is given
by 2FK + 2(U + 1) + N + 1; and, the output size of the
NN equals the action space size which from (34) is given
by K (F + 1). Therefore the complexity of action selection
is O(FK ). On the other hand, from [55] and [56], for a given
sample of the replay buffer the computational complexity of
the back-propagation is proportional to the product of the
input and output size of the NN. Therefore, for our case of
interest from the above calculations, it would beO(OF2K 2),
where, O is the batch size. As a result, assuming that the
outer loop of the algorithm converges after a fixed number of
iterations, O(1), and the aggregation process also increases
in proportion to the number of the UAVs, U , the overall
computational complexity of the training phase of the whole
network is O(UOF2K 2

+ U ), or indeed O(UOF2K 2).
According to the above discussion, the complexity of the

action selection of all U agents in the deployment phase is
given by O(UFK ).

VIII. PERFORMANCE EVALUATION
In this section, the performance of the proposed algorithm
is evaluated. The performance results are compared for
four different methods: 1) The proposed IC-FDQN method,
2) The centralized version of the proposed method; Iter-
ative Constrained Centralized DQN (IC2DQN), 3) The
multi-agent version of the proposed method; Iterative Con-
strained Multi-agent DQN (IC-MDQN), and 4) The heuristic
method of Minimum Delay. In the IC2DQN method, it is
assumed that the VNFO is the local server while it is aware of
the entire network state s. In the IC-MDQN case, there is no
coordination between the UAVs as distributed agents. Finally,
the minimum delay method at each VNF scheduling time t̃
aims to select the action that leads to minimum end-to-end
delay between the IoT nodes and the local server.

A. SIMULATION SETUP
The simulation environment is implemented in Python using
OpenAI gym [57], a widely used tool for developing RL

FIGURE 4. Average AoI versus different values of coefficient of
variation, CV ∈ {10,20,30,40}.

algorithms, and conducted in a computer with Intel(R)
Core(TM) i7-10700 CPU 2.90 GHz and 64 GB RAM.
Through simulations, the impact of the UAV’s load variation
on the performance in terms of Coefficient of Variation (CV)
is evaluated. CV or Relative Standard Deviation is formally
defined as Cv =

σ
µ

× 100, where σ and µ are the standard

deviation and mean value of a statistical distribution [58].
A higher value for CV means a higher degree of variation
to its mean. CV is a standardized measure of dispersion of a
probability distribution or frequency distribution and widely
used in engineering as a quality and reliability assurance
measure [58], [59]. For a system under test, 20 < CV < 30 is
normal so for a reliable system it is expected that it will
tolerate this variation in terms of the output performance.
Whereas, CV > 30 is a strict condition [59], [60]. Hence,
in the simulations, the performance of the proposed algorithm
has been investigated for CV ∈ {10, 20, 30, 40} and is com-
pared with the baseline methods. In addition, the impact of
increasing the number of IoT nodes on the performance of
the proposed scheme in terms of average AoI, AoI-condition
violation, and network energy consumption is evaluated. Sim-
ulation parameter settings are summarized in Table 2.

B. SIMULATION RESULTS
The effect of load variation on AoI and energy efficiency of
the proposed method and baselines are presented in Fig. 4 to
Fig. 6. In the implemented model, it is implicitly assumed
that all the assigned VNFs to a processing node should be
finished in a single round of VNF scheduling. In Fig. 4, the
average AoI versus different values of CV is shown. As it is
evidenced, by increasing the CV the average AoI increases
too. This means an increase in load variation leads to an
increase in AoI. This happens mainly because for bigger val-
ues of CV the agents have to find the best policy for a state of
bigger dimension. However, compared to baseline methods,
for different values of CV (except for CV = 40) aver-
age AoI of the proposed IC-FDQN method is the smallest,
and the minimum delay method has the worst performance.
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TABLE 2. Model parameters.

Generally speaking, similar results can be deduced from
Fig. 5 and Fig. 6. Nevertheless, each method with respect
to different values of CV behaves differently which needs to
be discussed. For CV = 10 and CV = 20, i.e. when the
variance of the UAV’s load is small, the IC2DQN that has a
centralized view over the network status reaches smaller AoI
in comparison with the IC-MDQN in which the agents have
just local observations. However, for the proposed IC-FDQN
method, although the agents have their local observations
(like IC-MDQN) but cooperatively contributed to the same
model that results in a single global model which is able to
reach the minimal AoI among the other baseline methods.
This result is consistent with Lemma 1 and confirms the fact
that for asymmetric Dec-CMMDP, which is the case in this
paper, the best policy for the agents is the same.

By increasing CV to 30 and more, IC-MDQN starts to
surpass IC2DQN, as in IC2DQN the local server as a cen-
tral agent tries to concurrently maximize the performance
of all UAVs; for a fixed size of DNN, with the increase
in CV , reaching out to the best policy for all the agents
becomes more difficult until it would be infeasible after a
certain amount of CV and performance degrades signifi-
cantly. However, for CV = 30 both the proposed IC-FDQN
method and IC-MDQN are able to reach a lower AoI in
comparison with IC2DQN. The reason can be explained as
follows. In IC-FDQN and IC-MDQN methods the agents

behave independently, so they have more degrees of free-
dom in determining the local optimal action. That is why
IC-MDQN provides better performance than IC2DQN as
the CV increases. However, comparing IC-FDQN and IC-
MDQN, the proposed IC-FDQN method which is FL-based
still is able to reach the minimum AoI because the agents
while acting independently, have the same model (a copy
of the global model) that is cooperatively built upon the
aggregation of local agents’ observations. Nevertheless, for
CV = 40, the story is different. As explained before, CV =

40 is not a normal case for an under-test system and is a
strict condition. In this case, the problem from the global
viewpoint of IC-FDQN and IC2DQN methods is not feasi-
ble, however, IC-MDQN could achieve better performance
because the agents follow different policies and are greedy.
As a result, some of the agents are able to minimize the local
AoI which eventually leads to minimization of the average
AoI. It should be mentioned that in calculating the AoI value
of each agent, an upper limit of T̃ is considered. Finally, the
heuristic Minimum Delay method which tries to minimize
the point-to-point delay comes with the largest value of AoI
as it does not consider the end-to-end performance and has
a local short-term target. In summary, for normal values of
load variations, the proposed IC-FDQN method is able to
achieve the minimum value for average AoI in comparison to
the baselines for two reasons. First, the agents interactively
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FIGURE 5. Percentage of AoI violation versus different values of
coefficient of variation, CV ∈ {10,20,30,40}.

FIGURE 6. Average energy consumption per packet versus
different values of coefficient of variation, CV ∈ {10,20,30,40}.

cooperate to build the optimal global model based on their
local observations. Second, although the model is the same,
the agents act independently.

A similar discussion can be made for the results presented
in Fig. 5 for the percentage of AoI violation and Fig. 6 for
average energy consumption. The only point that is worth
mentioning is the temporary reduction of the average energy
consumption for IC-FDQN and IC2DQN when CV = 20.
The point is that for a normal coefficient variation and for
those methods that have a global viewpoint (all methods
except IC-MDQN), independent load variation of the UAVs
provides the central agent with the opportunity to manage the
resources network-wide to minimize the energy consumption
at some point that the load is low in some UAVs. However,
the IC-MDQN is not able to use this opportunity because
the agents behave greedily, independently, and based on local
observations. Therefore, this reduction in the level of energy
consumption for the case that the load of the UAVs is low
leads to an overall minimization of energy consumption.

The outer-loop convergence is depicted in Fig. 7, where the
optimal value for λ and ρ are determined through an iteration

FIGURE 7. Outer-loop convergence: Average cumulative cost vs
iteration over k.

FIGURE 8. Probability distribution function of AoI values.

FIGURE 9. The effect of changing the constraint value ξ after
training.

over k using (27) and (28). From (27), we define the average
cumulative cost given by,

E
[ ∞∑
t̃=0

γ t̃X+

(
cu,t̃

(
seu, au

))∣∣∣∣πu,i]
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FIGURE 10. The effect of increasing the number of IoT nodes on AoI value in different parameter settings for the available computing
and storage capacity of processing nodes, while total available computing resources to processing nodes, Cp and Bp, (a) are like
Table 2. (b) has been increased by a scale factor of 1.25 (c) has been increased by a scale factor of 1.5.

FIGURE 11. The effect of increasing the number of IoT nodes on percentage of AoI violation in different parameter settings for the
computing and storage capacity of processing nodes, while total available computing resources to processing nodes, Cp and Bp,
(a) are like Table 2. (b) has been increased by a scale factor of 1.25 (c) has been increased by a scale factor of 1.5.

Fig. 7 illustrates that for an optimal pair of (λ, ρ) in which
the average cumulative cost converges, both IC2DQN and
IC-MDQN have a residual cost while for the proposed.
Whereas the proposed IC-FDQN method is able to reach the
residual cost of zero for k > 11. In other words, the IC-FDQN
method is able to successfully satisfy the constraint in all
system states, as it is desired in Problem 1.

To further clarify, the histogram (the probability of occur-
rence) of the AoI values for the proposed method and base-
lines is determined by simulation and presented in Fig. 8. As it
is evident, for the proposed IC-FDQNmethod the probability
of occurrence for AoI values bigger than the constraint, i.e.
ξ = 100msec, is zero. Whereas, for IC2DQN and IC-MDQN
the tail of the graph extends after the constraint that is not
acceptable in CMDP context. Comparing IC-MDQN and
IC2DQN, both methods violate the required instantaneous
constraint on AoI values, but for the IC-MDQN method with
a centralized view over the network, values are distributed
over a wider range.

In Fig. 9, the effect of considering different values for
AoI constraint value ξ while the training is performed for
ξ = 100msec is investigated. This experiment illustrates how
much each algorithm is robust against demanding smaller
constraint values of ξ , i.e. more stringent conditions, while

the NNs are trained for a bigger value of ξ . Note that in this
experiment the NNs are not retrained for the new conditions.
From this figure, the proposed IC-FDQN method is able to
successfully satisfy the demands for lower values up to ξ =

97msec. In other words, even though the algorithm is trained
to provide instantaneous AoI values less than ξ = 100 msec,
the algorithm is able to satisfy the more stringent conditions
when ξ is a number belongs to range [97, 100]. However, IC-
MDQN and IC2DQNmethods are not able to even satisfy the
trained constraint value of ξ = 100 msec.
In Fig. 10(a) to Fig. 10(c) the effect of increasing the

number of IoT nodes is illustrated. For a fixed value of
processing resources, as the number of IoT nodes increases
the achievable AoI increases as well until for a certain number
of IoT nodes in which the problem would be infeasible and
AoI values increase significantly. In scenario 2 and sce-
nario 3, the processing node’s total resources, Cp and Bp, are
increased with the scale factors of 1.25 and 1.5, respectively.
A worth mentioning result inferred from these three figures
is that for smaller values of IoT nodes, 20-25 in Scenario 1,
20-35 in Scenario 2, and 20-40 in Scenario 3, the performance
of IC2DQN is the best, and IC-MDQN is better than IC-
FDQN. However, for larger values of IoT node numbers, the
IC-FDQN outperforms the baselines. Indeed, in IC2DQN the
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local server as a central agent tries to concurrently maximize
the performance of all UAVs. With a fixed size of DNN, for a
large number of IoT nodes, it is not feasible and performance
degrades. However, in IC-MDQN and IC-FDQN, the agents
behave independently and have more degrees of freedom in
determining the local optimal policy. The same discussion for
the percentage of AoI violations is true.

The effect of an increase in the number of IoT nodes on
AoI violation is illustrated in Fig. 11(a) to Fig. 11(c). In this
investigation, the available processing resources are assumed
to be fixed when the number of IoT nodes increases. The
same behavior as Fig. 11(a) to Fig. 11(c) but this time for
the percentage of AoI violation can be seen also here. In sce-
nario 2 and scenario 3, the processing node’s total resources,
Cp and Bp, are increased with the scale factors of 1.25 and
1.5, respectively. As it is evident, just the proposed IC-FDQN
method is able to achieve zero percentage of AoI violation.
A result that was expected with respect to the results of Fig. 7,
where it is shown that the only method that is able to converge
to zero residual cost is IC-FDQN. For a significant range
of IoT numbers, this superiority remains. For example in
Fig. 11(a), where the IoT nodes number is 35, the percentage
of AoI violation for the baseline methods is 20% and more
whereas this value for the proposed IC-FDQNmethod is zero.

IX. CONCLUSION
We considered the problem of dynamic placement and
scheduling of NFV-enabled SFCs in a smart agriculture appli-
cation with the aim of minimizing total energy consumption
throughout the network while there is a strict condition on
the Age of Information (AoI). The problem is formulated as
a Dec-CMDP. Then, adopting the symmetric structure of the
network, a novel federated learning-based iterative method
is proposed to solve the problem efficiently. The proposed
method is distributed and energy efficient since the local
agents only need to share the parameters of their locally
trainedmodel with each other. The privacy-supporting feature
of FL significantly decreased the communication overhead
which in our problem led to a significant reduction in the total
energy consumption of the network. Regarding satisfaction
of the constraint and instantaneous AoI values, the proposed
method is able tomeet the required constraint for a reasonable
range of parameter settings and has the best performance in
comparison to the baseline methods. In terms of freshness of
information and for a realistic parameter setting, the AoI is
minimized jointly. Simulation results demonstrated that the
achieved value for the AoI is appropriate for most near real-
time applications.
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